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Introduction

Writing in 1997 on vanishing of constant terms in powers of Laurent polyno-
mials1

φ ∈ C[Tn] = C[x1, x
−1
1 , . . . , xn, x

−1
n ],

Duistermaat and van der Kallen [DvK] proved the following

Completion Theorem: Given φ ∈ C[Tn] such that the interior of its Newton
polytope contains the origin, there exists a good2 compactification X ⊃ Tn with

(a) a holomorphic map X → P1 extending φ, and
(b) a holomorphic form Ω ∈ Ωn( X \ φ−1(∞)︸ ︷︷ ︸

=: X−

) extending
∧n dlogx.

For a simple example, take n = 2 and

φ =
2∏
i=1

(
xi −

µ2 + 1

µ
+

1

xi

)
, µ ∈ C∗.

In the “initial compactification” P1 × P1(⊃ C∗ × C∗), the level sets 1 − tφ = 0

(see Figure 0.1, where β := µ2+1
µ

) complete to a pencil of elliptic curves, with
generic member smooth. For φ to extend to a well-defined function we must
blow P1 × P1 up at the 8 points (marked in the Figure) in the base locus; this
yields E

1/φ
- P1

t as in the Completion Theorem.
What that result does not address at all is the periods of Ω. Since the Haar

form 1
(2πi)n

∧n dlogx := dx1

2πix1
∧ · · · ∧ dxn

2πixn
has only rational periods, one might

ask under what circumstances this remains true for Ω.

Question 1 (Nori) : Write Hg(—) := HomMHS(Q(0),—); we have
∧n dlogx ∈

Hg(Hn(Tn,Q(n))). Is Ω ∈ Hg(Hn(X−,Q(n)))?

In the above example, the easiest way to compute periods of Ω against topological

1here T = Gm
2i.e., the complement X \Tn is a NCD in X
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2-cycles on E− is to do a bit of homological algebra. Writing E0 := φ−1(∞),
E

[0]
0 = Ẽ0 = q4P1, E[1]

0 = sing(E0), we instead can pair 2-cocycles in the double-
complex of currents

D•−4

E
[1]
0

Gysin

·(2πi)
- F 1D•−2

E
[0]
0

Gysin

·(2πi)
- F 2D•E

(deg. 0)

against 2-cycles in

Ctop
• (E

[1]
0 ;Q) �

intersect
Ctop
• (E

[0]
0 ;Q)#

�intersect Ctop
• (E ;Q)#

(where “#” means chains and their boundaries properly intersect relevant sub-
strata). If L1 = {(x, y) = (µ, 0)} and L2 = {(x, y) = ( 1

µ
, 0)} are the sections of

E and Γ = {path from (µ, 0) to ( 1
µ
, 0) on Ẽ0}, then we can pair〈(

{1,−1, 1,−1}, {dx
x
,−dy

y
,−dx

x
,
dy

y
},Ω

)
, ({0, 0, 0, 0}, {Γ, 0, 0, 0}, L1 − L2)

〉
=∫

L1−L2

Ω + 2πi

∫
Γ

dx

x
= −4πi log µ.

So the answer is yes precisely when E has no nontorsion section, or equivalently
when

µ is a root of unity.
This points the way toward some sort of arithmetic restriction on φ. (Indeed,
the condition on µ, not that on the sections, is the one which generalizes.)

Now assume K ⊂ Q̄ is a number field, and take φ ∈ K[Tn]. If the celebrated
Hodge and Bloch-Beilinson conjectures are assumed to hold, an equivalent prob-
lem is

Question 2 : Does the “toric symbol” {x1, . . . , xn} ∈ Hn
M(Tn,Q(n)),3 or some

other symbol with fundamental class [
∧n dlogx] ∈ Hn(Tn,Q(n)), extend to Ξ ∈

Hn
M(X−,Q(n))?

So the question about periods of the “extended Haar form” is replaced by a ques-
tion about algebraic K-theory. If one doesn’t assume the conjectures then of
course this is a stronger criterion than that in Nori’s question; but in fact there
are very concrete sufficient conditions for an affirmative answer.

To state these conditions we first fix the specific compactifications we will use
(for n ≤ 4). The Newton polytope ∆ := Newton(φ) is the convex hull in Rn
of the exponent vectors of all nonzero monomials appearing in φ. Assume this
(hence φ) is reflexive, i.e. its polar polytope ∆◦ ⊂ Rn has only integral vertices;
and demand that 1 − tφ(x) be ∆-regular4 for general t. (We actually make a
weaker, but more technical, assumption in Theorem 3.8 for n ≤ 3.) Associated
to the fan on ∆◦ is a (compact) toric Fano n-fold P∆ ⊃ Tn where the components
of the “divisor at ∞” D = P∆ \Tn correspond to the facets of ∆. This is usually

3Hn
M(Tn,Q(n)) ∼= Kalg

n (Tn)
(n)
Q
∼= CHn(Tn, n)(Q)

4a mild genericity condition (cf. [Ba1] or §3.1 below)
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too singular, and we replace it by P∆̃,
5 the toric variety associated to the fan on

a maximal projective triangulation of ∆◦. (In the example, P1×P1 = P∆ = P∆̃.)
Taking Zariski closure of the level sets

1− tφ(x) = 0

then leads to a 1-parameter family of X̃ of anticanonical hypersurfaces X̃t ⊂ P∆̃,
i.e. Calabi-Yau (n − 1)-folds. (Again, as in the example, X̃ is nothing but P∆̃

blown up along [successive proper transforms of] the components of the base
locus.6) If we define π̃ := 1

φ
: X̃ → P1

t , two more properties all these families
have in common is:

• the local system Rn−1π̃∗Q has maximal unipotent monodromy7 about
t = 0 (cf. §2.1)
• the relative dualizing sheaf ωX̃/P1 := KX̃ ⊗ π̃−1θ1

P1 has

degωX̃/P1 = 1 (cf. §8.3).

We write L ⊂ P1 for the discriminant locus of π̃, and D̃ := D̃ ∩ X̃t for the base
locus of the family.

Also writing in 1997, F. Rodriguez-Villegas [RV] introduced the arithmetic
condition on φ for n = 2, that forces the toric symbol ξ := {x1, x2} in Question 2
to extend. Namely, by decorating the integral points in ∆ with the corresponding
coefficients (in some field K ⊂ C) of monomials in φ, the coefficients along
each edge of ∆ yield a 1-variable polynomial. If these “edge polynomials” are
cyclotomic, then all Tame symbols of ξ are torsion and Villegas says φ is tempered.
In §3 of this paper, Villegas’s definition is extended to n ≤ 4 in order to prove
Theorem 1.7, which is a stronger version of the following

Theorem 0.1. Let φ ∈ K[Tn] (n ≤ 4, K a number field) be reflexive, tempered,
and regular. (For n = 4 assume also that K is totally real and that the compo-
nents of the 1-skeleton of D̃ are rational /K.) Then Question 2 (and therefore
Question 1) has a positive answer.

For example, for n = 3, given a reflexive ∆ ⊂ R3 with only triangular facets,
φ :={characteristic Laurent polynomial of the vertex set of ∆} will satisfy the
Theorem. Conversely, we show (cf. Proposition 4.16) that the toric symbol
cannot extend if the coefficients of φ do not belong to a number field (up to a
common constant factor).

The upshot is that we get in each case a family Ξt := Ξ|X̃t ∈ CHn(X̃t, n)
of Milnor K2 (resp. K3, K4) classes on elliptic curves (resp. K3 surfaces, CY
3-folds). In §4 we show that these classes are always nontorsion by evaluating

5D̃ will denote the new divisor at infinity (not a desingularization).
6Our actual definition of X̃ in §§3− 4 is slightly different from that used here; note that X̃

replaces X in Questions 1-2.
7for n = 4 an extra assumption is needed for this.
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their image under the Abel-Jacobi map (or “rational regulator map”)

AJn,n : Hn
M(X̃t,Q(n))

q
CHn(X̃t, n)

→ Hn
D(X̃t,Q(n))

q
Hn−1(X̃t,C/Q(n))

against a family of topological cycles ϕ̃t vanishing at t = 0. This yields the
formula (Theorem 4.5)

(0.1) Ψ(t) := 〈ϕ̃t, AJ(Ξt)〉 ≡ (2πi)n−1

{
log(t) +

∑
m≥1

[φm]0
m

tm

}
mod Q(n)

(where [·]0 takes the constant term). The treatment of Theorem 0.1 and formula
(0.1) (and other material) becomes rather technical in places, partly from the
desire to prove results in sufficient generality to accomodate specific key exam-
ples. We have included in §§1− 2 a guide to the regulator formulas and aspects
of toric geometry that we use.

A fundamental goal of writing this paper has been to broaden the relevancy
of (generalized) algebraic cycles and (generalized) normal functions beyond their
traditional context of Hodge theory and motives. In particular, we want to
persuade the reader that higher cycles are not just to be sought out in the context
of the Beilinson conjectures, but instead also are behind things like solutions
of inhomogeneous Picard-Fuchs (IPF) equations — even ones arising in string
theory. Already in the context of open mirror symmetry in [MW], the domainwall
tension for D-branes wrapped on the quintic mirror has been interpreted as
the Poincaré normal function associated to a family of algebraic 1-cycles. This
yields not only the solution of an IPF equation, but also data on “counting
holomorphic disks” on the real quintic ⊂ P4. The higher cycles we consider in
this paper are instead related to the local mirror symmetry setting, and their
associated “regulator periods” Ψ(t) furnish the mirror map in that context. Hence
for n = 2, assuming a conjectural “central charge formula” of Hosono [Ho], we
obtain information on the asymptotics of instanton numbers {nd} for KP∆◦ . This
story is worked out in §5, with explicit computations connecting the exponential
growth rate of the {nd} to limits of AJ mappings in §6.

The “higher normal functions” V (t) obtained from our generalized cycles, on
the other hand, provide solutions to certain IPF equations (cf. §4.3). While we
don’t know if these play any distinguished role in local mirror symmetry, they
do play a central part in the Apéry-Beukers irrationality proofs of ζ(2) and ζ(3),
and provide a missing link for completing the “algebro-geometrization” of these
proofs begun by Beukers, Peters, and Stienstra [Bk, BP, Pe, PS]. We will try to
convey this link below, but for a complete discussion/proof the reader is referred
to [Ke2].

Another number-theoretic phenomenon on which our construction sheds light
is the “modularity” of the logarithmic Mahler measure

(0.2) m(t−1 − φ) :=
1

(2πi)n

∫
|x1|=···=|xn|=1

log |t−1 − φ|
n∧
dlogx.
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Specifically, several authors [RV, Be1, MOY, S] have noted computationally that
(for n = 2, 3) pullbacks of (0.2) by the inverse of the mirror map frequently yield
Eisenstein-Kronecker-Lerch series. In Corollary 4.8, Ψ(t) is related to (0.2), and
in §10 we use AJ computations (done in §§7−9) for Beilinson’s Eisenstein symbol
to prove a general result on pullbacks of Ψ by automorphic functions (Theorem
10.3). This completely explains the observations on Mahler measures.

One more noteworthy application of Theorem 0.1 is to the splitting of the MHS
on the cohomology Hn−1(X̃0) of the “large complex structure” singular fiber. In
fact, whenever Question 1 has a positive answer, taking Poincaré residue of
Ω ∈ HomMHS(Q(0), Hn(X̃−,Q(n))) yields

Res(Ω) ∈ HomMHS(Q(0), Hn−1(X̃0,Q))

hence (dually) a morphism

(0.3) Hn−1(X̃0,Q(j))→ Q(j)

of MHS for any j. Now the cycle Ξ produced by the Theorem obviously does
not extend through X̃0. Given a second cycle Z ∈ CHj(X̃ \ ∪iXti , 2j − n) (all
ti ∈ L \ {0}) which does extend,8 together with a family ω ∈ Γ

(
P1, π̃∗ωX̃/P1

)
of

holomorphic forms, one has the associated (multivalued) normal function

ν(t) =
〈
AJ(Z|X̃t), ω(t)

〉
over P1 \ L. If we normalize ω so that ω̂(0) := im{ω(0)} ∈ Hn−1(X̃0,C) is just
[Res(Ω)],9 then the splitting (0.3) gives “meaning” to

(0.4) lim
t→0

ν(t) ∈ C/Q(j);

that is, nontriviality of (0.4) implies nontriviality of AJ(Z|X̃t) as a section of
the sheaf of generalized Jacobians J j, 2j−n(X̃t). This “splitting principle” will be
elaborated upon in a future work.

In the remainder of this Introduction, we want to convey some of the main ideas
behind these applications (including the ones not done in this paper) through
three key examples

(0.5) φ =
(x− 1)2(y − 1)2

xy
, n = 2,

(0.6) φ =
(x− 1)(y − 1)(z − 1)[(x− 1)(y − 1)− xyz]

xyz
, n = 3,

(0.7) φ =
x5 + y5 + z5 + w5 + 1

xyzw
, n = 4,

all of which satisfy the strengthened version (Theorem 3.8) of Thm. 0.1.
Begin by considering the sequence

−4,−4,−12,−48,−240,−1356,−8428,−56000,−392040,−2859120, . . .

8If 2j = n one must also assume that [ι∗X0
Z] = 0 ∈ H2j(X̃0).

9e.g., one could just take ω = ∇δt [AJX̃t(Ξt)]
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of genus zero local instanton numbers {nd}d≥1 for KP1×P1 [CKYZ]. The related
Gromov-Witten invariants {Nd} count (roughly speaking) the contribution to the
“number of rational curves of degree d” on a CY 3-fold made by an embedded
P1×P1 (when there is one). They have, according to [MOY], exponential growth
rate

(0.8) lim
d→∞

∣∣∣∣nd+1

nd

∣∣∣∣ = lim
d→∞

∣∣∣∣Nd+1

Nd

∣∣∣∣ = e
8
π
G,

where G := 1− 1
32 + 1

52 − 1
72 + · · · is Catalan’s constant. The exponent of (0.8)

also appears as a special value of a hypergeometric integral in a formula

(0.9)
8

π
G = log(16)−

∑
n≥1

(
2n
n

)2

16nn
= − lim

ε→0

{∫ 1
16

ε
2F1(

1

2
,
1

2
; 1; 4t)

dt

t
− log(ε)

}
essentially due to Ramanujan. The surprising fact is that a family of higher
cycles, in Kalg

2 of a family of elliptic curves, is behind (0.8) and (0.9). In order
to illustrate how this works, we shall first offer a brief review of the relevant AJ
maps.

To begin with, recall Griffiths’s AJ map [G] for 1-cycles homologous to zero
on a smooth projective 3-fold X/C. Writing10

Z =
∑

qiCi ∈ Z2
hom(X), � := P1 \ {1},

we want to know whether Z is rationally equivalent to zero:

Z
rat≡ 0 ⇐⇒ ∃W ∈ Z2(X ×�) (properly intersecting X × {0,∞})

with W · (X × {0})−W · (X × {∞}) = Z.

The map11

Z2
hom(X)

ÃJ- J2(X) :=
H3(X,C)

F 2H3(X,C) +H3(X,Q(2))
∼=
{F 2H3(X,C)}∨

im{H3(X,Q(2))}

∼=
{

test forms︷ ︸︸ ︷
Γ
d-closed(F 2A3

X) /d[Γ(F 2A2
X)]}∨{∫

Ztop
3 (X;Q(2))

( · )
}

induced by

Z 7−→ (2πi)2

∫
∂−1Z

( · ),

where ∂−1Z ∈ Ctop
3 (X;Q) is any (piecewise smooth) 3-chain bounding on Z,

descends modulo
rat≡ to yield

AJ : CH2
hom(X)→ J2(X).

10Here qi ∈ Q, and except where otherwise indicated all cycle groups and intermediate
Jacobians in this paper are taken ⊗Q. Also note that Zp(X) denotes complex codimension p
algebraic cycles, while Zptop(X) (resp. Cptop(X)) means real codimension p (piecewise) smooth
topological cycles (resp. chains).

11AkX = ⊕p+q=kAp,qX denotes C∞ k-forms on X.
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This is the type of AJ-map which yields the normal functions considered in
[MW], and detects classes in K0(X)(2) ∼= CH2(X).

Now suppose we have an elliptic curve

E ⊂ P∆ = toric Fano surface,

and would like to detect classes in

K2(E) ∼=
"de-loop"

K0(E × Č︸︷︷︸
nodal
affine
curve

× Č) ∼= CH2( E ×�2, E × ∂�2︸ ︷︷ ︸)
X

,

where the right-hand term is a relative Chow group and

∂�2 := ({0,∞}×�) ∪ (�× {0,∞}) ⊂ �2.

The “relative cycles” Z =
∑
qiCi ∈ Z2(X) are just those whose component

curves Ci properly intersect12 E × ∂�2 and satisfy Z · (E × ∂�2) = 0, and
relative rational equivalences are defined similarly.13 Writing

I2 := ({1} × C∗) ∪ (C∗ × {1}) ⊂ (C∗)2,

X∨ := (E × (C∗)2, E × I2)

for the “Lefschetz dual” variety, the test forms live on X∨; and

J2(X) :=
H3(X,C)

F 2H3(X,C) +H3(X,Q(2))
∼=
{F 2H3(X∨,C)}∨

im{H3(X∨,Q(2))}

∼=
{H1(E,C)⊗ dlogz1 ∧ dlogz2}∨

im{H1(E,Q)⊗ S1 × S1}
∼= Hom

(
H1(E,Q), C/Q(2)

)
.

To produce a map
AJ : CH2(X)→ J2(X),

one first notes that H i(�, ∂�) =

{
Q(0), i = 1

0, otherwise =⇒

Hg2(H4(X)) ∼= Hg2(H2(E)⊗Q(0)⊗2) = {0} =⇒
CH2(X) = CH2

hom(X). Hence for any Z ∈ Z2(X), we essentially14 have

Z = ∂Γ in Ctop
• (E × (C∗)2, E × I2).

We can then consider on test forms in Γ
d-closed(A1

E)

(0.10) AJX(Z) :=

∫
Γ

( · ) ∧ dz1

z1

∧ dz2

z2

∈ J2(X),

which we now turn to computing in one example.
The Laurent polynomial (0.5) has Newton polytope as shown in Figure 0.2,

12all coskeleta of: i.e. components of E × ∂�2, and intersections of these components.
13W ∈ Z2(E ×�3) must intersect E × ∂�3 properly and have W · (E × ∂�2 ×�) = 0.
14for a more precise statement see [KLM, sec. 5.8] and references cited therein.
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Figure 0.2.

Figure 0.3.
t= 0

1/16 8

I I
I
*
1

1
4

P
1

t

Figure 0.4. a b c d

E
t

which corresponds to P∆ = P1 × P1. A projective description of the fibers of
X π- P1

t is then

(0.11) Et := {XYZW = t(X−W)2(Y −W)2} ⊂ P1
X:W × P1

Y:Z,

and after a minimal desingularization at t =∞, π has singular fibers as in Figure
0.3. Now consider the pair of meromorphic functions

x :=
X

W
, y :=

Y

Z
∈ C(Et)

∗

arising from the toric coordinates; their divisors

(x) = 2[b]− 2[d], (y) = 2[a]− 2[c]

are supported on marked 4-torsion points (see Figure 0.4 ), and in fact X is
nothing but the modular family over X1(4).15 Most importantly,

x = 0 or ∞ =⇒ X or W = 0
use
=⇒
(0.11)

Y = Z =⇒ y = 1,

y = 0 or ∞ =⇒ · · · =⇒ x = 1.

15we use the notation Y 1(4) for this in §§7− 10.
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Figure 0.5.
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Recalling that 1 /∈ �, if we consider the “graph”16 of the symbol {x, y}

Zt := {(e, x(e), y(e)) | e ∈ Et} ∈ Z2(E ×�z1 ×�z2),

then Zt · (E × ∂�2) = 0

=⇒ Zt ∈ CH2(X),

i.e. Zt is a relative cycle. Interestingly, this example appears in [Co] as the
degeneration of a Ceresa cycle on the Jacobian of a nonhyperelliptic genus 3
curve, as that curve acquires 2 successive nodes.

To construct an explicit 3-chain Γt bounding on Zt, we use a procedure similar
to that in [Bl3] which was generalized in [Ke1, KLM]. First look at the picture
of Zt ⊂ Et × � × � in Figure 5. For a first approximation of Γ, “squash” Zt to
{1}17 in the z1-coordinate and write down the membrane

(0.12)
{

(e,
−−−→
1.x(e), y(e)) | e ∈ E

}
which it traces out. The path

−−−→
1.x(e) ⊂ P1 \ Tz1 can be chosen continuously in

e ∈ E \ Tx, where Tx := {e ∈ Et |x(e) ∈ R≤0 ∪ {∞}} is the cut in the branch of
log(x). Along Tx we have a problem, namely that (0.12) has {(e, S1

x, y(e)) | e ∈
Tx} as an additional (and unwanted) boundary component. So we squash this

16in the sense of calculus, not combinatorics!
17recall that for purposes of bounding Zt, Et × I2 is a sort of “topological trashcan”.
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component to {1} in the z2-coordinate and continue on, obtaining at last

Γt =
{

(e,
−−−→
1.x(e), y(e))

}
e∈Et

+
{

(e, S1
z ,
−−−→
1.y(e))

}
e∈Tx

+
{

(e, S1
z1
, S1

z2
)
}
e∈∂−1(Tx∩Ty)

.

Thus (0.10) becomes ∫
Γt

ωE ∧ dlogz1 ∧ dlogz2 =∫
E

ωE ∧ log xdlogy − 2πi

∫
Tx

ωE log y − 4π2

∫
∂−1(Tx∩Ty)

ωE =

( log xdlogy − 2πi log yδTx︸ ︷︷ ︸
=: R{x, y} ∈ D1(Et)

− 4π2δ∂−1(TX∩Ty))(ωE),

where D1 denotes 1-currents; in fact, there is nothing preventing us from taking
[Poincaré duals of] topological 1-cycles γ as our test forms, and so

CH2(Et, 2) := CH2(Xt)
AJ(rel)- Hom(H1(Et,Q), C/Q(2))

is induced (on our cycle) by

(0.13) Zt 7−→
{
γ 7→

∫
γ

R{x, y}
}
.

Explicit computation on a particular choice of γt (using not much more than
residue theory; see §4.1) yields (0.1), which in this case is

(0.14) Ψ(t) =

∫
γt

R{x, y}
Q(2)
≡ 2πi

{
log t+

∑
m≥1

(
2m
m

)2

m
tm

}
.

Nontriviality of the family of cycles then follows from non-constancy of the “reg-
ulator period” Ψ. Both (0.8) and (0.9) are obtained by computing its value Ψ( 1

16
)

at the “conifold point”, by pulling back the current R{x, y} along a desingular-
ization of the nodal rational curve E 1

16
. (See the “D5” computation in §6.3.) In

particular, the relation to the asymptotics of the {Nd} (cf. (0.8)) comes from
the conjectural mirror theorem18

1

(2πi)2
−
∑
d≥1

d3NdQ
d =

Y(t)(
2F1(1

2
, 1

2
; 1; 4t)

)3

in which

(0.15) the r.h.s. blows up at
1

16
, and

(0.16) the mirror map Q(t) = exp

{
Ψ(t)

2πi

}
.

(0.16) is based on an analysis (§5.1) of periods on the (open CY 3-fold) mirror
manifold of KP1×P1 , which generalizes nicely to higher dimensions (for periods
on certain open CY 4- and 5-folds).

18the Nd here is actually N〈KP1×P1〉
2d in §5.3.
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As suggested above, the family of cycles {Zt ∈ CH2(Xt, 2)} can be canonically
constructed on the universal family E1(4) → Y1(4) = Γ1(4)�H of elliptic curves
with a marked 4-torsion point. (Similar constructions are possible in any level
≥ 3 and even in higher dimension, by working onKuga varieties, or fiber products
of such universal families; this construction is recalled in §7.) Using fiberwise
double Fourier series for currents on E1(4), we obtain a very different expression
for the regulator period 〈ϕ̃, AJ(Z)〉 as a function of τ ∈ H,

Ψ̃(τ)
Q(2)
≡ 2πi

2πi

4
τ − 4

∑
µ≥1

qµ0
µ

∑
r|µ

r2χ−4(r)

 ,

where q0 = e
2πi
4
τ . (See Theorem 9.7 and formulas (9.11), (9.16) for the general

result.) This must coincide with (0.14) in the sense that

Ψ̃(τ(t))
Q(2)
≡ Ψ(t),

where τ(t) = 4
2πi

log t + tC[[t]] is the period map. The rich interactions between
the genus 0 case of the modular/Kuga construction and the toric construction,
including a complete classification of the elliptic curve families where the con-
structions coincide, are explained in §10.

Before turning to our next example Laurent polynomial (0.6), we give a brief
outline of how the AJ-formulas (0.10), (0.13) for CH2(E, 2) generalize to the
setting

AJp,nX : CHp(X,n)→ H2p−n
H (X,Q(p))︸ ︷︷ ︸ .

absolute Hodge cohomology

(This will be expanded upon in §1; references are [KLM, sec. 5] and [KL, sec.
8].) Here X is smooth (quasi-projective) and the higher Chow groups satisfy

H2p−n
M (X,Q(p))︸ ︷︷ ︸

motivic cohomology

∼= CHp(X,n)
q

CHp(X ×�n, X × ∂�n)

∼= GrpγKn(X)Q,

where ∂�n := {z ∈ �n | some zi = 0 or ∞} ⊂ �n. When X is singular these
isomorphisms fail, but one still has

AJp,nX : H2p−n
M (X,Q(p))→ H2p−n

H (X,Q(p))

which is treated using hyper-resolutions in [KL, sec. 8].
Recall that the higher Chow groups were defined [Bl4] as the homology of the

complex

Zp(X, •) :=

{
"admissible" cycles in X ×�•: components
properly intersect all coskeleta of X × ∂�•

}
{"degenerate" cycles}

with differential ∂B taking the alternating sum of the restrictions to “facets”
of X × ∂�•. The KLM formula for AJp,n on X smooth projective (and some
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quasi-projective cases) is given simply as a map of complexes
(0.17)
Zp
R(X,−•)→ C2p+•

D (X,Q(p)) := C2p+•
top (X;Q(p))⊕ F pD2p+•(X)⊕D2p+•−1(X),

where Zp
R(X,−•) ⊂ Zp(X,−•) is a quasi-isomorphic subcomplex.19 (0.17) is

defined on an irreducible R-admissible cycle Z ⊂ X ×�n by20

(0.18) Z 7−→ (2πi)p−n ((2πi)nTZ ,ΩZ , RZ) .

Writing

�n(z1,...,zn)

{
desingularization

of |Z|

}
π�oo

πX

��
X ,

(0.19)

Tn :=
⋂n
i=1 Tzi :=

⋂n
i=1

{
zi ∈ (R≤0 ∪ {∞})

}
∈ Cn

top(�n)

Ωn :=
∧n dlogzi := dz1

z1
∧ · · · ∧ dzn

zn
∈ F nDn(�n)

Rn := R{z1, . . . , zn} :=∑n
i=1(±2πi)i−1 log(zi)

dzi+1

zi+1
∧ · · · ∧ dzn

zn
· δTz1∩···∩Tzi−1

∈ Dn−1(�n),

the KLM (normal) currents are defined by

(0.20) TZ := πX {Z · (X × Tn)} ,
{

ΩZ

RZ

}
:= πX∗π�

∗
{

Ωn

Rn

}
.

Suppose we are given a higher Chow cycle, i.e. a ∂B-closed precycle (=admis-
sible cycle) Z ∈ Zp

R(X,n). Then

d[RZ ] = ΩZ − (2πi)nδTZ ,

or just −(2πi)nδTZ if dimX < p or p < n. So for a symbol {f} = {f1, . . . , fn} ∈
Zn(U, n) (where fi ∈ O∗(U) and U is smooth quasiprojective of dim < n),
R{f} = R{f1, . . . , fn} (as in (0.19)) satisfies

(0.21) d[R{f}] = −(2πi)nδTf1∩···∩Tfn =: −(2πi)nδTf .

In Theorem 0.1, Ξt ∈ Zn(X̃t, n) is ∂B-closed and dim(X̃t) = n− 1; hence

R′Ξt := RΞt + (2πi)nδ∂−1TZ ∈ D
n−1(X̃t)

19The proper intersection condition is extended to include certain real semi-algebraic subsets
of X×�• in order to make the formulas (0.18-20) well-defined (e.g., the intersections of Tzi ’s).
The (cone) differential on the r.h. complex in (0.17) sends (a, b, c) 7→ (−∂a,−d[b], d[c]−b+δa).

20here TZ is a C∞ chain, while ΩZ and RZ are currents.
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is d-closed and defines a lift21 of AJ(Ξt) ∈ Hn−1(X̃t,C/Q(n)) to Hn−1(X̃t,C).
We are interested in the higher normal function

(0.22) V (t) :=
〈
[R′Ξt ], [ωt]

〉
associated to Ξ and a section ω ∈ Γ(P1, ωX̃/P1) of the dualizing sheaf. If Dω

PF is the
Picard-Fuchs operator associated to ω (which kills its periods over topological
cycles), then nonvanishing of

Dω
PFV (t) =: gΞ,ω(t) ∈ C(P1)

implies generic nontriviality of AJ(Ξt). This gives a connection to inhomoge-
neous Picard-Fuchs equations, explained in §4.3. One way to evaluate (0.22) is
to observe that the restriction of Ξt to X̃∗t := X̃t∩Tn is

rat≡ (by a ∂B-coboundary)
to the toric symbol {x1, . . . , xn}|X̃∗t , and so

[R′Ξt |X̃∗t ] ≡ [R{x1|X̃∗t , . . . , xn|X̃∗t }+ (2πi)nδΓt ] ∈ Hn−1(X̃∗t ,C)

for some Γt ∈ Ctop
n−1(X̃t, D̃;Q). When we can arrange for Γt to vanish (which is

true in the calculation below), a careful analytic argument with KLM currents
demonstrates that

(0.23) V (t) =

∫
X̃t

R{x1|X̃t , . . . , xn|X̃t} ∧ ωt.

