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Abstract. Using Gauss-Manin derivatives of generalized normal functions, we
arrive at results on the non-triviality of the transcendental regulator for Km of
a very general projective algebraic manifold. Our strongest results are for the
transcendental regulator for K1 of a very general K3 surface and its self-product.
We also construct an explicit family of K1 cycles on H ⊕ E8 ⊕ E8-polarized K3
surfaces, and show they are indecomposable by a direct evaluation of the real
regulator. Critical use is made of natural elliptic fibrations, hypersurface normal
forms, and an explicit parametrization by modular functions.
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1. Introduction

The subject of this paper is the existence, construction, and detection of inde-
composable algebraic K1-cycle classes on K3 surfaces and their self-products. We
begin by treating the existence of regulator-indecomposable cycles on a very general
K3 with fixed polarization by a lattice of rank less than 20 (§2), as well as on their
self-products in the rank one projective case (§4). This is intertwined with a discus-
sion (§3) of homogeneous and inhomogeneous Picard-Fuchs equations for truncated
normal functions — a subject of increasing interest due to their recent spectacular
use in open string mirror symmetry [MW] — which is further amplified by explicit
examples in §5.

The second half of the paper takes up the question of how to use the geometry
of polarized K3 surfaces with high Picard rank to construct indecomposable cycles
(§§5-6). Elliptic fibrations yield an extremely natural source of families of cycles,
whose image under the real and transcendental regulator maps have apparently not
been previously studied. Our computation of their real regulator not only proves
indecomposability, but turns out to be related to higher Green’s functions on the
modular curve X(2) (cf. [Ke], which depends upon the present §6). The paper
concludes (§7) with a discussion of the mysterious Picard rank 20 case and its
relationship to open irrationality problems. In the remainder of this introduction,
we shall state the main existence results of §§2-4, and place the constructions of §6
in historical context.

Background on cycle class maps. Let X be a projective algebraic manifold of
dimension d, and CHr(X,m) the higher Chow group introduced by Bloch ([B]). We
are mainly interested in working modulo torsion, thus we will restrict ourselves to
the corresponding group CHr(X,m;Q) := CHr(X,m) ⊗ Q. We shall be especially
interested in the case m = 1, and the indecomposable cycles

CHr
ind(X, 1;Q) := CHr(X, 1;Q)

image
(
C∗ ⊗ CHr−1(X;Q)

) .
An explicit description of the Bloch cycle class map to Deligne cohomology,

clr,m : CHr
hom(X,m;Q)→ J

(
H2r−m−1(X,Q(r))

)
⊂ H2r−m

D (X,Q(r)),
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is given in [KLM], where

J
(
H2r−m−1(X,Q(r))

)
:= Ext1

Q−MHS

(
Q(0), H2r−m−1(X,Q(r))

)
' H2r−m−1(X,C)
F rH2r−m−1(X,C) +H2r−m−1(X,Q(r)) '

{F d−r+1H2d−2r+m+1(X,C)}∨
H2d−2r+m+1(X,Q(d− r)) .

(1.1)

(Note that CHr(X,m;Q) = CHr
hom(X,m;Q) for m ≥ 1, and by convention, for

singular homology, Hi(X,Q(r)) := Hi(X,Q) ⊗ Q(−r), which has weight 2r − i.)
Composing clr,m with the natural map

Ext1
Q−MHS

(
Q(0), H2r−m−1(X,Q(r))

)
→ Ext1

R−MHS

(
R(0), H2r−m−1(X,R(r))

)
,

defines the real regulator

(1.2) rr,m : CHr(X,m)→ Ext1
R−MHS

(
R(0), H2r−m−1(X,R(r))

)
,

where explicitly (noting C = R(m− 1)⊕ R(m)),

Ext1
R−MHS

(
R(0), H2r−m−1(X,R(r))

)
' H2r−m−1(X,C)
F rH2r−m−1(X,C) +H2r−m−1(X,R(r))

' Hom
(
F d−r+1 ∩H2d−2r+m+1(X,R),R(r − 1)

)
.

We will now assume that X is a member of a family λ : X → S, where X, S are
smooth complex quasi-projective varieties and λ is smooth and proper, and where
X := λ−1(0) corresponds to 0 ∈ S. Associated to this is the Kodaira-Spencer map
κ : T0(S) → H1(X,ΘX), whose image we will denote by H1

alg(X,ΘX), where ΘX

is the sheaf of holomorphic vector fields on X. The cohomology of the fibers of λ
defines a variation of Hodge structure, and roughly speaking, a normal function is
a “locally liftable holomorphic” cross-section: S → ∐

t∈S J
(
H2r−m−1(λ−1(t),Q(r))

)
.

The Hodge structure

H2r−m−1(X,Q(r)) = H2r−m−1
f (X,Q(r))

⊕
H2r−m−1
v (X,Q(r))

decomposes, where

H2r−m−1
f (X,Q(r)) := H2r−m−1(X,Q(r))π1(S)

is the fixed part of the corresponding monodromy group action onH2r−m−1(X,Q(r)),
andH2r−m−1

v (X,Q(r)) is the orthogonal complement. A well-known result of Deligne
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[De] tells us that

H2r−m−1
f (X,Q(r)) = Image

(
H2r−m−1(X,Q(r))→ H2r−m−1(X,Q(r))

)
.

Accordingly, one has a reduced cycle class map

clr,m : CHr(X,m;Q)→ J
(
H2r−m−1
v (X,Q(r))

)
.

Such a regulator map already plays a key role in detecting interesting CHr(X,m)
classes, such as indecomposables (see for example [L] and [MS]).

By taking a further quotient of the Jacobian, we pass to the transcendental reg-
ulator

(1.3) Φr,m : CHr(X,m;Q)→

{
F d−r+m+1H2d−2r+m+1

v (X,C)
}∨

Hv
2d−2r+m+1(X,Q(d− r)) .

Since the Q-dimension of the denominator usually exceeds twice the C-dimension
of the numerator, Φr,m is primarily of use in families, where suitable Picard-Fuchs
operators kill sections of the denominator.

To give a formula for (1.3), we shall associate to ξ ∈ CHr(X,m;Q) a functional

Φ̃r,m(ξ) ∈ Hom
(
F d−r+m+1H2d−2r+m+1

v (X,C),C
)
,

whose image in RHS(1.3) yields Φr,m(ξ). Let ω ∈ ker(d) ⊆ F d−r+m+1A2d−2r+m+1(X)
be a representative form. According to the moving lemma of [KLM, K-L], we may
assume the irreducible components of ξ meet the real cube X × [−∞, 0]m properly.
Viewing |ξ| ⊂ X ×Cm as a closed subset of codimension r, we have dimPrX(|ξ|) ≤
d − r + m. Together with the depth of ω in the Hodge filtration, this eliminates
most of the terms in the [KLM] formula for clr,m(ξ)(ω), leaving us with

(1.4) Φ̃r,m(ξ)(ω) := ± 1
(2πi)d−r

ˆ
Γ
ω,

for Γ a choice of C∞ (2d−2r+m+1)-chain onX with ∂Γ = PrX(ξ∩{X×[−∞, 0]m}).
The ambiguity in this choice lies in the denominator of RHS(1.3).

We observe that if m = 1, then (1.3) factors through the indecomposable classes.
A class ξ for which Φr,1(ξ) 6= 0 is thus called regulator-indecomposable. Of particular
interest is the case (d, r,m) = (2, 2, 1), where (1.3) and (1.2) take the form

Φ2,1 : CH2(X, 1)→ H2,0
v (X)∨

Hv
2 (X,Q) , r2,1 : CH2(X, 1)→ H1,1(X,R(1)).
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Existence of regulator indecomposables. To explain the results of §§2-4, we
first need to recall the main theorem of [C-L1]. Recall that a point p ∈ S(C) is
general [resp. very general] if it lies in the complement of a finite [resp. countable]
union of algebraic subvarieties. When making statements about the real regulator,
more analytic notions are required. By a real-analytic Zariski-open subset U of S,
we shall mean the complement of a real-analytic subvariety in SanC (viewed as a
real analytic variety). Given some set of algebraic subvarieties of S, an Ran-general
member of this set is one which meets such a U .

Theorem 1.1 ([C-L1]). Let λ : X → S be the universal family of polarized K3
surfaces of genus g(≥ 2), and write Xs := λ−1(s). Then the real regulator

r2,1;s : CH2(Xs, 1)⊗ R→ H1,1(Xs,R(1)),

is surjective for s in a real-analytic Zariski-open subset U ⊂ S.

Pick ` ∈ [1, 19] ∩ Z. Let XT → T , with T ⊂ S irreducible and dim(T ) = 20− `,
be an Ran-general subfamily of generic Picard rank `, so that V := T anC ∩ U is
nonempty. Our first result about these maximal families is the following.

Theorem 1.2. Let t ∈ V be very general in T . Then the transcendental regulator
Φ2,1;t is non-zero.

From the proof of Theorem 1.2, one may infer:

Corollary 1.3. Let X/C be a very general member of a family of surfaces for
which H1

alg(X,ΘX) ⊗ H2,0
v (X) → H1,1

v (X) is surjective. If the real regulator r2,1 :
CH2(X, 1)→ H1,1

v (X,R(1)) is non-zero, then so is the transcendental regulator Φ2,1.

Now consider X of dimension d as a very general member of a family λ : X→ S.
With a little bit of effort, one can also show the following.

Theorem 1.4. Suppose that the map

H1
alg(X,ΘX)⊗Hd−r+m+1−`,d−r+`

v (X)→ Hd−r+m−`,d−r+`+1
v (X),

induced by cup-product, is surjective for all ` = 0, ...,m − 1. Then clr,m 6= 0 ⇒
Φr,m 6= 0.

Theorems 1.2, 1.4 and Corollary 1.3 will be proved in section 2.2. We deduce
from Theorem 1.4 the following
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Corollary 1.5. Let X be a very general projective K3 surface, so that H2
v (X,C) is

transcendental cohomology. Then the transcendental regulator

Φ3,1 : CH3(X ×X, 1)→

{
F 3
(
H2
v (X,C)⊗H2

v (X,C)
)}∨

H4(X ×X,Q(1)) ,

is non-zero.

We prove Corollary 1.5 in section 4. In turns out however, that with more effort,
we can actually prove the following stronger result:

Theorem 1.6. The truncated transcendental regulator

Ψ3,1 : CH3(X ×X, 1)→ H4,0(X ×X,C)∨
H4(X ×X,Q(1)) ,

is non-zero for a very general K3 surface X.

The proofs of all the above results rely on a very simple trick involving the in-
finitesimal invariant of a normal function associated to a family of cycles on X/S
inducing a given transcendental regulator value on X. A deeper question asks
whether such a normal function is detected by a Picard-Fuchs operator. A blanket
answer to this question is “yes”; but rather than explaining it here, we shall provide
a complete clarification in §3.

Construction of regulator indecomposables. Returning to Theorem 1.2, two
questions arise. First, the method of [C-L1], which proves the existence of de-
formations of decomposables on Picard rank 20 K3’s, to indecomposables on an
Ran-general polarized K3, is highly non-explicit. How can one construct interesting
explicit examples of cycles with non-zero Φ2.1 on subfamilies with Picard rank ` > 1?
Second, on a Picard-rank 20 K3, does one expect there to be any cycles at all which
have non-zero Φ2,1, and which are therefore indecomposable?

The first question is our main concern for the remainder of the paper. In §5, we
introduce a the tools required for explicit computations in this setting. The notion
of a polarized K3 surface is extended to that of a lattice polarization, and algebraic
hypersurface normal forms are given for certain families of lattice polarized K3
surfaces of high Picard rank `. We then describe a very useful “internal structure”
consisting of an elliptic fibration with section(s). Explicit Picard-Fuchs operators are
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given and related to parametrizations of coarse moduli spaces by modular functions
and their generalizations.

Starting in §6, we restrict our considerations to ` = 18 or 19, where the literature
has not been especially reliable. The article [PL-MS] considers a family of cycles
Zt ∈ CH2(Xt, 1) on a 1-parameter family of elliptically fibered K3’s with ` = 19,
and a choice of section {ωt} of the relative canonical bundle. In this context, F (t) :=
Φ2,1(Zt)(ωt) is a multivalued holomorphic function, and the indecomposability of Zt
may be detected by showing the Picard-Fuchs operator for ω does not annihilate it.
Unfortunately, Zt turns out to be 2-torsion,1 and the computation of F leaves out
a part of the membrane integral which cancels the part written down. For ` = 18,
one can try to construct regulator-indecomposable cycles on a product E1 × E2 of
elliptic curves and then pass to the Kummer. Such a construction is attempted
in [G-L] but this cycle, too, was shown by M. Saito to be decomposable.2 When
E1 ∼= E2, other authors (cf. [Zi]) have investigated “triangle cycles” supported on
E × {p}, {q} × E, and the diagonal ∆E, where [p] − [q] is N -torsion. But this
cannot produce indecomposable cycles, since the sum of the natural N2 N -torsion
translates of such a cycle (by integer multiples of p− q on the two factors) is both
visibly decomposable and (up to torsion) equivalent to N2 times the original cycle.

With this discouraging history, it is easy to imagine that when X is an elliptically
fibered K3, the very natural CH2(X, 1) classes supported on semistable singular
(Kodaira type In) fibers might be decomposable as well. Indeed one knows in the
case of a modular elliptic fibration (K3 or not), that Beilinson’s Eisenstein symbols
[Be] kill all such classes. On the other hand, using arithmetic methods to bound the
rank of the dlog image, Asakura [As] demonstrated that for elliptic surfaces with
general fiber y2 = x3 + x2 + tn (n ∈ [7, 29] prime), the type I1 fibers generate n− 1
independent indecomposable K1 classes. His paper stops short of attempting any
regulator computations for such cycles, and this is what we take up in §6 in the
context where the surface and cycle are allowed to vary.

Specifically, using an I1 fiber in an internal elliptic fibration of the 2-parameter
family {Xa,b} of Shioda-Inose K3’s (` = 18) [C-D2], we write down a (multivalued)
family of cycles Za,b ∈ CH2(Xa,b, 1). Passing to the associated Kummer family with
1the cycle Zt, which is supported over {Z = 0} ∪ {Z = 1} ∪ {X = 0} ∪ {X =∞} in the notation
of [PL-MS], is in fact one-half the residue of the symbol

{
X, 1− 1

Z

}
.

2that construction can, however, be corrected [T].
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parameters α, β (and cycle Zα,β), we find that the family of cycles becomes single-
valued over the diagonal (` = 19) sublocus α = β, which is the Legendre modular
curve P1\{0, 1,∞} ∼= H/Γ(2). At this point we write down a smooth family of real
closed (1, 1) forms ηα and compute directly the function

ψ(α) := r2,1(Zα,α)(ηα) =

−8|α + 1|Im
´
C z · log

∣∣∣ z+i
z−i

∣∣∣

{(α2−α−1)z4+2z2+(α3−α2−2α+1)}
|z2−α||1−αz2||z2+1||z2−(1+α−α2)| ×

{(α3−α2−2α+1)z4+2z2+(α2−α−1)}
|(1+α−α2)z2−1||z4+(α3−3α)z2+1|

 dx ∧ dy
to be nonzero. By Corollary 1.3 we have immediately the

Theorem 1.7. Φ2,1(Za,b) is non-zero for (a, b) in a real-analytic Zariski-open subset
of C2, and so Za,b is indecomposable for very general (a, b).

In light of the past confusion surrounding such constructions, such a natural
source of indecomposable cycles seems to us an important development. While the
explicit formula above may not look promising, ψ(α) is in fact a very interesting
function. Dividing out by the volume of the Legendre elliptic curve and pulling back
by the classical modular function λ to obtain a function ψ̃(τ) on H, yields a “Maass
cusp form with two poles”. That is, ψ̃ is Γ(2)-invariant, is smooth away from the
λ-preimage of α = {−1, 2} (where it has log | · | singularities), dies at the 3 cusps,
and (away from these bad points) is an eigenfunction of the hyperbolic Laplacian
−y2∆. This is shown by the third author in the follow-up paper [Ke].3

Finally, we turn briefly to the second question, concerning the case ` = 20, in §7.
Due to the vanishing of H1,1

v (X,R), r2,1 is zero by definition, but this is no reason
for the transcendental Abel-Jacobi map Φ2,1 to vanish. In the example we work
out, whether or not Φ2,1(Z) is nontorsion boils down to the irrationality of a single
number (cf. (7.9)), which we do not know how to prove directly. It seems likely both
that the cycle is indecomposable and that this may be shown by using the methods
in [As] to compute the dlog image.

Acknowledgments. X. Chen, C. Doran and J. Lewis are partially supported by
grants from the Natural Sciences and Engineering Research Council of Canada.
3which, it should be noted, relies crucially on the computation here.
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presentation of this paper.

2. Derivatives of normal functions I

2.1. Gauss-Manin derivatives. Consider a smooth projective family π : X → S

of varieties, polarized by a relatively ample line bundle L, over a polydisk S, with
central fiber X = π−1(0). Write

F p
OSR

qπ∗C := Rqπ∗Ω•≥pX/S ⊆ Rqπ∗Ω•X/S = OS ⊗Rqπ∗C,

for the Hodge filtration. We have the Gauss-Manin (GM) connection

(2.1) ∇ : OS ⊗Rqπ∗C→ Ω1
S ⊗Rqπ∗C

which is a flat connection satisfiying Griffiths transversality:

∇
(
F p
OSR

qπ∗C
)
⊆ Ω1

S ⊗ F
p−1
OS R

qπ∗C.

Let ΘS be the holomorphic tangent bundle of S. We can think of ΘS as the sheaf
of holomorphic linear differential operators. By identifying ∂/∂zk with ∇∂/∂zk , ΘS

acts on OS ⊗Rqπ∗C via

(2.2) u · ω = ∇uω

for u ∈ H0(ΘS), where we write H0(−) for H0(S,−). If 〈·, ·〉 denotes the polarizing
form on OS ⊗Rqπ∗C, then u〈·, ·〉 = 〈∇u(·), ·〉+ (−1)q〈·,∇u(·)〉.

Now assume the fibers of π are (polarized) K3 surfaces. We fix a non-zero section
ω ∈ H0(KX/S), where KX/S is the relative canonical sheaf of X over S. For all
u ∈ H0(ΘS) and all γ ∈ H2(X,C) (whereH2(X,C) is identified withH0(S,R2π∗C)),
we have

(2.3) u〈γ, ω〉 = 〈γ,∇uω〉.
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Let ξ ∈ CH2(X/S, 1) be the result of an algebraic deformation of a cycle in the
central fiber X restricted to X/S, and cl2,1 be the regulator map

(2.4) cl2,1 : CH2(X/S, 1)→ H0
(

OS ⊗R2π∗C
F 2
OSR

2π∗C +R2π∗Q(2)

)
.

Take ν to be a lift of cl2,1(ξ) to H0(OS ⊗R2π∗C). Then

(2.5) 〈∇uν, ω〉 = 0

since the map

∇ ◦ cl2,1 : CH2(X/S, 1) cl2,1−−→ H0
(

OS ⊗R2π∗C
F 2
OSR

2π∗C +R2π∗Q(2)

)

∇−→ H0
(

Ω1
S ⊗

(
OS ⊗R2π∗C
F 1
OSR

2π∗C

))(2.6)

induced by the GM connection is trivial. This follows from the quasi-horizontality
of (higher) normal functions associated to generalized algebraic cycles.

Remark 2.1. For the non-expert reader, here is an efficient proof of this quasi-
horizontality. Let X/S be a smooth projective family, and recall the analytic Deligne
complex 0 → Z(r) → Ω•<rX , which leads to an exact sequence H2r−m−1(Ω•<rX ) →
H2r−m
D (X,Z(r))→ H2r−m(X,Z(r)). We consider a relatively null-homologous cycle

in CHr(X/S,m), which will map to zero in H2r−m(X,Z(r)) (as S is a polydisk).
Hence the induced normal function has a lift in H2r−m−1(Ω•<rX ), which is all we shall
need.

The Leray spectral sequence for X/S gives us an edge map H2r−m−1(Ω•<rX ) →
H0(S,R2r−m−1π∗Ω•<rX ). One has a filtering of the complex LνΩ•<rX := Image

(
π∗Ων

S⊗
Ω•<r−νX → Ω•<rX

)
, with GrνL = π∗Ων

S⊗Ω•<r−νX/S ' Ων
S⊗Ω•<r−νX/S . There is a spectral se-

quence computing Rp+qπ∗Ω•<rX with Ep,q1 = Rp+qGrpL = Ωp
S⊗Rqρ∗Ω•<r−pX/S . So we have

the compositeH0(S,R2r−m−1π∗Ω•<rX )→ H0(S, E0,2r−m−1
1 ) d1−→ H0(S, E1,2r−m−1

1 ), which
must be zero by spectral sequence degeneration, using the fact that E0,2r−m−1

∞ ⊂
ker

(
d1 : E0,2r−m−1

1 → E1,2r−m−1
1

)
. But H0(S, E0,2r−m−1

1 ) d1−→ H0(S, E1,2r−m−1
1 ) is

precisely the Gauss-Manin connection

H0(S,R2r−m−1π∗Ω•<rX/S) ∇−→ H0(S,Ω1
S ⊗ R2r−m−1π∗Ω•<r−1

X/S ).

Specializing (r,m) = (2, 1) now gives the vanishing asserted in (2.6).
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2.2. Transcendental regulators. We continue with the notation of the last sub-
section, with X the central fiber of a smooth non-trivial family of algebraic K3
surfaces X over a polydisk S. Suppose that Φ2,1(ξ)(ω) ≡ 0 over S, so that 〈ν, ω〉 is
a period; that is, 〈ν, ω〉 = 〈γ, ω〉 for some γ ∈ H2(X,Q(2)). Applying (2.5),

(2.7) 〈γ,∇uω〉 = u〈γ, ω〉 = u〈ν, ω〉 = 〈∇uν, ω〉+ 〈ν,∇uω〉 = 〈ν,∇uω〉.

Now write

(2.8) κ : ΘS,0 → H1(X,ΘX)

for the Kodaira-Spencer map, and

(2.9) ε : H1(X,ΘX)⊗H2,0(X)→ H1,1(X)

for the map induced by the contraction ΘX ⊗ ∧2Ω1
X → Ω1

X . Then

(2.10) ∇uω = ε (κ(u) ∪ ω) ,

and we have the elementary

Proposition 2.2. ε is an isomorphism.

Proof. By Serre duality, this follows from nondegeneracy of the map

(2.11) H1(X,ΘX)⊗H1(X,Ω1
X)→ H2(X,OX)

induced by contraction ΘX ⊗ Ω1
X → OX . But since OX = KX (and Ω1

X = (Θ1
X)∨ ⊗

KX) for a K3, (2.11) is the Serre pairing and hence nondegenerate. �

Note thatH1(X,ΘX) corresponds to all deformations ofX, including non-algebraic
ones.

Proof. (of Theorem 1.2) Take S to be an open polydisk in V with center 0 at t ∈ V ,
and put H1

alg(X,ΘX) := κ(ΘS,0). Suppose that Φ2,1(ξ) = 0 for all ξ ∈ CH2(X/S, 1).
Denote by εS : H1

alg(X,ΘX) ⊗ H2,0(X) → H1,1
v (X) the restriction of (2.9). In

the setting of the Theorem, dimH1,1
v (X) = 20 − ` and κ is injective. Thus by

Proposition 2.2, εS is surjective, and the {∇uω}u∈H0(ΘS) together with ω generate
F 1H2

v (X,C). Applying (2.7), we see that cl2,1(ξ) = 0 for any ξ ∈ CH2(X/S, 1). But
by Theorem 1.1, this is impossible since the composition of r2,1 with the projection
to H1,1

v (X,R(1)) is nonzero and factors through cl2,1. �
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This argument carries over essentially verbatim to the more general setting of
Corollary 1.3.