What originally got us thinking about higher normal functions was the follow-
ing integral from a paper [Bk] of Beukers:

(0.24) R(λ) =

∫ 1

0

∫ 1

0

∫ 1

0

dX dY dZ

1− (1−XY )Z − λXY Z(1−X)(1− Y )(1− Z)
,

with R(0) = 2ζ(3). This is the unique linear combination of the generating series
of the two sequences {am}, {bm} used by Apéry to prove irrationality of ζ(3), with
larger radius of convergence than those series. (This leads to Beukers’s simpler,
geometrically motivated proof.) Substituting X = x

x−1
, Y = y

y−1
, Z = z

z−1
,

(0.24) becomes∫ ∫ ∫
T :=Tx∩Ty∩Tz

dlogx ∧ dlogy ∧ dlogz
λ− (x−1)(y−1)(z−1)(1−x−y+xy−xyz)

xyz

=

(0.25)
∫
T

∧3 dlogxi
λ− φ(x)

=:

∫
T

(2πi)3ω̂λ,

where φ is as in (0.6) and (writing t = λ−1) ω̂λ ∈ Ω3(P∆̃)
〈

log X̃t

〉
(∆ is shown

in the Figure ). Differentiating ω̂λ as a current on P∆̃,

(0.26) d[ω̂λ] = 2πi(ιX̃t)∗ResX̃t(ω̂λ) =: (ιX̃t)∗ωλ

21multivalued if t is allowed to vary
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Figure 0.6.

defines our section {ωλ ∈ Γ(KX̃t
)}t∈P1 of the dualizing sheaf. Using (0.26) and

the generalization

d[R{x}] =
∑
{terms supported on D̃} +

3∧
dlogx − (2πi)3δT

of (0.21) to P∆̃, (0.25) becomes∫
P∆̃

(2πi)3δT ∧ ω̂λ = −
∫
P∆̃

d[R{x}] ∧ ω̂λ

====

∫
by

parts

∫
P∆̃

R{x} ∧ ιX̃t∗ωλ =

∫
X̃t

R{x}|X̃t
∧ ωλ,

which is (0.23).22 In fact, R(λ)’s interpretation as a higher normal function
associated to a family ofK3(K3)-classes extending through singular fibers23 leads
(almost) automatically to the “larger radius of convergence” mentioned above,
as well as to its satisfaction of an inhomogeneous Picard-Fuchs equation (which
then produces a recursion on the {bm}).

One knows from [Pe] that the family of K3 surfaces X̃ associated to (0.6) is
the canonical family of Kummer surfaces over Γ0(6)+6�H∗. From the toric (§4.2)
and modular (§9.3) computations of the “fundamental regulator period” one gets
two rather different expressions

Ψ(t) = (2πi)2

{
log t +

∑
m≥1

tm

m

m∑
k=0

(
m

k

)2(
m+ k

k

)2
}

Ψ̃(τ) = −12(2πi)3τ +
(2πi)2

20

{
7ψ4(q)− 2ψ4(q2) + 3ψ4(q3)− 42ψ4(q6)

}
(where q := e2πiτ and ψ4(q) =

∑
M≥1

qM

M
{
∑

r|M r3}) which must coincide modulo

Q(3) under the “period map” τ(t) =
∫
ϕ1
ωt∫

ϕ0
ωt

(see §10.3).

22Of course, much of the above needs more thorough justification, as R{x} is not technically
a current on P∆̃, and this will be done in [Ke2].

23other than λ =∞/t = 0.
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In general when a toric-hypersurface pencil arising from Theorem 0.1 is mod-
ular (in a sense to be made precise in §10.3), the limit MHS at t = 0 is trivialized
by taking q := exp(2πi

N
τ(t)) (for some N ∈ Z) as the local parameter (or more

generally t0 with limt→0
q(t)
t0(t)

a root of unity). An example of a nonmodular case
— with nontrivial LMHS (see §10.6) — is the mirror quintic family obtained
from φ = x + y + z + w + 1

xyzw
. It follows that the Fermat quintic family X̃

obtained from (0.7) (of which the mirror quintic is essentially a quotient) also
has extensions in H3

lim(X̃0) not trivializable by change of parameter. What is
still true is that we have the splitting (0.3) of MHS

H3(X̃0)� Q(0)

induced by
〈
· , ω̂(0)

〉
, and inducing

J2(X̃0)
θ-- C/Q(2).

This follows from the existence of Ξ in the Theorem, and is false if we change
the coefficients in (0.7) (e.g. writing instead φ = x5+2y5+7z5+w5+1

xyzw
) without regard

for the “generalized temperedness” criterion.
Sticking with the Fermat family, here is why this is important. Let D∗ :=

D \ {0} ⊂ P1 be a punctured disk about t = 0, and suppose we are given a
“local” family of cycles {Zt ∈ Z2

hom(X̃t)}t∈D∗ satisfying Z∗ := ∪t∈D∗Zt
hom≡ 0 on

π̃−1(D∗) ⊂ X̃ . Then by [GGK1, sec. III.B] limt→0AJX̃t(Zt) ∈ J2(X̃0) is well-
defined,24 and by applying θ so is θ(limt→0AJX̃t(Zt)) = limt→0 ν(t) =: ν(0) (cf.
(0.4)). In [op. cit., §IV.C] such a family is constructed, with25

=(ν(0)) = D2(
√
−3);

and so the general Zt /
rat≡ 0.

To conclude, we comment on a few intriguing issues arising in the present work,
which might form the basis for later projects. We would like to have a better
understanding of the geometry of families of K3 surfaces supporting K3-classes
which are not Eisenstein symbols. There are scores26 of Laurent polynomials
φ ∈ Q[T3] satisfying Theorem 3.8, but (for example) we are only able to show
the generic Picard number rk(Pic(Xη)) = 19 for a handful of these. While there
are techniques for obtaining lower bounds on this number, we are aware of no
methods for (nontrivially) bounding it above. Do any of the families have generic
Picard rank < 19? Are any of them not elliptic fibrations? In fact, on those that
admit a torically defined elliptic fiber structure, we are able to construct (and
partially evaluate the regulator on) families of K1-classes.

For CY 3-folds, it turns out that none of the K4-classes constructed by The-
orem 3.8 are Eisenstein symbols, because none of the allowed CY families are
classically modular (Prop. 10.15). This would likely be remedied by generalizing

24as an invariant of the family of rational equivalence classes.
25D2 =Bloch-Wigner function
26corresponding to (at least) about a quarter of the 4319 reflexive polytopes in R3; see §3.3.
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the construction to admit singularities on the generic fiber as we have done for
K3’s; this hard work has yet to be done.

The conjectural mirror theorem of §5.4 relates Hodge theory of the (open
CY 3-fold) B-model family Yt := {1 − tφ(x) + u2 + v2 = 0} ⊂ (C∗)2 × C2

to enumerative geometry of the (A-model) total space of the canonical bundle
KP∆◦ . But the mirror map and the VHS H3(Yt) are determined from the data
of the underlying elliptic curve family X∗t = {1 − tφ(x) = 0} ⊂ (C∗)2 and the
toric symbol {x1, x2} ∈ K2(X∗t ) (whose AJ class in Ext1

MHS
(Q(0), H1(X∗t ,Q(2)))

projects to H3(Yt), cf. Prop. 5.5ff). The mirror X◦ of {Xt} is the (elliptic
curve) zero locus of a section of K∨P∆◦

. Is it possible to recast the Gromov-Witten
invariants of KP∆◦ directly in terms of X◦, and thus rewrite the mirror theorem
in terms of Xt ←→ X◦? A starting point might be to think of Heven(KP∆◦ ) as
an extension of Heven(X◦) by Q(0) and reduce the quantum product to one on
Heven(X◦).

A. Collino [Co] has studied the behavior of the Ceresa cycle associated to a non-
hyperelliptic genus 3 curve as this curve acquires two successive nodes. Working
modulo 2-isogenies, with each degeneration a Gm splits off from the (Jacobian)

abelian variety on which the cycle sits. Under this process CH2

(
abelian
3-fold

)
 

CH2

(
abelian
surface , 1

)
 CH2

(
elliptic
curve , 2

)
, the Ceresa cycle limits to the Eisen-

stein symbol over Y1(4), which should be thought of as the intersection of two
boundary components in moduli space. Obviously this admits generalization,
essentially by considering moduli of genus 3 Jacobians with level N structure. It
is of great interest, therefore, to attempt a modular computation of the normal
function for such “modular Ceresa cycles”, which should limit to an integral of
an Eisenstein series. Certain singularities of this normal function in the sense of
Griffiths and Green [GG] (equivalently, the residues of the corresponding Hodge
class [op. cit.]), must then be given by the rational residues (in the sense of
§7.1.5 below) of “Q-Eisenstein series” EQ3 (N). It is a fundamental property of
Eisenstein series that they are determined by their residues.

In fact, there is a beautiful analogy between the picture in §4 of [op. cit.] and
the Eisenstein situation reviewed in §§7 − 8.1. Given a projective variety X2p,
a (p, p)-class ζ, and a sufficiently ample line bundle L → X, the infinitesimal
invariant of ζ (pulled back to the incidence variety X ⊂ X×PH0(OX(L))) maps
to certain “residues” over higher-codimension substrata of X∨ ⊂ PH0(OX(L)).
An explicit form of Deligne’s “Hodge =⇒ Absolute Hodge” conjecture, is that
this map should be injective on Hodge classes27 — that is, that the rational (p, p)
classes are “generalized Q-Eisenstein series”. That all such should be motivated
by a “generalized Eisenstein symbol” is, of course, the Hodge Conjecture. In
the context of Kuga varieties over modular curves (and higher cycles), we have

27The point is that the map preserves Q-structure and the target Q-structure is “algebraic”
(in the sense of being Galois-invariant).
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spelled out how Beilinson’s work established the relevant (Beilinson-)Hodge Con-
jecture in §§7− 8.1 below.
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1. Review of the KLM formula

In this expository section, we review a construction of the motivic cohomology
groups Hq

M(X,Q(p)) for varieties with “reasonable” singularities, first putting
some meat on the bones of the description of higher Chow cycles and formulas
for AJ maps from the Introduction. Our choice of material is geared toward
what is needed for the reader to follow specific computations in later sections.

1.1. Higher cycle groups and their properties. Let �n := (P1\{1})n with
coordinates (z1, . . . , zn). For a multi-index J ⊂ {1, . . . , n} and function f : J →
{0,∞}, define subsets ∂Jf �n :=

⋂
j∈J{zj = f(j)}, and put ∂�n :=

⋃
j(∂

j
0�

n ∪
∂j∞�

n). One has obvious inclusion and projection maps

ıj,ε : �n−1 ↪→ �n (z1, . . . , zn−1) 7→ (z1, . . . , zj−1, ε, zj, . . . , zn−1)

(ε = 0 or ∞) and

πj : �n � �n−1 (z1, . . . , zn) 7→ (z1, . . . , ẑj, . . . , zn).

Let X be an algebraic variety defined over an infinite field k, and Zp(X ×
�n) the abelian group of codimension-p algebraic cycles defined over k. (It is
generated by closed irreducible subvarieties of codimension p.) The admissible
subvarieties Z ⊂ X ×�n of codimension p, are those for which Z ∩ (X × ∂Jf �n)

has codimension p in X × ∂Jf �n (∀ J, f),28 and they generate the subgroup

cp(X,n) ⊂ Zp(X ×�n)

28i.e. “Z meets X × ∂Jf �n properly”
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of admissible cycles. Its quotient by the degenerate cycles

dp(X,n) :=
∑
j

π∗j c
p(X,n− 1) ⊂ cp(X,n)

defines the higher Chow precycles

Zp(X,n) :=
cp(X,n)

dp(X,n)
.

The pullback/intersection maps

ı∗j,ε : cp(X,n)→ cp(X,n− 1)

are well-defined on admissible cycles. Writing ∂jε for the map induced on Zp(X,n)’s,
we may define the Bloch differential

∂B : Zp(X,n)→ Zp(X,n− 1)

Z 7→
∑
j

(−1)j(∂j0 − ∂j∞)Z ,

which satisfies ∂B ◦ ∂B = 0. A higher Chow cycle is a precycle Z ∈ ker(∂B), and
the higher Chow groups are29

CHp(X,n) := H−n {Zp(X,−•), ∂B} =
ker {∂B : Zp(X,n)→ Zp(X,n− 1)}
im {∂B : Zp(X,n+ 1)→ Zp(X,n)}

;

the class of Z in CHp(X,n) is written 〈Z〉. The Bloch-Grothendieck-Riemann-
Roch theorem then says that for X smooth

(1.1) Kalg
n (X)Q ∼= ⊕pCHp(X,n)Q,

where the subscript Q means ⊗Q. More precisely, CHp(X,n)Q is the pth Adams
graded piece GrpγKalg

n (X)Q of K-theory.
A number of higher Chow groups are familiar: from the geometric side, usual

algebraic cycles are
CHp(X) ∼= CHp(X, 0),

and for X smooth,
CH1(X, 1) ∼= Γ(X,O∗X).

More generally, since rational equivalences on usual algebraic cycles are given by
∂BZ

p(X, 1), the groups CHp(X, 1) can be thought of as empty rational equiva-
lences.

From the arithmetic side, if we let X be a point Spec(k), then writing
CHp(Spec(k), n) =: CHp(k, n), the Beilinson-Soulé vanishing conjecture (known
for n ≤ 3) says that CHp(k, n) = {0} for p < n+1

2
. For n = 2m − 1 odd, if we

assume this then one of the extreme terms in (1.1) is CHm(k, 2m − 1)Q, which

29There are good reasons for writing this as a cohomology (rather than homology) group;
the drawback, of course, is the awkward negative indices.
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is conjecturally the Bloch group Bm(k)Q related to the mth polylogarithm. If k
is a number field, then it is known that

Kalg
n (k)Q ∼=

{
0, n = 2m

CHm(k, 2m− 1)Q, n = 2m− 1

and that (writing [k : Q] = r1 + 2r2)

CHm(k, 2m− 1)Q ∼=

 k∗, m = 1
Qr2 , m ≥ 2 even
Qr1+r2 , m ≥ 3 odd

.

For example, CH2(k, 3) = {0} for k totally real (r2 = 0), a fact which we shall
use repeatedly. On the other hand, an example of a higher Chow cycle with
nontrivial class, for k = Q(ζ3), is

(1.2)

Z :=
{(

1− ζ3
t
, 1− t, t

)∣∣ t ∈ P1
}
∩�3

+1
3

{(
1− ζ3,

(t−ζ3)3

(t−1)3 , t
)∣∣∣ t ∈ P1

}
∩�3

∈ ker(∂B) ⊂ Z2(Q(ζ3), 3).

For more general fields, the other extreme term in (1.1) is the Milnor K-group

(1.3) CHn(k, n) ∼= KM
n (k)

(isomorphism due independently to Totaro [To], Nesterenko and Suslin). This
is the nth graded piece of the quotient of the exterior algebra

∧•
Z k
∗ by the ideal

generated by terms α ∧ (1 − α) (for α ∈ k\{0, 1}). Alternatively, KM
n (k) is the

free abelian group generated by the symbols {α1, . . . , αn}, modulo the relations
subgroup generated by all elements of the form:

{α1, . . . , αj, . . . , αn} − {α1, . . . , β, . . . , αn} − {α1, . . . , γ, . . . , αn}

where αj = βγ,

{α1, . . . , αi, . . . , αj, . . . , αn}+ {α1, . . . , αj, . . . , αi, . . . , αn},

and
{α1, . . . , αn} where αi + αj = 1.

Obviously these imply further relations, for example {α1, . . . , β
m, . . . , αn} =

m{α1, . . . , β, . . . , αn} and {α1, . . . , 1, . . . , αn} = 0; and if one is working ⊗Q,
also {α1, . . . , αn} = 0 when αj = −αi, and {α1, . . . , ζ, . . . , αn} = 0 if ζ is a root
of 1.

The isomorphism (1.3) is induced simply by sending a symbol {α1, . . . , αn} to
the point (α1, . . . , αn) ∈ �n\∂�n viewed as an admissible 0-cycle (unless some
αi = 1, in which case the symbol is sent to 0). When k = K(X ) for X smooth
over K, one thinks of Spec(k) as the generic point ηX . If dimK X = d, then
the 0-cycle (over k) corresponding to a symbol {f1, . . . fn} ∈ KM

n (K(X )) should
be thought of as the restriction to ηX of the d-cycle defined (over K) by the
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graph of the n meromorphic functions {fj ∈ K(X )∗}. More precisely, if we let
U = X\{∪nj=1|(fj)|}, then this graph

{(x ; f1(x), . . . , fn(x)) | x ∈ U} ⊂ U ×�n

is a ∂B-closed admissible precycle; we write {f} = {f1, . . . , fn} ∈ Zn(U , n) (still
called a “symbol”) and 〈{f}〉 ∈ CHn(U , n). It restricts to the “synonymous”
Milnor K-theory element in CHn(ηX , n) ∼= KM

n (K(X )). In the constructions we
study below, 〈{f}〉 will frequently extend to a class in CHn(X , n), even as the
closure of {f} in X ×�n fails to be admissible. The mechanisms for dealing with
this are the Bloch moving lemma, residue maps and the localization sequence,
which we now explain from a general perspective.

Let F : Y → X be a proper morphism of varieties over k, of relative dimension
r; push-forward of cycles induces a homomorphism

CHp(Y, n)
F∗−→ CHp−r(X,n).

On the other hand, if F is any morphism of smooth varieties, then there is a
pullback homomorphism

CHp(X,n)
F ∗−→ CHp(Y, n),

though it is not in general well-defined on cycles Z ∈ Zp(X,n) (e.g., Z may not
intersect im(F ) properly). We will say how to deal with this in §1.3.

Here we only need the case of F =  : Y ↪→ X an open embedding, where
(for restriction of cycles Z 7→ ∗Z) no issues arise. Write D = X\Y for the
complement, which we assume is of pure codimension 1 in X. (While X is
smooth, D can be singular.)

The Bloch moving lemma [Bl1] says that

Zp(X, •)
Zp−1(D, •)

∗−→ Zp(Y, •)

is a quasi-isomorphism. Intuitively, this means that we can modify (or “move”)
a ∂B-closed precycle on Y by adding a ∂B-exact cycle, so that it extends to an
admissible precycle on X. Since ∂B of this extended precycle is supported on D,
we get a residue map

Res : CHp(Y, n)→ CHp−1(D,n− 1).

This fits in the long-exact localization sequence

→ CHp(X,n)
∗→ CHp(Y, n)

Res→ CHp−1(D,n− 1)
ı∗→ CHp(X,n− 1)

∗→,

which says that for extending a higher cycle-class 〈Z〉 from Y to X, we must only
check vanishing of Res(〈Z〉). Nothing like this happens for ordinary algebraic
cycles, which always extend.

The difficulty with this is that D may be singular, in which case it is not
necessarily practical to directly check vanishing of something in its higher Chow
groups. It is better to break it into smooth substrata and check vanishing of
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classes on these, an idea which leads to the local-global spectral sequence. Writing
d = dim(X), let

∅ ⊆ Dd ⊆ Dd−1 ⊆ · · · ⊆ D2 ⊆ D1 = D

be a filtration of D by subvarieties Dj of pure dimension d− j, with each Dj,∗ :=
Dj\Dj+1 smooth. Putting

E(p)a,b1 :=

 CHp−a(Da,∗,−a− b), a ≥ 1
CHp(Y,−b), a = 0

0 a < 0
,

d1 = Res : E(p)a,b1 → E(p)a+1,b
1

leads to a fourth-quadrant spectral sequence converging to CHp(X,−a− b). In
particular,

im {CHp(X,n)→ CHp(Y, n)} ∼=
E(p)0,−n

∞ =

{(∩j≥1 ker(dj)) ⊂ CHp(Y, n)} ,
where the target of each dj is a subquotient of CHp−j(Dj,∗, n − 1). How to
compute the dj for j ≥ 2 is described in [Ke1]; also see [KL, sec. 3.4]

1.2. Abel-Jacobi maps for higher cycles. For most of this paper we shall
work rationally, that is, all cycle groups are implicitly ⊗Q (and we omit the
subscript Q).30 Henceforth we adopt this convention, and assume that the field
of definition k for X is a subfield of C. In this subsection we also take X to be
smooth, and let Xan

C denote the complex analytic space associated to X ⊗k C.
Note that Q(p) = (2π

√
−1)pQ has, by convention, Hodge type (−p,−p).

The coarsest invariant attached to a higher Chow cycle is its fundamental class

clp,nX : CHp(X,n)→ Hgp,n(Xan
C ) := HomMHS(Q(0), H2p−n(Xan

C ,Q(p)))

∼= F pH2p−n(Xan
C ,C) ∩H2p−n(Xan

C ,Q).

(We will take the (·)anC to be “understood” when required from here on.) This is
followed by a secondary invariant, the Abel-Jacobi map

AJp,nX :ker(clp,n)︸ ︷︷ ︸ −→
=:CHp(X,n)hom

Jp,n(X) := Ext1MHS(Q(0), H2p−n−1(X,Q(p)))

∼=
W2pH

2p−n−1(X,C)

F pW2pH2p−n−1(X,C) +W2pH2p−n−1(X,Q)
.

One has the short-exact sequence

0→ Jp,n(X)→ H2p−n
H (Xan

C ,Q(p))→ Hgp,n(X)→ 0,

so that absolute Hodge cohomology (resp. Deligne cohomology ifX is projective)
and the cycle-class map

cH(resp. cD) : CHp(X,n)→ H2p−n
H (X,Q(p))

30One exception is §5 where the AJ computation on CH2(X∗a , 2) is done integrally.
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collects both pieces of information together. This is how the results of [KLM]
and [KL] are formulated.

The situation can simplify vastly: Hgp,n(X) vanishes if n > p, or p > d(=
dimX), orX is projective and n ≥ 1; in those cases CHp(X,n) = CHp(X,n)hom.
When n ≥ p or p ≥ d, F pH2p−n−1(X,C) = {0} andW2pH

2p−n−1(X) = H2p−n−1(X),
so that

Jp,n(X) ∼= H2p−n−1(X,C/Q(p))
∼= Hom(H2p−n−1(X,Q),C/Q(p)).

If X is a point, then Jp,n(X) = 0 unless n = 2p− 1, in which case it is C/Q(p).
These invariants are functorial with respect to pullback, pushforward, and

residue maps. Here is a special case which gets substantial use in §§4-5: let
Y ⊂ X be a Zariski open subset with complement D = ∪Di, where the Di

are irreducible hypersurfaces and D∗i := Di\{∪j 6=i(Dj ∩Di)} are smooth. Given
Ξ ∈ CHn+1(Y, n + 1) where d = n, let ξi ∈ CHn(D∗i , n) be the residues of Ξ
on the D∗i . Consider topological cycles γi ∈ Ztop

n−1(D∗i ) of real dimension n − 1

and let Γ ∈ Ctop
n+1 (X\{∪i<jDi ∩Dj}) be such that Γ ∩ D∗i = γi for each i; and

put γ = ∂Γ ∈ Ztop
n (Y ). Then noting that Jn,n(Y ) ∼= Hom(Hn−1(X,Q),C/Q(n))

etc., we have that (mod Q(n+ 1))

(1.4) AJn+1,n+1
Y (Ξ)(γ) = 2π

√
−1
∑
i

AJn,nD∗i
(ξi)(γi).

One writes γ = Tube({γi}), {ξi} = Res(Ξ), and says that Res and Tube are
adjoint.

The {AJp,n} are frequently called regulator maps due to their close relationship
with the Beilinson regulator. Assume X is projective and defined over a number
field F ; then by composing structure morphisms X → Spec(F ) → Spec(Q) we
may actually view X as a variety over Q(=: k). Only then, Xan

C looks like the
disjoint union of all Galois conjugates of the original X/k. Applying cp,nD = AJp,n

for this X to those cycle-classes which lift to an integral model X→ Spec(OF ),
and composing with the projection to real Deligne cohomology yields31

rp,nBe : CHp(X, n)→
(
H2p−n
D (Xan

C ,R(p))
)DR

.

Now suppose n ≥ 2 (or n = 1, but with additional fiddling). The right-hand side
has a natural rational substructure which allows one to measure the covolume of
the image up to a multiplicative rational constant, and the Beilinson conjectures
assert that this is ∼

Q∗
L(H2p−n−1(X), p). (When X = Spec(F ) this is essentially

Borel’s theorem.) This relation to the cohomological L-function is the source of
the arithmetic interest of the AJ maps.

Continuing to assume X smooth projective, but defined over any subfield of
C, we define a map of complexes of the form (0.17) inducing AJp,nX . In order
that the currents which we shall associate to precycles be well-defined, we must
further restrict what it means for these precycles to be admissible. First, for

31“DR” is an involution on real Deligne cohomology; cf. [Hu] or [Sn] for more details on this
paragraph
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any meromorphic function f ∈ C(X ) on a smooth quasi-projective variety, let
Tf be the real-codimension-1 chain f−1(R−) oriented so that ∂Tf = (f). For
j /∈ I ⊂ {1, . . . , n}, f : I → {0,∞}, write ∂I,jf,R�

n = ∂If �
n ∩ {∩`/∈I,`≤jTz`} (and

∂If �
n for j = 0). Then the subcomplex of R-admissible cycles

Zp
R(X,−•) ⊂ Zp(X,−•)

is defined by demanding that cycles meet properly (as real analytic varieties)
all X × ∂I,jf,R�

n. In [KL, sec. 8.2], it is shown that this inclusion is a quasi-
isomorphism, so that the Zp

R(X,−•) still compute CHp(X,n); and that the
restricted cycles satisfy a Bloch moving lemma.

We now describe the terms of the Deligne cohomology complex C2p+•
D (X,Q(p))

from (0.17), which computes H2p+∗
D (X,Q(p)). Again for smooth quasi-projective

(d-dimensional) X , a-currents Da(X ) are simply functionals on compactly sup-
ported C∞ forms of degree 2d− a, with F bDa(X ) killing Γc

(
F d−b+1Ω2d−a

X∞
)
. El-

ementary examples include
• the current of integration against a real-codimension-a C∞-Borel-Moore32
chain Γ on X , denoted δΓ;
• differential a-forms with log poles along subvarieties of X (and any be-
havior “at infinity”);
• the 0-current log f (for f ∈ C(X )∗), which denotes the branch with imag-
inary part in (−π, π) and a discontinuity along Tf .

Exterior derivative is defined as the adjoint of that for C∞ forms, so that e.g.

d[log f ] =
df

f
− 2π

√
−1δTf ;

and the resulting complex of currents computes de Rham cohomology of X . Now
let T ∈ C2p−n

top (X;Q(p)) be a chain, and Ω ∈ F pD2p−n(X) and R ∈ D2p−n−1(X)

currents, so that (T,Ω, R) ∈ C2p−n
D (X,Q(p)); then the (cone) differential is de-

fined by
D(T,Ω, R) := (−∂T,−d[Ω], d[R]− Ω + δT ).

The KLM formula, which has been given as a map of complexes in the Intro-
duction, simply says that for Z ∈ Zp

R(X,n) ∂B-closed, AJp,nX (Z) is represented
by

(1.5)
(
(2π
√
−1)pTZ , (2π

√
−1)p−nΩZ , (2π

√
−1)p−nRZ

)
in H2p−n

D (X,Q(p)). The meaning of (for example) RZ := (πX)∗(π�)∗Rn ∈
D2p−n−1(X) in (0.20), is that for a C∞ form ω ∈ Γ(Ω2d−2p+n+1

X∞ ) on X,∫
X

RZ ∧ ω =

∫
Z

π∗�Rn ∧ π∗Xω

32this means (roughly) that Γ can extend to the “boundary” of X , i.e. should be considered
as a relative chain on (X̄ , X̄ \X ). More precisely, one works with so called “integral currents”,
but this level of precision won’t concern us below.
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for Z irreducible; and then R∑miZi :=
∑
miRZi . The classes of TZ and ΩZ

represent clp,n(Z); assuming this is 0 (automatic if n > 0), there exist Γ ∈
C2p−n−1
top (X;Q) and Ω̃ ∈ F pD2p−n−1(X) with ∂Γ = TZ , d[Ω̃] = ΩZ . Adding

D
(

(2π
√
−1)pΓ, (2π

√
−1)p−nΩ̃, 0

)
to (1.5) gives (0, 0, (2π

√
−1)p−nR′Z) where the

closed (2p− n− 1)-current

R′Z := RZ − Ω̃ + (2π
√
−1)nδΓ

now represents a lift of AJp,n(Z) to H2p−n−1(X,C). For n = 0, this recovers the
Griffiths AJ map.

If n ≥ p or p ≥ d, F pD2p−n(X) = {0} and
R′Z = RZ + (2π

√
−1)nδΓ.