Proof. (of Theorem 1.4) Let us assume that Φr,m(ξ) is zero. That means that clr,m(ξ)
is a period with respect to (acting on forms in) F d−r+m+1H2d−2r+m+1

v (X,C). Then
from the surjection of

H1
alg(X,ΘX)⊗Hd−r+m+1−`,d−r+`

v (X)→ Hd−r+m−`,d−r+`+1
v (X),

in the case ` = 0, we deduce likewise that clr,m(ξ) is a period with respect to
F d−r+mH2d−2r+m+1

v (X,C). By iterating the same argument for ` = 1, ...,m − 1,
we deduce that clr,m(ξ) is a period with respect to F d−r+1H2d−2r+m+1

v (X,C), which
implies that clr,m(ξ) = 0. �

3. Derivatives of normal functions II

Consider the setting in §1, where λ : X → S is a smooth and proper map of
smooth quasi-projective varieties, and where X is a very general member. In this
section, we will further assume that S is affine. Associated to the Gauss-Manin
connection ∇ and the algebraic vector fields H0(S,ΘS) is a D-module of differential
operators. Suppose ω ∈ H0(S,OS⊗Riλ∗C) = H0(S,Riλ∗Ω•X/S) is an algebraic form,
where we note that Riλ∗Ω•X/S is algebraic and locally free in the Zariski topology.
One can consider the ideal IC(S)

ω of partial differential operators with coefficients in
C(S) annihilating ω, which will always be non-zero using the finite dimensionality
of cohomology of the fibers of λ and the fact that ∇ is algebraic, where C(S) is the
field of rational functions on S. This section addresses the following question.

Question 3.1. If the transcendental regulator Φr,m(ξ) is non-trivial, is the normal
function ν̄(t) = clr,m(ξt) associated to ξ detectable by a Picard-Fuchs operator
P ∈ IC(S)

ω , for some ω ∈ F d−r+m+1H2d−2r+m+1
v (X,C); namely, is P 〈ν, ω〉 6= 0?

Proposition 3.2. The answer to Question 3.1 is affirmative under the hypotheses
of Theorem 1.4, together with the following mild

Assumption 3.3. For the given choice of r and m,

{R2r−m−1
v λ∗C

}⋂
{F rH2r−m−1

v } = 0
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as subsheaves of H2r−m−1
v :=OS ⊗R2r−m−1

v λ∗C. Equivalently,

∇ : F rH2r−m−1
v → Ω1

S ⊗H2r−m−1
v ,

is injective.

This assumption holds automatically for the families of K3 surfaces in Theorem
1.2 (with (r,m) = (2, 1)), as well as for the fiber products of such in Corollary 1.5
and Theorem 1.6 (with (r,m) = (3, 1)).

Proposition 3.2 will be proved at the end of this section.

3.1. Picard-Fuchs equations associated to regulators. This section takes in-
spiration from [Gr]. Since ∇ is algebraic, Question 3.1 reduces to a local calculation
over a polydisk S ⊂ SanC in the analytic topology, cf. Proposition 3.4 below.

Recall that ΘS is the holomorphic tangent bundle of S. We can think of ΘS as
the sheaf of holomorphic linear differential operators which generates the ring DS
of differential operators: in local coordinates,

(3.1) DS = OS
[
∂

∂z1
,
∂

∂z2
, ...,

∂

∂zn

]

Identifying ∂/∂zk with ∇∂/∂zk , DS acts on OS ⊗Rqπ∗C via

(3.2) (v1v2...vl)ω = ∇v1∇v2 ...∇vlω

for v1, v2, ..., vl ∈ H0(ΘS), where we write H0(−) for H0(S,−). For ω ∈ H0(OS ⊗
Rqπ∗C), we let Iω⊂ H0(DS) be the Picard-Fuchs ideal annihilating ω, i.e. the left
ideal consisting of differential operators P ∈ H0(DS) satisfying Pω = 0.

Proposition 3.4. The analytic ideal Iω, viewed as a Mer(S) vector space, is gen-
erated by the restriction of the corresponding algebraic ideal IC(S)

ω to the polydisk S,
where Mer(S) is the field of the meromorphic functions on S and we extend the
scalars in Iω from H0(S,OanS ) to Mer(S) by replacing Iω by Iω ⊗H0(S,OanS ) Mer(S).

Proof. Let S be affine, and ω ∈ H0(S,Riλ∗Ω•X/S) an algebraic form. By shrinking
S, we may assume that the algebraic vector bundles Riλ∗Ω•X/S and ΘS are trivial,
e.g. Riλ∗Ω•X/S = ONS . Given v1, v2, ..., vl ∈ H0(ΘS), in the notation of (3.2) we have
(v1v2...vl)ω ∈ H0(S,ONS ) = H0(S,OS)N ⊂ C(S)N , since ∇ is algebraic.

Now pass to the generic point of S. Given V1, ..., VM ∈ C(S)N of the form
{(v1v2...vl)ω}, let Λ be the N ×M matrix with jth column Vj. Evidently, solutions
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A ∈ C(S)M to ΛA = 0 define elements of IC(S)
ω , and all elements are obtained in this

way for some M and {Vi}. Moreover, all elements of Iω are obtained from solutions
A ∈ Mer(S)M to (Λ|S)A = 0, and (by Gaussian elimination) the vector space of
these solutions is defined over C(S) ⊂ Mer(S). The proposition follows. �

As in §2 let us again for simplicity restrict to the situation of a family of K3
surfaces over a polydisk S. We fix a nonzero section ω ∈ H0(KX/S). For any
u ∈ H0(ΘS) and all Picard-Fuchs operators P ∈ I∇uω, it is obvious that

(3.3) (Pu)ω = 0

and hence

(3.4) (Pu)〈γ, ω〉 = 0

for all γ ∈ H2(X,C) = H0(S,R2π∗C).
Let ξ and ν be as in §2.1. Since Pu ∈ Iω “kills” all the periods 〈γ, ω〉 for γ ∈

H2(X,Q(2)), (Pu)〈ν, ω〉 is independent of the choice of lifting ν of cl2,1(ξ). By (2.5),
we have

(3.5) Pu〈ν, ω〉 = P (〈∇uν, ω〉+ 〈ν,∇uω〉) = P 〈ν,∇uω〉,

and thus part (i) of the following

Proposition 3.5. Let X/S, ν, ω and u be given as above.
(i) For all P ∈ I∇uω, we have

(3.6) P (u〈ν, ω〉 − 〈ν,∇uω〉) = 0.

(ii) There exists a γ ∈ H2(X,C) = H0(S,R2π∗C) such that

(3.7) u〈ν, ω〉 − 〈ν,∇uω〉 = 〈γ,∇uω〉.

For part (ii), we need to check that the solutions of Py = 0 for P ∈ I∇uω are
generated by 〈γ,∇uω〉 for all ∇γ = 0. This is an elementary consequence of the
following observation.

Lemma 3.6. Let E be a flat holomorphic vector bundle over the polydisk S with flat
connection ∇, and let Iη be the Picard-Fuchs ideal associated to an η ∈ H0(E). Then
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the solution set (in O(S)) of the system of differential equations {P (·) = 0|P ∈ Iη}
is generated, as a vector space over C, by {〈γ, η〉|γ ∈ H0(OS(E∨)∇)}.4

Proof. We need to establish the following algebraic result:

For f1, f2, ..., fm, f ∈ OS, If1 ∩ If2 ∩ ... ∩ Ifm ⊂ If if and only if
f = c1f1 + c2f2 + ... + cmfm for some constants c1, c2, ..., cm ∈ C,
where Ig = {P ∈ DS : Pg = 0} for g ∈ OS.

The “if” part is trivial. Suppose that If1 ∩ If2 ∩ ... ∩ Ifm ⊂ If . Without loss of
generality, we may assume that f1, f2, ..., fm are linearly independent over C.

Let n = dimS. For α = (a1, a2, ..., an) ∈ Nn, we write
∂α

∂zα
= ∂a1+a2+...+an

∂za1
1 ∂z

a2
2 ...∂z

an
n

and then every P ∈ DS can be written as

(3.8) P =
∑
α∈Nn

pα
∂α

∂zα

where pα ∈ OS vanishes except for a finitely many α ∈ Nn. Then we can identify

DS '
⊕
α∈Nn

OS

as OS-modules by sending P in (3.8) to (pα). For every g ∈ OS, we have a homo-
morphism ϕg : DS → OS of OS-modules given by

ϕg(P ) =
∑
α∈Nn

pα
∂αg

∂zα

for P given in (3.8). Clearly, Ig is the kernel of ϕg, i.e., Ig = ker(ϕg). Therefore,

If1 ∩ If2 ∩ ... ∩ Ifm = ker(ϕf1,f2,...,fm),

where ϕf1,f2,...,fm is the map DS → O⊕mS given by

ϕf1,f2,...,fm = (ϕf1 , ϕf2 , ..., ϕfm).

4A short proof in the case where DSη = O(E) is given in Remark 3.7 below.
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Let F be the vector space spanned by f1, f2, ..., fm over C. We can choose f1, f2, ..., fm

to be a basis of F such that there exist α1, α2, ..., αm ∈ Nn with the property that

(3.9) ∂αifj
∂zαi

(0) =

1 if i = j

0 if i 6= j

for all 1 ≤ i, j ≤ m. Then

(3.10) det
[
∂αifj
∂zαi

]
m×m

∈ O×S .

It follows that ϕf1,f2,...,fm is surjective. Combining this with the hypothesis that

If1 ∩ If2 ∩ ... ∩ Ifm = ker(ϕf1,f2,...,fm) ⊂ If = ker(ϕf ),

we see that the map ϕf : DS → OS factors through ϕf1,f2,...,fm . Namely, there exists
ν : O⊕mS → OS such that

(3.11) ϕf = ν ◦ ϕf1,f2,...,fm .

Suppose that ν is given by ν(g1, g2, ..., gm) = c1g1 + c2g2 + ... + cmgm for some
c1, c2, ..., cm ∈ OS. It then follows from (3.11) that

(3.12) ∂αf

∂zα
= c1

∂αf1

∂zα
+ c2

∂αf2

∂zα
+ ...+ cm

∂αfm
∂zα

for all α ∈ Nn. Differentiating both sides of (3.12), we obtain

(3.13)
(
∂c1

∂zk

)(
∂αf1

∂zα

)
+
(
∂c2

∂zk

)(
∂αf2

∂zα

)
+ ...+

(
∂cm
∂zk

)(
∂αfm
∂zα

)
= 0

for all α ∈ Nn and 1 ≤ k ≤ n.
Combining (3.10) and (3.13), we conclude that

∂ci
∂zk

= 0

for all i = 1, 2, ...,m and k = 1, 2, ..., n. That is, c1, c2, ..., cm are constants. Thus,
f = c1f1 + c2f2 + ...+ cmfm ∈ F by (3.12). We are done. �

Remark 3.7. Suppose given a left DS-module of the form E = DSg ∼= DS/Ig,
and another DS-module F 3 f , with Igf = 0. Then the morphism DS → F of DS-
modules sending 1S 7→ f clearly factors through DS/Ig, producing h ∈ HomDS(E,F)
with h(g) = f . Taking F := OS, E := OS(E) and g = η, we have HomDS(E,F) =
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H0(OS(E∨)∇), so that h = γ (and f = 〈γ, η〉) as in the statement of Proposition
3.5.

However, this quick proof does not seem to easily extend to the more general
setting (of Lemma 3.6) where η does not generate O(E) as a DS-module.

3.2. Non-triviality of Picard-Fuchs operators. Suppose that any Picard-Fuchs
operator in Iω annihilates cl2,1(ξ)(ω). According to Lemma 3.6, 〈ν, ω〉 = 〈γ, ω〉 for
some γ ∈ H2(X,C). By (3.4) and (3.6), it follows that

(3.14) P 〈ν,∇uω〉 = 0

for all u ∈ H0(ΘS) and P ∈ I∇uω and (again applying Lemma 3.6)

(3.15) 〈ν,∇uω〉 = 〈γ,∇uω〉

for some γ ∈ H2(X,C). This is just (2.7), and the same proof as in §2.2 now shows
that cl2,1(ξ) = 0 (hence Φ2,1(ξ) = 0)), assuming X → S is one of the families of
Theorem 1.2. Briefly, from the surjection H1(X,ΘX) ⊗ H2,0(X) → H1,1

v (X) and
(3.15) we have

(3.16) ν ∈ H0(F 1H2
v)⊥ +H2(X,C).

To arrive at a more general treatment, we consider infinitesimal and topological
invariants of normal functions. Let λ : X → S be a smooth and proper morphism
as in §1, with S affine. Choose (r,m) and impose Assumption 3.3. The short exact
sequence

0→ J
(
H2r−m−1
f (X,Q(r))

)
→ Ext1

VMHS(Q(0), R2r−m−1λ∗Q(r))

δ−→ HomMHS
(
Q(0), H1(S, R2r−m−1λ∗Q(r))

)
→ 0,

induces injections

Ext1
VMHS(Q(0), R2r−m−1

v λ∗Q(r)) ↪→ HomMHS
(
Q(0), H1(S, R2r−m−1

v λ∗Q(r))
)
,

and
HomMHS

(
Q(0), H1(S, R2r−m−1

v λ∗Q(r))
)
↪→ ∇ΓJ,
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where

∇ΓJ := ker {∇ : H0(S,Ω1
S ⊗ F r−1H2r−m−1

v )→ H0(S,Ω2
S ⊗ F r−2H2r−m−1

v )}
∇H0(S, F rH2r−m−1

v ) .

Now let ξ ∈ CHr(X/S,m) be a relative higher Chow cycle. Denoting by ν̄ ∈
Ext1

VMHS(Q(0), R2r−m−1λ∗Q(r)) the (higher) normal function associated to clr,m(ξ),
δν̄ gives the topological invariant of ν̄. Next, consider the sheaf

∇J := {ker∇ : Ω1
S ⊗ F r−1H2r−m−1

v → Ω2
S ⊗ F r−2H2r−m−1

v }
∇
(
F rH2r−m−1

v

) ,

with corresponding Γ∇J := H0(S,∇J) and Griffiths infinitesimal invariant δGν̄ ∈
Γ∇J . Moreover, the natural map ∇ΓJ → Γ∇J is an isomorphism. Indeed, by
Assumption 3.3, this follows from the short exact sequence:

0→ F rH2r−m−1
v

∇−→
(
Ω1
S ⊗ F r−1H2r−m−1

v

)∇
→ ∇J → 0.

So if we have δGν̄ = 0, then δν̄ = 0 and ν̄ lies in J(H2r−m−1
f (X,Q(r)), with trivial

image in Ext1
VMHS (Q(0), R2m−r−1

v λ∗Q(r)), rendering clr,m(ξ) (hence Φr,m(ξ)) trivial.

Proof. (of Proposition 3.2) Impose the hypothesis of Theorem 1.4, and write ν ∈
H0 (OS ⊗R2r−m−1λ∗Q(r)) for a local lifting of clr,m(ξ) over a polydisk.

Suppose that we have P 〈ν, ω〉 = 0 for all ω ∈ H0
(
S, F d−r+m+1H2d−2r+m+1

v

)
and

P ∈ IC(S)
ω . Then from the surjection of

H1
alg(X,ΘX)⊗Hd−r+m+1−`,d−r+`

v (X)→ Hd−r+m−`,d−r+`+1
v (X),

in the case ` = 0, we deduce exactly as in (3.14)-(3.16) that

ν ∈
[
H0
(
F d−r+mH2d−2r+m+1

v

)]⊥
+H2d−2r+m+1(X,C).

By iterating the same argument for ` = 1, ...,m− 1, we deduce that

ν ∈
[
H0
(
F d−r+1H2d−2r+m+1

v

)]⊥
+H2d−2r+m+1(X,C),

which implies that the associated normal function has (everywhere locally) zero
infinitesimal invariant, and so Φr,m(ξ) ≡ 0. �
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4. Proof of Theorem 1.6

In this section we restrict to the case where X is a projective K3 surface. We
recall the real regulator

(4.1) r3,1 : CH3(X ×X, 1) −→ H2,2(X ×X,R(2)).

The image of r3,1 thus contains

(4.2) r3,1(CH1(X)⊗ CH2(X, 1))⊗ R = H1,1(X,Q(1))⊗H1,1(X,R(1))

for X general and it also contains the class [∆X ] of the diagonal. So it is natural to
look at the reduced real regulator

(4.3) r3,1 : CH3(X ×X, 1) r3,1−−→ H2,2(X ×X,R) projection−−−−−→ VX

where
VX = H2,2(X ×X,R) ∩ (H1,1(X,Q(1))⊗H1,1(X,R(1)))⊥

∩ (H1,1(X,R(1))⊗H1,1(X,Q(1)))⊥ ∩ [∆X ]⊥.
(4.4)

It was proven in [C-L2] that

(4.5) Im(r3,1)⊗ R 6= 0.

Of course, this implies that the indecomposables

(4.6) CH3
ind(X ×X, 1)⊗Q 6= 0

for a general projective K3 surface X [C-L2, Corollary 1.3].

Now let us look at the transcendental part of cl3,1:

(4.7) Φ3,1 : CH3(X ×X, 1)→

{
F 3
(
H2
v (X,C)⊗H2

v (X,C)
)}∨

H4(X ×X,Q(1)) ,

where now X is a very general K3 and H2
v (X,C) is transcendental cohomology. The

proof of Corollary 1.5 is a stepping stone to the proof of the stronger Theorem 1.6.

4.1. The transcendental regulator Φ3,1. It is instructive to explain precisely how
Theorem 1.4 leads Corollary 1.5, viz., to the non-triviality of Φ3,1 for Y := X ×X,
where X is a very general projective K3 surface. In this case Y takes the role of X in
the proof of Theorem 1.2, with (d, r,m, `) = (4, 3, 1, 1), H1

alg(Y,ΘY ) will be identified
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with H1
alg(X,ΘX) ' C19, and H2d−2r+m+1

v (Y,Q) = H4
v (Y,Q) will be replaced by

[∆X ]⊥ ∩
{
H2
v (X,Q)⊗H2

v (X,Q)
}
,

where [∆X ] is the diagonal class. The pairing in Theorem 1.4 amounts to studying
the properties of the pairing

H1(ΘX)⊗H3,1(X ×X)→ H2,2(X ×X),

which amounts to a Gauss-Manin derivative calculation. So let X/S be a smooth
projective family of K3 surfaces over a polydisk S (arising from a universal family),
Y = X ×S X, X = X0 be a very general fiber of X/S, Y = X × X and πX be
the projection X → S. Let ∇ be the GM connection associated to X/S and let
α ∈ H1(ΘX) be a tangent vector of S at 0. For ω ∈ H0((πX)∗ ∧2 ΩX/S) and
η ∈ H0(R1(πX)∗ΩX/S), i.e., for ω ∈ H2,0(X) and η ∈ H1,1(X) when restricted to X,
we claim that

(4.8)
⋂
α,ω,η

(
(∇α(ω ⊗ η))⊥ ∩ (∇α(η ⊗ ω))⊥

)
∩ [∆X ]⊥ = {0}

inH2,2(Y ) and hence the condition on the cup product pairing in Theorem 1.4 holds.
Note that

(4.9) [∇α(ω ⊗ η)] = [∇αω]⊗ η + ω ⊗ [∇αη]

where [∇α(ω⊗η)], [∇αω] and [∇αη] are the projections of ∇α(ω⊗η), ∇αω and ∇αη

onto H2,2(Y ), H1,1(X) and H0,2(X), respectively. We know that

(4.10) [∇αω] = 〈α, ω〉 and [∇αη] = 〈α, η〉

where 〈•, •〉 is the pairing

(4.11) H1(ΘX)⊗ (H1,1(X)⊕H2,0(X)) −→ H0,2(X)⊕H1,1(X).

We write 〈α, ω〉 = δαω and 〈α, η〉 = δαη. Then (4.8) follows directly from the
following statement.

Proposition 4.1. For every complex K3 surface X,

(4.12)
⋂
α,ω,η

(
(δαω ⊗ η + ω ⊗ δαη)⊥ ∩ (δαη ⊗ ω + η ⊗ δαω)⊥

)
∩ [∆X ]⊥ = {0}

in H2,2(X ×X,C), where α ∈ H1(ΘX), ω ∈ H2,0(X) and η ∈ H1,1(X).
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Proof. Combining Proposition 2.2 with the fact that

(4.13) 〈δαω, η〉+ 〈ω, δαη〉 = 0,

we obtain

(4.14) 〈[∆X ], δαω ⊗ η + ω ⊗ δαη〉 = 0

and hence
Span{δαω ⊗ η + ω ⊗ δαη}

= [∆X ]⊥ ∩ (H1,1(X)⊗H1,1(X)⊕H2,0(X)⊗H0,2(X)).
(4.15)

Similarly,

Span{δαη ⊗ ω + η ⊗ δαω}

= [∆X ]⊥ ∩ (H0,2(X)⊗H2,0(X)⊕H1,1(X)⊗H1,1(X))
(4.16)

and (4.12) follows easily. �

Note that H2
f (X,C) = H1,1(X,Q(1))⊗C and π1(S) acts on H2

v (X,C) irreducibly.
It is then not hard to see that

(4.17) H4
f (Y,C) ∩H2

v (X,C)⊗H2
v (X,C) ∩ [∆X ]⊥ = {0}

and hence

(4.18) H4
f (Y,C) ⊂ V ⊥X .

Since r3,1(ξ) 6= 0, this shows that Φ3,1 is non-trivial.

4.2. The truncated transcendental regulator Ψ3,1. We now turn our attention
to the proof of Theorem 1.6. More explicitly, we fix a nonvanishing holomorphic
2-form ω ∈ H2,0(X) and look at

(4.19) 〈cl3,1(ξ), ω ⊗ ω〉

modulo the periods
´
γ
ω⊗ω for γ ∈ H4(X ×X,Q(1)). We claim Ψ3,1 is non-trivial,

or equivalently, 〈cl3,1(ξ), ω ⊗ ω〉 is not a period for some ξ ∈ CH3(X ×X, 1). Here
we go slightly beyond the range of ` in Theorem 1.4, namely we allow ` = −1, 0.
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More specifically we consider

H1
alg(Y,ΘY )→ Hom

(
H4,0(Y ), H3,1(Y )

)
,

H1
alg(Y,ΘY )⊗2 → Hom

(
H4,0(Y ), H2,2(Y )

)
,

(4.20)

where again Y = X×X is a self product of a very general projective K3 surface X,
and H1

alg(Y,ΘY ) is identified with the first order deformation space of a universal
family of projective K3’s. Of course if the former map in (4.20) were surjective,
then the latter map could be replaced by

H1
alg(Y,ΘY )→ Hom

(
H3,1(Y ), H2,2(Y )

)
.

Let us assume for the moment that both maps in (4.20) are surjective. Then by
the same reasoning as in the previous section, one could argue that Ψ3,1 is non-
trivial. However by a dimension count, it is clear that both maps in (4.20) are not
surjective. We remedy this by passing to the symmetric product Ŷ = Y/〈σ〉, where
〈σ〉 is the symmetric group of order 2 acting on Y = X × X. In fact, insead of
working directly on Ŷ , we will work with the equivariant cohomologies H4(Y,Q)σ,
and CH3(Y, 1)σ. That is, they consist of classes fixed under σ. Note that H4(Y,Q)σ

is still a Hodge structure. With the same setup for Φ3,1 and following the same
argument by differentiating, we consider the orthogonal complements

(∇α(ω ⊗ ω))⊥ and (∇β∇α(ω ⊗ ω))⊥,

following the situation in (4.20). In particular, we are interested in the subspace⋂
α,β

(δαδβω ⊗ ω + δαω ⊗ δβω + δβω ⊗ δαω + ω ⊗ δαδβω)⊥∩

⋂
α

(δαω ⊗ ω + ω ⊗ δαω)⊥ ∩ (ω ⊗ ω)⊥ ∩ [∆X ]⊥
(4.21)

when restricted to Y . Note that

(4.22) 〈δαω, δβω〉+ 〈ω, δαδβω〉 = 〈δαω, δβω〉+ 〈ω, δβδαω〉 = 0

by (4.13) and hence

(4.23) δαδβω ⊗ ω + δαω ⊗ δβω + δβω ⊗ δαω + ω ⊗ δαδβω ∈ [∆X ]⊥

for all α, β ∈ H1(ΘX). Similarly,

(4.24) δαω ⊗ ω + ω ⊗ δαω ∈ [∆X ]⊥
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for all α ∈ H1(ΘX). Although we do not need it, (4.22) also implies that δαδβ = δβδα

and hence the map

(4.25) H1(ΘX)⊗H1(ΘX) −→ hom(H2,0(X), H0,2(X))

induced by H1(ΘX)⊗H1(ΘX)⊗H2,0(X)→ H0,2(X) is a symmetric nondegenerate
pairing. Obviously,

Span{δαδβω ⊗ ω + δαω ⊗ δβω + δβω ⊗ δαω + ω ⊗ δαδβω}

= [∆X ]⊥ ∩H2,2(Y )σ
(4.26)

and

(4.27) Span{δαω ⊗ ω + ω ⊗ δαω} = [∆X ]⊥ ∩H3,1(Y )σ

by (4.23), (4.24) and the nondegeneracy of (4.25). Therefore,⋂
α,β

(δαδβω ⊗ ω + δαω ⊗ δβω + δβω ⊗ δαω + ω ⊗ δαδβω)⊥∩

⋂
α

(δαω ⊗ ω + ω ⊗ δαω)⊥ ∩ (ω ⊗ ω)⊥ ∩ [∆X ]⊥ ∩H4(Y,C)σ = {0}.
(4.28)

Thus, in order to prove Theorem 1.6, we just have to find ξ such that r3,1(ξ) 6= 0
and cl3,1(ξ) ∈ H4(Y,C)σ. The obvious way to do this is to find an equivariant higher
Chow class ξ ∈ CH3(Y, 1)σ with r3,1(ξ) 6= 0. Namely, we need a slightly stronger
statement than (4.5). That is,

Theorem 4.2. There exists ξ ∈ CH3(X ×X, 1)σ such that r3,1(ξ) 6= 0 for a general
projective K3 surface X.