In this range, we are merely after a C/Q(p)-valued functional on topological
(2p− n− 1)-cycles, and this is just given by

Zp(X,n)
AJp,n−→ Hom (H2p−n−1(X,Q), C/Q(p))

Z 7−→
{

[γ] 7→ (2π
√
−1)p−n

∫
γ

RZ

}
since

∫
γ
(2π
√
−1)pδΓ ∈ Q(p). In fact, this formula works for quasi -projective X

(cf. [KLM, sec. 5.9]).
To ease their use for the reader, we survey some properties and examples of

the R-currents. We have
R1 = log z(1),

R2 = log z1dlogz2 − (2π
√
−1) log z2δTz1 ,

R3 = log z1dlogz2 ∧ dlogz3 + (2π
√
−1) log z2dlogz3δTz1 + (2π

√
−1)2 log z3δTz1∩Tz2 ,

and in general Rn = Rn−1 ∧ dlogzn + (2π
√
−1)n−1 log znδTn−1 . That the KLM

formula gives a morphism of complexes is one consequence of the residue formula

d[Rn]− Ωn + (2π
√
−1)δTn = 2π

√
−1

n∑
i=1

(−1)iR(z1, . . . , ẑi, . . . , zn)δ(zi).

Here is another: if in (1.4), we take Ξ = {f1, . . . , fn+1} (fi ∈ C(X)∗, X quasi-
projective) and Di = |(fi)| (that the |(fi)| don’t share components is a big
assumption), then the formula is∫

γ

R(f1, . . . , fn+1)︸ ︷︷ ︸
RΞ

≡
Q(n+1)

2π
√
−1

n+1∑
i=1

(−1)i
∫
γi

R(f1, . . . , f̂i, . . . , fn+1)︸ ︷︷ ︸
Rξi

.

Finally, we look at the AJ map over a point,

Zm(k, 2m− 1) −→ C/Q(m)

sending

Z 7−→ RZ

(2π
√
−1)m−1
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where RZ =
∫
Z
R2m−1. If m = 1 this just sends α ∈ k∗ to logα, a map re-

lated (essentially via the rBe discussion above) to the Dirichlet regulator. The
remaining maps are tied to the Borel regulator; we shall compute AJ2,3 on (1.2)
to demonstrate the process. Only the first term (1 − ζ3

t
, 1 − t, t)

t∈P1 =: Z0 will
contribute, and

∫
Z0
R3 is computed by pulling back to P1. So

AJ(Z) =
1

2π
√
−1

∫
P1

R

(
1− ζ3

t
, 1− t, t

)

=
1

2π
√
−1

∫
P1

log

(
1− ζ3

t

)
dlog(1− t) ∧ dlogt︸ ︷︷ ︸

0

+

+ 2π
√
−1 log(1− t)dlog(t)δT

1− ζ3t
+ (2π

√
−1)2(log t)δT1−t ∩ T1− ζ3

t︸ ︷︷ ︸
∅


= −

∫
T

1− ζ3t

log(1− t)dlogt = −
∫ ζ3

0

log(1− t)dt
t

= Li2(ζ3).

In fact, denoting by Z̄ the complex conjugate cycle, we get

AJ(Z − Z̄) = Li2(ζ3)− Li2(ζ̄3) =
√
−3L(χ−3, 2).

1.3. Higher cycles on singular varieties. Let X be smooth projective over
k ⊂ C, and V

ı
⊂ X a nonsingular closed subvariety. Define Zp(X,n)V ⊂ Zp(X,n)

to consist of those admissible precycles which meet all V ×∂If �n properly. Cycle-
theoretic intersection Z 7→ Z · (V ×�n) then defines a morphism of complexes

ı∗ : Zp(X,−•)V → Zp(V,−•).
Levine’s moving lemma says that Zp(X,−•)V ↪→ Zp(X,−•) is a quasi-isomorphism,
so that ı∗ induces pullback maps

CHp(X,n)→ CHp(V, n).

Replacing V by a finite collection S = {Sα} of (possibly singular) closed subva-
rieties, we define Zp(X,−•)S by imposing the proper intersection condition with
respect to each Si × ∂If �

n. This still yields a (quasi-isomorphic) subcomplex
computing CHp(X,n). (There is a version of this whole story for Zp

R’s too, cf.
[KL].)

If V is singular, then the best possible pullback maps are not to higher Chow
groups, since these play the role of motivic “Borel-Moore homology” in general
and pullback is most natural for cohomology groups. To construct the motivic
cohomology groups H2p−n

M (V,Q(p)) (∼= CHp(V, n) for smooth), one first replaces
V by a diagram of smooth quasi-projective varieties called a hyper-resolution.
Taking Zp(·,−•) of this diagram, the associated simple complex then computes
HM. In what follows we explain how to do this in the cases required below, in
ad hoc fashion. The general procedure is described for example in [L1].
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First, suppose V = ∪Ni=1Vi is a “smooth normal crossing divisor”, in particular
that all VI = ∩i∈IVi are smooth of dimension d−|I|. Denote by V I the collection
of all VJ with J ) I, and put

(1.6) Za,b
V (p) := ⊕|I|=a+1Z

p(VI ,−b)V I
with differentials ∂B : Za,b → Za,b+1 and33∑

|I|=a+1

∑
i/∈I

(−1)〈i〉I (ıVI∪{i}⊂VI )
∗ = I : Za,b → Za+1,b.

Then (1.6) is a double complex; and its associated simple complex Z•V (p) :=

⊕a+b=•Z
a,b
V (p) (differential D = ∂B+ (−1)bI) has H−n(Z•V (p)) ∼= H2p−n

M (V,Q(p)).
The pullback map from CHp(X,n) to this is given by sending Z ∈ Zp(X,n){VI}I⊂{1,...,N}
to the element of Z−nV (p) consisting of {Z · (Vi × �n)}Ni=1 ∈ Z0,−n

V (p) and 0 in
each Za,−a−n

V (p) (a ≥ 1). We shall need the AJ map for HM of a NCD in §6 and
it is introduced there.

Second, suppose V is irreducible but singular, with subvariety S (
ι
↪→ V ) the

support of its singularities. Let β : Ṽ → V be a resolution of singularities, and
assume that both E := β−1(S) (

ι̃
↪→ Ṽ ) and S are smooth NCD’s. Motivated by

the commutative square
E

ι̃→ Ṽ
β|E ↓ ↓ β

S
ι→ V

we consider the simple (cone) complex associated to the double complex

Zp(Ṽ ,−•){EI} ⊕ Z•S(p) −→
ι̃∗−(β|E)∗

Z•E(p).

(Here the (β|E)∗ has to be done componentwise.) So a class in H2p−n
M (V,Q(p))

is represented by a “triple” (Z,Z,Ξ) ∈ Zp(Ṽ , n){EI} ⊕ Z−nS (p) ⊕ Z−n−1
E (p) with

∂BZ = 0, DZ = 0, and DΞ = ι̃∗Z − (β|E)∗Z. Moreover, we get a long-exact
sequence

→ H2p−n−1
M (E,Q(p))→ H2p−n

M (V,Q(p))
β∗⊕ι∗−→ CHp(Ṽ , n)⊕H2p−n

M (S,Q(p))

ι̃∗−(β|E)∗−→ H2p−n
M (E,Q(p))→ .

This is used in the constructions of §3.

2. Preliminaries on toric varieties

A complex toric n-fold X is a normal, irreducible algebraic variety containing
the algebraic torus Gn

m(C) ∼= (C∗)n as a Zariski-open subset and extending its
obvious action on itself. the key references for this and the next subsection are
[Fu2], [Od], [CK, secs. 3-4], [Ba3], and especially [Ba1]. We start by summarizing
the two standard constructions of toric varieties, from fans and from polytopes,
focusing on the local affine coordinate systems in which we shall compute.

33〈i〉I :=position of i in {1, . . . , N}\I
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2.1. Cones and flags: the affine case. The core definition, from this point of
view, is the affine toric variety UC associated to a (rational convex polyhedral)
cone

c := R≥0 〈v1, . . . , v`〉 ⊂ Rn,
with integral generators vi ∈ Zn. Under the standard inner product 〈·, ·〉, the
dual cone

c◦ := {w ∈ Rn | 〈w, v〉 ≥ 0 ∀v ∈ c}
gives rise to an abelian subgroup

Sc := c◦ ∩ Zn,

which has a finite generating set {w1, . . . ,wk} by Gordan’s lemma. The subal-
gebra of Laurent polynomials

Ac := C[xw1 , . . . , xwk ] ⊂ C[x1, x
−1
1 , . . . , xn, x

−1
n ]

then produces

Uc := SpecAc ⊃ SpecC[x±1
1 , . . . , x±1

n ] = (Gm)n

as a scheme. If we consider the map C[w1, . . . ,wk] → C[x±1
1 , . . . , x±1

n ] given by
wi 7→ xwi with kernel Ic, then Ac

∼= C[w1,...,wk]

Ic
and as a variety,

Uc
∼= V (Ic) :=

{
W ∈ Ck | f(W ) = 0 ∀f ∈ Ic

}
⊆ Ck.

Thinking of the xi as toric coordinates on (C∗)n, the Wi(= xwi in Ac) generate
precisely those monomials34 in them which extend to regular functions on Uc.
That is, Ac is the coordinate ring C[Uc].

Now for the basic combinatorial considerations. First, by the dimension of a
cone c we just mean that of Rc := R 〈v1, . . . , v`〉. Natural subcones are the faces,
i.e. intersections c ∩ {L = 0} for L ∈ (Rn)∨ satisfying L ≥ 0 on c, those of
codimension (resp. dimension) one being called facets (resp. edges). One says
that c is simplicial (⇐⇒ Uc orbifold) if the {vi}`i=1 are a basis of Rc and smooth
( ⇐⇒ Uc smooth) if moreover Zn ∩ Rc = Z 〈v1, . . . , v`〉 . In the latter situation
we have simply Uc

∼= Ck × (C∗)n−k.
Of particular importance is the setting where c is simplicial of dimension n, in

which case c◦ is as well. Let ε1, . . . , εn denote the edges of c◦, and w1, . . . ,wn the
unique integral generators of each εi ∩Zn. In general w1 or w2 will not suffice to
generate R≥0 〈ε1, ε2〉 ∩ Zn; let w̃1, . . . , w̃k2

be the required additional generators.
Likewise, w1,w2,w3 and w̃1, . . . , w̃k2

will not generate R≥0 〈ε1, ε2, ε3〉∩Zn; and we
must introduce w̃k2+1, . . . , w̃k3

. Continuing in this fashion up to w̃kn , our affine
coordinates on Uc are then the {xwj}nj=1 and {xw̃j}knj=1. Instead of Wi we shall
write

(2.1)
zi = xwi

uj = xw̃j

34a monomial (resp. Laurent monomial) in k variables Wi is a product
∏
W ξi
i , ξi ∈ Z≥0

(resp. Z).
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and

(u1, . . . , uk2) =: u2, (uk2+1, . . . , uk3) =: u3, . . . , (ukn−1+1, . . . , ukn) =: un,

organized so that powers of the ukm are expressible in z1, . . . , zm but not z1, . . . , zm−1.
If c is smooth then (we can take) kn = 0, so that there are no uj’s.

If c′ is nonsimplicial (of dimension n) the procedure still works, with the dif-
ference that one gets more than n {z′i}, hence relations amongst their powers as
well. A wedge in c′ is a simplicial n-dimensional subcone

c = R≥0 〈v1, . . . , vn〉 ⊆ c′

such that R 〈v1, . . . , vk〉∩ c′ is a face of c′ for each k = 1, . . . , n. In this case there
are orderings of the edges of (c′)◦ ⊆ c◦ so that R≥0 〈ε′1, . . . , ε′k〉 ⊆ R≥0 〈ε1, . . . , εk〉
(k = 1, . . . , n); hence z′k and the u′k can be written as monomials in the z1, . . . , z`
and u1, . . . , u` exactly when ` ≥ k (or ` = n, if k ≥ n). One consequence of
this, to be used in §2.5, is that on Uc zk = 0 ( =⇒ uk = 0) =⇒ z′k = 0 (or
z′n = z′n+1 = · · · = 0, if k = n). It also gives us a rational morphism Uc → Uc′

compatible with the inclusion of the torus.

2.2. Fans and polytopes: complete varieties. This is, of course, a special
case of the general covariance of the assignment c 7→ Uc under inclusions of
cones. When the inclusion is that of a face, the induced rational map is actually
an embedding, which leads to the standard gluing construction. If cones c1 and c2

share c1∩ c2 as a face, then the embedding Uc1∩c2 ↪→ Uc1 tUc2 is closed, hence the
quotient (by the induced equivalence relation) Hausdorff. Iterating this process,
we get a toric n-fold XΣ associated to any fan Σ in Rn: that is, a finite collection
(closed under taking faces) of strongly convex cones (c ∩ (−c) = {0}) whose
intersections are faces of each. If the support |Σ| := ∪c∈Σc is all of Rn, then we
say Σ is complete. In any case the {Uc}c∈Σ give a Zariski-open cover of XΣ.

The i-dimensional cones c ∈ Σ are in 1-to-1 correspondence with the codimension-
i torus orbits in XΣ (as Uc contains a unique (n− i)-dimensional orbit). We get
a morphism XΣ′

µ→ XΣ whenever each cone of Σ′ is contained in a cone of Σ;
if moreover |Σ′| = |Σ| then we say Σ′ refines Σ, and µ is surjective. In this
case it may be described as a sequence of blow-ups at (closures of) torus orbits
corresponding to the cones of Σ which get broken up in Σ′.

Now the toric variety of a complete fan is complete but not necessarily projec-
tive. To remedy this, consider an n-dimensional polytope ∆ ⊂ Rn with integer
vertices and 0 in its interior. Denote by

∆◦ := {v ∈ Rn | 〈v,w〉 ≥ −1}
its dual (convex) polytope, which may not have integer vertices. The dimension
of a face35 σ of ∆ is dim(Rσ), for Rσ the smallest affine subspace of Rn containing
σ; write ∆(i) for the set of codimension-i faces. Combinatorial duality produces
a 1-to-1 correspondence (σ ←→ σ◦) between ∆(i) and ∆◦(n− i+1), e.g. vertices

35faces of ∆ are the intersections ∆ ∩ {L = 0} for affine functions L (on Rn) satisfying
L|∆ ≥ 0.
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∆(n) and facets ∆◦(1). Let Σ(∆◦) be the complete fan consisting of cones on all
the faces of ∆◦; then the toric n-fold

P∆ := XΣ(∆◦)

is projective. One can see this scheme-theoretically, by checking that
(2.2)

P∆ := Proj
(
C
[{
x`0x

m |m ∈ `∆ ∩ Zn, ` ∈ Z≥0

}])
←↩ Proj

(
C
[
x0, x

±1
1 , . . . , x±1

n

])
= (Gm)n.

Remark 2.1. In fact, Σ(∆◦) is just the normal fan of ∆, making this substitution
in the definition of P∆ extends (2.2) to the case when 0 /∈ int(∆).

A more concrete perspective will, however, be valuable: this involves the con-
struction of an ample invertible sheaf. First, note that the toric coordinates
x1, . . . , xn give rational functions on P∆. For each σ ∈ ∆(i) (0 < i ≤ n), pick an
“origin” oσ ∈ Rσ ∩Zn, and take a basis wσ1 , . . . , wσn−i for (Rσ ∩Zn)− oσ. We may
complete this to a basis wσ1 , . . . , wσn for Zn, in such a way that

R≥0

〈
wσ1 ,−wσ1 , . . . , wσn−i,−wσn−i;wσn−i+1, . . . , w

σ
n

〉
⊃ ∆− oσ.

This yields an invertible change of toric coordinates, to xσj := xw
σ
j (j = 1, . . . , n),

and then

D∗σ :=
{
xσ1 , . . . , x

σ
n−i ∈ C∗

}
∩
{
xσn−i+1 = · · · = xσn = 0

}
⊆ P∆

is precisely the torus orbit (∼= (C∗)n−i) corresponding to σ◦. Writing Dσ := D∗σ
for the Zariski closure,

D := ∪σ∈∆(1)Dσ = tni=1

(
tσ∈∆(i)D∗σ

)
is the complement of (C∗)n in P∆. The face structure of ∆ exactly describes
(combinatorially speaking) the intersection behavior of D. Furthermore, if one
considers σ as a polytope in Rσ relative to the integer Zn∩Rσ, then (by Remark
2.1) Pσ is defined; and in fact Dσ ∼= Pσ.

Also denoting by D the divisor
∑

σ∈∆(1)[Dσ], a standard result is that O∆(1) :=

O(D) is ample. Its sections are given by Laurent polynomials with exponent
vectors supported on ∆:

(2.3)
H0(P∆,O∆(1)) ∼= {f ∈ C(P∆)∗ | (f) + D ≥ 0} ∪ {0}

=
{∑

m∈∆∩Zn αmx
m |αm ∈ C

}
.

It is sections of O(`D) (for ` sufficiently large) that yield the projective embed-
ding.

An integral convex polytope ∆ is called reflexive if ∆◦ has integer vertices too.
(In view of (∆◦)◦ = ∆, the dual of a reflexive polytope is also reflexive.) An
equivalent condition — that 0 be the unique integer interior point of ∆ —- leads
easily to (

dx1

x1

∧ · · · ∧ dxn
xn

)
= −D (on P∆),
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so that D is an anticanonical divisor. Consequently the anticanonical sheaf −KP∆

is O∆(1) and is therefore simple, making P∆ Fano. Henceforth we assume ∆ is
reflexive; up to unimodular transformation of Zn, it is known that there are 16
(resp. 4319, 473800776) possibilities when n = 2 (resp. 3, 4).

2.3. Toric smoothing constructions. Partial desingularizations of P∆ can be
produced by subdividing faces of ∆◦ and replacing Σ(∆◦) by the refinement
obtained from te fan on the subdivision. In particular, a maximal triangulation
of ∂∆◦ is finite collection θ = {θα} if simplices, closed under taking faces, such
that:

• ∪αθα = ∂∆◦

• the union of vertices of the {θα} is ∂∆◦ ∩ Zn
• θα ∩ θβ (if nonempty) is a common face of θα and θβ (∀ α, β).

Associated to each such θ is a refinement Σ(θ) of Σ(∆◦) consisting of the cones
c̃α := R≥0 〈θα〉 . A projective support for θ is a continuous function h : Rn → R
which is convex (h(x+ y) ≤ h(x) + h(y) ∀x, y) and restricts to distinct Q-linear
functions on distinct n-dimensional cones c̃α. When θ has a projective support,
it is called a maximal projective triangulation (these always exist), and a theorem
of Batyrev ([Ba1]) asserts that XΣ(θ) is projective, with (at worst) singularities
in codimension ≥ 4 (of Q-factorial terminal type). Moreover, the morphism
XΣ(θ)

µ→ P∆ is crepant, i.e. µ∗KP∆
= KXΣ(θ)

; Batyrev (op. cit.) calls µ a
maximal projective crepant partial (MPCP) desingularization of P∆.

There is a convenient way to visualize this process in terms of real (non-
integral) polytopes, which is not in the literature and will be immensely helpful
in the sections ahead. For ε > 0, define a function on the vertices of θ

Hε : Zn ∩ ∂∆◦ −→ Rn

by
v 7−→ (1− h(v)ε)v.

Lemma 2.2. For ε > 0 sufficiently small, the set of vertices of conv(im(Hε)) is
exactly im(Hε).

Proof. (Sketch) Suppose otherwise; then (taking ε0 > 0 sufficiently small) there
are distinct vi ∈ Zn ∩ ∂∆◦ (i = 1, . . . , δ) and continuous ti : [0, ε0) → [0, 1]

(i = 1, . . . , δ) satisfying 0 ≤
∑δ

i=1 ti(ε) ≤ 1, such that

(2.4) Hε(v0) =
δ∑
i=1

ti(ε)Hε(vi).

Let σ◦ denote the smallest form of ∆◦ containing v0. Evaluating at t = 0 gives
v0 =

∑δ
i=1 ti(0)vi, and so the vi belong to σ◦ and

∑δ
i=1 ti(0) = 1; by convexity,

h(v0) ≤
∑δ

i=1 ti(0)h(vi).
If the {vi}δi=0 are all in one simplex θα, then they are linearly independent and

(by linearity of h|cα) so are the {Hε(vi)}δi=0, contradicting (2.4).
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So the {vi}δi=0 are not all in one simplex, and then convexity of h becomes
strict: h(v0) <

∑δ
i=1 ti(0)h(vi), implying that for ε > 0

1− h(v0)ε >
δ∑
i=0

ti(0)(1− h(vi)ε).

By continuity

1− h(v0)ε >
δ∑
i=0

ti(ε)(1− h(vi)ε)

for ε ∈ (0, ε0), so that (2.4) becomes

v0 =
δ∑
i=1

(
ti(ε)

1− h(vi)ε

1− h(v0)ε

)
vi =:

δ∑
i=1

τi(ε)vi

with
∑δ

i=1 τi(ε) < 1. Since all vi ∈ σ◦ (i = 0, . . . , δ), this is impossible. �

Thinking of ε ∈ R>0 as fixed, we define polytopes in Rn by

tr(∆◦) := conv(im(Hε))

∆̃ := tr(∆◦)◦.

Note that h ≥ 0, tr(∆◦) ⊆ ∆◦, and ∆̃ ⊃ ∆; here are some pictures:

∆ ∆
∆

∆ ∆ (∆ ) ∆

tr

tr

H

H polar
polar

polar polar

(∆ )o

oo

o

As ε tends to 0, ∆̃ (resp. tr(∆◦)) tends to ∆ (resp. ∆◦). Given a face of ∆̃
(resp. tr(∆◦)), we can consider the smallest face of ∆ (resp. ∆◦) it limits into
(resp. onto). (For tr(∆◦) only, one can also use the map to ∆◦ produced by
radial projection.) This defines maps (for each k)

∪j≤ktr(∆◦)(j) −→ ∪j≤k∆◦(j)
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∪i≥k∆̃(i) −→ ∪i≥k∆(i),

and the “preimage faces” of a face of ∆◦ (resp. ∆) are said to lie over it. For
faces σ̃◦ of tr(∆◦) lying over a face σ◦ of ∆◦, the projected image gives a simplex
θ(σ̃◦) ⊆ σ◦ from the triangulation. To faces σ̃ of ∆̃ we shall associate an affine
subspace containing σ̃ and then letting ε tend to 0. If σ̃ lies over σ, then Rσ ⊂ Rσ̃.

Now the point of all this is that by Lemma 2.2,
∑

(tr(∆◦)) =
∑

(θ) and so
putting

P∆̃ := XΣ(θ)

recovers all the 1-to-1 correspondences previously encountered (for P∆). Let σ̃ ∈
∆̃(n− i); then starting from Rσ̃, the same procedure as above yields coordinates
{xσ̃j }nj=1 and D∗σ̃ ⊂ P∆̃, the i-dimensional orbit associated to σ̃◦ ∈ tr(∆◦)(i + 1).
Moreover, ∆̃ describes the “divisor at ∞”

D̃ := P∆̃\(C
∗)n = ∪σ̃∈∆̃(1)Dσ̃ = qnj=1

(
qσ̃∈∆̃(j)D

∗
σ̃

)
in P∆̃. For example, since each facet of tr(∆◦) is a simplex, each j-face contains
j + 1 vertices, and so each i-face of ∆̃ abuts i + 1 facets, making D̃ a normal
crossing divisor (NCD) on the smooth part of P∆̃. Since µ is crepant,

(2.5) H0
(
P∆̃,−KP∆̃

) ∼=
 ∑

m∈∆∩Zn
αmx

m

∣∣∣∣∣∣ αm ∈ C


and D̃ =
∑

σ̃∈∆̃(1)[Dσ̃] is additionally an anticanonical divisor, though P∆̃ may
not be Fano.

2.4. Local coordinates. Summarizing the story so far, affine charts for P∆̃ are
obtained from monomial generators for the integral points of the cones dual to
the cones on tr(∆◦). The cones on ∆◦ likewise provide affine charts for P∆;
and in both cases the relations between the monomials produce local equations
for the toric variety. The two sets of affine charts are related by blow-up along
coordinate subspaces, and locally µ is just the proper transform. On the level
of torus orbits we can easily describe µ as follows: If σ̃ ∈ ∆̃(i − k) lies over
σ ∈ ∆(i) then µ(D∗σ̃) = D∗σ, and the toric coordinates on D∗σ̃ ∼= D∗σ × (C∗)k
can be written as {xσ̃1 , . . . , xσ̃n+k−i} = {xσ1 , . . . , xσn−i; yσ̃1 , . . . , yσ̃k} where the yσ̃j are
blow-up coordinates.

We elaborate on the affine charts for P∆̃. These are in 1-to-1 correspondence
with the facets tr(∆◦)(1), or (dually) with the vertices ∆̃(n). we need the fol-
lowing general statement:

Lemma 2.3. Let σ̃◦ ∈ tr(∆◦)(i+ 1), with dual face σ̃ ∈ ∆̃(n− i); let p ∈ σ̃\∂σ̃
be any interior point. The dual of the (n − i)-cone R≥0 〈σ̃◦〉 = R≥0 〈θ(σ̃◦)〉 is
then the n-cone R≥0

〈
∆̃− p

〉
.

Now, given a vertex ṽ ∈ ∆̃(n), let κ(ṽ) denote the dual of c(ṽ◦) := R≥0 〈ṽ◦〉,
and Uṽ := Uc(ṽ◦) ⊂ P∆̃. According to the Lemma, κ(ṽ) is the cone through ṽ or
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∆̃, with ṽ translated to 0. So the coordinate rings Aṽ := C[xκ(ṽ)∩Zn ] of the affine
neighborhoods Uṽ can be read off directly from the geometry of ∆̃.

Dropping tildes, the same story goes through for ∆. Let v ∈ ∆(n) with dual
facet v◦ ∈ ∆(1). In any triangulation of v◦, there exists a simplex θ and se-
quences of faces (with subscript denoting 1+dimension) f1 ( f2 ( · · · ( fn−1 of
θ and ξ1 ( ξ2 ( · · · ( ξn−1 of v◦ such that fi ⊆ ξ (∀i), e.g.

θ
v o

ξ

f

ξ = f
1

2

2

1

Since θ = ṽ◦ for some ṽ ∈ ∆̃(n) lying over v, this shows we can choose ṽ so
that c(ṽ◦) is a wedge in c(v◦). The map Uṽ → Uv induced by µ can then be
described exactly as at the end of §2.1.

We conclude with a brief description of singularities of P∆̃. Consider a simplex
θ ⊂ Rn−1: if its vertices lie in Zn−1, then vol(θ) = q

(n−1)!
for some q ∈ Z>0. If

θ ∩ Zn−1 is nothing but these vertices, θ is elementary ; if q = 1, θ is regular.
For n ≤ 3, elementary implies regular; for n = 4 the simplices with vertices 0,
(1, 0, 0), (0, 1, 0), (1, p, q), where 0 < p < q and (p, q) = 1, are elementary but
irregular. Now let ṽ ∈ ∆̃(n) lie over v ∈ ∆(n). By maximality of θ, the (n− 1)-
simplex θ(ṽ◦) ⊂ v◦ ⊂ Rv◦ (∼= Rn−1) is elementary, relative to the integer lattice
Rv◦ ∩Zn (∼= Zn−1). Our observations in §2.1 essentially amount to the statement
that the point Dṽ (in P∆̃) is smooth if and only if the integral generators of edges
of κ(ṽ) generate κ(ṽ)∩Zn. One easily shows that this is equivalent to regularity
of θ(ṽ◦), which shows P∆̃ is smooth for n ≤ 3 and has isolated (Q-factorial
terminal) singularities for n = 4 (cf. [Ba1] 2.2.8).

2.5. Anticanonical hypersurfaces. Let ∆ ⊂ Rn be a reflexive polytope with
(2 ≤)n ≤ 4, and

F =
∑

m∈∆∩Zn
αmx

m ∈ C[x±1
1 , . . . , x±1

n ]

a nonzero Laurent polynomial with support (i.e. monomial exponent set) MF :=
{m ∈ Zn |αm 6= 0} contained in ∆. Let XF ⊂ P∆ be the zero-locus of the section
of −KP∆

given by F (cf. (2.3)). If F is constant, XF = D; if conv(MF ) = ∆
then it is the Zariski closure of X∗F := {x |F (x) = 0} ⊂ (C∗)n.36 Recall that
while P∆ may have singularities (in codimension ≥ 2), the torus orbits D∗σ are
smooth. We say that F is ∆-regular ([Ba1] 3.1.1) when the intersections

D∗F,σ := XF ∩ D∗σ ⊂ D∗σ

36we don’t treat, and won’t need, the “in between” cases where XF contains some but not
all components of D.
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(taken over all faces of ∆) as well as X∗F ⊂ (C∗)n, are reduced (irreducible
components have multiplicity 1) and smooth of codimension one. Put DF :=
∪σ∈∆(1)DF,σ = XF\X∗F , where DF,σ := D∗F,σ.