Proof. This is a consequence of the explicit construction of the cycle in [C-L2]. �

5. Intermezzo: Lattice polarized K3 surfaces, hypersurface normal
forms, and modular parametrization

At this point it is natural to ask how one might construct explicit families of K3
surfaces satisfying the conditions of Theorem 1.2, with enough “internal structure”
to make it possible to construct explicit cycles with non-zero Φ2,1. In light of §3,
it would also be highly desirable to have a means of explicitly constructing the
Picard-Fuchs operators for these families.
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Families of the sort required by Theorem 1.2 with a fixed generic Néron-Severi
lattice are known as lattice polarized K3 surfaces [Dol], and defined with specific
reference to a polarizing lattice as follows. Let X be an algebraic K3 surface over
the field of complex numbers. If M is an even lattice of signature (1, ` − 1) (with
` > 0), then an M-polarization on X is a primitive lattice embedding

i : M ↪→ NS(X)

such that the image i(M) contains a pseudo-ample class. There is also a coarse
moduli space MM for equivalence classes of pairs (M, i), which satisfies a version
of the global Torelli theorem. Moreover, surjectivity of the period map holds for
families which are maximal in the sense of Theorem 1.2.

An elliptic K3 surface with section consists of a triple (X,φ, S) of a K3 surface
X, an elliptic fibration φ : X → P1, and a smooth rational curve S ⊂ X forming a
section of φ. This “internal structure” of an elliptic fibration with section on a K3
surface X is equivalent to a lattice polarization of X by the even rank two hyperbolic
lattice

H :=
 0 1

1 0


(see [C-D1, Theorem 2.3] for details). The moduli space MH of H-polarized K3
surfaces has complex dimension 18, and the generic elliptic K3 surface with section
has 24 singular fibers of Kodaira type I1. Instead of working with a very general
member of this family, which will have Picard rank ` = 2, one can enhance the
lattice polarization by considering a higher rank lattice M , with H as a sublattice.
For each distinct embedding of H into M , up to automorphisms of the ambient
lattice M , we find an elliptic surface structure with section on all M -polarized K3
surfaces. There is a decomposition of the Néron-Severi lattice

NS(X) = H ⊕WX ,

where WX is the negative definite sublattice of NS(X) generated by classes associ-
ated to algebraic cycles orthogonal to both the elliptic fiber and the section. The
sublattice

W root
X := {r ∈ WX | 〈r, r〉 = −2}
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is called the ADE type of the elliptic fibration with section, as it decomposes natu-
rally into the sum of ADE type sublattices spanned by c1 of the irreducible (rational)
components of the singular fibers of the elliptic fibration (see [C-D1, Section 6]).

For the explicit computations in §6 and §7 we will make essential use of one
particular elliptic fibration with section on a family of K3 surfaces polarized by the
lattice H ⊕ E8 ⊕ E8. It is not, in fact, the “standard” fibration, which corresponds
toWX = E8⊕E8, but the “alternate fibration” for whichWX = D+

16 (the other even
negative definite rank 16 lattice). Up to ambient lattice automorphisms, these are
the only two distinct embeddings of the lattice H into H ⊕E8⊕E8. As a result, we
know that these are the only two elliptic fibrations with section on a very general
member of this family of K3 surfaces [C-D2].

5.1. Normal forms and elliptic fibrations. The natural setting for Theorem 1.2
is families of lattice-polarized K3 surfaces which cover their corresponding coarse
moduli spaces. In order to effectively compute, we first need to construct such
maximal families of K3 surfaces.

The most classical construction ofK3 surfaces is as smooth quartic (anticanonical)
hypersurfaces in P3. A very general member of this family will have a 4-polarization
and Picard rank ` = 1. It is possible, however, to construct subfamilies of smooth
quartics with natural polarization by lattices of much higher rank. For example,
consider the “Fermat quartic pencil”

(5.1) Xt := {x4 + y4 + z4 + w4 + t · xyzw = 0} ⊂ P3 .

For generic t ∈ P1, the group G := (Z/4Z)2 acts on Xt by

x 7→ λ · x , y 7→ µ · y , z 7→ λ−1µ−1 · z,

where λ and µ are fourth roots of unity.
The induced action of this group on the cohomology of Xt fixes the holomorphic

two-form ωt (i.e., it acts symplectically). Nikulin’s classification of symplectic ac-
tions on K3 surfaces then implies that there is a rank 18 negative definite sublattice
in the Néron-Severi group of Xt, which together with the (fixed) 4-polarization class
means that the Picard rank of Xt is at least 19. As the family is not isotrivial, the
Picard rank is not generically equal to 20, and we conclude that the family Xt, t ∈ P1

satisfies the conditions of Theorem 1.2 with ` = 19. (See [Wh] for a general set of
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tools to bound the Picard rank of pencils of hypersurfaces with a high degree of
symmetry.) This is an example of a normal form for the corresponding class of
lattice polarized K3 surfaces, in this case providing a natural generalization of the
Hesse pencil normal form for cubic curves in P2.

There is another family Yt of K3 surfaces with ` = 19 easily derivable from the
Xt in (5.1) by quotienting each Xt by the group G and simultaneously resolving the
resulting singularities in the family. The family Yt, known as the “quartic mirror
family,” has rank 19 lattice polarization by the lattice M2 := H ⊕ E8 ⊕ E8 ⊕ 〈−4〉.

Another way to construct families of 4-polarized K3 surfaces with an enhanced
lattice polarization is to consider singular quartic hypersurfaces in P3. By intro-
ducing ordinary double point singularities of ADE type, it is a simple matter to
engineer (upon minimal resolution) K3 surfaces with large negative definite sublat-
tices of ADE type in their Néron-Severi groups. One feature that both the smooth
and singular quartic hypersurface constructions enjoy is that for each line lying on
the surface there is a corresponding elliptic fibration structure, defined by taking
the pencil of planes passing through the line and considering the excess intersec-
tion of each (a pencil of cubic curves). In this way, suitably nice quartic normal
forms readily admit the structure of elliptic fibrations with section corresponding to
various embeddings of the hyperbolic lattice H into their polarizing lattices.

Let us illustrate this with the key example for the constructions in §6 and §7, the
singular quartic normal form for K3 surfaces polarized by the lattice

M := H ⊕ E8 ⊕ E8

[C-D2]. Let (X, i) be anM -polarized K3 surface. The there exists a triple (a, b, d) ∈
C3, with d 6= 0 such that (X, i) is isomorphic to the minimal resolution of the quartic
surface

QM(a, b, d) : y2zw − 4x3z + 3axzw2 + bzw3 − 1
2(dz2w2 + w4) = 0 .

Two such quarticsQM(a1, b1, d1) andQM(a2, b2, d2) determine via minimal resolution
isomorphic M -polarized K3 surfaces if and only if

(a2, b2, d2) = (λ2a1, λ
3b1, λ

6d1)
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for some λ ∈ C∗. Thus the coarse moduli space for M -polarized K3 surfaces is the
open variety

MM = {[a, b, d] ∈WP(2, 3, 6) | d 6= 0}

with fundamental invariants
a3

d
and b2

d
.

On the singular quartic hypersurface QM(a, b, d) ⊂ P3 there are two distinct lines

{x = w = 0} and {z = w = 0} ,

and the points
P1 := [0, 1, 0, 0] and P2 := [0, 0, 1, 0]

are rational double point singularities on QM(a, b, d) of ADE types A11 and E6

respectively. The standard fibration is induced by the projection to [z, w], and
the alternate fibration is induced by the projection to [x,w]. Moreover, among
the exceptional rational curves in the resolution of P1 are sections of both elliptic
fibrations on X(a, b, d); among the exceptional rational curves in the resolution of
P2 is a second section of the alternate fibration on X(a, b, d).

It is useful to note that both the quartic mirror normal form Yt for M2-polarized
K3 surfaces and the M -polarized normal form X(a, b, d) admit natural reinterpre-
tations as the generic anticanonical hypersurfaces in certain toric Fano varieties
[Dor1, Dor2, CDLW]. In both cases we build the toric Fano variety from the normal
fan of a reflexive polytope. For the M2-polarized case, the polytope is the convex
hull of

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1,−1,−1)} ⊂ R3 ,

polar to the Newton polytope for P3. For the M -polarized case, the polytope is the
convex hull of

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1,−4,−6)} ,

polar to the Newton polytope for WP(1, 1, 4, 6). What is more, the two elliptic fi-
brations with section on a very general X(a, b, d) are themselves induced by ambient
toric fibrations on the toric variety in which it sits as a hypersurface. Combinatori-
ally, these correspond to reflexive “slices” of the corresponding polytope, i.e., planes
in R3 which slice the reflexive polytope in a reflexive polygon.
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5.2. Picard-Fuchs equations and modular parametrization. There is a re-
verse nesting of moduli spaces corresponding to embeddings of the polarizing lat-
tices. In the context of the families Yt and X(a, b, d) above, the usual embedding

H ⊕ E8 ⊕ E8 ↪→ H ⊕ E8 ⊕ E8 ⊕ 〈−4〉

corresponds to an algebraic parametrization

a(t) = (t+ 16)(t+ 256) , b(t) = (t− 512)(t− 8)(t+ 64) , d(t) = 212 36 t3

of a genus zero modular curve. To see the connection with classical modular curves,
and indeed the Hodge-theoretic evidence for the underlying geometry, it is instruc-
tive to consider the Picard-Fuchs systems annihilating periods on the K3 surfaces
involved.

Let f(t) denote a period of the holomorphic 2-form on X(a, b, d). The Griffiths-
Dwork method for producing Picard-Fuchs systems yields (in an affine chart, where
we have set a = 1) (

∂2

∂b2 − 4d ∂
2

∂d2 − 4 ∂
∂d

)
f(b, d) = 0

and (
(−1 + b2 + d) ∂

2

∂b2 + 2b ∂
∂b

+ 4bd ∂2

∂b∂d
+ 2d ∂

∂d
+ 5

36

)
f(b, d) = 0

[CDLW]. By reparametrizing in terms of variables j1 and j2

b2 = (j1 − 1)(j2 − 1)
j1j2

, d = 1
j1j2

we find that the Picard-Fuchs system completely decouples as

72j1
(

2(j1 − 1)j1
∂2

∂j2
1

+ (2j1 − 1) ∂

∂j1

)
f(j1, j2)− 5f(j1, j2) = 0

and
72j2

(
2(j2 − 1)j2

∂2

∂j2
2

+ (2j2 − 1) ∂

∂j2

)
f(j1, j2)− 5f(j1, j2) = 0 .

This implies that the periods of the M -polarized K3 surfaces split naturally as
products f(j1, j2) = f1(j1) · f2(j2).

At this point it is natural to ask whether the second order ordinary differential
equation satisfied by f(j) is itself a Picard-Fuchs equation for a family of elliptic
curves. One can check for a family of elliptic curves over P1

t in Weierstrass normal
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form
{Et} :=

{
y2z − 4x3 + g2(t)xz2 + g3(t)z3 = 0

}
⊂ P2

that the periods of a suitably normalized holomorphic one-form on Et

g2(t) 1
4
dx

y

satisfy Picard-Fuchs equations of the form of the second order equations above.
Thus, by the Hodge Conjecture, we expect there to be an algebraic correspondence
between M -polarized K3 surfaces and abelian surfaces (with principal polarization)
which split as a product of a pair of elliptic curves. This correspondence was made
explicit in [C-D2]; we recall the necessary features for our higher K-theory compu-
tations in §6 below.