Fixing a maximal projective triangulation of ∆◦, F also yields (cf. (2.5)) an
element of H0(P∆̃,−KP∆̃

) whose vanishing locus X̃F is D̃ for F constant and
the closure of X̃∗F (:= X∗F ) in P∆̃ if conv(MF ) = ∆. If F is ∆-regular, X̃F is
(a) the preimage of XF under µ : P∆̃ → P∆ and (b) smooth, hence (using the
adjunction formula to obtain KX̃F

∼= OX̃F ) (c) a Calabi-Yau (n− 1)-fold.
To get a handle on the D(∗)

F,σ and D(∗)
F,σ̃ := X̃F ∩ D(∗)

σ̃ , we need the face polyno-
mials of F attached to each σ ∈ ∆(i). In the notation of §2.2, these are obtained
by rewriting x−oσF (x) in the {xσj }nj=1 and setting xσn−i+1 = · · · = xσn = 0 to get
a Laurent polynomial (=: Fσ) in xσ1 , . . . , x

σ
n−i. The support MFσ of Fσ lies in

σ−oσ, and its vanishing locus is D∗F,σ (under the isomorphism (C∗)n−i ∼= D∗σ). So
for example, necessary criteria for ∆-regularity of F are that its vertex polynomi-
als be nonzero constants and its edge (1-variable) polynomials have no multiple
roots. This condition on vertices (i.e., that v ∈ ∆(n) =⇒ αv 6= 0) implies, in
turn, that ∆ = conv(MF ).

If σ̃ ∈ ∆̃(i − k) lies over σ ∈ ∆(i) then (in the notation of §2.4) setting
Fσ̃(xσ1 , . . . , x

σ
n−i; y

σ̃
1 , . . . , y

σ̃
k ) := Fσ(xσ1 , . . . , x

σ
n−i), Fσ̃ = 0 cuts D∗F,σ̃ ∼= D∗F,σ×(C∗)k

out of D∗σ̃ := D∗σ × (C∗)k. So ∆-regularity of F guarantees that D∗F,σ̃ is empty if
σ̃ lies over a vertex (or is one) and is otherwise smooth and reduced. From this
and from the fact that (off singularities X̃F avoids) D̃ is a NCD, one may deduce
that D̃F := X̃F ∩ D̃ = X̃F\X̃∗F is one too.

We can describe the local affine equation of XF in any neighborhood Uv ⊂ P∆

(for v ∈ ∆(n)) as follows. Set c′ := c(v◦) and κ(v) := (c′)◦ as in §2.4, so that

Φv := x−vF (x)

has support in κ(v). Writing {w′i, w̃j} for generators of κ(v)∩Zn (à la §2.1, with
w′i ←→ edges of κ(v)), the monomial terms of Φv can be expressed in terms of
Z≥0-powers of the {z′k = xw

′
k ; u′` := xw̃

′
`}. Since conv(MF ) = ∆ and the edges

of κ(v) lead to other vertices of ∆ − v, Φv has a nonzero constant term c0 and
nonzero terms of the form ci(z

′
i)
ki (ki ∈ Z>0) for each i. Clearly its vanishing

locus is exactly Uv ∩XF .
Referring to §2.4, we can choose ṽ ∈ ∆̃(n) lying over v so that c := c(ṽ◦)

is a wedge in c′. Φv pulls back to a regular function on Uṽ (⊂ P∆̃) cutting out
X̃F ∩ Uṽ. Let fi ∈ tr(∆◦)(n − i + 1) denote the distinguished flag of faces of
ṽ◦ (θ(fi) = fi = θ(ṽ◦), i = 1, . . . , n − 1; and fn := ṽ◦), and σ̃i ∈ ∆̃(i) their
duals (incl. σ̃n = ṽ). The algorithm from §2.1 produces37 {zj, uj}nj=1 satisfying
Dσ̃i ∩ Uv = {zn−i+1 = · · · = zn = 0}, and we can decompose

(2.6) c−1
0 Φv = 1 + Φv,1(z1) + Φv,2(z1, z2;u2) + · · ·+ Φv,n(z1, . . . , zn;u2, . . . , un)

37there are only {uj} for n = 4.
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so that Φv,i consists of those monomial terms in z1, . . . , zi and u2, . . . , ui vanishing
when zi = 0. Since (z′i)

ki is such a monomial, none of the Φv,i are identically
zero. (In fact, Φv|Dσ̃i = 1 + Φv1

+ · · ·+ Φv,n−i is essentially the edge polynomial
associated to the face of ∆ that σ̃i lies over.)

Finally, it will be important in §4.1-2 that the monomial term cx−v (in Φv)
which comes from the interior point of ∆, lies in Φv,n. This is simply because −v
lies in the interior of κ(v). Moreover, since the anticanonical hypersurface in P∆̃

associated to the Laurent polynomial 1 is D̃, the variety cut out by x−v is D̃∩Uṽ.
This is the (reduced) union of the Dσ̃ ∩ Uṽ, over facets σ̃ ∈ ∆(1) containing ṽ.
While these are the hypersurfaces where the zi vanish, this vanishing map not
be to first order; and thus as a monomial in the {zi, ui}, x−v may involve some
u’s. On the other hand, if θ(ṽ◦) is a regular simplex (always true for n = 2 or
3), Uṽ is smooth and isomorphic to Cn with coordinates {zi}, and we have

x−v = z1 · · · · · zn.

This is used in several places below.

3. Constructing motivic cohomology classes on families of
CY-varieties

The goal of this section is a combinatorial machine for producing 1-parameter
families of Calabi-Yau (n − 1)-folds38 X̃t that carry nontrivial elements Ξt ∈
Hn
M(X̃t,Q(n)) ∀t ∈ P1 \ {0}, for n = 2, 3, 4. For n = 2, our construction is a

slight extension of work [RV] of Villegas. The X̃t are considered as fibers of
a total space X̃−, which can itself be singular and on which we will actually
construct a global class Ξ pulling back to the Ξt.

We remind the reader that for X̃t smooth, working ⊗Q (as is our convention
in this paper)

Hn
M(X̃t,Q(n))

∼=
→ CHn(X̃t, n)

∼=
← GrnγKn(X̃t).

Our construction still yields something in Hn
M for singular members of the family,

though in that case CHn(X̃t, n) ∼= GrnγGn(X̃t) and both isomorphisms above fail.
However, by taking hyper-resolutions as in §1.3, Hn

M can still be represented by
higher Chow precycles, which allows for explicit computation [KL] of the Abel-
Jacobi map

AJn,n : Hn
M(X̃t,Q(n))→ Hn−1(X̃t,C/Q(n))

in terms of currents and C∞ chains. We will partially compute AJ in §4, and
deal with the degenerate fibers (in some cases) in §6.

38the small tilde does not denote a desingularization; X̃t can be singular.
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3.1. Toric data. Our X̃t’s will be hypersurfaces in partial desingularizations P∆̃

of toric Fano n-folds. To start the construction, let∑
m∈Zn

αmx
m = φ ∈ K[x±1

1 , . . . , x±1
n ]

be a Laurent polynomial with coefficients in a number field K ⊂ C, and set

∆ := conv(Mφ).

Definition 3.1. (i) φ is reflexive if ∆ is a reflexive polytope.
(ii) φ is regular if λ− φ is ∆-regular for general λ ∈ C.

We henceforth assume φ reflexive, and consider the 1-parameter family of
anticanonical hypersurfaces

P1 × P∆ ⊃ X
π- P1

given by taking the Zariski closure of

{1− tφ = 0} ⊂ C× (C∗)n.

Alternately, writing λ := t−1 we can think of X as the closure of λ− φ = 0. The
reader may wonder why we restrict so early on to a variable internal coefficient
(i.e. λ) and algebraic values of the other (external) coefficients. That we lose no
generality in doing so will be established later, in Proposition 4.16.

Denote the fibres of our family by Xλ = Xt := π−1(t). Its base locus is the
intersection of Xλ with

X0 = D ⊂ P∆

for any λ ∈ C. Since the face polynomials of λ − φ (cf. §2.5) are just multiples
of the φσ, this is

(3.1) D := Xλ ∩ D = ∪σ∈∆(i)Dσ = qn−1
i=1

(
qsigma∈∆(i)D

∗
σ

)
where D(∗)

σ := D
(∗)
φ,σ. Since conv(Mφ) = ∆, these are always of codimension 1

in D(∗)
σ . Regularity of φ is therefore equivalent to the D∗σ being nonsingular and

reduced for all σ ∈ ∆(i), i = 1, . . . , n− 1.
Choose a (maximal, projective) triangulation of the dual ∆◦, and let P∆̃

µ→ P∆

be the corresponding MPCP-desingularization. By taking the closure of 1− tφ =

0 in P1 × P∆̃, we get the family X̃ π̃→ P1 with fibers X̃t(= X̃λ) and base locus
D̃ := X̃λ ∩ D̃ = ∪σ̃∈∆̃(1)Dσ̃. If ṽ ∈ ∆̃(n) is dual to a regular simplex θ(ṽ◦), the
local equation of X̃λ in Uṽ is of the form P (z1, . . . , zn) − λz1 · · · zn = 0 (with P
a polynomial determined from φ and ṽ as in §2.5). Assuming φ regular (which
we shall not always do), X̃ is the µ-preimage of X , D̃ is a NCD, and the X̃t

are smooth CY (n − 1)-folds for t ∈ P1 outside a finite set L (the discriminant
locus).

We recall some notation from §1: given nonvanishing holomorphic functions
f1, . . . , f` ∈ Γ(Y,O∗Y ) on a quasi-projective variety Y , the symbol {f1, . . . , f`} ∈
Z`(Y, `) denotes the higher Chow cycle given by their graph in Y × (P1 \ {1})`.
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Its class 〈{f1, . . . , f`}〉 ∈ CH`(Y, `) maps to an element in Milnor K-theory
KM
` (C(Y )) ∼= CH`(ηY , `) which is also denoted {f1, . . . , f`}.

Definition 3.2. φ is tempered if the toric-coordinate symbols {xσ1 , . . . , xσn−i} give
trivial39 classes in CHn−i(D∗σ, n− i) for all i ≥ 1 and σ ∈ ∆(i).

Remark 3.3. (a) Here we are thinking of the D∗σ as being cut out by the face
polynomials φσ(xσ1 , . . . , x

σ
n−i). For faces σ̃ ∈ ∆̃(i− k) over σ, since

φσ̃(xσ1 , . . . , x
σ
n−i; y

σ̃
1 , . . . , y

σ̃
k ) = φσ(xσ1 , . . . , x

σ
n−i),

the natural symbols {xσ1 , . . . xσn−i; yσ̃1 , . . . , yσ̃k} ∈ CHn−i+k(D∗σ̃, n− i+ k) are also
trivial if φ is tempered.

(b) Though we have been working over C, the above constructions and def-
initions descend to K. Provided one is willing to work over a suitable alge-
braic extension of K (or Q̄), we can discuss irreducible components of the
D∗σ. For n − i = 1, the D∗σ components are points and must have root-of-
unity coordinates xσ1 if φ is tempered. (Hence we recover Villegas’s prescrip-
tion for n = 2, that the φσ be cyclotomic ∀ σ ∈ ∆(1).) For n − i = 2,
the tempered condition is equivalent to {xσ1 , xσ2} giving torsion classes in KM

2

of the Q̄-function fields of the irreducible component curves C of D∗σ, since
ker{CH2(C, 2)→ CH2(ηC , 2)} = ⊕p∈C(Q̄)CH

1(p, 2) = 0.

Now assume that φ is regular and n ≤ 4. For σ̃i ∈ ∆̃(i) we may define iterated
residue maps

CHn(P∆̃ \ D̃, n)→ CHn−1(D∗σ̃1
, n− 1)→ · · · → CHn−i(D∗σ̃i , n− i),

given a choice of flag (σ̃i () σ̃i−1 ( · · · ( σ̃1, σ̃j ∈ ∆̃(j). The composition is
independent of the choice, and is denoted Resiσ̃i ; a similar construction yields
Resiσ̃ : CHn(X̃t \ D̃, n)→ CHn−i(D∗σ̃, n− i) for t /∈ L. If we remove tildes, the
Resiσ still make sense; note in particular that all singularities (on P∆, Xt, Dσ, Dσ

for any σ) are in codimension ≥ 2. For example, if σ′ ( σ (σ′ ∈ ∆(i + 1),
σ ∈ ∆(i)) with toric coordinates xσ1 = xσ

′
1 , . . ., xσn−i−1 = xσ

′
n−i−1, xσn−i on D∗σ′ ,

one has a smooth affine neighborhood D∗σ′ × A1
xσn−i
⊂ Dσ. This allows for easy

computation of the iterated residues.
Let ξ := 〈{x1, . . . , xn}〉 ∈ CHn

(
(C∗)n = P∆̃ \ D̃ = P∆ \ D, n

)
denote the

class of the coordinate symbol. For t /∈ L this restricts to ξt ∈ CHn(X∗t = X̃∗t , n),
either by pulling back the {xi} directly or by invoking contravariant functoriality
of higher Chow groups (⊗Q) for arbitrary morphisms between smooth varieties
[L2].

Lemma 3.4. The diagram

39we are working ⊗Q; so this means what would usually be meant by “torsion”.
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CHn(P∆̃ \ D̃, n)
Resiσ̃ //

I∗t
��

CHn−i(D∗σ̃, n− i)

I∗σ̃
��

CHn(X̃∗t , n)
Resiσ̃ // CHn−i(D∗σ̃, n− i)

commutes for any σ̃ ∈ ∆(i), as does a similar diagram with all tildes removed.

Proof. With or without tildes, this is based on iterated application (` = 0, 1, . . . , i−
1) of a quasi-isomorphism which may be proved using the moving lemmas of [L2]
and [Bl1]. Writing

D[i] := ∪σ∈∆(i)Dσ, D[0] := P∆, D
[i] := Xt ∩ D[i],

this is

Zn−`(D[`] \ D[`+2], •)
D[`]\D[`+2]

ι∗

(
Zn−`−1(D[`+1] \ D[`+2], •)

D[`+1]\D[`+2]

) '- Zn−` (D[`] \ D[`+1], •
)
D[`]\D[`+1]

.

A ∂B-closed element on the r.h.s. can therefore be moved into good position,
extended to D[`] \D[`+2], and differentiated (to yield a cycle supported on D[`+1] \
D[`+2]), compatibly with pullbacks to Xt. �

The point is to use the lemma to compute the Resiσ̃ orσ (bottom row) on
ξt. For one thing, it is clear that the result is constant in t and descends to
CHn−i ((D∗σ̃ orσ)K , n− i). The next result follows easily from the lemma com-
bined with the foregoing discussion.

Proposition 3.5. For t /∈ L, σ ∈ ∆(i), and σ̃ ∈ ∆̃(i − k) lying over σ in the
above sense,

Resiσξ(t) = (I∗σ)
〈
±{xσ1 , . . . , xσn−i}

〉
Resi−kσ̃ ξ(t) = (I∗σ̃)

〈
±{xσ1 , . . . , xσn−i, yσ̃1 , . . . , yσ̃k}

〉
,

where the parenthetical expressions are optional.

It follows that if all Resiσξt are trivial (hence, if φ is tempered), then so are all
Resiσ̃ξt — in particular, all Res1

σ̃’s.

Remark 3.6. (i) The regularity assumption on φ is not strictly necessary for these
results. For n = 2, we need only ask that the general X̃t (equivalently, Xt) be
nonsingular; whereas for n = 3 A-D-E (rational) singularities are allowed (on
X̃t) provided they occur in D̃[2] := ∪σ̃∈∆̃(2)Dσ̃. Note however that in Proposi-
tion 3.5 the formulas for Resiσ or σ̃ξt (not ξ) are multiplied by the multiplicity of
(components of) Dσ or σ̃ in case these are nonreduced.

(ii) The Resiσ, Res
i−k
σ̃ are trivially 0 on CHn(X̃∗t , n) (hence on ξt) for i = n

(in particular, for σ̃ lying over a point), since Dσ, Dσ̃ = ∅ in that case.
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3.2. Completing the coordinate symbol. Turning our attention to the fam-
ily, we define (λ = t−1)

X̃ := {(λ, x) |x ∈ X̃λ} ⊆ P1
λ × P∆̃.

Recalling that X̃0 = X̃∞ = D̃, set

X̃− := X̃ \ ({∞} × X̃∞) ⊂ A1
λ × P∆̃,

and noting that X̃− ∩ A1 × D̃ ∼= A1 × D̃,

X̃ ∗− := X̃− \ A1 × D̃ = {(λ, x) |x ∈ (X̃λ)∗} ⊂ A1 × (C∗)n.

Definition 3.7. We say ξ (∈ Hn
M((C∗)n,Q(n))) completes to a family of

motivic cohomology classes, if ∃ Ξ ∈ Hn
M(X̃−,Q(n)) such that the pullbacks

of ξ,Ξ to Hn
M((X̃λ)∗,Q(n)) agree ∀ λ ∈ A1. That is, in the diagram

(3.2) Ξ ∈_

��

Hn
M(X̃−,Q(n))

(ιλ)∗

��

Hn
M((C∗)n,Q(n))

(Iλ)∗

��

3 ξ
_

��
Ξλ ∈ Hn

M(X̃λ,Q(n))
rλ
// Hn
M((X̃λ)∗,Q(n)) 3 ξλ

we must have for each λ, rλ(Ξλ) = ξλ. (Here X̃−, X̃λ, and even (X̃λ)∗ may all
be singular.)

To state general conditions under which we can produce such a Ξ, we introduce
some more notation (mainly for subsets of D̃). When φ is not regular, it has a
nonempty irregularity locus

I := union over all σ̃ of singularities or nonreduced components of D∗σ̃
(which is just where φσ̃ vanishes together with all its partials). Writing In :=
∪i{xi = 1} ⊂ P∆̃ (where {xi}ni=1 ⊂ K(P∆̃)∗ extend the (C∗)n-coordinates), set

J := union of all Dσ̃, σ̃ ∈ ∆̃(1), which are not contained in In ∩ D̃.

For n = 3 specifically, where we will allow A1-singularities (ordinary double
points) on the general X̃λ (but only at D̃[2]), write A (⊆ I) for the collection of
these,

{α1, . . . , αk} := A ∩ J , and

{D1, . . . ,D`} := irreducible curves in D̃

avoiding the set (A \ A ∩ J ) ∪ (I \ A).

There is a linear map of vector spaces

E : Q 〈D1, . . . ,D`〉 → Q 〈α1, . . . , αk〉

obtained by sending generators [Di] 7→
∑

αj∈Di [αj].
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Theorem 3.8. Let φ be reflexive and tempered, n ≤ 4. Also assume in case

n = 2: the general Xλ is nonsingular.

n = 3: (a) the general X̃λ is nonsingular apart from A1-singularities at
points A ⊆ I3 ∩ D̃[2];

(b) I ⊆ I3(∩D̃), I ∩ J ⊆ A; and
(c) either

(i) E is surjective, or
(ii) K is totally real and the irreducible component curves of D̃

are nonsingular and defined over K.

n = 4: (a) φ is regular,
(b) K is totally real, and
(c) each irreducible component of each Dσ, σ ∈ ∆(2) resp. ∆(3),

admits a dominant morphsim defined over K from A1 resp. A0.

Then ξ completes to a family of motivic cohomology classes (see Defn. 3.7).

Remark 3.9. (i) For ease of application we have stated the additional require-
ments for n = 2, 4 in terms of Xλ, D; whereas for n = 3 they are phrased in
terms of X̃λ, D̃. (We are not saying all singularities must be A1’s on Xλ; just
that A1’s are all that remains after passing to X̃λ.)

(ii) The additional requirements for n = 3 may be significantly relaxed if all we
want to do is complete ξ to a class in Hn

M(X̃λ,Q(n)) for some fixed λ. Obviously,
taking λ to be very general and spreading out would then also yield a class in
Hn
M(X̃− ×ρ,A1 U,Q(n)) for some étale neighborhood U ρ→ A1 — i.e. not on the

family X̃− but on a finite pullback. Here are two possibilities:
(1) Drop “general” in (a), drop requirement (b), assume (c)(i) (but only make
{Di} avoid A \ A ∩ J in the definition of E). If X̃λ is smooth, (c)(i) is empty.
(2) Allow A-D-E singularities (call the set of these A′): more precisely, X̃λ

nonsingular except at A′ ⊆ I3 ∩ D[2]; and each irreducible component of J
contains at most one point of A′. (We should also note that X̃λ is still a [singular]
K3 surface in this case, and its minimal desingularization is a smooth K3.)

(iii) With the caveat that the following simplification comes at the expense of
important examples, all three additional requirements (for n = 3) may be done
away with if we assume φ regular: in fact, (a), (b), and (c)(i) collapse.

(iv) We make no claim that this result is exhaustive for n = 3 or 4. Indeed,
if (for n = 3) the general X̃λ is nonsingular and I ⊂ (∪D∗σ̃) ∩ I3 consists of
K-rational points (K totally real), then (although we may not have I ∩ J = ∅)
the conclusion still holds.

Proof. Noting that X̃ ∗− ∼= (C∗)n and that the resulting map

Hn
M(X̃−,Q(n))

r- Hn
M((C∗)n,Q(n))



ALGEBRAIC K-THEORY OF TORIC HYPERSURFACES 43

completes equation (3.2) to a commutative diagram, it suffices to construct Ξ ∈
r−1(ξ).

Before doing so, we briefly sketch how the map (ιδ) to Hn
M(X̃δ,Q(n)) can be

computed explicitly in terms of higher Chow cycles, when δ ∈ L ( =⇒ X̃δ

is singular with desingularization ˜̃Xδ). For simplicity, assume sing(X̃δ) =: S,˜̃Xδ ×X̃δ S =: S ′, and X̃− are smooth: then H−n of

Ẑn(X̃δ,−•) := Cone
{
Zn(˜̃Xδ,−•)

S′
⊕ Zn(S,−•) diff. of

pullbacks
- Zn(S ′,−•)

}
[−1]

computes Hn
M(X̃δ,Q(n)). (In general, Zn of S,S ′ must each be replaced by a

Cone complex, also denoted Ẑn.) Assuming Ξ has been produced, and repre-
senting it by a cycle in Zn(X̃−, n)

S∪X̃δ
, a representative of (ιδ)∗Ξ is obtained by

pulling back to ˜̃Xδ and S (which gives a triple of the form (∗, ∗, 0)).
Now, we will first explain the construction of Ξ in case the total space X̃− (and

fixed general X̃λ) is nonsingular, as is the case when φ is regular. (However, we
don’t assume that D̃ is a NCD or even that its components are smooth.) In the
(commutative) diagram

ξ ∈
_

��

CHn((X̃ ∗−)K , n)
Res1σ̃ //

(ιλ)∗

��

CHn−1((D∗σ̃ × A1)K , n− 1)

��

CHn−1((D∗σ̃)K , n− 1)
∼=oo

fF

tthhhhhhhhhhhhhhhhhh

ξλ ∈ CHn((X̃λ)∗C, n)
Res1σ̃ // CHn−1((D∗σ̃)C, n− 1),

our hypothesis that φ is tempered (together with Proposition 3.5) impliesRes1
σ̃ξ

λ =
0, hence that Res1

σ̃ξ = 0 ∀ σ̃ ∈ ∆̃(1). The local-global spectral sequence

Ei,−j
1 (n) :=


CHn(X̃ ∗−, j) [∼= H2n−j

M ((C∗)n,Q(n))] , i = 0

⊕σ̃∈∆̃(i)CH
n−i(D∗σ̃ × A1, j − i) , i > 0

0 , i < 0

with d1 : E0,−n
1 (n)→ E1,−n

1 (n) given by ⊕σ̃∈∆̃(1)Res
1
σ̃, has

E0,−n
∞ (n) ∼= im

{
CHn(X̃−, n)→ CHn(X̃ ∗−, n)

}
∼=
⋂

ker
{
di : E0,−n

i (n)→ Ei,−n−i+1
i (n)

}
∼=

 ker(d1) , forn = 2, 3

ker(d1) ∩ ker(d2) , forn = 4
.

The intersection has meaning since E0,−n
i+1 = ker(di) ⊂ E0,−n

i . (Warning: the di
are not the above Resi for i > 1; see [Ke1] for a description.) So for n = 2, 3 we
automatically get the desired class Ξ ∈ CHn(X̃−, n) ∼= Hn

M(X̃−,Q(n)).
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For n = 4, the stated conditions imply that the {D∗σ̃}σ̃∈∆̃(2) are Zariski-open
subsets U ⊆ A1

K (obtained by omitting points wsith coordinates ∈ K). Since
CH1(pt., 3) is zero, CH2(U, 3) ∼= CH2(A1

K , 3) ∼= CH2(Spec(K), 3) ∼= Kind
3 (K) =

0 forK totally real (# field); since E2,−5
2 (4) is a subquotient of⊕σ̃∈∆̃(2)CH

2((D∗σ̃×
A1)K , 3) we are done.

So we have reduced to examining additional complications arising from the
case of X̃− singular insofar as this is allowed by the conditions of the Theorem.
If n = 2, the singularities occur in D̃ × L and are always rational (surface)
singularities of type A1, A2, or A3 (see [BPV] for defintion). The last observation
is verified using the table of 16 2-dimensional reflexive polytopes in [BSk]. Briefly,
a singularity Q ∈ sing(X̃−) occurs due to a multiple root rQ of φσ(xσ1 ) for some
σ ∈ ∆(1). In a neighborhood of {(xσ1 − rQ, x2, λ − δ) = (0, 0, 0)} = Q the
equation of X̃− is of the form

0 = (xσ1−rQ)kΨ1(xσ1−rQ) + (xσ2 )`(>0)Ψ2(xσ1−rQ, x2)− (λ−δ)(xσ1−rQ)xσ2−(λ−δ)xσ2 ,

where Ψ1, Ψ2 are holomorphic (6= 0 at Q) and 2 ≤ k ≤ 4. (Note (λ − δ)xσ2
is quadratic and nonzero, and is not cancelled out.) At any rate, the canonical
desingularization [BPV] produces ˜̃X− b- X̃− with b−1(Q) = a chain RQ of (1, 2,

or 3) rational curves for each Q ∈ sing(X̃−). Writing ˜̃X−∗ := b−1(X̃ ∗−) ∼= (C∗)2,

there are some extra Res1’s of ξ ∈ CH2( ˜̃X−∗, 2) to deal with, in CH1(UQ, 1)
for UQ ⊆ RQ Zariski open. But this is clearly just (for Q = {(rQ, δ)} ∈ Dσ̃ ×
L as above) {rQ}, which is necessarily a root of unity (due to the tempered

requirement), hence trivial. So ξ comes from Ξ ∈ CH2( ˜̃X−, 2). In view of the
long-exact sequence [with t = tQ∈sing(X̃−)]

→ H2
M(X̃−,Q(2))→ CH2( ˜̃X−, 2)⊕ CH2(tQ, 2)→ H2

M(tRQ, 2)→

and the identfication of CH2(Q, 2) and H2
M(RQ,Q(2)) (working over K̄ = Q̄)

with KM
2 (Q̄) = 0, Ξ descends to H2

M(X̃−,Q(2)).
If n = 3, then we admit fiberwise A1-singularities α; since these live in D̃[2],

their location in P∆̃ is fixed as λ varies. So for each α ∈ A, {α}×A1 ⊆ sing(X̃−).
Since these are ordinary double points, a minimal resolution for the generic
fiber is effected merely by blowing up P∆̃ at each α. (The proper transform
X̂− ⊂ BlA(X̃−) of X̃− is still possibly singular over a discriminant set =: L ⊂ A1.)
We write X̂−

B- X̃− for the resulting morphism, which has its own “exceptional
divisors” B−1(α× A1) and proper transforms D̂ (×A1) of D̃ (×A1).

Let P2
α denote the exceptional divisor in BlA(P∆̃) over α ∈ Dσ̃, σ̃ ∈ ∆̃(2); and

let X, Y, Z be homogeneous coordinates with X = 0, Y = 0 the equations of
P2
α ∩ D̂σ̃1 , P2

α ∩ D̂σ̃2 (where σ̃1, σ̃2 are the facets of ∆̃ meeting σ̃). The equation
for B−1(α× A1) ⊆ P2

α × A1
(λ) must be of the form

(3.3) f(X, Y, Z) + λXY = 0
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with f /≡ 0 of homogeneous degree 2.
Let {pi}4

i=1 denote the (not necessarily distinct) points of intersection of f = 0
and XY = 0. Stereographic projection, say, through p1 to the Z = 0 line
“uniformizes” the conic (uniformly in λ), so that B−1(α × A1) ∼= P1 × A1 =:
P1
α×A1. (If (c)(ii) holds, then this can be done over K.) Clearly the {pi} are the

points where D̂σ̃1 , D̂σ̃2 meet the conic (3.3). Since they and their images qi ∈ P1
α

under projection are constant in λ, we see that

B−1(α× A1) ∩ (D̂σ̃j × A1) =

 q1 ∪ q2 if j = 1

q3 ∪ q4 if j = 2

× A1 ⊆ P1
α × A1,

for j = 1, 2.
Suppose a component DI of (say) Dσ̃1 passing through α belongs to I. Since
I ⊆ I3 ∩ D̃, some xi ≡ 1, and another xj ≡ 0 or ∞ on DI . Hence DI is a double
line (double in the sense of the multiplicity of X̃λ ·Dσ̃1 there); this means that
p1 = p2 and no other components of Dσ̃1 pass through α. It follows that any
component of J passing through α belongs to Dσ̃2 and has tangent line (at α)
distinct from TαDI (i.e., {p1, p2} and {p3, p4} are disjoint). Since I∩J ⊆ A, this
argument makes it clear that the proper B-transforms of I (×A1) and J (×A1)
do not meet.