What then is the meaning of the special subfamily Yt in terms of these split
abelian surfaces? When specialized to the subfamily Yt = X(a(t), b(t), c(t)), the
Griffiths-Dwork method produces the following Picard-Fuchs differential equation

f (iii)(t) + 3(3t+ 128)
2t(t+ 64) f

′′(t) + 13t+ 256
4t2(t+ 64)f

′(t) + 1
8t2(t+ 64)f(t) = 0 .

On a general parametrized disk in the moduli space MM , the Picard-Fuchs ODE
will have rank 4, just as the full Picard-Fuchs system. The drop in rank indicates
a special relationship between the two elliptic curves Eτ1 and Eτ2 corresponding
to Yt. A differential algebraic characterization of the curves in MM on which the
Picard-Fuchs ODE drops in rank was given in [CDLW, Theorem 3.4]. In fact, in the
M2-polarized case, the relationship is simply the existence of a two-isogeny between
the two elliptic curves, i.e., τ2 = 2 · τ1. More generally, the Mn-polarized case
corresponds to a cyclic n-isogeny, i.e., τ2 = n · τ1.

Given that M -polarized K3 surfaces correspond to abelian surfaces which are
the products of a pair of elliptic curves, the natural modular parameters on the
(rational) coarse moduli space MM are the elementary symmetric polynomials in
the two j-invariants j1 = j(τ1) and j2 = j(τ2)

σ := j1 + j2 and π := j1 · j2 .

In this notation, it is easy to identify explicit rational curves inMM over which the
Picard-Fuchs differential equation has maximal rank (= 4). One such locus, which
arises in the context of the construction of K3 surface fibered Calabi-Yau threefolds
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realizing hypergeometric variations, is specified by simply setting σ = 1 [No]. The
Picard-Fuchs ODE has fourth order, and takes the following form

f (iv)(s) + 2(4s2 − 3s− 2)
s(s− 1)(s+ 1) f

(iii)(s) + 1031s3 − 553s2 − 1175s− 167
72s2(s− 1)(s+ 1)2 f ′′(s)

+ 167s2 − 239s− 118
36s2(s− 1)(s+ 1)2 f

′(s) + 385(s− 1)2

20736s4(s+ 1)2f(s) = 0

which splits as a tensor product of two very closely related factor second order ODEs

f ′′1 (s) + 3s+ 1
2s(s+ 1)f

′
1(s) + 5

144s(s+ 1)f1(s) = 0

and
f ′′2 (s) + 3s+ 1

2s(s+ 1)f
′
2(s) + 5

144s2(s+ 1)f2(s) = 0

corresponding to the two families of elliptic curves satisfying j1(s) + j2(s) = 1.
Examples such as this provide a source of families of explicit non-maximal families
of K3 surfaces to explore.

Instead of looking at superlattices of H ⊕ E8 ⊕ E8 such as Mn, one can consider
sublattices such as N := H ⊕E7⊕E8 and S := H ⊕E7⊕E7 [C-D3, C-D4]. Moduli
spaces of K3 surfaces polarized by these sublattices are themselves parametrized by
modular functions (and containMM as a natural sublocus). For example, there is
a normal form for N -polarized K3 surfaces extending the singular quartic normal
form for M -polarized K3 surfaces with one additional monomial deformation

QN(a, b, c, d) : y2zw − 4x3z + 3axzw2 + bzw3 + cxz2w − 1
2(dz2w2 + w4) = 0 .

The associated coarse moduli spaceMN is again an open subvariety of a weighted
projective space

MN = {[a, b, c, d] ∈WP(2, 3, 5, 6) | c 6= 0 or d 6= 0}

with modular parametrization

[a, b, c, d] =
[
E4, E6, 21235C10, 21236C12

]
,

where E4 and E6 are genus-two Eisenstein series of weights 4 and 6, and C10 and C12

are Igusa’s cusp forms of weights 10 and 12 [C-D3, Theorem 1.5].
The connection to genus two curve moduli here is suggestive of the fundamental

geometric fact that N -polarized K3 surfaces are Shioda-Inose surfaces coming from
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principally-polarized abelian surfaces. The hypersurface normal form once again has
two natural elliptic fibration structures with section, just as in theM -polarized case,
and the Nikulin involution which gives rise to the Shioda-Inose structure can be seen
most naturally as the operation of “translation by 2-torsion” in the alternate elliptic
fibration [C-D4]. There is a further extension to a normal form for S-polarized K3
surfaces. In this case, most of the related geometric structures are still present,
and we find a still more general modular parametrization of MS. For all these
families of lattice-polarized K3 surfaces in normal form, Picard-Fuchs equations can
be obtained via the Griffiths-Dwork method applied directly to the singular quartic
equations or in their realization as anticanonical hypersurfaces in Gorenstein toric
Fano threefolds.

The explicit computations which follow in §6 and §7 offer a glimpse of the range
of phenomena surrounding Theorem 1.2 which become accessible when we work
with modular parametrizations of hypersurface normal forms for lattice polarized
K3 surfaces equipped with well-chosen elliptic fibrations. Both generalization to
related higher-dimensional moduli spaces and manipulation of the associated explicit
Picard-Fuchs systems now becomes possible.

6. Explicit K1 class on a family of Shioda-Inose K3 surfaces

We now turn to a direct computation on the modular 2-parameter family Xa,b of
M := H ⊕ E8 ⊕ E8-polarized (Picard-rank 18) K3’s introduced by Clingher and
Doran [C-D2]. Here Xa,b (a, b ∈ C) is the minimal desingularization of

(6.1)
{
Y 2Z − P (θ)W 2Z − 1

2Z
2W − 1

2W
3 = 0

}
⊂ P2

[Y :Z:W ] × P1
θ,

where P (θ) := 4θ3 − 3aθ − b. Consider the real regulator map

(6.2) r2,1 : CH2(Xa,b, 1)→ HomR(H1,1
v (Xa,b,R),R).

The results of [C-L1] already tell us that generically spanR{image(r2,1)} = RHS(6.2),
making Φ2,1 non-zero for very general (a, b). (We note that for those Xa,b with
Picard rank 18, H1,1

v = H1,1
tr .) The proof is based on non-explicit deformations of

decomposable classes on Picard-rank 20 K3’s.
What we felt was missing here and in the literature are concrete indecomposable

cycles on which r2,1 and Φ2,1 are non-zero, particularly those which arise naturally in
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the context of an internal elliptic fibration. In our example, the projection Xa,b → P1
θ

produces the so-called alternate fibration with 6 fibers of Kodaira type I1 and one
fiber of type I∗12. If D is an I1 fiber, with P1

z
∼= D̃ � D its normalization (attaching

z = 0 and z = ∞), then (D, z) (or (D, z−1)) generates CH2
D(Xa,b, 1) ∼= Z, and we

may consider its image under CH2
D(Xa,b, 1) → CH2(Xa,b, 1). Clearly then, the I1

fibers provide the most natural source of classes in CH2(Xa,b, 1) provided one can
show their real regulators are nonzero.

This turns out to require some serious and interesting work, by first passing to a
Kummer K3 family Kα,β which is the minimal resolution of both the quotient of Xa,b

by the Nikulin involution and the quotient of a product of elliptic curves Eα × Eβ
by (−id,−id). This “intermediate” setting seems to be the one place where both the
normalization of the rational curves supporting the family of K1 classes (namely,
a Néron 2-gon), and the closed (1, 1)-form against which we integrate its regulator
current to compute r2,1, are tractable. In fact, the form has some singularities,
even after pulling back the rational curves, and so the computation requires careful
additional justification.

6.1. Kummer K3 geometry. We begin with a review of special features of the
Kummer family from [C-D2], which has two parameters α, β ∈ P1\{0, 1,∞}:

(6.3) Ǩ′α,β :=
{
Z2XY = (X −W )(X − αW )(Y −W )(Y − βW )}

}
⊂ P3

is the singular model, with affine equation (x, y, z = X
W
, Y
W
, Z
W
)

(6.4) z2xy = (x− 1)(x− α)(y − 1)(y − β),

and Kα,β shall denote its minimal desingularization. Recall that a Kummer is usually
constructed by taking a pair of elliptic curves, in this case

(6.5) {u2 = x(x− 1)(x− α)} : Eα uu α : (x, u) 7→ (x,−u)

{v2 = y(y − 1)(y − β)} : Eβ uu β : (y, v) 7→ (y,−v),

then taking the quotient Ǩα,β of Eα × Eβ by the automorphism α × β. This is
singular at the image of the 16 products of 2-torsion points – ordinary double points
whose resolution yields 16 exceptional P1’s , and produces Kα,β.
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In the following diagram of rational curves on Kα,β, the exceptional divisors
are represented by arcs; while the proper transforms of the quotients of Eα ×
{2-torsion point} resp. {2-torsion point} × Eβ are represented by horizontal resp.
vertical lines:

(6.6)

Z free

[0:0:1:0]

[0:1:0:0]

[1:0:0:0]

(0,β)

(0,1)

(1,β) (α,β)

(α,1)(1,1)

(α,0)(1,0)

α

βy=

x=x=1

y=1

Y=W=0

X=W=0
88(   ,    )

Z free

Z free

Z free

(Here “ ˜(∞,∞)” stands for {W = 0, XY = Z2}.) The projective model Ǩ′α,β is the
blow-down of Kα,β along the 13 rational curves depicted more faintly. Notice that
the configuration

(6.7)

has Dynkin diagram D10, hence Kodaira type I∗6 .
We now describe an elliptic fibration of Kα,β which shall have:

• this I∗6 as its singular fiber at ∞;
• the lines y = 1, y = β, x = 1, x = α as sections;
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• the lines marked (̃1, 0), (̃α, 0), (̃0, 1), (̃0, β) as bi-sections;
• the line marked ˜(∞,∞) as a 4-section; and
• 6 I2 singular fibers, 4 of which have one of the lines marked (̃1, β), (̃α, β),

(̃1, 1), or (̃α, 1) as one component.
Write

(6.8) R(X, Y,W ) := −X
2

α
− Y 2

β
+ α + 1

α
XW + β + 1

β
YW −W 2.

Then the fibration, which is really nothing but the pencil |I∗6 |, is given on the
(singular) projective model by

(6.9) Ǩ′α,β −→ P1

[X : Y : Z : W ] 7−→ [R(X, Y,W ) : XY ] =: [µ : 1].

In either case, the smooth elliptic fibers Eµ (resp. Ě ′µ) are double covers of the
smooth conic curves

(6.10) Cµ := {R(X, Y,W ) = µXY } ⊂ P2,

branched over (x, y) = (1, (1− µ)β + 1) , (α, (1− µα)β + 1) , ((1− µ)α + 1, 1) ,
((1− µβ)α + 1, β) . Eµ is singular iff one of the following hold:

• µ =∞: then E∞ = I∗6 ;
• µ ∈ {1, 1

α
, 1
β
, 1
αβ
}: then two of the branch points collide, making Ě ′µ into

an I1. Eµ is then the (Kodaira type I2) union of its proper transform with
the exceptional divisor over the collision point – for example, for µ = 1,
E1 = ˜̌E ′1 ∪ (̃1, 1); or
• µ ∈

{
αβ+1
αβ

, α+β
αβ

}
: then the rational curve Cµ acquires a node, so Eµ has two

nodes (again of type I2).
This is all in case J(Eα) 6= J(Eβ), i.e. β /∈

{
α, 1

α
, 1− α, 1

1−α ,
α
α−1 ,

α−1
α

}
. Below we

will eventually specialize to the case β = α, for which generically E1 is still an I2

but E 1
α

= 1
β
becomes an I4.

6.2. Normalization of ˜̌E ′1. We will build our higher Chow cycle on E1. One can
see right away that it must have order-two monodromies about the components
of (P1 × {0, 1,∞}) ∪ ({0, 1,∞} × P1), since the tangent vectors of the I1 fiber Ě ′1
at its singular point (x, y, z) = (1, 1, 0) are

(
1,−β

α
,±
√

β
α

(1− α)(1− β)
)
. Notice
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that with α = β, the branches of the square root become single-valued hence the
monodromy will disappear; this will have consequences later.