Now Ŝ := sing(X̂−) ⊆ Î × L, hence does not intersect Ĵ × A1 (the proper

transform of J × A1). Let ˜̂X− β- X̂− be a desingularization (which is an
∼= off sing(X̂−)), and write Qα := β−1(P1

α × A1
(λ)), ∪α∈AQα =: Q. Obviously

β−1(Ĵ × A1) ∼= Ĵ × A1, so we may write Q− := Q \ (Ĵ × A1) ∩ Q; the Qα
are rational surfaces, and the Q−α have rational curves missing. Finally, put

S := sing(X̃−) = B(Ŝ) ∪ (A × A1) and b := B ◦ β :
˜̂X− → X̃−, and note that

b−1(S) = β−1(Ŝ) ∪Q. As above, we want to use the l.e.s.

→ H3
M(X̃−,Q(3))→ CH3(

˜̂X−, 3)⊕H3
M(S,Q(3))

i∗−b∗- H3
M(b−1(S),Q(3))→

to obtain a class Ξ in the first term from a pair (Ξ0, 0) in the middle, with
i∗Ξ0 = 0.

To construct Ξ0, begin with the coordinate symbol ξ ∈ Z3((
˜̂X− \ b−1(D̃)) ∼=

(C∗)3, 3), which (as I ⊆ I3) obviously extends to ξ ∈ Z3
∂B−cl

(
˜̂X−\Ĵ ×A1, 3)

β−1(Ŝ∪Q−)
.

(It actually pulls back to 0 on β−1(Ŝ) and Q−.) Clearly the Res1’s are all
0. Combining this with the moving lemmas of Levine and Bloch, there exist
Γ ∈ Z3(

˜̂X− \ Ĵ ×A1, 4)
β−1(Ŝ)∪Q−

and Ξ0 ∈ Z∂B−cl(
˜̂X−, 3)

β−1(Ŝ)∪Q [=b−1(S)]
such that

ξ + ∂BΓ is the restriction of Ξ0. The pullback of Ξ0 to b−1(S) gives a cocycle in
the complex computing HM, Ẑ3(b−1(S),−•) :=

Cone
{
Ẑ3(β−1(Ŝ),−•)

β−1(Ŝ)∩Q
⊕ Z3(Q,−•)

β−1(Ŝ)∩Q
→ Ẑ3(β−1(Ŝ) ∩Q,−•)

}
[−1].



46 CHARLES F. DORAN AND MATT KERR

This can be “moved” by a coboundary (in the cone complex) to essentially an ele-
ment of Z3

∂B−cl(Q, 3)
β−1(Ŝ)∩Q

supported on Q∩Ĵ ×A1. Moreover, the components

of Qα ∩ Ĵ × A1 (α ∈ A) are pairwise disjoint A1’s which are
rat≡ (as divisors) on

Qα by functions f̂α ∈ Q̄(Qα) restricting to 1 on Qα ∩ β−1(Ŝ). (Pull back to Qα
f ∈ Q̄(P1

α)∗ which has (f) = q3−q4 and f(q1 = q2) = 1, in the only nontrivial sit-
uation.) Since CH2(A1, 3) ∼= CH2(pt., 3) one can move the elements of Z3(Qα, 3)
so as to make them constant along each of the supporting A1’s, and then “collect”
all these constant cycles along only one such A1, by using [∂B-coboundaries of]
cycles (of the form A ⊗ f̂α ∈ Z3(Qα, 4)) restricting to 0 at Qα ∩ β−1(Ŝ). The
constant A1-supported cycles are then killed by adding constant cycles on the
b−1(Dj × A1) ∼= Dj × A1 to Ξ0, via Z2(Dj × A1, 3) ↪→ Z3(

˜̂X−, 3). That we have
“enough” Dj’s to kill all constant cycles on the Qα’s is guaranteed (if (c)(i) holds)
by surjectivity of E . Alternatively, if (c)(ii) holds then all of the above is valid
over K (as opposed to K̄), and K totally real =⇒ the CH2(A1

K , 3)-classes
embedded in the Qα’s self-annihilate. �

3.3. Examples of φ satisfying the Theorem. Here are specific ways to real-
ize the conditions of the Theorem (in particular, the tempered condition); φ is
defined over a number field K as usual.

Corollary 3.10. Let φ be reflexive with cyclotomic edge polynomials and root-
of-unity vertex coefficients. Furthermore for

n = 2: assume the general Xt is nonsingular.

n = 3: assume the facets of ∆ have no interior points, and that φ is
regular.

n = 4: assume the facets of ∆ are elementary 3-simplices (all points
of ∆ other than {0} are vertices), with coefficients ±1 only (except at {0}).40

Then ξ completes.

Example 3.11. Take φ to be [an arbitrary constant plus] the characteristic
(Laurent) polynomial of the vertex set of any reflexive polytope ∆ satisfying the
relevant assumption in boldface. This will be regular in case n = 2, 4, and also
for n = 3 provided none of the facets are of the form (c) [see proof below] with
a

2m
, b

2m
both odd for the same m ∈ Z≥0.41

40There are 151 such reflexive 4-polytopes, with a maximum of 12 vertices. [No]
41Out of the 899 reflexive 3-polytopes with interior-point-free facets, this leaves us with 239.

[No]
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Remark 3.12. For n = 3, we can also allow triangular facets σ with interior
points, provided the only monomials appearing (with nonzero coefficients) in φσ
correspond to the vertices of σ.42

Proof. (of Corollary). For n = 2 it suffices to show φ tempered, and this is
obvious.

For n = 3, one can easily classify (up to shift and unimodular transformation)
facets σ with no interior points. Viewed in a 2-plane Rσ, they are all convex
hulls of 3 or 4 points: (a) {(0, 0), (2, 0), (0, 2)}, (b) {(0, 0), (0, 1), (a, 0)}, or (c)
{(0, 0), (0, 1), (a, 0), (b, 1)} (with a, b ∈ N). In each case φσ(xσ1 , x

σ
2 ) = 0 can

only yield (D∗σ =) a Zariski open subset of a rational curve. (Since φ is regular,
Dσ is also nonsingular.) For σ′ ∈ ∆(2), φσ′ cyclotomic =⇒ {xσ′1 } gives 0 in
CH1(D∗σ′ , 1). Hence (for σ ∈ ∆(1)) {xσ1 , xσ2} ∈ {ker(Tame) ⊆ CH2(D∗σ, 2)} =
im {CH2(Dσ, 2)→ CH2(D∗σ, 2)} . But CH2(P1

K , 2) ∼= KM
2 (K) = 0 (in fact,

KM
2 (Q̄) = 0), and so φ is tempered. The remaining conditions follow from

regularity by Remark 3.9(iii).
For n = 4, the tempered condition is again clear for edges σ′′ ∈ ∆(3), so fix

σ′ ⊂ σ, σ ∈ ∆(1) and σ′ ∈ ∆(2); σ is a triangle and σ′ a tetrahedron. Any two
edges of σ′ (viewed as integral vectors) generate Rσ′ ∩Z4, and so one may choose
the monomials xσ′1 , x

σ′
2 so that φσ′ = 1 + xσ

′
1 + xσ

′
2 (ignoring the ±1 issue). This

makes plain the A1
Q-uniformizability of Dσ′ (condition (c) of Thm. 3.8), since

φσ′ = 0 is the equation of D∗σ (in local toric coordinates); it is also clear that
{xσ′1 , x

σ′
2 } ∈ CH2(D∗σ′ , 2) vanishes. Next, one can choose monomials xσ1 (:= xσ

′
1 ),

xσ2 (:= xσ
′

2 ), xσ3 generating Rσ ∩ Z4 such that φσ = 1 + xσ1 + xσ2 + (xσ1 )a(xσ2 )b(xσ3 )c

(a, b ∈ Z≥0, c ∈ N). We must show that {xσ1 , xσ2 , xσ3} vanishes in CH3(D∗σ, 3),
where D∗σ ∼= {(xσ1 , xσ2 , xσ3 ) ∈ (C∗)3 |φσ(xσ) = 0}. This requires a short calculation
for which we rewrite xσi =: yi and write elements of CH3(D∗σ, 3) as symbols —
as if they were in KM

3 (Q̄(Dσ)). However, we have explicitly checked that the
following relations actually hold over D∗σ (for the relevant graph cycles) and not
just η

D∗σ
:

{y1, y2, y3} =
1

c

{
y1, y2, y

a
1y

b
2y
c
3

}
=

1

c

{
−y1

y2

, −y2, −ya1yb2yc3
}

=
1

c

{
−y1

y2

, −
(

1 +
y1

y2

)
y2, −ya1yb2yc3

}
=

1

c

{
−y1

y2

, −(y1 + y2), −ya1yb2yc3
}
.

Using 1 + y1 + y2 + ya1y
b
2y
c
3 = 0 yields

1

c

{
−y1

y2

, −(y1 + y2), 1 + (y1 + y2)

}
,

which is zero (again over all of D∗σ). Hence φ is tempered. Regularity of φ (i.e.,
∆-regularity of φ − λ for general λ) along the faces is obvious from the explicit
equations for φσ, φσ′ , φσ′′ (and irregularities in the torus (C∗)4 for generic λ are
impossible by a simple calculus argument). �

42This gets us up to 1071 resp. 358 3-polytopes, depending on whether the special type (c)
facets are admitted. [No]
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Example 3.13. For n = 4, there are examples (where ξ completes) that do not
fall under the aegis of Theorem 3.8 — e.g. φ = x−1

1 x−1
2 x−1

3 x−1
4 (1+

∑4
i=1 x

5
i ), which

gives the Fermat quintic family in P4. One must verify directly that 〈{x}〉 ∈
CH4(X̃ ∗−, 4) lies in ker(d1) ∩ ker(d2), in the local-global spectral sequence de-
scribed in the Theorem’s proof. This means checking that the residues of (a rep-
resentative of) 〈{x}〉 in ⊕σ̃∈∆̃(1)Z

3(D∗σ̃×A1, 3) are killed by relations (in Z3(D∗σ̃×
A1, 4)), then that differences of residues of these relations in ⊕σ̃∈∆̃(2)Z

2(D∗σ̃ ×
A1, 3) are trivialized as well. This is left to the reader.

Remark 3.14. For n = 2, one can sometimes avoid going modulo torsion and
complete ξ to a class Ξ̃ ∈ H2

M( ˜̃X−,Z(2)) (∼= CH2( ˜̃X−, 2) but without our implicit
⊗Q convention). Namely, for each edge σ, let xσ(1) = xaσ1 x

bσ
2 (where (aσ, bσ) = 1)

generate Rσ ∩ Z2. Then it suffices to require (besides smoothness of the general
Xλ) the edge polynomial φσ to have only (−1) as root if aσ and bσ are both odd,
and only (+1) as root otherwise. This follows simply from (integral) computation
of the Tame symbol of {x1, x2}.

We conclude this section with a discussion of what can be done for an arbitrary
reflexive 3-polytope ∆ if we are only after getting a Ξλ for general λ (as in Remark
3.9(ii)). An arbitrary facet σ ∈ ∆(1) inherits the integral structure Z3∩Rσ (and
is obviously not in general itself reflexive).

Fact 3.15. [No] Up to shift and unimodular transformation, there are 344 pos-
sibilities for σ, and they all satisfy `(σ) > 2`∗(σ).

Fix an isomorphism Z2
∼=→ Z3 ∩ Rσ, and denote the corresponding toric co-

ordinates on D∗σ̃ by xσ1 , xσ2 . Writing `′(σ) := `(σ) − `∗(σ) − 1, let Mσ = M∗
σ ∪

(Mσ \M∗
σ) = {m∗i }

`∗(σ)
i=1 ∪ {m′j}

`′(σ)
j=0 be the decomposition of σ ∩ Z2 into interior

and edge points. The ample linear system |ODσ̃(1)| ∼= P`(σ)−1 is parametrized by
Laurent polynomials

φσ;[α:β](x
σ) :=

`∗(σ)∑
i=1

αi · (xσ)m
∗
i +

`′(σ)∑
j=0

βj · (xσ)m
′
j = Aα(xσ) +Bβ(xσ),

and consists (generically) of genus-`∗(σ) curves. Let V irrσ ⊂ P`(σ)−1 be the locus
of (φσ cutting out) `∗(σ)-nodal irreducible rational curves Cφσ in this system. It
seems entirely reasonable to hope that

(3.4) V irrσ is nonempty for all σ ∈ ∆(1)

is satisfied for all reflexive ∆ ⊂ R3; this may be decidable by applying the tropical
methods of [Mi]. In fact one has

Fact 3.16. [Mi, Ty] If V irrσ 6= ∅, its Zariski closure V irrσ (the so-called Severi
variety) is a codimension-`∗(σ) irreducible subvariety of P`(σ)−1.

Here, then, is our “most general” example for n = 3:
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Proposition 3.17. For a reflexive 3-polytope ∆ satisfying (3.4), there exists a
tempered Laurent polynomial φ (with Newton polytope ∆) defining a family of
(generically smooth) K3 surfaces {X̃t} such that (for general t) the toric symbol
completes to a CH3(X̃t, 3)-class Ξt.

Proof. Let U ⊂ P`(σ)−1 be the complement of the P`∗(σ)−1 defined by β = 0.
Since dim(V irrσ ) = `(σ) − `∗(σ) − 1 > `∗(σ) − 1 by Facts 3.15-16, V irrσ ∩ U 6= ∅.
Consider the projection U ρ→ P`

′
(σ) induced by [α : β] 7→ [β]; we contend that its

restriction to V irrσ ∩ U is generically an immersion.
Indeed, otherwise a generic Cφσ ∈ V irrσ deforms while keeping its intersection

with the boundary Dσ̃ \ (C∗)2 =: D fixed. The normal bundle of the composition
f : P1 ∼= C̃φσ � Cφσ ↪→ Dσ̃ is Nf := f ∗(θ1

Dσ̃)/θ1
P1
∼= OP1(−2 + f ∗(D)). A defor-

mation of this form would yield a nonzero section of Nf (−f ∗(D)) ∼= OP1(−2),
which is impossible.

Since dim(V irrσ ) = `
′
(σ) we conclude that ρ(V irrσ ∩ U) ⊂ P`

′
(σ) is open, and

therefore contains a Zariski-dense subset corresponding to cyclotomic edge poly-
nomials (with distinct roots on each edge). So we get countably many φσ;[α:β]

defining irreducible nodal rational curves Cφσ with regular, cyclotomic edge poly-
nomials; and α, β can be taken to lie in Q̄.

Globalizing this to the 3-polytope, there is a choice of φ(x1, x2, x3), all of
whose facet polynomials φσ are of this form. Clearly, φ is tempered if the classes
{xσ1 , xσ2} ∈ K2(Q̄(C̃φσ)) ∼= K2(Q̄(P1)) vanish. But since the edges of φσ are
cyclotomic, {xσ1 , xσ2} ∈ ker(Tame) = K2(Q̄) = {0}. �

4. The fundamental regulator period

The 1-parameter families {X̃t} of CY toric hypersurfaces produced by Theorem
3.8 have in a neighborhood of t = 0 a canonical family of cycles ϕ̃t vanishing (in
Hn−1(X̃0)) at t = 0. What we aim to do in this section, is to pair ϕ̃t against the
regulator image

AJ(Ξt) ∈ Hn−1(X̃t,C/Q(n)) ∼= HomQ

(
Hn−1(X̃t,Q),C/Q(n)

)
over a punctured disk D̄∗|t0|(0) extending to the singular fiber (at t0 ∈ L) nearest
the one at t = 0. The resulting (multivalued) function is called the “fundamen-
tal regulator period”; the “fundamental period” is just the period of a canonical
holomorphic form ω̃t ∈ Ωn−1(X̃t) over ϕ̃t. The regulator computation has some
surprisingly beautiful and easy corollaries related to differential equations, num-
ber theory, and local mirror symmetry.

For the next two subsections, it will suffice to assume
(a) φ is reflexive with root-of-unity vertex coefficients (denoted ζ);
(b) the generic X̃t has at worst Gorenstein orbifold singularities,43 and these lie
in D̃; and

43in this case L ⊂ P1 records only the “more” singular fibers where the local system Rn−1π̃∗Q
has monodromy.
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(c) ξ completes to Ξt ∈ Hn
M(X̃t,Q(n)) as in Definition 3.7.

So in principle n could be > 4. The importance of (a) is that it amounts to a
choice of the parameter t normalizing (in fact, for n = 2 trivializing) the rational
limit mixed Hodge structure at 0.

Remark 4.1. By [LTY], one knows that Rn−1π̃∗Q of the family {X̃t} has max-
imal unipotent monodromy about t = 0, provided [for n = 4] P∆̃ is smooth.
Alternately, there is the following simpler argument using the Clemens-Schmid
sequence: SSR replaces X̃0 by a NCD ′X̃0, and

Hn−1(′X̃0)(−n+ 1)→ Hn−1(′X̃0)→ Hn−1
lim (X̃t)

N- Hn−1
lim (X̃t)

is exact (with Q-coefficients), where N = log(T ) and weights of Hn−1(′X̃0) [resp.
Hn−1(′X̃0)(−n + 1)] lie in [0, n − 1] [resp. [n − 1, 2n − 2]]. So maximal unipo-
tent monodromy of T ⇐⇒ Nn−1 6= 0 ⇐⇒ HomMHS(Q(0), ker(N)) 6= {0} ⇐⇒
HomMHS(Q(0), Hn−1(′X̃0)) 6= {0} ⇐⇒ H0(′X̃

[n−2]
0 ) → H0(′X̃

[n−1]
0 ) is not surjec-

tive (where ′X̃ [i]
0 :=desingularization of ith coskeleton of ′X̃0). The last criterion

follows from the fact that the dual graph of ′X̃0 is ∂{tr(∆◦)}, which is topologi-
cally a triangulation of Sn−1.

4.1. The vanishing cycle and fundamental period. Pick a vertex v ∈ ∆(n)
and ṽ ∈ ∆̃(n) lying over it as in the end of §2.5. The local affine equation for
X̃λ in Uṽ is obtained by dividing out the ζxv term from λ−φ(x) and writing the
result in the {zi, ui}ni=1. Organizing terms as in (2.6), we have 0 = Φv(z, u) =

1 + φ1(z1) + φ2(z1, z2;u2) + · · ·+ {φn(z1, . . . , zn;u)− λzµ1uµ2},
and

Φv,σ̃i(z1, . . . , zn−i;u) := Φv|Dσ̃i = 1 +
∑
k≤n−i

φk

for i = 1, . . . , n. Here the Dσ̃i are (as in §2.5) where zn−i+1 = · · · = zn = 0, with
Dσ̃1 given by zn = 0 in particular.

Define on P∆, Ωt ∈ Γ(Ω̂n
P∆

(logXt)) by

Ωt :=
dlogx1 ∧ · · · ∧ dlogxn

1− tφ(x)
= λ

∧n dlogx
λ− φ(x)

,

and let
ωt := ResXt(ΩXt) ∈ Ω̂n−1(Xt) ;

these have µ∗-pullbacks Ω̃t, ω̃t(∈ Ωn−1(X̃t)). Let ε > 0 and define the real n-torus

T̂nv,ε := {|z1| = · · · = |zn| = ε} ∩ P∆̃ ∈ Z
top
n (P∆̃ \ X̃t ∪ D̃).

For fixed ε > 0 it is clear (using Φv above) that for |λ| > some fractional power
of 1

ε
, i.e. for |t| < δ(ε) sufficiently small, T̂nv,ε avoids X̃t. One has the “membrane”

Γv,ε := {|z1| = · · · = |zn−1| = ε, |zn| ≤ ε} ∈ Ctop
n+1(P∆̃ \ D̃

−)

where D̃− :=
⋃
σ̃ 6=σ̃1

Dσ̃; this bounds on the real n-torus:

∂Γv,ε = (−1)n−1T̂nv,ε.
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We specify our family of vanishing cycles by demanding that for |t| < δ(ε)

−ϕ̃t
hom≡ X̃t ∩ Γv,ε ∈ Ztop

n−1(X̃t).

Now the exponent vectors mi relating {zi} ←→ {xj} (zi = xmi) form a ratio-
nally invertible matrix. Hence, T̂nv,ε = {|xi| = εqi (∀i)} ⊂ (C∗)n ⊂ P∆̃ for some
rational numbers qi.44 For the fundamental period we have therefore

A(t) :=

∫
ϕ̃t

ω̃t =

∫
ϕ̃t

ResX̃t(Ω̃t) =
1

2πi

∫
Tube(ϕ̃t)=T̂nv,ε

Ω̃t

=
1

2πi

∫
∩ni=1{|xi|=εqi}

(
∞∑
m=0

tmφ(x)m

)
n∧
dlogx

= (2πi)n−1

∞∑
m=0

tm

(2πi)n

∮
φ(x)m

n∧
dlogx

(4.1) = (2πi)n−1

∞∑
m=0

[φ(x)m]0t
m,

where [·]0 takes the constant term of a Laurent polynomial. While we proved
this for |t| < δ(ε) ( =⇒ |tφ(x)| < 1 on T̂nv,ε), the period and the power series
extend to D∗|t0|(0) and agree there since both functions are analytic.

4.2. The period of the Milnor regulator current. Given a symbol
〈{f1, . . . , fn}〉 ∈ CHn(Y, n) as in §3.1 (but with Y smooth quasi-projective of
dim < n), recall from §1.2 that AJ

〈
{f}

〉
∈ Hn−1(Y,C/Q(n)) is represented by

the regulator current

(4.2)
Rn{f} = log f1dlogf2∧ · · · ∧dlogfn − (2πi)δTf1 ∧Rn−1{f2, . . . , fn} ∈ Dn−1(Y ),

where
Tf := f−1{R≤0 ∪ {∞}, oriented from ∞ to 0}

is the “cut” in arg(f) ∈ (−π, π). (R1{f} is just the 0-current log f .) Note that
in (4.2) we have omitted the Q(n)-valued δ-current; modulo this, Rn is d-closed.

Remark 4.2. (i) Though we won’t check this explicitly, the real-admissibility
requirements described in §1.2 are satisfied in the calculations below.

(ii) If the integral cohomology of Y is torsion-free, as in the case of an open
elliptic curve, we can replace Q(n) by Z(n).

44Note that (only for n = 4) the {zi} need not parametrize T̂nv,ε on their own, while the
{xi} do. (The |z1| = · · · = |zn| = ε definition conceals the role played by the {ui}.
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The vanishing cycle ϕ̃t extends to a multivalued section of Rn−1π̃∗Z over P1\L,
and

(4.3) Ψ(t) := AJ(Ξt)(ϕ̃t)

yields a multivalued holomorphic function (See the discussion preceding Corol-
lary 4.7; it remains multivalued after going modulo Q(n), due to monodromy of
ϕ̃t.) We want to compute Ψ(t) for t ∈ Uε := {|t| < δ(ε) and arg(t) ∈ (−π

4
, π

4
)}.

Consider the diagrams

ξt := 〈{x1, . . . , xn}〉 Ξt
�oo

CHn(X̃t \ D̃, n)

AJ
��

Hn
M(X̃t,Q(n))rt

oo

AJ
��

Hn−1(X̃t \ D̃,C/Q(n)) Hn−1(X̃t,C/Q(n)),
∗
oo

ξ̂t := 〈{λ− φ(x), x1, . . . , xn}〉 � //
(
ξt, Res

1
σ̃ ξ̂t

)
CHn+1(P∆̃ \ D̃ ∪ X̃t, n+ 1)

Res //

AJ
��

CHn(X̃t \ D̃, n)⊕ CHn(D∗σ̃1
\D∗σ̃1

, n)

AJ
��

Hn(P∆̃ \ D̃ ∪ X̃t,C/Q(n+ 1))
Res // Hn−1(X̃t \ D̃,C/Q(n))⊕Hn−1(D∗σ̃1

\D∗σ̃1
,C/Q(n)),

[T̂nv,ε]
(

[Γv,ε ∩ X̃t], [Γv,ε ∩ Dσ̃1 ]
)

�oo � // [ϕ̃t]

Hn(P∆̃ \ D̃ ∩ X̃t,Q) Hn−1(X̃t \ D̃,Q)⊕Hn−1(D∗σ̃1
\D∗σ̃1

,Q)
Tubeoo (∗,0) // Hn−1(X̃t,Q)).

These suggest that
Ψ(t) = AJ(ξt)(Γv,ε ∩ X̃t) =

− 1

2πi
AJ(ξ̂t)(T̂nv,ε) + (−1)nAJ(Res1

σ̃1
ξ̂t)(Γv,ε ∩ Dσ̃1),

the first term of which we can compute directly using the regulator formula (4.2);
we will show the second zero by an induction argument.

Working on P∆̃ \ X̃t ∪ D̃, we have 1
2πi
AJ(ξ̂t)(T̂nv,ε) =

(4.4)
1

2πi

∫
T̂nv,ε

R{λ− φ(x), x1, . . . , xn}

=
1

2πi

∮
∩ni=1{|xi|=εqi}

log(λ− φ)
n∧
dlogx ,
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since t ∈ Uε and x ∈ T̂nv,ε =⇒ |φ(x)| ≤ 1
δ(ε)

< |λ| and arg(λ) ∈ (−π
4
, π

4
) =⇒

x /∈ Tλ−φ(x). Using λ− φ = t−1(1− tφ) and |tφ| < 1, we see the latter

= −(2πi)n−1

{
log t +

∑
m≥1

[φ(x)m]0t
m

m

}
.

On the other hand, we can manipulate the regulator current in (4.4) by only
{coboundary on P∆̃ \ X̃t ∪ D̃}+{Q(n)-currents} to obtain a rational multiple of
R{Φv, z1, . . . , zn}. This is done by using multilinearity and anticommutativity
relations for symbols valid in CHn(P∆̃ \ X̃t ∪ D̃) and the map of complexes in
[KLM]. The relations are used first to multiply λ − φ by x−v (which just gives
Φv(z;u), and then to turn {x1, . . . , xn} into q · {z1, . . . , zn}. (Here, q ∈ Q∗ is the
inverse of the determinant of the matrix of exponent vectors mentioned above.)
Hence (4.4) =

q

2πi

∫
T̂nv,ε

R{Φv, z1, . . . , zn},

and enlarging the domain to P∆̃ \ D̃− and using (−1)n−1T̂nv,ε = ∂Γv,ε gives

−q
2πi

∫
Γv,ε

d[R{Φv; z}]

= q

(∫
Γv,ε∩X̃t

R{z1, . . . , zn} ±
∫

Γv,ε∩Dσ̃1

R{Φv,σ̃1 , z1, . . . , zn−1}}

)

= −
∫
ϕ̃t

R{x1, . . . , xn} ± q

∫
∂Γ

(1)
v,ε

R{Φv,σ̃1 , z1, . . . , zn−1}

where the switch from R{z} back to R{x} (in the first term) is valid on X̃∗t and

Γ(i)
v,ε := {|z1| = · · · = |zn−i−1| = ε, |zn−i| ≤ ε, |zn−i+1| = · · · = |zn| = 0}

∈ Ctop
n−i+1(Dσ̃i).

Of course
∫
ϕ̃t
R{x} ≡ Ψ(t) mod Q(n).

Now we may argue inductively: working on Dσ̃i , if o ∈ N is the order of
vanishing of zn−i along Dσ̃i+1

,∫
∂Γ

(i)
v,ε

R{Φv,σ̃i , z1, . . . , zn−i} = ±
∫

Γ
(i)
v,ε

d[R] =

2πi

(
±o
∫

Γ
(i)
v,ε∩Dσ̃i+1

R{Φv,σ̃i+1
, z1, . . . , zn−i−1} ±

∫
Γ

(i)
v,ε∩Dσ̃i

R{z1, . . . , zn−i}

)
.

Since Dσ̃i is defined by vanishing of Φv,σ̃i = 1 + φ1 + · · ·+ φn−i, which is ≈ 1 on
Γ

(i)
v,ε, Γ

(i)
v,ε ∩Dσ̃i = ∅ and this becomes

±2πi

∫
∂Γ

(i+1)
v,ε

R{Φv,σ̃i+1
, z1, . . . , zn−i−1}
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for i < n− 1. When i = n− 1, Γ
(n−1)
v,ε ∩Dσ̃n(=v) is just the origin, Φv,σ̃n is 1, and∫

Γ
(n−1)
v,ε

R{Φv, σ̃n} = log 1 = 0.

We have proved

Theorem 4.3. Assuming hypotheses (a)-(c) at the beginning of the section, the
fundamental regulator period for Ξt is

(4.5) Ψ(t) ≡ (2πi)n−1{log t+
∑
m≥1

[φm]0
m

tm} mod Q(n),

for all t ∈ Uε.

Remark 4.4. (a) For X̃t smooth, AJ(Ξt) is represented (by [KLM]) by the class of
a closed (n−1)-current R′Ξt := RΞt +(2πi)nδ∂−1TΞt

(modulo cycles modifying the
membrane ∂−1TΞt) in Hn−1(X̃t,C)/im{Hn−1(X̃t,Q(n))}, and Ψ(t) ≡

∫
ϕ̃t

[R′Ξt ].
For brevity, we denote R′Ξt =: R′t. We think of [R′t] as a multivalued section of
Hn−1

X̃/P1 := Rn−1π̃∗C⊗OP1 over P1 \ L.
(b) Theorem 4.3 is valid mod Z(2) if n = 2, Remark 3.14 applies, and vertex

coefficients of φ are all 1.
(c) The apparent similarity (of the

∑
m≥1 in the Theorem) to the formal

group law in [BS] is somewhat deceptive, as their `(t) would correspond to∑
m≥0

[φm]0
m+1

tm+1 in the present notation.

Now assume henceforth that the general X̃t is nonsingular (or is a surface with
A1 singularities). The Gauss-Manin connection ∇ kills periods hence
Hn−1(X̃t,Q(n))-ambiguities in [R′t], and ∇[R′t] ∈ Γ(P1,Ω1

P1 〈logL〉⊗Fn−1Hn−1

X̃/P1)

(see [Ke1]). Writing δt := t∂t := t d
dt
, this implies that

∇δt [R
′
t] = f(t)[ω̃t]

for f ∈ K̄(P1)∗. To find f , we take periods of both sides:
1

(2πi)n−1
t
d

dt

∫
ϕ̃t

[R′t] =
f(t)

(2πi)n−1

∫
ϕ̃t

ω̃t ,

and for t ∈ Uε this becomes

t
d

dt

{
log t +

∑
m≥1

[φm]0
m

tm

}
= f(t)

∑
m≥0

[φm]0t
m.

So f(t) ≡ 1 on Uε, hence on P1. There exists a Picard-Fuchs operator DPF =
δrt +

∑r−1
k=0 gk(t)δ

k
t (gk ∈ K̄(P1)∗, r ≤ rk(Rn−1π̃∗C)) satisfying DPFA(t) = 0, and

∇PF [ω̃t] = 0.

Corollary 4.5. On P1 \ L, ∇δt [R
′
t] = [ω̃t], and the periods of R′t (e.g. Ψ(t))

satisfy the homogeneous equation (DPF ◦ δt)(·) = 0.
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Corollary 4.6. The classes Ξt ∈ Hn
M(X̃t,Q(n)) and ξt ∈ CHn(X̃∗t , n) are

(AJ-)nontrivial for general t ∈ P1.

Proof. There are several simple ways to see this; the first is that Theorem 4.3
=⇒ Ψ(t)→∞ as t→ 0, which obviously shows

0 6= AJ(ξt) ∈ HomQ(Hn−1(X̃∗t ,Q),C/Q(n)).

One can also use nonvanishing of the infinitesimal invariant ∇[R′t], and there
is an abstract way to do this which bypasses Corollary 4.5 (and the Theorem).
Recall X̃ ∗− ∼= (C∗)n, and consider the diagram

CHn(X̃ ∗−, n)

cl

��

Hn
M(X̃−, n)

∗oo
{AJt}t∈P1\L //

cl

��

H0
(
P1 \ L , Hn−1

X̃/P1
/Rn−1π̃∗Q(n)

)
∇
��

FnHn(X̃ ∗−,C) FnHn(X̃−,C)
∗oo � � // H0

(
P1 \ L , Ω1

P1 ⊗Fn−1Hn−1
X̃/P1

)
in which

∗(ΩΞ) = ∗(cl(Ξ)) = cl 〈{x}〉 = [
n∧
dlogx] 6= 0.

(Note that this implies that
∧n dlogx extends to a holomorphic form on X̃−,

namely ΩΞ.) One could also base a proof on Corollary 4.10 below, when its
hypothesis (r = n) holds. �

To put the last result in context, we recall the vanishing theorem of [Ke1] as
it applies to the case of CY’s. For X/C smooth projective of dimension n − 1,
let

KM
n (X) := im{CHn(X,n)→ KM

n (C(X))},
and

Hn−1(ηX ,C/Q(n)) := im{Hn−1(X,C/Q(n))→ lim−→
D ⊂ X
codim. 1

Hn−1(X \D,C/Q(n))}

∼= Gr0
NH

n−1(X,C/Q(n)),

where N• is the coniveau filtration. (This is nonzero for a CY since [ω] /∈ N1;
for a surface it is H2

tr.) Then the AJ map

KM
n (X)→ Hn−1(ηX ,C/Q(n))

is zero for X a CY arising as a very general complete intersection in Pn+r of
multidegree (D0, . . . , Dr),

∑
Dj = n+ r + 1, and n ≥ 3 (X 6=curve). (Probably

a similar result holds with Pn+r replaced by another toric Fano variety.) In
contrast, a general member of a 1-parameter family arising from Theorem 3.8
is still rather special, φ having coefficients in a number field which are further
restricted by the tempered requirement. In fact, since 0 6= [ω̃t] = ∇δt [R

′
t] ∈

N0

N1H
n−1(X̃t,C/Q(n)) for general t and ∇δtN 1Hn−1 ⊆ N 1Hn−1, we see that

generically 0 6= [R′t] ∈ Gr0
N =⇒ {x} ∈ KM

n (X̃t) is (AJ-)nontrivial.
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So far, little to nothing has been said regarding the behavior of Ψ(t) globally
or near t1 ∈ L \ {0} =: L∗. Fix a base point 0′ ∈ Uε, let P denote the space
of C∞ paths P : [0, 1] → P1 \ {0} satisfying P (0) = 0′, P ([0, 1)) ⊂ P1 \ L,
and write P ([0, 1]) =: |P |. Define a projection ρ : P → P1 \ {0} by ρ(P ) :=
P (1), and let ΦP = ∪t∈|P |ϕ̃t (with [ϕ̃ρ(P )] ∈ Hn−1(X̃ρ(P ),Z)) be a “topological
continuation” of the vanishing cycle. There is an obvious equivalence relation on
P◦ := ρ−1(P1 \ L) — namely, P1, P2 ∈ ρ−1(t) are equivalent iff the restriction of
Rn−1π̃∗Z to |P1|∪ |P2| is trivial. Extend this to t ∈ L∗ by requiring only that the
union of (|P1| ∪ |P2|) \ {t} with some subset of D∗ε(t) have trivial monodromy.
Denote the quotient spaces by P̌◦ ⊂ P̌, topologizing the latter in analogy with
the extended upper half-plane. Note that L∗ splits into finite and (unipotent and
non-unipotent) infinite monodromy fibers; ρ−1 of the former should be thought
of as points interior to P̌, ρ−1 of the latter as cusps.

We want to clarify the following

Assertion: Ψ(t) lifts to a well-defined, continuous function on P̌ with holomor-
phic restriction to P̌◦.

To do this, we must finish defining Ψ(t) by observing that (4.3) makes sense
(in C/Q(n)) even for t ∈ L∗ once the homology class ϕ̃t ∈ Hn−1(X̃t,Z) is fixed.
Since the MHS Hn(X̃t) has weights ≤ n, HomMHS(Q(0), Hn(X̃t,Q(n))) = {0}
and Hn

H(X̃t,Q(n)) ∼= Ext1
MHS

(Q(0), Hn−1(X̃t,Q(n))) ∼= Hn−1(X̃t,C/Q(n)). So
AJ(Ξt) is at least defined in the last group (though we won’t say how to com-
pute it until §6), and (4.3) simply pairs homology and cohomology.

Fix t ∈ P1 \ {0}, P ∈ ρ−1(t) and ΦP (hence ϕ̃t). By functoriality of KLM
currents (moving Ξ if necessary to lie in Zn(X̃−, n)X̃t),

∫
ϕ̃t
RΞt =

∫
ϕ̃t
RΞ for any

t ∈ P1 \ {0}. If we accept (in anticipation of §6.1) that AJ(Ξt)(ϕ̃t) ≡
∫
ϕ̃t
RΞt

even for t ∈ L∗, then (4.3) gives

Ψ(t) =

∫
ϕ̃t

RΞ =

∫
ΦP

d[RΞ] +

∫
ϕ̃0′

RΞ

Q(n)
≡
∫

ΦP

ΩΞ + Ψ(0′)

for the continuation of Ψ corresponding to P . The Assertion follows, using
ΩΞ ∈ Ωn(X̃−) and Morera’s theorem for the holomorphicity (which we already
know in any case), and “smoothing out” any Q(n)-discrepancies.

As for the local behavior of (the multivalued function) Ψ(t) at t1 ∈ L∗ on
P1, this must be consistent with the continuity on P̌. In q := t − t1 we have
in general Ψ = holomorphic plus terms of the form qβ(logk q)H(q) where β ∈
Q+, k ∈ {1, . . . , n − 1}, and H is holomorphic. For example, in the unipotent
case suppose we have monodromy T ϕ̃t = ϕ̃t + ηt; then ηt ∈ im(T − I) implies
(by Clemens-Schmid) that ηt1 is zero in Hn−1(Xt1 ,Z), hence pairs to 0 (mod
Q(n)) with AJ(Ξt1). Moreover, if ηt ∈ ker(T − I) then we simply have Ψ =
Ψ0(q) + q(log q)Ψ1(q) where Ψ0, Ψ1 are holomorphic (and single-valued).
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Now let t0 be the smallest45 nonzero element of L; i.e. (at least if φ is regular)
1
t0
is the critical value of φ of largest finite modulus. Putting the above discussion

together with Corollary 4.5 yields

Corollary 4.7. The Ψ(t) computation in Theorem 4.3 holds ∀t ∈ D̄∗|t0|.

Proof. The convergence and continuity of
∑ [φm]0

m
tm at the boundary follows from

a bit of Tauberian theory, combined with the fact that A(t) = δtΨ(t) has at worst
a logn−1(t− t0) pole at t0. Then one invokes continuity of Ψ(t) itself. �

We conclude with a number-theoretic application. Various authors [Be1, De2,
RV] have noticed a relation between the logarithmic Mahler measure m of a
Laurent polynomial Q(x1, . . . , xn) and real regulator periods (or special values
of L-functions) associated to the variety Q = 0. Writing

T̂n := {|x1| = · · · = |xn| = 1} ⊂ (C∗)n,
this is

m(Q) :=
1

(2πi)n

∫
T̂n

log |Q|
n∧
dlogx.

the real regulator is just the composition

Hn
M(X̃t,Q(n))

AJ- Hn−1(X̃t,C/Q(n))
πR-- Hn−1(X̃t,R(n− 1)),

where (on the level of currents) πR takes R′Ξt to its “(2πi)n−1·real”-part rΞt ∈
Dn−1
R(n−1)(X̃t). (The latter is (2πi)n·Goncharov’s current [Go], up to coboundary.)

In the present context the two are related as follows.

Corollary 4.8. Under the conditions of Theorem 4.3,

−Re
(

1

(2πi)n−1
Ψ(t)

)
=

−1

(2πi)n−1

∫
ϕ̃t

[rt] = m(t−1 − φ)

for all t in

S := {connected component of (P1 \ { 1

φ(T̂n)
}) containing {0}} \ {0} ⊆ P1,

where the bar denotes analytic closure.

Proof. Consider the equation

1

(2πi)n−1

∫
ϕ̃t

[R′t] = log t +
∑
m≥1

[φm]0
m

tm =
−1

(2πi)n

∫
T̂n

log(t−1 − φ)
n∧
dlogx,

where the first equality holds by Theorem 4.3 for (say) t ∈ Uε, and the second
for t(6= 0) such that |t| < |φ(x)|−1 ∀x ∈ T̂n. (Note that |φ| is bounded above
on T̂n.) Now the l.h.s. is analytic multivalued on P1 \ L, while the r.h.s. is
analytic multivalued as long as (0 6=) t doesn’t pass through { 1

φ(T̂n)
} (so that log

retains a continuous single-valued branch on the image t−1− φ(T̂n)). Since they
45Of course there might be more than one element of smallest ( 6= 0) modulus; in this event

just choose one.
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agree on an analytic open set, they continue to agree on (the covering space of)
the obvious connected component of P1 \ L ∪ { 1

φ(T̂n)
}. Taking real parts of both

sides kills multivaluedness,46 and the equality extends to the analytic closure by
continuity, erasing L \ {0} (where

∫
ϕ̃t

[rt] is finite). �

4.3. The higher normal function. For this subsection, take the family X̃ π̃→
P1 to be as in (the assumptions of) Theorem 3.8. Given any (possibly singular)
fiber X̃t6=0, we have AJ(Ξt) ∈ Hn−1(X̃t,C/Q(n)). If Rt ∈ Hn−1(X̃t,C) is any
lift of this class, then since ω̃t = 1

2πi
ResX̃tΩ̃t ∈ Hn+1

X̃t
(P∆̃,C) ∼= Hn−1(X̃t,C), the

pairing 〈Rt, [ω̃t]〉 ∈ C makes sense. For X̃t smooth and Rt = [R′t] as in Remark
4.4(a), this is just

∫
X̃t
R′t ∧ ω̃t.

Definition 4.9. The higher normal function associated to Ξ is the multi-
valued function

ν(t) := 〈Rt, [ω̃t]〉
on P1 \ L, where Rt is a (multivalued) continuous family of lifts of AJX̃t(Ξt).

This is a highly transcendental function, but applying DPF kills the ambi-
guities (which are periods of ω̃) and produces g(t) := DPFν(t) ∈ K̄(P1) (see
[dAM2]). Viewed as an element of K̄(P1)/DPF K̄(P1), g is the class of a certain
extension of D-modules attached to Ξ. Alternatively, it is the inhomogeneous
term of the Picard-Fuchs equation

DPF (·) = g

satisfied by ν, and its nonvanishing would give another proof of nontriviality of
Ξt: g 6= 0 =⇒ ν 6=period of ω̃ =⇒ Rt /∈ Hn−1(X̃t,Q(n)) [general t] =⇒
general AJ(Ξt) /≡ 0. Note that conversely, if the C-span of the {∇i

δt
[ω̃t]}r−1

i=0 is a
(complexified) Hodge structure for general t, then it is possible to show (using
∇δtRt = [ω̃t] from Corollary 4.5) g 6= 0.

The study of inhomogeneous PF equations for higher normal functions was
initiated by Müller-Stach and del Angel [dAM1, dAM2, dAM3]. Their work
focused on families of higher cycles ηt ∈ CHp(Xt, 2p− n) (p < n = dimX + 1),
in which case

∫
Xt
R′ηt∧ωt reduces to integration of ωt over a real membrane. Here

we want to demonstrate that the case p = n is also accessible and interesting.
The Yukawa coupling is the function Y ∈ K(P1) defined by

Y(t) :=
〈
[ω̃t],∇n−1

δt
[ω̃t]
〉

for t /∈ L. (A1-singularities for such t are harmless here, as [ω̃] lifts to Hn−1(˜̃Xt).)
The next result implies this is the inhomogeneous term in many cases including
that of elliptic curves (n = 2) and K3 surfaces (n = 3) with generic Picard rank
19.

46To see this on the r.h.s., replace
∧n dlogx

(2πi)n by
∧n dargx; for the l.h.s., one easily sees that

ϕ̃t has no monodromy on S (though [R′t] may, which is harmless).



ALGEBRAIC K-THEORY OF TORIC HYPERSURFACES 59

Corollary 4.10. If the order of DPF is (r =)n, i.e. if the D-module generated
by [ω̃t] has rank n, then g = Y.

Proof. Compute first
δt 〈Rt, [ω̃t]〉 = 〈[ω̃t], [ω̃t]〉+ 〈Rt,∇δt [ω̃t]〉 = 〈Rt,∇δt [ω̃t]〉 ,

then inductively

δj<nt 〈Rt, [ω̃t]〉 = δt
〈
Rt,∇j−1

δt
[ω̃t]
〉

=
〈
[ω̃t],∇j−1

δt
[ω̃t]
〉

+
〈
Rt,∇j

δt
[ω̃t]
〉
.

By Hodge type and Griffiths transversality, this

=
〈
Rt,∇j

δt
[ω̃t]
〉
.

Hence, with DPF = δnt +
∑n−1

k=0 gk(t)δ
k
t ,

DPFν(t) = Y(t) + 〈Rt,∇PF [ω̃t] = 0〉 = Y(t).

�

Remark 4.11. For r = n = 2, 3, 4 Y(t) is computed by an obvious differen-
tial equation. To state it, recall that by [LTY] we have maximal unipotent
monodromy at t = 0. Hence gj(t) = tfj(t) for fj holomorphic at t = 0,
and with q2 = 1, q3 = 2

3
, q4 = 1

2
we get δtY(t) = −qntfn−1(t)Y(t) =⇒

Y(t) = κ exp{−qn
∫
fn−1(t)dt}. From above, Y = g must be a rational function,

and fn−1(t) = −M
qn
· Y
′(t)
Y(t)

(forM ∈ Z). (If one has maximal unipotent monodromy
also at t = ∞, then M can be determined also.) The value of κ requires more
precise (e.g. modular) information about the family. Note that for n = 2, n = 3
and rk(Pic) = 19, or n = 4 and h3 = 4, Corollary 4.5 =⇒ g 6= 0 =⇒ κ 6= 0.

We prove next an interesting result on the monodromy of (a choice of branch
of) ν. Recall from §3.3 the definitions (for all n) of J , I ⊆ D̃ and for n = 3 set
D :=normalization of J at J ∩ A. From the proof of Theorem 3.8, X̂ B- X̃
is the simultaneous resolution of the A1-singularities A(×P1), and D is just the
proper transform of J (along X̂t → X̃t). Let J − be the union of the Dσ̃’s
that are not in I and not of the form {xi1 + xi2 = 1, x±1

i3
= 0}. For all n, let

◦
T n

:= R−x1
× · · · × R−xn ⊂ (C∗)n with analytic closure Tn ⊂ P∆̃; note that its

class in Hn(P∆̃, D̃) is Lefschetz dual to that of the n torus T̂n in Hn((C∗)n).

Let K denote the analytic closure of φ(
◦
T n

) in P1
λ, with (open) complement

U := P1 \ K ⊆ A1
λ, and set X̃U := π̃−1(U) ⊆ X̃−, X̃K := π̃−1(K) ⊆ X̃ . (If U is

not connected, replace it by a single connected component, and augment K by
the other connected components.) Finally, let X := X̃λ0 be a very general fiber
(with λ0 ∈ U).

Proposition 4.12. (a) Let X̃− be one of the families from Theorem 3.8 with
nonsingular general fiber and assume ker{Hn−2(J )→ Hn−2(X)} = 0. Then there
exists a single-valued family of cohomology classes Rλ ∈ Hn−1(X̃λ,C) lifting
AJ(Ξλ) for λ ∈ U . (This includes singular fibers [= U ∩ L] unless n = 2 and
J ∩ I is nonempty.)
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(b) For n = 3 and A nonempty (the case excepted above), H1(J − \J −∩A) =
0 =⇒ conclusion of (a) holds as stated. If we assume instead H1(D) = 0,
then the conclusion only holds with X̃λ replaced by X̂λ (and Rλ lifts AJ(Ξλ

0) ∈
Hn−1(X̂λ,C/Q(n))).

Remark 4.13. (i) For n = 2, the assumption of (a) says J is one point; for n = 3
it says H1(J ) = 0: J is a configuration of rational curves whose associated
graph has no loop.

(ii) The continuation of Rλ around a loop not in U may no longer be single-
valued over U .

(iii) A relaxation of the hypotheses (e.g. allowing singularities in the general
fiber, φ not regular) may be necessary to produce examples for n = 4.

Proof. We do this under the assumption that the total space X̃ is nonsingular.
(While such examples come out of Theorem 3.8, we don’t know if any of these
survive the extra requirements for this Proposition; nevertheless, the main ideas
are contained in our “artificial” proof, and the more general situation is treated
with cone complexes as in Theorem 3.8’s proof.) Write Zp

(·, n) for ∂B-closed
higher Chow precycles.

In the proof of Theorem 3.8 we started by “completing” ξ = {x} ∈ Zn
(X̃− \

J × A1, n) to Ξ ∈ Z
n
(X̃−, n) restricting to ξ + ∂Bγ (on X̃− \ J × A1); since

ξ ∈ Zn

R(X̃− \ J × A1, n)X\J (×{x0}), we may arrange to have

Ξ ∈ Zn

R(X̃−, n)X , γ ∈ Zn
R(X̃− \ J × A1, n+ 1)X\J ,

the first pulling back to Ξλ0 ∈ Z
n

R(X,n). We take the analytic closure of the
∂-closed Borel-Moore C∞ chain Tξ on X̃− \ J × A1 to get Tξ ∈ Ztop

n (X̃ , X̃0 ∪
J × P1). Since (X̃U \ J × U) ∩ Tn = ∅ by construction, we see that Tξ maps
to 0 in Ztop

n (X̃ , X̃K ∪ J × P1). Clearly TΞ ∈ Ztop
n (X̃ , X̃0) maps to Tξ + ∂Tγ in

Ztop
n (X̃ , X̃0∪J ×P1), hence to ∂Tγ in Ztop

n (X̃ , X̃K∪J ×P1); and so in Ztop
n (X̃ , X̃K),

TΞ is homologous to a cycle τ ∈ Ztop
n (J × (P1,K)) ∼= Ztop

n (J × (U, ∂U)) (where
∂U := U \U). (The latter may be put in good position with respect to X, since
TΞ is.)

Now 0 = F nHn(X,C) ∩Hn(X,Q(n)) =⇒ 0
hom≡ TΞλ0 = TΞ ∩X (on X) =⇒

τ ∩ X hom≡ 0 (on X). Moreover, Hn(J × (U, ∂U)) = Hn−2(J ) ⊗ H2(U, ∂U) ∼=
Hn−2(J ) since U connected =⇒ H2(U, ∂U) = Q, K connected =⇒ U sim-
ply connected =⇒ H1(U, ∂U) = 0, and obviously H0(U, ∂U) = 0. Hence,
ker{Hn−2(J ) → Hn−2(X)} = 0 =⇒ τ

hom≡ 0 =⇒ ∃ Γ ∈ Ztop
n+1(X̃ , X̃K) with

∂Γ = TΞ (mod X̃K), and we define R′Ξ := RΞ + (2πi)nδΓ ∈ Dn−1(X̃U). One has
d[R′Ξ] = ΩΞ ∈ F nDn(X̃U).

This ΩΞ, being a d-closed (n, 0)-current, is in fact C∞ (i.e. holomorphic) by
standard regularity results. On X̃U it is cohomologous to 0, hence dη there for
some C∞ (n − 1)-form η. Hence R′Ξ − η is closed and ∃ (n − 2)-current κ such
that R′Ξ − η + d[κ] is C∞ (in the same class); obviously R′Ξ + d[κ] is also C∞
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(but not closed), and so pulls back to every fiber to give a continuous family of
(closed C∞ forms =⇒ ) classes in {Hn−1(X̃λ,C)}λ∈U (including singular fibers).

Next pick any λ1 ∈ U , put X1 := X̃λ1 ; we must show [ι∗X1
(R′Ξ + d[κ])] lifts

AJ(ι∗X1
Ξ1) ∈ Hn−1(X,C/Q(n)) for some “move” Ξ1 of Ξ. Namely, use M ∈

Zn
R(X̃−, n + 1) to get Ξ1 := Ξ + ∂BM ∈ Zn

R(X̃−, n)X1 , and µ ∈ C
top
n+2(X̃ , X̃K) to

move Γ to Γ1 := Γ− TM + ∂µ ∈ Ctop
n+1(X̃ , X̃K)X1 . Note that ∂Γ1 = ∂Γ− ∂TM =

TΞ − ∂TM = TΞ1 , so that R′Ξ1
:= RΞ1 + (2πi)nδΓ1 has d[R′Ξ1

] = ΩΞ1 = ΩΞ.
Moreover, the d-closed pullback ι∗X1

R′Ξ1
= Rι∗X1

Ξ1 + (2πi)nδ∂−1(ι∗X1
TΞ1

) so its class
lifts AJ(ι∗X1

Ξ1). Now we compare the two things pulled back, ι∗X1
of R′Ξ1

and
R′Ξ + d[κ]:

R′Ξ1
= RΞ + d

[
RM
2πi

]
+ (2πi)nδTM+Γ1

= RΞ + d

[
RM
2πi

+ (2πi)nδµ

]
+ (2πi)nδΓ

= R′Ξ + d[=: S ] ,

hence R′Ξ1
− R′Ξ − d[κ] = d[S − κ]. If S − κ does not pull back to X1, it is

replaceable by something that does (since the l.h.s. does). �

Stiller [St] studied monodromy of solutions to inhomogeneous equations, in
the case where the corresponding homogeneous equation DPF (·) = 0 is solved
by the period functions associated to an elliptic modular surface. It would be
interesting to compare his formula ([St], Thm. 10) with the following for n = 2.

Corollary 4.14. In the situation of Proposition 4.12((a) or (b)), the inhomoge-
neous equation DPF (·) = g admits a solution single-valued in U (i.e. also finite
at U ∩ L, except possibly when n = 2 and J ∩ I 6= ∅).

Of course, this is most interesting in case ord(DPF ) = n and Corollary 4.10
also applies.

As an application of higher normal functions and Corollary 4.5, we consider
the problem of producing linearly independent families of higher Chow cycles
over P := P1

t \T , where T 3 {0} is a collection of points. Since the idea will be to
produce independent topological invariants [Ω] ∈ F nHn(X̃P ,C) ∩Hn(X̃P ,Q(n))
(X̃P := π̃−1(P)), larger T is better. In fact, T = {(t =) 0} won’t do, as
F nHn(X̃−,C) ∼= F nHn((C∗)n,C) ∼= C 〈ΩΞ =

∧n dlogx〉 has rank 1.
Suppose we have a rational map (defined /Q̄) of families satisfying the condi-

tions of Theorem 3.8:
X̃P

A //____

π̃

��

′X̃−
′π̃
��

P α // P1 \ {0}.

That is, we have Zariski open VP ⊆ X̃P , hence some blow-up YP
B-- X̃P , map-

ping to ′X̃− over α. Write At : X̃t −− > ′X̃α(t), ui := A∗(′xi) ∈ Q̄(X̃P)∗. If A is
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the restriction of a rational map P∆̃×P1−− > P′∆̃×P1 given by (x1, . . . , xn; t) 7→
(f1(x; t), . . . , fn(x; t);α(t)) = (′x1, . . . ,

′xn; ′t), then ui = fi(x; t).
By pulling ′Ξ back to YP and pushing forward along B we obtain

Θ := A∗(′Ξ) = completion of {u} ∈ CHn(X̃P , n).

Clearly ΩΘ = A∗(Ω′Ξ), and this is a holomorphic form; since the fibers of
π̃ are CY, [ΩΘ] = [(π̃∗G)ΩΞ] for some G ∈ Q̄(P1)∗. On the fibers we have
A∗t [
′ω̃α(t)] = G(t)[ω̃t], and A∗t (

′Rα(t)) =: St lifting AJ(Θt). Corollary 4.5 for ′Ξ
says ∇δα(t)

′Rα(t) = [′ω̃α(t)], and applying A∗ gives ∇δα(t)
St = G(t)[ω̃t], or

∇δtSt =
tα′(t)

α(t)
G(t)[ω̃t].

Comparing this with ∇δtRt = [ω̃t] (and noting that ∇δt removes the ambiguities
in the lifts of AJ of Θt, Ξt), we obtain:

Corollary 4.15. If tα′

α
G is not a rational constant, then the families of classes

Θt, Ξt ∈ CHn(X̃t, n) are (AJ-)independent.

There are examples where α(t) = ±1
t
and G(t) = t for n = 2 and 3, see [Ke2].

We can also compare the higher normal functions ν(t) := 〈Rt, [ω̃t]〉 , ε(t) :=
〈St, [ω̃t]〉. If 0 6= g := DPFν, and tα′

α
G is not a rational constant, then from

DPF ε =
tα′

α
Gg

one may deduce independence of the families of MilnorK-theory classes {x}, {u} ∈
KM
n (C(X̃t)) for n = 2, 3.
In the event that α is of infinite order (rather than e.g. an involution like

t 7→ ±1
t
), iteratively applying the above construction (for α, α ◦ α, α ◦ α ◦ α,

etc. which of course requires shrinking P at each stage) would give explicit
countable generation for CHn(generic fiber, n). However it seems likely (already
for n = 2, by comparing with the proof of infinite generation in [Co], sec. 7) that
this is not possible without allowing α to be algebraic and replacing the Zariski
neighborhood P with an étale one; the relevant (geometric) generic fiber is then
defined over Q(P1) (rather than Q̄(P1)).

4.4. Appendix. Before turning to mirror symmetry and examples, we wish to
answer an interesting question of the third referee. Up to this point we have
dealt with sufficient conditions under which the coordinate symbol completes;
the Proposition below gives a necessary condition.

Let ∆ ⊂ Rn (n = 2, 3, 4) be a reflexive polytope and F =
∑

m∈∆∩Zn αmx
m ∈

C[x±1
1 , . . . , x±1

n ] a fixed ∆-regular Laurent polynomial. Assume, for some ν ∈
∆(n), that we have normalized αν = 1. We write X∗ := {x ∈ (C∗)n |F (x) = 0}
and X̃ ⊂ P∆̃ for its (smooth) Zariski closure, and consider the coordinate symbol
ξ := 〈{x1|X∗ , . . . , xn|X∗}〉 ∈ CHn(X∗, n).

Proposition 4.16. If ξ is the restriction of a class Ξ ∈ CHn(X̃, n), then for
every m ∈ ∆ ∩ Z\{0} we have αm ∈ Q̄.
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This justifies our restrictions in §3, to the effect that only α0 is allowed to
vary, and moreover that φ be defined over a number field. The proof has been
postponed to this section because it rests on a variant of Corollary 4.5:

Lemma 4.17. Let ∆′ ⊂ R` (` = 2, 3) be a polytope, not necessarily reflexive,
with integer interior points {µ

j
}g(>0)
j=1 , and set U = {s ∈ C | |s| < ε}. Consider a

1-parameter family

Y∗ =
{

(y, s) ∈ (C∗)` × U
∣∣ Gs(y) = 0

}
of smooth hypersurfaces with smooth compactification Y ⊂ P∆̃′ × U , where

Gs(y) :=

g∑
j=1

βj(s)y
µ
j +

∑
µ′∈∂∆′∩Z`

γµ′y
µ′ .