In order to compute, we need to parametrize Ě ′1 by a P1. The first step is to do
this for C1 using stereographic projection. Putting x = Γ + 1, y = ξΓ + 1 in its
equation

(6.11)
0 = −x2

α
− y2

β
+ α+1

α
x+ β+1

β
y − 1− xy

= · · · = −
(

1
α

+ ξ2

β
+ ξ

)
Γ2 −

(
1
α

+ ξ
β

)
Γ

and solving for Γ, yields

(6.12) (x(ξ), y(ξ)) =
(
αξ2 + α(β − 1)ξ

∆(ξ) ,
β(α− 1)ξ + β

∆(ξ)

)
,

where ∆(ξ) := αξ2 + αβξ + β.
The second step is to pull the affine equation of Ǩ′α,β back along ξ 7→ (x(ξ), y(ξ))

and again use an analogue of stereographic projection:

(6.13)
z2 = (x−1)(x−α)(y−1)(y−β)

xy

= · · · = (αξ+β)2(ξ+β)(αξ+1)
(∆(ξ))2 .

So the equation of the I1 fiber Ě ′1 is

(6.14) (∆(ξ))2z2 = (ξ + β)(1 + αξ)(β + αξ)2,

which regarded as a curve in P1
ξ × P1

z has bidegree (4, 2) and three nodes (hence of
course genus 0). A curve of bidegree (2, 1) must meet Ě ′1 in 8 points with multiplicity;
so taking it to pass through the nodes

(
−β

2 +
√

β2

4 −
β
α
,∞

)
,
(
−β

2 −
√

β2

4 −
β
α
,∞

)
,(

−β
α
, 0
)
and the smooth point (−β, 0), it must pass through one more point of Ě ′1.

Explicitly, these curves are of the form

(6.15) ∆(ξ)z = (αξ + β)(ξ + β)γ,

where γ ∈ C is a constant. To find the ξ-coordinate of the residual point we square
RHS(6.15) and set equal to RHS(6.14), which yields

(6.16) ξ(γ) = 1− βγ2

γ2 − α
.
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Thinking of P1
γ as ˜̌E ′1 and P1

ξ as C1, (6.16) gives the branched double cover ˜̌E ′1 �

Ě ′1 � C1, where the first map just identifies a pair of points – namely, those with
γ2 = δ := αβ−α

β−αβ . The following table illustrates the relationship between functions
on Ě ′1:

(6.17)

γ2 ξ (x, y)
0 −1/α (α(1− β) + 1, β)
∞ −β (α, β(1− α) + 1)
δ −β/α (1, 1)

1/β 0 (0, 1)
α ∞ (1, 0)

−αβ + α + 1 1− β (0, β)
1

1+β−αβ
1

1−α (α, 0)
roots of ∆(ξ(γ2)) roots of ∆(ξ) (∞,∞)

The rows starting with 0 and ∞ correspond to the branch points of Ě ′1 → C1.
The third and last step is to find a coordinate z on ˜̌E ′1(∼= P1) which is 0 and ∞

(rather than ±
√
δ) at the two points mapping to the node of Ě ′1, and ±1 at the two

branch points of ˜̌E ′1 → C1. This is given by

(6.18) z = γ +
√
δ

γ −
√
δ
←→ γ =

√
δ
z + 1
z− 1 .

Our higher Chow cycle in CH2(Kα,β, 1) will then simply be

(6.19) Zα,β :=
(˜̌E ′1, z)+

(
(̃1, 1), g

)
,

where g has zero and pole cancelling with those of z. (Note that while z is the
“preferred” cordinate on the P1, we will work mainly in γ below since this simplifies
computations.) We remark that Zα,β is defined as long as α, β /∈ {0, 1,∞} and
1 /∈

{
1
α
, 1
β
, 1
αβ
, αβ+1

αβ
, α+β
αβ

}
, but not quite well-defined: there is the issue of sign in z±1

(or equivalently, ±
√
δ) which leads to the predicted order-2 monodromies.

6.3. The (1, 1) current. On Eα × Eβ there is the closed, real-analytic (1, 1)-form

(6.20) ω = dx

u
∧
(
dy

v

)
= dx√

x(x− 1)(x− α)
∧

 dy√
y(y − 1)(y − β)

,
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and ω+ ω̄, i(ω− ω̄) obviously span H1,1
tr,R. Clearly ω is invariant under α× β, hence

is the pullback of a (1, 1)-current on Ǩα,β, whose pullback5 ωK to Kα,β has integrable
singularities along the exceptional divisors: if locally the equation of one looks like
w = 0, then there is a term of the form dw∧dw̄

|w| . Now we could argue that this
current ωK is closed and represents a class in H1,1

tr (Kα,β,C); but this approach runs
into trouble because (̃1, 1), where part of the cycle is supported, is an exceptional
divisor. (The current’s singularity along this divisor makes the pairing “improper”,
even though it “formally pulls back” to zero there.) Therefore, we will simply carry
out an ad hoc pairing between6 r2,1(Zα,β) and ωK on ˜̌E ′1, then interpret it on Eα×Eβ
where ω is smooth.

So taking ı1 to denote the inclusion ˜̌E ′1 ↪→ Kα,β, we must compute ı∗1ωK. This is
done by “formally” pulling back the above form (6.20) under ξ 7→ (x(ξ), y(ξ)): after
some calculation, we obtain

(6.21) −(αξ2 + 2βξ + β(β − 1))(α(α− 1)ξ2 + 2αξ + β) dξ ∧ dξ̄
|∆(ξ)||ξ||αξ + β||ξ + (β − 1)||(α− 1)ξ + 1|

√
(ξ + β)(αξ + 1)

,

a sort of multivalued form on C1. Pulling this back (again “formally”) to ˜̌E ′1 ∼= P1
γ

via γ 7→ ξ(γ) then yields (with apologies to the reader) ı∗1ωK =

(6.22)

−4|αβ−1|
|β||1−α| ·

{(αβ2−β2−β)γ4+2βγ2+(α2β2−α2β+α−2αβ)} γdγ
|γ2−α||1−βγ2||γ2−δ||γ2−(1+α−αβ)| ∧

{(α2β2−αβ2+β−2αβ)γ4+2αγ2+(α2β−α2−α)} dγ̄
|(1+β−αβ)γ2−1||βγ4+(α2β2−3αβ)γ2+α| .

While complicated, the 14 poles of this (1, 1) current are all of the integrable form
mentioned above, and their locations are precisely the points where Ě ′1 hits the
exceptional divisors: (̃1, 1), (̃1, 0), (̃α, 0), (̃0, 1), (̃0, β) twice each; ˜(∞,∞) four times.

Along the locus α = β, this form simplifies a little: ı∗1ωK =

(6.23)
−4|α + 1| · {(α2−α−1)γ4+2γ2+(α3−α2−2α+1)} γdγ

|γ2−α||1−αγ2||γ2+1||γ2−(1+α−α2)| ∧

{(α3−α2−2α+1)γ4+2γ2+(α2−α−1)} dγ̄
|(1+α−α2)γ2−1||γ4+(α3−3α)γ2+1| .

5technically these observations should be expressed in terms of push-forwards, but the computa-
tions are better done as formal pullbacks.
6pairing the regulator with ωK + ωK and i(ωK − ωK) to get two real numbers, is equivalent to
pairing it with ωK to get a single complex number.
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6.4. The pairing. The next step is simply to integrate log |z| against ı∗1ωK on ˜̌E ′1.
As log |z| = log

∣∣∣γ+
√
δ

γ−
√
δ

∣∣∣, this integral will have a multivalued behavior as indicated
above. It is singular but absolutely convergent: the worst behavior is at γ = ±

√
δ

where it locally takes the form
´
Dε

log |z|
|z| dz ∧ dz̄, which is equivalent to

´ ε
0 (log r)dr.

But setting α = β ( =⇒ δ = −1) kills this monodromy, allowing for a well-defined
choice of Zα,α ∈ CH2(Xa,b, 1) over P1\{0, 1,∞,−1, 2} (see the end of §6.2). On a
smooth compactification of the total space X ρ→ P1

α, the “total cycle” is easily seen
to have residues (i.e. log |z| blows up) along X−1,−1 ∪ X2,2 only (cf. the proof of
Theorem 3.7 in [Ke]). By the localization sequence for higher Chow groups, it can
in fact be extended to all of ρ−1(P1\{−1, 2}). Most importantly, eliminating the
monodromy makes the integrals

(6.24) ψ(α) =
ˆ
P1

log
∣∣∣∣∣γ + i

γ − i

∣∣∣∣∣<(ı∗1ωK) , η(α) =
ˆ
P1

log
∣∣∣∣∣γ + i

γ − i

∣∣∣∣∣=(ı∗1ωK)

real-analytic functions of α ∈ P1\{0, 1,∞,−1, 2}.
Now on Eα ×Eα, by considering pullbacks to the diagonal, one sees immediately

that i(ω − ω̄) is the algebraic class whilst ω + ω̄ is the transcendental one. Clearly
the same story holds on Kα,α. So to check generic indecomposability of Zα,α we need
to demonstrate that ψ(α) (rather than η(α)) is generically nonzero.7 Clearly it will
suffice to show that limα→1 ψ(α) 6= 0.

Setting α = 1 in (6.23) yields

(6.25)
ı∗1ωK = −8|γ2−1|4 γdγ∧dγ̄

|γ2−1|6|γ2+1|

= −8γdγ∧dγ̄
|γ2−1|2|γ2+1| = 16r{i cos θ−sin θ}dx∧dy

|γ2−1|2|γ2+1| ,

where γ = x+ iy = reiθ. Because of the cancellations in the second step, it requires
some analysis to prove that

´
P1 log |z|<(ı∗1ωK) at α = 1 actually computes the limit

of ψ. This is done in the appendix to this section, and so we have

(6.26) − 1
16 lim

α→1
ψ(α) =

ˆ
P1

log
∣∣∣γ+i
γ−i

∣∣∣ r sin θ
|γ2 − 1|2|γ2 + 1|dx ∧ dy.

Now simply notice that
• the integral over P1 in (6.26) is double that over the upper half plane, since

log
∣∣∣γ+i
γ−i

∣∣∣ and sin θ are both odd in γ; and

7In fact, a simple change of coordinates to z̃ = 1
z shows that η(α) is identically zero.
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• the integrand is (where nonsingular) strictly positive on the upper half plane.
We conclude that (6.26) is a positive real number, finishing this part of the argument.

Remark 6.1. It is more natural to normalize ωK , and hence ψ, by dividing out
by

∣∣∣ ´
Eα

dx
y
∧
(
dx
y

)∣∣∣. One can show – either using formula (6.24) or from general
principles to be explained in [Ke] – that this modified ψ is asymptotic to a constant
times log |α + 1| (resp. log |α − 2|) as α → −1 (resp. 2), and goes to zero as
α→ 0, 1,∞. The first approach is indicated in the appendix.

6.5. Interpretation of the integrals. From the generic non-triviality of ψ(α), we
know that

(6.27)
ˆ
˜̌E ′1(log |z|)ı∗1ωK

is nonzero for generic α, β. We will show that this integral has meaning as an
invariant of Zα,β in roundabout fashion, by first exhibiting it as an invariant of a
related cycle on Eα × Eβ.

For generic µ, the image Ěµ of ˜̌E ′µ in Ǩα,β is a curve with intersection numbers as
follows:

(6.28)

A
2

2

4

2 2

1

1

1

1

B

where the horizontal and vertical lines have the same meaning as in the earlier
picture (6.6). Obviously its normalization is elliptic, with 4 smooth branch points
over the conic Cµ at the points of type (A). Its preimage Dµ in Eα × Eβ is an
irreducible curve with singularities at the points of type (B); and its normalization
can be thought of as a double cover of the normalization of Ěµ, branched at the
points lying over these singularities. An easy Riemann-Hurwitz calculation shows
that D̃µ has genus 7.
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As µ → 1, Dµ and Ěµ each acquire a new node, one mapping to the other:
O 7→ (1, 1). The local description (at the nodes) of the map D1 � Ě1 is “z 7→ z2”
on each branch separately. (Note that D̃1 has genus 6.) Therefore, the pullback
z̃ ∈ C(D̃1)∗ of the function z on ˜̌E1 pushes forward to D1 to yield a K1-class: its
double-zero and double-pole cancel at O. That is, Wα,β := π2,∗(D̃1, z̃) belongs
to CH2(Eα × Eβ, 1). Further, the real regulator current log |̃z|δD1 pairs against
ω ∈ Γ(Eα × Eβ, A1,1)d−closed from (6.20) to yield

(a) an honest invariant of this K1-class Wα,β; and
(b) twice the value of the integral (6.27), since ω and z̃ are both invariant

under the involution flipping D̃1 over ˜̌E1.