Finally let ξ′s :=
〈
{y1, . . . , y`}|Y ∗s

〉
∈ CH`(Y ∗s , `) be the family of coordinate sym-

bols on fibres of Y∗ −→
πY∗

U . Then

(a) the forms ωj(s) := ResYs

(
y
µ
j dlogy1∧···∧dlogy`

Gs(y)

)
give a basis for Ω`−1(Ys) (∀s ∈

U), hence for its isomorphic image under H`−1,0(Ys) ↪→ H`−1(Y ∗s ); and

(b) under the Gauss-Manin connection on the relative (` − 1)st cohomology of
πY∗, ∇∂s [AJY ∗s (ξ′s)] =

∑g
j=1 β

′
j(s)[ωj(s)]|Y ∗s .

Proof. (a) is due to [Ba3] (see the top of p. 386).
For (b), look at the analytic higher Chow cycle ξ′ := 〈{y1, . . . , y`}〉 ∈ CH`(Y∗, `).

Although Ωξ′ is nonzero, its pullback to fibers is zero by type, and H`−1(Y∗) ∼=
H`−1(Y ∗s ). So 0 = clY∗(ξ

′) = [Ωξ′ ] = [Tξ′ ], and there exists an (` + 1)-chain Γ

on Y with |∂Γ− Tξ′| ⊂ Y\Y∗, meeting fibres properly. The restriction of R̃ξ′ :=
Rξ′ + (2π

√
−1)`TΓ ∈ D`−1(Y∗) to each Y ∗s is closed, with class in H`−1(Y ∗s ,C)

a lift of AJY ∗s (ξ′s). Writing Ω` := dlogy1 ∧ · · · ∧ dlogy` and G(y, s) := Gs(y), we
compute

d[R̃ξ′ ] = Ωξ′ = Ω` = ResY∗ (Ω` ∧ dlogG)

= ResY∗

(
Ω` ∧ ∂G

∂s
ds

G

)
=

g∑
j=1

β′j(s)ResY∗

(
y
µ
jΩ`

G

)
∧ ds.

Since ∇∂s [AJY ∗s (ξ′s)] is represented by the interior product of d[R̃ξ′ ] with a lift of
∂/∂s, this gives the result. �

Proof of Proposition 4.16. We use the notation from §§2.5, 3.1 and take n = 4 for
concreteness (the other two cases are treated in the same way). If ξ “completes”
to Ξ, it must be in the kernel of

Resjσ̃ : CH4(X∗, 4)→ CH4−j(D∗σ̃, 4− j)

for each j = 1, 2, 3 and σ̃ ∈ ∆̃(j). By Prop. 3.5, it follows that for each σ ∈ ∆(i)
(i = 1, 2, 3),

〈
{xσ1 , . . . , xσ4−i}

〉
∈ CH4−i(D∗σ, 4− i) must be trivial.
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For an edge σ ∈ ∆(3), dim(D∗σ) = 0, and triviality of 〈{xσ1}〉 means that Fσ is
cyclotomic. This implies that αm ∈ Q̄ for m ∈ σ ∩ Zn (∀σ ∈ ∆(3)). Moreover,
since the 1-skeleton of ∆ is connected, we see that αν = 1 for every vertex
ν ∈ ∆(4).

Now let σ ∈ ∆(2) be a 2-face, and assume σ has at least one integer interior
point m0 for which αm0

/∈ Q̄. Write ` = 2, ∆′ := conv(MFσ), G0 := Fσ,
(y1, y2) := (xσ1 , x

σ
2 ), Y ∗0 = D∗σ, and ξ′0 :=

〈
{y1, y2}|Y ∗0

〉
. Taking Q̄-spreads of Y ∗0

and ξ′0 yields a family of curves Y∗S → S (defined over Q̄) over a quasi-projective
variety, with a family of trivial higher Chow cycles on the fibres. Pulling back
along a holomorphic map U → S, we are exactly in the situation of Lemma 4.17,
with at least one β′j(s) 6= 0 (from spreading αm0

). Together (a) and (b) obviously
contradict the triviality ξ′s (hence [AJY ∗s (ξ′s)]) inherits from ξ′0. We conclude that
αm ∈ Q̄ for all σ ∈ ∆(2) and m ∈ σ ∩ Zn.

It remains to consider facets σ ∈ ∆(1), where the same assumption leads via
spreading out to the setting of Lemma 4.17 (with ` = 3) and a contradiction.
Hence αm ∈ Q̄ for any m ∈ ∂∆ ∩ Zn, and since ∆ is reflexive we are done. �

5. An application to local mirror symmetry

For any reflexive polytope ∆ ⊂ Rn (n = 2, 3, 4), the total space of KP∆◦ may
be viewed as a noncompact CY (n+ 1)-fold. If we let F ∈ C[x±1

1 , . . . , x±1
n ] range

over Laurent polynomials with Conv(MF ) = ∆, then the family

YF := {F (x) + u2 + v2 = 0} ⊂ (C∗)n × C2

of (n+ 1)-folds is the mirror dual of KP∆◦ . These are CY, since the holomorphic
form

ηF := 2i ·ResYF
(∧n dlogx ∧ du ∧ dv

F + u2 + v2

)
∈ Ωn+1(YF )

yields a nonvanishing global section of the canonical bundle (i.e. KYF ). Its periods
may be interpreted in terms of regulator periods on the X∗F := {F (x) = 0} ⊂
(C∗)n. We work out this story in §5.1 and use it to compute the mirror map for
n = 2 in §5.3. Only in §5.4 (and the end of §5.1) do we once again require F to
be tempered, in order to link up with §§3, 4, 6 and study asymptotic growth of
local Gromov-Witten numbers for KP∆◦ .

5.1. Periods of an open CY 3-fold. Let XF ⊂ P∆ be the Zariski closure of
X∗F , with crepant resolution X̃F ⊂ P∆̃; denote the inclusion J : X∗F

⊂ - X̃F .
We assume F is ∆-regular, so that X̃F is smooth and the Dσ̃ reduced (∀i ≥ 1,
σ̃ ∈ ∆̃(i)). Write {x} := {x1, . . . , xn} ∈ CHn((C∗)n, n) and ξF := I∗{x} ∈
CHn(X∗F , n) for its restriction to X∗F ⊂

I- (C∗)n. We use a somewhat nonstan-
dard definition

H tr
n−1(X̃F ) := im{Hn−1(X∗F ,Q)

J∗- Hn−1(X̃F ,Q)}
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for the “transcendental part” of homology; clearly this is everything for n = 2
and contains the orthogonal complement of Pic(X̃F ) for n = 3. Also define

Kn−1(X∗F ) := ker{Hn−1(X∗F ,Q)
I∗- Hn−1((C∗)n,Q)}.

Lemma 5.1. Kn−1(X∗F ) surjects onto H tr
n−1(X̃F ); that is, every class Γ in

H tr
n−1(X̃F ,Q) has a representative γ ∈ Ztop

n−1(X∗F ;Q) that bounds in (C∗)n.

Proof. Choose an edge σ1 ∈ ∆(n − 1) and vertex ν ∈ ∆(n) on σ1. (More
precisely, we take σ̃1 ∈ ∆̃(n− 1) and ν̃ ∈ ∆̃(n) sitting “over” these.) Repeat the
construction of §4.1 so that Φν = 0 locally describes X̃F and 1 +φ1(z1) gives (up
to a constant) the edge polynomial of σ1. Fix a root r(∈ C∗) of this, define in
Ztop
n−1(X∗F ;Z)

δσ1 := {Φν = 0} ∩ {|z2| = · · · = |zn| = ε} ∩ {|z1 − r| "small"}

and notice δσ1

hom≡ 0 on X̃F . Write z1(= xσ1
1 ) =: xm(σ1).

Define projections and inclusions
(C∗)n πi // // {x ∈ (C∗)n |xi = 1} ∼= (C∗)n−1 � � ιi // (C∗)n

{xi = 1, |xj| = 1∀j 6= i} =: T̂n−1
i .

?�

OO

We can orient everything so that πi∗(I(δσ1))
hom≡ mi(σ1)T̂n−1

i ; hence I(δσ1) ≡∑n
i=1mi(σ1)ιi∗(T̂n−1

i ). Now the {m(σ1)} (taken over all such edges) generate Qn;
hence the {I(δσ1)} generate Hn−1((C∗)n−1,Q).

Given Γ ∈ H tr
n−1(X̃F ), let γ0 be a representative in Ztop

n−1(X∗F ). We may choose

an appropriate sum δ of δσ1 ’s with I(γ0)
hom≡ I(δ); clearly δ

hom≡ 0 on X̃F , and so
taking γ := γ0 − δ we are done. �

Remark 5.2. When |γ0| ⊆ X∗F ∩ {Rn or (iR)n}, I(γ0) bounds on (C∗)n without
modification by a δ. [Proof: For any cycle Z on (C∗)n, Boxn(Z) := Z +∑n

k=1(−1)k
∑
|I|=k(ιI ◦ πI)∗Z

hom≡ 0; since Hn−1((C∗)j<n−1) = 0, it follows that
I(γ0)−

∑n
i=1(ιi◦πi)∗I(γ0) bounds (in (C∗)n). But if γ0 has real support then each

(πi)∗I(γ0) “cancels itself out”, being of the same real dimension as the real part of
the target (=disjoint union of copies of (R+)n−1).] This is essentially used for the
real, nonvanishing cycle L0 (for real t near 0) in Appendix A of [Ho]. However,
the procedure (employed there) of “bounding” the vanishing cycles {Kj} with
noncompact membranes is unnecessary in view of Lemma 5.1, and also incorrect
in homology.

Lemma 5.3. If γ ∈ Ztop
n−1(X∗F ;Z) has I(γ) = ∂µ, for µ ∈ Ctop

n ((C∗)n;Z), then∫
γ

R(ξF ) ≡
∫
µ

∧ndlogx mod Z(n).
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Figure 5.1.
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Proof. On (C∗)n,
∧n dlogx = d[R{x}]± (2πi)nδTx , and so

∫
µ

∧ndlogx ≡
∫
µ

d[R{x}] =

∫
∂µ

R{x} =

∫
γ

I∗R{x}.

�

We want to construct cycles in Ztop
n+1(YF ) over which to integrate ηF . Consid-

ering YF as a fiber bundle over (C∗)n, we have (for n = 2) the picture displayed
in Figure 5.1. In a topological sense, we may view Y as the disjoint union of an
S1-bundle over (C∗)n with a copy of X∗F . More precisely, if P : YF -- (C∗)n
sends (x, u, v) 7→ x, then

x ∈ (C∗)n \X∗F =⇒ P−1(x) ∼= C∗ (homotopic to S1)

x ∈ X∗F =⇒ P−1(x) ∼= {u2 + v2 = 0} =: W = W1 ∪W2

where Wi
∼= A1

C. In fact, YF ⊃ X∗F × W and we can write W = W1 q W ∗
2

(W ∗
2 := W2 \ {(0, 0)}); the complement YF \ (X∗F ×W1) is then homotopic to

(C∗)n × S1.
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Consider the long-exact sequence

(5.1)

Hn(YF \X∗F ×W1) ∼=
//

OO

Hn−1((C∗)n)⊕Hn((C∗)n)

Hn−1(X∗F ×W1) ∼=
//

tube

OO

Hn−1(X∗F )

(I∗,0)

OO

Hn+1(YF )

∩

OO

Hn+1(YF \X∗F ×W1)
"forget S1"

∼=
//

OO

Hn((C∗)n)

Hn(X∗F ×W1)

tube

OO

∼=
// Hn(X∗F ).

I∗=0

OO

OO

The bottom I∗ is 0 because the dual map [F n]Hn((C∗)n) → Hn(X∗F ) must be,
as dim(X∗F ) = n − 1 =⇒ F nHn(X∗F ) = {0}. The Hn−1(X∗F ) → Hn((C∗)n)
is essentially the composition of Tube : Hn−1(X∗F ) → Hn((C∗)n \ X∗F ) with
Hn((C∗)n \X∗F )→ Hn((C∗)n); it is 0 for a similar reason.

Using any T̂nν,ε ∈ Ztop
n ((C∗)n \X∗F ) (see §4.1) and the topological “S1-bundle”

structure of YF \ (X∗F ×W1), gives a cycle T̂n+1
Y ∈ Ztop

n+1(YF ). Now (5.1) becomes
the short-exact sequence

Q
〈
T̂n+1
Y

〉
→ Hn+1(YF )→ Kn−1(X∗F ).

To construct explicitly an isomorphism

M : Kn−1(X∗F )→ Hn+1(YF )
/
Q
〈
T̂n+1
Y

〉
,

let γ, µ be as in Lemma 5.3 (Q-coefficients). The cycle (representing) M(γ)
will have support in P−1(|µ|), with S1-fibers over Int|µ| and point fibers over
|∂µ| = |γ|. More precisely, M(γ) ∩ P−1(x) (for x ∈ |µ|) is given by

V ∈ [−
√
|F (x)|,

√
|F (x)|] , v = e

i
2

arg(−F (x))V , u = ±
√
−(v2 + F (x)).

Note that Q
〈
T̂n+1
Y

〉
absorbs the ambiguity arising from the choice of µ.

Lemma 5.4. For γ, µ as in Lemma 5.3,∫
M(γ)

ηF = 2πi

∫
µ

∧ndlogx .

Moreover,
∫
T̂n+1
Y

ηF = (2πi)n+1.
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Proof. Writing u′ := u + iv, v′ := u − iv, we have (away from v′ = 0) ηF =

ResYF

(∧n dlogx ∧ du′∧dv′
F (x)+u′v′

)
=
∧n dlogx ∧ dlogu′. The result is now immediate (by

integrating “first” over the S1 fibers of M(γ)). �

Lemmas 5.3 and 5.4 imply the following

Proposition 5.5. The periods of ηF are precisely the C → C/Q(n + 1) lifts of
the 2πi

∫
γ
R(ξF ) for γ ∈ Kn−1(X∗F ), including the lifts (2πi)n+1Q of 0.

If we now assume F = F̂ is tempered,47 then ξF̂ comes from some ΞF̂ ∈
CHn(X̃F̂ , n), and so R(ξF̂ ) has no residues to separate periods over γ1, γ2(∈
Kn−1) with J∗γ1 = J∗γ2. Therefore (using Lemma 5.1), we get

Corollary 5.6. The periods of ηF̂ may be expressed in terms of the regulator
periods of “transcendental cycles”:

∫
(·) ηF̂ is the composition

Hn+1(YF̂ )

M(ker(J∗) ∩ Kn−1) +Q
〈
T̂n+1
Y

〉 M−1

∼=
- Kn−1(X

∗
F̂
)

ker(J∗) ∩ Kn−1

Lemma 5.1
∼=
- Htr

n−1(X̃F̂ )
2πi

∫
(·) R(Ξ

F̂
)
- C/Q(n+1).

In particular, if we put ourselves in a 1-parameter family setting F̂ = 1−tφ(x)
for φ as in §2, then Corollaries 4.5 and 5.6 beget

Corollary 5.7. The D-submodule of Hn−1

X̃t
generated by [ω̃t] is a quotient of the

submodule of Hn+1
Yt

generated by [ηt], via

∇(Y,η)
PF = ∇(X̃,ω̃)

PF ◦ ∇δt .

Remark 5.8. If ϕ̃0 is a vanishing cycle (as in §4), with Kn−1 3 ϕ0
J∗- ϕ̃0, then

by Theorem 4.3 and Corollary 5.6∫
M(−ϕ0)

ηt∫
T̂n+1
Y

ηt
=
−2πi

∫
ϕ̃0
R(Ξt)

(2πi)n+1
=

Ψ(t)

−(2πi)n
∼ log t

2πi

as t→ 0. So this period ratio is custom-made for defining a mirror map.

5.2. The canonical bundle as a CY toric variety. We specialize to the case
n = 2 for the remainder of the section. Let ∆ ⊂ R2 be a reflexive polytope with
vertices ν(1), . . ., ν(r+2) numbered counter-clockwise. Together with ν(0) = {0},
these are the “relevant integral points” of ∆ (any interior points of edges are
excluded). We have a (partial) triangulation tr(∆) using the segments s(k) =
[ν(0), ν(k)], and write ν(i,j) := ν(j) − ν(i).

A fan Σ∆ is obtained by taking cones on tr(∆) × {1} ⊂ R3. The generators
of Σ∆(1) are {ν̂(0), . . . , ν̂(r+2)} where ν̂(k) = (ν(k), 1). The associated toric variety
Y ◦ is the total space of KP∆◦

ρ- P∆◦ . The line bundle KY ◦ is trivialized by
a [global nonvanishing] “tautological section”, making Y ◦ an open CY 3-fold. If
edges of ∆ have interior integral points u(`) then Y ◦ is singular (but normal).

47plus additional assumptions for n = 4 (cf. Theorem 3.8)
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Figure 5.2.
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edge 2
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ν
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When we refer to the “singular case” resp. “smooth case” below, this is what is
meant.

The curves C◦i ⊂ Y ◦ dual to subfans Σs(i) are in 1-1 correspondence with
edges of ∆◦, and are supported on the “0-section” D◦0 ∼= P∆◦ ⊂ Y ◦. The [C◦i ]
generate H2(Y ◦,Z), and the Mori cone (of effective curves) in H2(Y ◦,R) is just
obtained by taking R≥0-linear combinations of them. We assume henceforth that
the Mori cone with this integral structure is smooth (cf. [CK], p. 32; this implies
simplicial). A simple example where both Y ◦ and Mori are smooth is shown in
Figure 5.2.

The divisors D◦i dual to subfans Σν(i) , i = 0, . . . , r+ 2, generate H2(Y ◦,Q). If
P∆◦ (and Y ◦) are smooth then the D◦i = ρ−1(C◦i ). Otherwise, using the u(`) to
refine Σ∆ yields the crepant resolution Y ◦ �p̂ Ỹ ◦ over P∆◦

�p P∆̃◦ . Denote the
exceptional divisors E◦` (for p) and Ê◦` := ρ̃−1(E◦` ) (for p̂); we have H2(Y ◦,Q) ∼=
ker{H2(Ỹ ◦)→ H2(∪Ê◦` )}. Writing C̃◦i = p∗C◦i for the proper transforms, the Di

are then represented by cycles on Ỹ ◦ of the form D̃◦j := ρ̃−1(C̃◦i ) +
∑

` β
i
`Ê
◦
` for

βi` ∈ Q satisfying (C̃◦i +
∑
βi`E

◦
` ) · E◦k = 0 ∀i, k.

Intersections Mij :=
〈
C◦i , D

◦
j

〉
under the pairing H2(Y ◦) × H2(Y ◦) → Q are

then computed by C̃◦i · D̃◦j . These need not be integers (see [Fu1]) but the matrix
[Mij]i,j≥1 is symmetric. TheKähler cone is the dual of Mori in H2(Y ◦,R) under
this pairing; it is represented by divisors {D =

∑
αjDj | 〈Ci, D〉 ≥ 0 (∀i)}.

In general we have in H2(Y ◦)

D◦0 ≡ −
∑
i≥1

D◦i ≡ ρ−1(KP∆◦ ) ≡ −ρ
−1(X◦)

where X◦ is any anticanonical (elliptic curve) hypersurface in good position with
respect to D∆◦ . Writing di − 1 := number of interior points of the edge of ∆◦

dual to ν(i), we have (i ≥ 1)

−〈C◦i , D◦0〉Y ◦ = 〈C◦i , X◦〉P∆◦
= di.

Put ei−1 := number of interior points on the edge “next” (in the counterclockwise
direction) to ν(i). We are in the singular case iff some ei > 1.
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We are interested in a very explicit (and standard) presentation of the Mori
cone: first, we write down generators for the integral relations on the ν̂(i) as
follows. For any k ∈ {1, . . . , r + 2}, let48 `(k)

k−1ν̂
(k−1) + `

(k)
k+1ν̂

(k+1) be the minimal
Z+-linear combination lying in the line containing s(k), and then choose `(k)

k ∈ Z,
`

(k)
0 ∈ Z≤0 such that

(5.2) `
(k)
0 ν̂(0) + `

(k)
k−1ν̂

(k−1) + `
(k)
k ν̂(k) + `

(k)
k+1ν̂

(k+1) = 0.

Remark 5.9. One can show that these take the form

`
(k)
0 =

−ekek−1dk
e(k,k−1)

, `
(k)
k−1 =

ek
e(k,k−1)

, `
(k)
k =

ekek−1dk − ek − ek−1

e(k,k−1)
, `

(k)
k+1 =

ek−1

e(k,k−1)
,

where e(k,k−1) := gcd(ek, ek−1).

This procedure determines a vector `(k) ∈ Zr+3 with

dk`
(k)
j = −`(k)

0 Mkj =
〈
−`(k)

0 C◦k , D
◦
j

〉
.

(In the smooth case, dk = −`(k)
0 .) That is, the relations vectors `(i) are essentially

the rows of M with denominators cleared; write L for the new matrix.
The Mori cone can be represented by the R≥0-span M ⊂ Rr+3 of rows of

L; by our above assumption (on Mori), M is simplicial. However, the integral
structures may not be the same in the “singular case”, soM may not be smooth.
More concretely, write M := {R-span of `(i)} ⊂ Rr+3, with integral lattice MZ =
M ∩ Zr+3, andMZ =M∩MZ. Then the affine toric variety

U∆ := Spec {C[am |m ∈MZ]}

is just Ar in the smooth case but can be singular in the singular case.
Using the fact thatM is simplicial, take the {`(ik)}rk=1 which cannot be written

as R≥0-linear combinations of the other {`(j)}. (In the singular case, if any `(i)

are the same, we choose the one for which the “dual” di is minimized.) Note
thatM is smooth iff Z≥0

〈
{`(ik)}

〉
is all ofMZ. Next, let αik ∈ Q be such that

J◦m :=
∑r+2

j=1 α
j
mD

◦
j satisfy

〈
C◦ik , J

◦
m

〉
Y ◦

(
=

r+2∑
j=1

αjm

∣∣∣∣∣ dik`
(ik)
0

∣∣∣∣∣ `(ik)
j

)
= δkm.

(That is, if we omit a couple of rows from L, the {αjm} give linear combinations
of the columns that yield êm ∈ Rr.) These {J◦m} then generate the Kähler cone.
We have

∑
dikJ

◦
k ≡ −D◦0 since

∑
k dik

〈
C◦ij , J

◦
k

〉
= dij = −

〈
C◦ij , D

◦
0

〉
.

Remark 5.10. The {αjm} are nonnegative, since the Kähler cone lies in the effec-
tive divisor cone, see [CK]. It follows thatMZ ⊇M ∩ (Z≥0)r+3.

48`
(k)
k−1 is replaced by `(k)

r+2 for k = 1, and `(k)
k+1 by `(k)

1 for k = r + 2.
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Now we use this construction to identify the complex structure moduli we will
use, for the anticanonical hypersurface Xa given by the Zariski closure of

Fa(x) :=
r+2∑
i=0

aix
ν(i)

= 0

in P∆. The coordinate patch in simplified polynomial moduli space Msimp (cf.
[CK]) on which it is natural to work is just U∆, with coordinates

tk := a`
(ik)

, k = 1, . . . , r.

In the singular case, to parametrize U∆ one really needs all r+2 of the a`(i) =: si
together with their relations, but the functions we consider will be defined in
terms of the {tk}. Moreover, the inclusion of MZ into the true Mori integral
lattice (generated by the {C◦ik}) defines a smooth finite cover Ar ∼= Ũ∆ → U∆

with coordinates {t̃k} satisfying (t̃k)
µk = tk, for µk :=

|`(ik)
0 |
dik

=
eikeik−1

e(ik,ik−1)
. This is

where we really want to work.

5.3. Construction of the mirror map via regulator periods. The family
Ya := {u2 + v2 + Fa(x) = 0} ⊂ (C∗)2 × C2 treated (in greater generality) above,
with holomorphic form ηa, is considered to be the mirror of KP∆◦ . This is in part
because its periods satisfy the relevant GKZ equations Dk(·) = 0.49 The Dk are
essentially the push-forwards, under the map (C∗)r+3 → (C∗)r given by a 7→ t,
of

D̃k =
∏

{j | `(ik)

j >0}

∂
|`(ik)

j |
aj −

∏
{j | `(ik)

j <0}

∂
|`(ik)

j |
aj .

In view of Proposition 5.5, we will work instead with regulator periods on X∗a
to construct the (inverse of the) mirror map. This will be a map from complex
structure parameters t̃ to complexified Kähler parameters

(5.3) Ũ∆ ⊃ P̃ ///o/o/o/o/o/o/o {Z 〈{J◦k}
r
k=1〉 ⊂ H1,1(Y ◦,Q)} ⊗Z (C/Z),

where P̃ → P → D∗ε(0)×r are small punctured polycylinders centered at 0 in
Ũ∆ → U∆ → Ar.

We will follow the method of §§4.1 − 2 for computing these periods, taking
ν := ν(j) and z1 := xe

−1
j ν(j,j+1)

(see beginning of §4.1). The local affine equation
of X̃a is then given by

(fa(z) + a0)z1z2 = aj + aj+1z
ej
1 + φ2(z1, z2) + a0z1z2 = 0,

where φ2(z1, 0) = 0. Assuming 0 < |ai| � |a0| (∀i) [hence 0 < |tk| � 1 (∀k)],
consider the family of cycles

ϕ̂
(j)
0 := {|z1| = ε , |z2| ≤ ε} ∩ X̃a ⊂ X∗a .

49For a more thorough conceptual treatment of local mirror symmetry, the reader is encour-
aged to consult [CKYZ], [dOFS], [Ho].
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This may be thought of as a vanishing cycle being pinched to the “point at vertex
ν(j)” as aj → 0.

As in §4.2 we set (working integrally)

ξa := {x1, x2} ≡ {(−1)σjz1, (−1)σj−1z2} ∈ CH2(X∗a , 2)

where σj :=

∣∣∣∣ν(j,j+1)
1 ν

(j,j+1)
2

e2j

∣∣∣∣ gives essentially the sign from Remark 3.14.

In CH3((C∗)2 \X∗a , 3) we define

ξ̂a := {a0 + fa(z), (−1)σjz1, (−1)σj−1z2}

≡
{

(−1)σj+σj−1(aj + aj+1z
ej
1 +O(z2)), (−1)σjz1, (−1)σj−1z2

}
.

This has residue ξa along X̃a, so that 1
2πi
AJ(ξa)(ϕ̂

(j)
0 ) =

1

(2πi)2
AJ(ξ̂a)(|z1| = |z2| = ε)− 1

2πi
AJ(Res1

{z2=0}ξ̂a)(|z1| = ε) =∫
|z1|=|z2|=ε

log(a0 + fa(z))
dlog(z1)

2πi
∧ dlog(z2)

2πi

−
∫
|z1|=ε

log((−1)σj+σj−1(aj + aj+1z
ej
1 ))

dlog(z1)

2πi
=

log(a0)−
∑
k≥1

1

k

[(
− 1

a0

fa(z)

)k]
0

− log((−1)σj+σj−1aj) =

(5.4) − log

(
(−1)σj+σj−1

aj
a0

)
−H(a).

Here [·]0 takes the terms constant in z1, z2. Now in the smooth case (essentially
following pp. 160-1 [CK])

H(a) =
∑
m≥1

1

m

∑
`1,...,`r+2

(
∑
`j)!∏

(`j!)
·
∏
a`ii

(−ai)
∑
`i

=
∑
m≥1

1

m

∑
n1,...,nr

(
∑
nk|`(ik)

0 |)!∏
j(
∑
nk`

(ik)
j )!

·
∏
k

((−1)`
(ik)
0 tk)

nk .

The first big
∑

is over non-negative integers {`j} satisfying
∑
`j = m,

∑
`jν

(j) =

0; the second is over integers {nk} with
∑
nk`

(ik) ∈ Z×(Z≥0)r+2 and
∑
nk|`(ik)

0 | =
m. By Remark 5.10 we can take these nk ≥ 0, and so H is holomorphic (and
well-defined) in a neighborhood of 0 in U∆. In the singular case, we replace∑

n1,...,nr
by a sum over M ∩ (Z≥0)r+3 (which involves non-redundant choices of

{ni}r+2
i=1 ) and use all the `(i) and si (not just the `(ik) and tk). The resulting H

is defined on U∆ and pulls back to a holomorphic function on Ũ∆. Henceforth it
will be written H(s).
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Clearly the “log”-term of (5.4) makes no sense on U∆ or even Ũ∆; this reflects
the fact that ξa is not invariant under the action of the torus (C∗)2. But the
periods of R{x1, x2} over cycles in

K(X∗a) := ker{H1(X∗a ,Z)→ H1((C∗)2,Z)}
are torus-invariant, and r distinguished vanishing cycles in K(X∗a) are given
by

ϕ
[k]
0 := −

r+2∑
j=1

`
(ik)
j ϕ̂

(j)
0 , k = 1, . . . , r .