Consider the diagram

(6.29) K̃α,β

π2

zzzz

π1

"" ""

K̃′α,β
π′1

||||

π′2

!! !!
Eα × Eβ

2:1

$$ $$

Kα,β

|||| "" ""����

Xa,b

2:1}}}}

Ǩα,β Ǩ′α,β Ǩ′′α,β

in which Xa,b is the Shioda-Inose K3, Ǩ′′α,β its quotient by the Nikulin involution,
and the relationship between the two sets of parameters is given by

(6.30) J(Eα) + J(Eβ) = a3 − b2 + 1 , J(Eα) · J(Eβ) = a3.

The preimage of D1 under π2 consists of D̃1 and W (an exceptional P1 with coordi-
nate “w”) meeting at w = 0 and w = ∞ on W . The map π1 pushes this down to
E1 = ˜̌E ′1 ∪ (̃1, 1), where the map from W to (̃1, 1) is given by w 7→ w2. Setting

(6.31) Z̃α,β := (D̃1, z̃) + (W , w2) ∈ CH2(K̃α,β, 1),

we have π1,∗(Z̃α,β) = 2Zα,β and π2,∗(Z̃α,β) = π2,∗(D̃1, z̃) = Wα,β. By (a), (b), and
functoriality of r2,1, it now follows that the pairing (6.27) indeed computes the
regulator of Zα,β.

What about cycles on Xa,b? The 2:1 birational correspondence provided by π′1
and π′2 identify its alternate fibration with the elliptic fibration of Kα,β (generically
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in 2:1 étale fashion). More precisely, we have a diagram

(6.32) Kα,β

��

Xa,b
2:1oo

��

P1
µ P1

θ
oo

in which (a) the bottom map is of the form θ 7→ qθ + p (with p and q constants
dependent on α, β), and (b) the 6 I1 fibers of Xa,b → P1 exactly match the 6 I2 fibers
of Kα,β → P1

µ [C-D2]. On K̃′α,β there is a K1-cycle Z̃′α,β supported on an I2, π′1,∗ of
which is 2Zα,β. By (b), its push-forward

Za,b := π′2,∗(Z̃′α,β) ∈ CH2(Xa,b, 1)

is supported on an I1 fiber D. Imitating the argument around (6.31), one sees that
Za,b is both indecomposable and the image of a generator of CH2

D(Xa,b, 1), hence
the cycle we seek.

Summing up, we have the

Theorem 6.2. The real and imaginary parts of the (multivalued) integral (6.27)
compute r2,1 (cf. (6.2)) for the three (multivalued)8 families of cycles Wα,β ∈
CH2(Eα × Eβ, 1), Zα,β ∈ CH2(Kα,β, 1), and Za,b ∈ CH2(Xa,b, 1). For (α, β) (resp.
(a, b)) in a real-analytic Zariski-open subset of C2, this integral is nonzero, and the
cycles are therefore regulator-indecomposable. The same result holds along the locus
α = β (resp. 4a3 = (a3 − b2 + 1)2).

Appendix to Section 6. Here we perform the analytic estimate which establishes
the limiting assertion in §6.4, for α → 1. It will suffice to consider the behavior of
the integral in a fixed neighborhood of one of the points (we use γ = +1) where
zeroes and poles collide. Write χ = α−1, γ2 = ζ+ 1, and let Dr(c) denote the open
disk about c of radius r.

We may leave out the polynomial factors with no zero or pole approaching ζ = 0,
and approximate the locations of zeroes and poles to the lowest order required to

8Again, the multivaluedness arises from the action of monodromy sending z 7→ z−±1.
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distinguish them. The problem is then to show that
(6.33)ˆ
|ζ|< 1

2

(ζ − 3χ)(ζ + 3χ)(ζ + χ)(ζ − χ) log |z|dζ ∧ dζ̄
|ζ − (χ+ χ2)||ζ − (χ− χ2)||ζ + (χ+ χ2)||ζ + (χ− χ2)||ζ − i

√
3χ||ζ + i

√
3χ|

limits to

(6.34)
ˆ
|ζ|< 1

2

log |z|dζ ∧ dζ̄
|ζ|2

as χ → 0+ along the real axis. Given ε > 0, and taking 0 < χ < ε/3, it is obvious
that the integrand in (6.33) converges uniformly on ε < |ζ| < 1/2. We claim that
the remaining part

´
|ζ|<ε of the integral, independently of χ ∈ (0, ε3), is bounded by

1000πε. This will prove the desired convergence.
To verify the claim, we first remark that log |z| is zero for all ζ ∈ P1(R); in fact,

we shall just use that | log |z|| < |ζ|. Next, note that on the complement in Dε(0) of
the four disks Dχ

2
(χ), Dχ

2
(−χ), Dχ

2
(i
√

3χ), Dχ
2
(−i
√

3χ),

(6.35) |ζ + 3χ||ζ + χ|
|ζ + χ+ χ2||ζ + χ− χ2|

= |λ+ 2χ||λ|
|λ+ χ2||λ− χ2|

=
|1 + 2χ

λ
|

|1 + χ2

λ
||1− χ2

λ
|

(where λ := ζ + χ) is bounded by 6, since |2χ
λ
| ≤ 4, |χ2

λ
| ≤ 2χ and we are assuming

χ is small. The same is true for |ζ−3χ||ζ−χ|
|ζ−χ+χ2||ζ−χ−χ2| ; and similarly, |ζ|2

|ζ−i
√

3χ||ζ+i
√

3χ| is
bounded by 9. So the integral over Dε(0)\{4 disks} is bounded by

(6.36)
ˆ
|ζ|<ε

9 · 62 · |dζ ∧ dζ̄|
|ζ|

= 324 · 2π
ˆ ε

0

rdr

r
< 650πε.

Now consider (say) the right half of Dχ
2
(−χ): here the absolute value of the inte-

grand, apart from the 1
|λ−χ2| , is

(6.37)
|λ− 4χ||λ− 2χ|

|λ− (2χ+ χ2)||λ− (2χ− χ2)| ·
|λ|

|λ+ χ2|
· |λ+ 2χ||λ− χ|
|λ− i

√
3χ||λ+ i

√
3χ|
≤ 6 · 1 · 10

3 ≤ 20.

We have then

(6.38) 20
ˆ
Dχ

2
(0)∩<(λ)>0

|dλ ∧ dλ̄|
|λ− χ2|

≤ 20
ˆ
Dχ(0)

|dλ ∧ dλ̄|
|λ|

= 40πχ < 40
3 πε,



NORMAL FUNCTIONS 43

together with similar estimates on 3 other half-disks. The estimates for Dχ
2
(±i
√

3χ)
are each 250

3 πε. Adding everything from inside and outside the 4 disks, we are safely
under 1000πε.

We briefly address the situation at the other 4 points where poles in (6.23) collide.
The most striking case is that of α → 2. Substituting α = 2 in

´
P1 log |z|<(ı∗ωK)

yields the convergent integral

−24
ˆ
P1

log
∣∣∣γ+i
γ−i

∣∣∣ r sin(θ)
|γ2 + 1||γ2 − 2||2γ2 − 1|dx ∧ dy.

Writing χ = α − 2, γ2 = ζ − 1, to show this is limα→2 ψ(α) one must check (in
analogy to (6.33)ff) that

(6.39)
ˆ
|ζ|< 1

2

|ζ + 3i√χ|2|ζ − 3i√χ|2 log |ζ|dζ ∧ dζ̄
|ζ||ζ + 3χ||ζ − 3χ||ζ − 3√χ||ζ + 3√χ|

limits to ˆ
|ζ|< 1

2

log |ζ|dζ ∧ dζ̄
|ζ|

as χ→ 0. But this fails, due to the rapid convergence to (ζ =)0 of two of the poles;
in fact, (6.39) diverges logarithmically.

For α → −1, the limiting of the factor |α + 1| → 0 in (6.23) is no match for
the convergence of 7 poles each to (γ =)i and −i, again resulting in a logarithmic
divergency for ψ(α). On the other hand, analyses similar to (but simpler than) that
for α→ 1 show limα→0 ψ(α) and limα→∞ ψ(α) to be convergent.

7. The transcendental regulator for a Picard rank 20 K3

Here we specialize to the case (cf. §6.5)

(7.1) α = 1
2 = β , a = 1, b = 0,

in which case Eα, Eβ ∼= C/Z 〈1, i〉 are CM and p = 3, q = −2 (cf. [C-D2]). The
singular fibres are at θ =±1

2 (type I2) and ±1 (type I1) in X := X1,0, and at µ =2, 4
(type I4) and 1, 5 (type I2) in K 1

2 ,
1
2
. Recalling that our original cycle on Kα,β was

supported over µ = 1, which in this specialization has remained an I2 fiber (hence
preserving the cycle), its transform Z := Z1,0 is supported over θ = 1 (an I1 fiber)
in X.
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To take a closer look at the fibration structure of X, we use its affine equation

(7.2) 2y2 = w(w2 + 2{4θ3 − 3θ}w + 1)︸ ︷︷ ︸
=:Qθ(w)

to sketch the families of branch points of the elliptic fibers:

(7.3)

θ

−1 −1/2 1/2 1

8

0

1

−1

8

w

θ

w=0

w=

8

w=r ( )

w=r ( )

+

−
θ

Here r±(θ) are the roots of Qθ(w), which are both negative real for θ ∈ [1,∞), with
r− = r−1

+ . For purposes of constructing transcendental cycles, one should imagine
all the branch points coalescing at θ =∞ since that fiber, an I∗12, has trivial H1.

In particular, considering the fiber over θ = 1, the membrane Γ we use for the
transcendental regulator computation must bound on the indicated cycle ∂Γ = TZ :

(7.4)

θ

θ=1 θ  nearby P

r ( )

r ( )

0

−1

88

0
P1 1

w w

Γ

γ
+

_ θ

which is a double cover of the path [−1, 0] ⊂ P1
w. The transcendental 2-cycle γ is

the family of double covers of [r−, r+] as θ goes from 1 to ∞.
By basic residue theory the holomorphic (2, 0) form on X is given by

(7.5) ω0 = dw ∧ dθ
y

in the affine coordinates. If

(7.6)
ˆ
γ

ω0 = 2
√

2
ˆ ∞
θ=1

ˆ r+(θ)

r−(θ)

dw√
wQθ(w)

 dθ (> 0 )
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is one transcendental period, then using the automorphism j : X → X given by
(w, y, θ) 7→ (−w,−iy,−θ), we have

(7.7)
ˆ
j(γ)

ω0 =
ˆ
γ

j∗ω0 = i

ˆ
γ

ω0.

Normalizing ω0 to ω := ω0´
γ iω0

, we find that Φ2,1 is described by

(7.8) CH2(X, 1) −→ C/Z[i]
Z 7−→

´
Γ ω

,

which for our particular cycle is

(7.9)

κ :=
´

Γ ω = 2
´∞
θ=1

´ 0
w=r+(θ) ω

=
´∞

1
´ 0
r+(θ)

dw√
−wQθ(w)

dθ

´∞
1
´ r+(θ)
r−(θ)

dw√
wQθ(w)

dθ
∈ R+.

We have proved

Theorem 7.1. Let Z ∈ CH2(X1,0, 1) be the image of a generator of CH2
D(X1,0, 1),

for D one of the two I1 fibers in the alternate fibration. Then the transcendental
regulator Φ2,1(Z)Q ∈ C/Q[i] is nonzero if and only if κ /∈ Q.

The situation is highly reminiscent of a computation by Harris [Ha] of the Abel-
Jacobi map for the Ceresa cycle of the Fermat quartic curve. In that case, a computer
computation suggested that the comparable invariant κ′ ∈ R/Q was nontrivial. This
would have implied that the cycle was nontorsion modulo rational equivalence, a fact
later proved by Bloch [B2] using his `-adic AJ map. Since the Fermat Jacobian is
defined over Q̄, the Bloch-Beilinson conjecture predicts injectivity of the usual AJ
map, and hence the irrationality of κ′. One might, in conclusion, speculate that a
similar story unfolds here.
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