The map H1(X∗a) -- H1(X̃a) induced by inclusion sends ϕ[k]
0 to `(ik)

0 times a
primitive vanishing cycle ϕ̃0. If ϕ1 ∈ K(X∗a) is a lift of a complimentary gener-
ator −ϕ̃1, then AJ(ξa)(ϕ1) and the AJ(ξa)(ϕ

[k]
0 ) form a Q-basis for the periods

(modulo Q(2)) of AJ(ξa) = [R{x, y}] over cycles in K(X∗a). One should view the
ϕ

[k]
0 as differing by loops around points of D ⊂ X̃a, hence the AJ(ξa)(ϕ

[k]
0 ) as

differing by residues.
Now we slightly change our notation to bring it in line with [Ho]. Write

(multivalued) functions of t

w̃(0) := (2πi)3 =

∫
T̂3
Y

ηa ,

w̃
(1)
k := 2πiAJ(ξa)(ϕ

[k]
0 ) =

∫
M(ϕ

[k]
0 )

ηa ,

w̃(2) := 2πiAJ(ξa)(ϕ1) =

∫
M(ϕ1)

ηa ,

and normalize these by setting w(·)
· := w̃

(·)
· /w̃(0).

Theorem 5.11. The w(1)
k are well-defined C/Z-valued functions on P, given by

1
2πi

times
log ((−1)εktk) + |`(ik)

0 |H(s),

where εk :=
∑r+2

j=1(σj + σj−1)`
(ik)
j .

Definition 5.12. The (inverse) mirror map (5.3) is given by

(t̃1, . . . , t̃r) 7−→
r∑

k=1

J◦k ⊗W
(1)
k (t̃),

where W (1)
k (t̃) := 1

µk
w

(1)
k (s(t̃)).

Remark 5.13. (i) [Ho] considers the (conjectural!) map

mir : Kc(Y ◦)→ H3(Y,Z)

arising from Kontsevich’s homological mirror symmetry conjecture, and proposes
that one should have T̂3

Y = mir(Opt.), 1
µk
M(ϕ

[k]
0 ) = mir(OC◦ik (−J◦k )), M(ϕ1) =

mir(OD0).
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(ii) Set δT :=
∑r

j=1 |`
(ij)
0 |δtj . The W (1)

k are logarithmic integrals of periods of

ωa := Res

(
dx1
x1
∧ dx2
x2

Fa(x1,x2)

)
in the (limited) sense that

δTW
(1)
k =

dik
(2πi)2

∫
ϕ̃0

ωa

for each k. We also write (after [CKYZ]) ∂S :=
∑r

k=1 dik∂W (1)
k
.

5.4. Growth of local Gromov-Witten invariants. Define (on P̃) the Gromov-
Witten prepotential

Floc(W (1)) :=
1

2

∑
j,`

〈
J◦j |P∆◦ , J

◦
`

〉
W

(1)
j W

(1)
` + { lower-order

terms }(W (1))

−
∑

k1,...,kr

(
r∑
j=1

dijkj

)
Nk1,...,krQ

k1
1 · · ·Qkr

r ,

whereQj := exp(2πiW
(1)
j ) andNk is the genus zero (local) G-W invariant “count-

ing rational curves in [the total space of] KP∆◦ ” of homology class
∑
kj[C

◦
ij

] ∈
H2(Y ◦,Z). (See [Li] §6.1 for a precise definition.) [CKYZ] originally obtained
(essentially) this expression by writing a compact CY 3-fold X (with prepoten-
tial F) as a torically described elliptic fibration over P∆◦ , and taking the limit of
[a suitable partial of] F under degeneration of the fiber. Morally, the resulting
(local) Nk were supposed to measure the contribution of the zero-section P∆◦ to
G-W invariants of X.

Here then is the fundamental local mirror symmetry prediction:

Conjecture 5.14. ([CKYZ],[Ho]) For a suitable choice of ϕ1,

(5.5) Floc(W (1)) = w(2)(t̃)

under the mirror map.

To summarize: the first regulator period yields the mirror map; the second
gives the prepotential.

We will now pull (5.5) back to a “diagonal slice” of P̃ where residual differences
between the w(1)

k vanish. Write

(5.6) φ :=
r+2∑
j=1

αjx
ν(j)

, Fφ,t(x) := 1− tφ(x);

this gives a0 = 1, aj = tαj,

tk = (−1)`
(ik)
0

(
r+2∏
j=1

α
`
(ik)

j

j

)
t|`

(ik)
0 |.

If we further set

(5.7) αj := (−1)σj+σj−1+1,
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then tk(t) = (−1)εkt|`
(ik)
0 |, and the “slice” is given by t̃k(t) := ζkt

dik (ζk = some
root of unity with µ th

k power (−1)εk ; the choice won’t affect calculations). The
pullback of W (1)

k (t̃) under t 7→ t̃(t) is then simply

W
(1)
k (t) =

dik
2πi
{log t + H(t)} =: dikw

(1)(t),

where H(t) (:= H(s(t))) can frequently be easier to determine than H(s).
So the map of families {Fφ,t(x) = 0} → {Fa(x) = 0}/(C∗)3 induces a “di-

agonal” embedding D : w(1) 7→ (di1w
(1), . . . , dirw

(1)) of Kähler moduli. Clearly
D∗ ◦ ∂S = ∂w(1) ◦D∗, and by (5.5)

D∗Floc(W (1)) = w(2)(t(w(1)));

it follows that

(5.8) D∗∂2
SFloc(W (1)) =

(
d

dw(1)

)2

w(2)(t(w(1))).

For the l.h.s. of (5.8),

∂2
SFloc =

∑
j,`

dijdi`
〈
J◦j |P∆◦ , J

◦
`

〉
Y ◦
−(2πi)2

∑
k1,...,kr

(
r∑
j=1

dijkj

)3

Nk1,...,krQ
k1
1 · · ·Qkr

r

= 〈−KP∆◦ ,−KP∆◦ 〉P∆◦
− (2πi)2

∑
D≥1

D3
∑

{k |
∑
dij kj=D}

NkQ
k.

Thinking of k as the homology class
∑
kj[C

◦
ij

] ∈ H2(Y ◦) = H2(P∆◦), we have
〈k,X◦〉P∆◦

=
∑
kjdij ; hence applying D∗ yields

r+2∑
i=1

di − (2πi)2
∑
D≥1

D3

 ∑
{k | 〈k,X◦〉=D}

Nk

QD

where Q = exp(2πiw(1)). Note that the constant term just records the number
of components N0 of the singular fiber of the diagonal family at t = 0 (after
a minimal desingularization of the total space). We also rechristen the sum in
parentheses N 〈X

◦〉
D . It would be very interesting to have an interpretation of these

numbers in terms of X◦ alone,50 since the mirror map is defined only in terms of
X (not Y ).

For the r.h.s. of (5.8), write π(1) and π(2) for the periods
(2πi)2 of ωt := ResXφ,t

(∧
dlogx
Fφ,t

)
;

then δtw(`)(t) = π(`)(t) (` = 1, 2). So we have

d

dw(1)
w(2) =

δtw
(2)

δtw(1)
=
π(2)

π(1)
,

50To venture out on a limb, can one suitably define a class in K2 of (the nerve of) the
Fukaya category (of X◦), which completes X◦ to a datum “mirror” to the family {Xt} together
with {ξt ∈ K2(Xt)}? Is there then a “regulator” of this class which pairs with OD0

|X◦ (recall
M(ϕ1)’s conjectural mirror is OD0

) to yield the prepotential Floc?
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and applying one more d
dw(1) yields

δt

(
π(2)

π(1)

)
δtw(1)

=
π(1)δtπ

(2) − π(2)δtπ
(1)

(π(1))3
.

Writing this in terms of functions from §§4.1, 4.3 for the diagonal family X̃φ,t

(and dividing l.h.s. and r.h.s. by (2πi)2), we have the following equality of a
G-W generating function and Yukawa coupling

(5.9)
N0

(2πi)2
−
∑
D≥1

D3N
〈X◦〉
D QD =

Y(t)

(A(t))3

under the mirror map. The latter is just the local analytic isomorphism t 7→ Q(t)
[Q(0) = 0], extending at least to D|t0|. (Recall X̃φ,t0 is the singular fiber nearest
t = 0 in the punctured diagonal family.) The r.h.s. of (5.9) blows up at t0
since Y(t) ∼ 1

t−t0 and A(t) ∼ log(t − t0) (up to constants) for t → t0. Hence
the l.h.s. series has radius of convergence51 |Q(t0)| = exp{<(2πiw(1)(t0))} =
exp{ 1

2π
=(Ψ(t0))} where Ψ(t) = (2πi)2w(1)(t).

Theorem 5.15. Let ∆ be a reflexive polytope ⊆ R2 such that the Mori cone of
Y ◦ := KP∆◦ is smooth, determine φ(x) by (5.6), (5.7), and let Ψ(t) and |t0| be
as in Corollary 4.7. Assume Conjecture 5.14. Then the local Gromov-Witten
invariants of Y ◦ have exponential growth-rate

(5.10) lim sup
D→∞

|N 〈X
◦〉

D |
1
D = e

−1
2π
=(Ψ(t0)).

Remark 5.16. (i) In §6 we will describe a procedure for computing the “regulator
period” Ψ(t0) on a singular elliptic fiber of Kodaira type In. This identifies with
the image of an indecomposable K3 class under the composition

Kind
3 (Q̄) ∼= H2

M,hom(X̃t0/Q̄ , Q(2))
AJ2,2
- H1(X̃t0 ,C/Q(2)) ∼= C/Q(2),

which (after taking the imaginary part) coincides (up to a factor of 2) with the
Borel regulator. This explains the occurrence of Dirichlet L-functions in results
of [MOY] related to (5.10). (We will be more precise about the field of definition
in §6.)

(ii) Equation (5.9) gives, for t = 0, the correct value Y(0) = 2πiN0.

Finally, we want to explain how “reasonable” assumptions on the {N 〈X
◦〉

D } lead
to a more precise characterization of their growth. (The argument is similar to
that in [CdOGP] but more rigorous.) Let d := gcd{di | i = 1, . . . , r + 2}, put
Ψ̃(t) = d · {Ψ(t)−<(Ψ(t0))}, and define “normalized” quantities

ÑD := −d3N
〈X◦〉
d·D e−i

d·D
2π
<(Ψ(t0)) , Q̃ := exp{−i

2π
Ψ̃(t)}.

51If there is more than one t0 of minimal modulus, one should of course pick the one that
minimizes |Q(t0)|; but in every case we have tested, symmetry ensures that this is independent
of the choice.
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Reindexing, (5.9) becomes

−N0

4π2
+
∑
D≥1

D3ÑDQ̃
D =

Y(t)

A3(t)
;

and we assume

(a) the ÑD are uniformly positive (or negative) for sufficiently large D.

Next define nD (> 0) by

ÑD = ±e
−D
2πi

Ψ̃(t0)D−3nD,

and assume that

(b) limD→∞ nD log2D exists (in the extended reals R≥0 ∪ {∞}),

i.e. that the ÑD “do not oscillate too much” in the limit.
Now asymptotically as t → t0 (keeping t − t0 ∈ R and |t| < |t0|), π(1) ∼
−mπ(2)(t0) log |t−t0|

2πi
(where m ∈ Z+ is essentially the number of components

of Xt0); logarithmically integrating this, we have x := 1
2πi

(Ψ̃(t0) − Ψ̃(t)) =
d

2πi
(Ψ(t0) − Ψ(t)) ∼ d · m · π(2)(t0)

(
t
t0
− 1
)

log |t − t0|. This implies the r.h.s.
of

(c) ±
∑

D≥1 nDe
−Dx = Y(t)

A3(t)
+ N0

4π2

is asymptotic to d
mx log2(t−t0)

∼ d
mx log2 x

, where we can replace t→ t0 by x→ 0+.
We need a result from Laplace Tauberian theory.

Lemma 5.17. Given a sequence {nk} of real numbers satisfying
(a’) nk positive (or at least nk ≥ − C

log2 k
for some C > 0)

(b’) limn→∞ nk log2 k exists (finite or infinite)
(c’)

∑∞
k=0 nke

−kx ∼ 1
x log2 x

as x→ 0+.
(Here (a’) is the “Tauberian” hypothesis.) Then nk ∼ 1

log2 k
as k → ∞. That is,

nk log2 k → 1.

Proof. For mk :=


1, k = 0
0, k = 1
1

log2 k
, k ≥ 2

, it is an exercise in elementary analysis to

prove
∑∞

k=0mke
−kx ∼ 1

x log2 x
(x → 0+), e.g. in the form

limy→∞
∑∞

k=2
1
y

(
log2 y
log2 k

− 1
)
e−

k
y = 0. Now let N(k), M(k) be the respective kth

partial sums of nk, mk, viewed as functions on R≥0. Hypothesis (c’) obviously
implies

∫∞
0
e−kxdN(k) ∼

∫∞
0
e−kxdM(k) (for x→ 0+) and then (using (a’)) [Fr]

gives N(k) ∼M(k) for k →∞. Hypothesis (b’) says limk→∞
nk
mk

exists (finite or
+∞), in which case it must equal limk→∞

N(k)
M(k)

, which is 1. �

In our situation this yields nD ∼ d
m log2 D

, hence the following result:
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Corollary 5.18. Under assumptions (a) and (b) above (and the conditions of
Theorem 5.15), the “normalized” G-W invariants have asymptotic behavior

ÑD ∼ ±
d

m

exp{−D·Ψ̃(t0)
2πi
}

D3 log2D

for D →∞.

Remark. It seems likely that one could use a Fourier Tauberian argument to
eliminate the assumptions.

6. First examples: limits of regulator periods

A well-traveled road in dealing with computations for 1-parameter families
of varieties is to attempt to recognize “modularity” in some suitable sense. For
example, this approach was employed in [Do1, Do2] to describe mirror maps and
Picard-Fuchs equations for families of CY’s. Here (in §10) we use it, for the
families (and higher cycles) produced by Theorem 3.8, to compute the cycle-
class, higher normal function, and regulator periods — especially their limiting
values at cusps. The central purpose of this section, in contrast, is to illustrate
a procedure inspired by [Bl2] for computing these “special values” of Ψ(t) (at
singular fibers), that does not rely on modularity. This leads to a formula (Prop.
6.4) for essentially the Ψ̃(t0) of Thm. 5.15/Cor. 5.18, which we apply to some
key examples in §6.3. Throughout this section X̃− is as in Theorem 3.8 (so that
Ξ and Ψ have the established meaning).

6.1. AJ map for singular fibers. Fixing α ∈ L∗, write X̃α =: Y = ∪Yi with
Yi irreducible,52 ϕ̃α =

∑
ϕi for ϕi ∈ Ctop

n−1(Yi); and assume Ξ ∈ Zn
∂B−cl.

(X̃−, n)Y
so that the Ξi := Ξ ·Y are defined. Our first goal is to verify the claim from §4.2
(cf. the discussion leading up to Corollary 4.7) that

(6.1) AJ(Ξα)(ϕ̃α) =

∫
ϕ̃α

RΞ =
∑
i

∫
ϕi

RΞi ;

to this end we review briefly the computation of AJ(Ξα) from §8 of [KL]. The
(somewhat technical) general conditions under which it (hence (6.1)) is valid are
described in loc. cit. following Prop. 8.17, and allow for all singular curves, as
well as any local-normal-crossing or nodal singularities.

Here we shall focus on the case Y = NCD, writing YI := ∩i∈IYi, Y [j] :=
q|I|=j+1YI , and Y I for the collection {YJ∩YI}J∩I=∅ of subsets of YI . This “hyper-
resolution” of Y gives rise to 4th quadrant double-complexes

Z`,m
Y (n) := Zn(Y [`],−m)#

:= ⊕|I|=`+1
Zn
R(YI ,−m)

Y I

∂B : Z`,m
Y (n)→ Z`,m+1

Y (n)

I : Z`,m
Y (n)→ Z`+1,m

Y (n)

∣∣∣∣∣∣∣∣
CY
`,m(n) := Ctop

2n+m−1(Y [`];Q)
(piecewise C∞ chains)

∂top : CY
`,m(n)→ CY

`,m−1(n)
Gy : CY

`,m(n)→ CY
`−1,m(n)

52We do not require that π̃−1(α) =
∑
miYi to be reduced, here or in the Y = NCD case.
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where I (resp. Gy) is the alternating sum (cf. loc. cit. for signs) of pullbacks
(resp. pushforwards). These have associated simple complexes/total differen-
tials/(co)homology

Z•Y (n) := s•Z•,•Y (n)
∂B := ∂B ± I

H∗(Z•Y (n)) ∼= H2n+∗
M (Y,Q(n))

∣∣∣∣∣∣
CY
• (n) := s•C

Y
•,•(n)

∂top := ∂top ±Gy
H∗(C

Y
• (n)) ∼= H2n+∗−1(Y )

.

The KLM currents (Z 7→ TZ,ΩZ, RZ) give a map of complexes (described in full
in loc. cit.) inducing an Abel-Jacobi map from H2n+∗

M (Y,Q(n)) to

H2n+∗
D (Y,Q(n))

∗<0∼= Ext1
MHS

(Q(0), H2n+∗−1(Y,Q(n)))
∗≤−n∼= H2n+∗−1(Y,C/Q(n)).

For ∗ = −n in particular, this is

(6.2) AJn,nY : Hn
M(Y,Q(n))→ Hom(Hn−1(Y,Q),C/Q(n)).

To compute this for dim(Y ) = n− 1, let

(6.3)
Z =

∑
`{Z[`] ∈ Zn

R(Y [`], n+ `)} ∈ {ker(∂B) ⊂ Z−nY (n)}
γ =

∑
`{γ[`] ∈ Ctop

n−`−1(Y [`];Q)} ∈ {ker(∂top) ⊂ CY
−n(n)},

with each γ[`] (resp. Z[`]) decomposing into {γI}|I|=`+1 (resp. {ZI}|I|=`+1). Then

(6.4) AJn,nY (Z)(γ) ≡
∑
`≥0

∫
γ[`]

RZ[`] =
∑
`≥0

∑
|I|=`+1

∫
γI

RZI

gives a well-defined pairingH−n(Z•Y (n))×H−n(CY
• (n))→ C/Q(n). Now consider

the map
I∗Y : Zn

R,∂B−cl.
(X̃−, n)Y → {ker(∂B) ⊂ Z−nY (n)}

given by restricting to the irreducible components of Y . That is, if Z = I∗Y Ξ
then Z[0] is the collection {ι∗YiΞ} while Z[`] = 0 for ` > 0. Let γ be the ∂top-

cycle corresponding to ϕ̃α: i.e. γ[0] = {ϕi}, while the γ[`](6= 0) comprise iterated
boundaries of the ϕi. Then

AJ(Ξα)(ϕ̃α) = AJ(Z)(γ)
(6.4)
=
∑
i

∫
ϕi

Rι∗Yi
Ξ=Ξi

confirms (6.1).
Continuing to assume Y a (connected) NCD of dimension n − 1, we want to

say something about the value of (6.1) in C/Q(n). Place the “weight” filtration

WβH
2n+∗
M (Y,Q(n)) := im{H∗(s•Z(•≥−n−β),•

Y (n))→ H∗(Z•Y (n))}
on motivic cohomology, and note that W−2n+1H

n
M(Y,Q(n)) consists of those

classes representable by ∂B-cocycles supported on points pI := YI , |I| = n. (For
simplicity we assume these are each one point.) This is compatible with the
weight filtration on the generalized Jacobians in the sense that AJn,rY is “filtered”
by maps

W•H
2n−r
M (Y,Q(n))

W•AJ
n,r
Y- Ext1

MHS
(Q(0),W•−1H

2n−r−1(Y,Q(n))).
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In particular the target ofW−2n+1AJ
n,n
Y is Ext1

MHS
(Q(0),Q(n)⊕bY ) ∼= (C/Q(n))⊕bY ,

where bY := rk{coker(H0(Y [n−2]) → H0(Y [n−1]))}. For Y = X̃α a degenerate
CY, bY = 0 or 1: bY = 1 implies maximal quasi-unipotent monodromy about α;
and in the unipotent case, maximal monodromy =⇒ bY = 1.

We need to be more precise about the field of definition: recall that X̃− is
defined over a number field K; it may be that α /∈ K, and that to “separate
components” of Y requires an algebraic field extension larger than K(α).

Definition 6.1. L/K(α) is a splitting field for the NCD Y iff all the components
YI of the hyper-resolution are defined over L. Furthermore, Y is simple iff all YI
are rational.

With such a choice of L, and assuming bY = 1, we have

(6.5) W−2n+1H
n
M(Y/L,Q(n)) ∼= CHn(Spec(L), 2n− 1) ∼= Kalg

2n−1(L)⊗Q.

Let γ,Z be as in (6.3) with γ[n−1] = {qI [pI ]}|I|=n (qI ∈ Q) and [Z] ∈ (6.5). Then
Z ≡ {WI}|I|=n modulo ∂B-coboundary, and

(6.6) AJn,nY (Z)(γ) = AJ2n−1,n
Spec(L)(

∑
±qIWI) ∈ C/Q(n),

where in light of (6.5) AJ2n−1,n
Spec(L) should be thought of essentially as the Borel

regulator. The key result, which the computations below will reflect (but not
use), is

Proposition 6.2. Let n = 2 or 3, Y = X̃α be a simple NCD with abelian splitting
field extension L/Q, and if n = 3 assume L totally real. Then Hn

M(Y/L,Q(n)) =
W−2n+1H

n
M(Y/L,Q(n)), and Ψ(α) is a sum of Dirichlet L-series L(χ, n) with

algebraic coefficients.

Remark. For L non-abelian one might hope to relate the collection of values of
Ψ at (some) points of L∗ to Artin L-series corresponding to a representation of
Gal(L/Q).

Proof. In order to “move” an arbitrary ∂B-cocycle (in Z−nY (n)) into Zn−1,−2n+1
Y (n),

we need only know that (for n = 2) CH2(Yi, 2) = {0} (∀i) and (for n =
3) CH3(Yi, 3) and CH3(Yij, 4) are 0 (∀i, j). This follows from vanishing of
CHp(P1

L, n) ∼=n.c. CH
p(L, n)⊕ CHp−1(L, n) and (for S := Bl{p1,...,pN}(P2))

CHp(SL, n) ∼= CHp(L, n)⊕ CHp−1(L, n)⊕(N+1) ⊕ CHp−2(L, n).

Now since Ξ is (like X ) defined over K, its pullback to [the components of] Y is
defined over L. The last statement (of the Prop.) then follows from Beilinson’s
fundamental result [B1, Ne1] on higher regulators of a cyclotomic field (⊃ L),
together with (6.5) and (6.6). �

For actually computing (6.1) we shall take a different approach, for which one
may drop the assumption that Y is a NCD. Using the fact that Ξ and ξ differ
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by a ∂B-coboundary on X̃ ∗−,
∫
ϕ̃t
RΞ ≡

∫
ϕ̃t
Rξ (mod Q(n)) provided ϕ̃t does not

meet D̃. For t = α this yields

(6.7) Ψ(α)
Q(n)
≡
∑
i

∫
ϕi

R{x1|Yi , . . . , xn|Yi}.

In the event that (t =)α = t0 (at the boundary of convergence of (4.5)), using
Corollary 4.7 gives

(6.8) log(t0) +
∑
k≥1

[φk]0
k

tk
Q(1)
≡ 1

(2πi)n−1

∑
i

∫
ϕi

R{x}|Yi ;

in particular, if t0 ∈ R+ and K ⊂ R then the l.h.s. = <(r.h.s.).
These formulas are of greatest practical use — i.e. the r.h.s. of (6.7-8) is

directly computable — when the {YI} are rational (and explicitly parametrized).
This is automatic for n = 2, but unfortunately (at least for (6.8)) doesn’t tend to
occur at t0 for n = 3 — in all the examples we have analyzed (see e.g. §§6.4, 10.5),
the K3 acquires a node there.

We conclude with a general result which best captures the sense in which
“singular” AJX̃α(Ξα) is a limit of “smooth” {AJX̃t(Ξt)}. Let X

π→ S be a proper,
dominant morphism of smooth varieties with dim(S) = 1 and unique53 singular
fiber X0. Assume X0 is a reduced NCD so that the local degeneration (over a
disk with coordinate s)

X ∗∆
� � //

f

��

X∆

f̄

��

X0
? _

ιX0oo

��

∪Yi

∆∗ �
�  // ∆ {0}? _oo

is semistable; and let Ξ∗ ∈ CHp(X \ X0, r). Define the local system HQ :=
R2p−r−1f∗Q(p), cohomology sheaves H := R2p−r−1f∗C ⊗ O∆∗ with holomorphic
Hodge subsheaves Fm, and Jacobian sheaf (via the s.e.s.)

(6.9) HQ ↪→
H
Fp
� J p,r.

Then Ξ∗ gives rise to the higher normal function

νΞ∗(s) := AJXs(Ξs) ∈ Γ(∆∗,J p,r),

where Ξs := ι∗Xs(Ξ
∗). Writing T ∈ Aut(HQ) for the (unipotent) monodromy

operator (with N := log T ), consider the Clemens-Schmid exact sequence of
MHS

· · · → H2p−r−1(X0)
ρ→ H2p−r−1

lim (Xs)
N→ H2p−r−1

lim (Xs)(−1)→ · · ·
and the canonically extended sheaves He, Fpe , and

(6.10) ∗HQ ↪→
He

Fpe
� J p,r

e

53Since S isn’t required to be complete, this can be arranged by omitting other singular
fibers.
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over ∆. Set54

Jp,rlim(Xs) :=
He,0

(∗HQ)0 + Fpe,0
∼= Ext1

MHS
(Q(0), H2p−r−1

lim (Xs,Q(p)))

and Jp,r(X0) := Ext1
MHS

(Q(0), H2p−r−1(X0,Q(p))); then ρ induces

J(ρ) : Jp,r(X0)→ Jp,rlim(Xs).

Note that any section ν ∈ Γ(∆,J p,r
e ) has a well-defined “value” ν(0) ∈ Jp,rlim(Xs).

Proposition 6.3. Suppose ResX0(Ξ∗) ∈ CHp−1(X0, r−1) (∼= H2p−r+1
M,X0

(X ,Q(p)))
is zero. Then νΞ∗ lifts uniquely to a section ν ∈ Γ(∆,J p,r

e ), and we define
lims→0 νΞ∗(s) := ν(0) ∈ Jp,rlim(Xs). Furthermore, if Ξ ∈ CHp(X , r) restricts to Ξ∗

then
lim
s→0

νΞ∗(s) = J(ρ)(AJX0(ι∗X0
Ξ)).

Proof. (Sketch.) The existence of Ξ follows from Bloch’s moving lemma [Bl1],
and we can put it into good position relative to X0. Since

ι∗X0
(cl(Ξ)) ∈ HomMHS(Q(0), H2p−r(X0,Q(p))) = {0},

andX0 is a deformation retract of X∆, the restriction of cl(Ξ) = [ΩΞ] = (2πi)p[TΞ]
to X∆ (hence to X ∗∆) is trivial.55 So the image of νΞ∗ in H1(∆∗,HQ) vanishes,
and its lift to Γ(∆∗, HFp ) is actually computed by fiberwise integration of the
completed regulator current R′′(Ξ|X∆

) := RΞ|X∆
− d−1(ΩΞ|X∆

) + (2πi)pδ∂−1(TΞ|X∆
)

against sections of f̄∗F n−pA
2(n−p)+r−1
X/S (logX0) (n = dimX ). As s → 0 these

integrals do not blow up, so the lift extends to ν̃ ∈ γ(∆, HeFpe ); this has image
ν ∈ Γ(∆,J p,r

e ). (In fact, at s = 0 they compute AJX0(ι∗X0
Ξ) by generalizing the

argument used to prove (6.1) above.) The uniqueness of ν is a simple argument
using the long-exact cohomology sequences of (6.9), (6.10). �

6.2. Formula for AJ on a Néron N-gon. Returning to the setting of Theorem
1.7, we will now compute the r.h.s. of (4.7) for Kodaira type IN degenerations of
elliptic curves. Specialize to the case n = 2, X̃α = Y = ∪Ni=1Yi with each Yi ∼= P1,
Yi0i1 nonempty iff i0 − i1 ≡ ±1 mod N , and Y [2] ∩ D̃ = ∅. Let zi : Yi

∼=→ P1 be
such that zi(Yi,i−1) =∞, zi(Yi,i+1) = 0, and ϕ̃α = εα ·

∑N
i=1 Tzi (for some ε ∈ Z).

Then restrictions of toric coordinates x1|Yi , x2|Yi will be written

fi(zi) = Ai
∏
j

(1− αij
zi

)dij , gi(zi) = Bi

∏
k

(1− zi
βik

)eik

(with no αij or βik 0 or ∞); note that
∑

j dij =
∑

k eik = 0 (∀i) and

(fi(0), gi(0)) = (Ai
∏
i

α
dij
ij , Bi) , (fi(∞), gi(∞)) = (Ai, Bi

∏
k

β−eikik ).

54(∗HQ)0 is the stalk of the local system at 0 (i.e., invariant cycles), while He,0 and Fpe,0
are the fibers (over 0) of the corresponding holomorphic vector bundles.

55After this step, remaining details are similar to those in [GGK1] §3.
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Since Y is a singular fiber in a family of elliptic curves produced via a tempered
Laurent polynomial, Tameξ{fi, gi} is torsion for every ξ ∈ |(fi)| ∪ |(gi)|. We do
not require that |(fi)| ∩ |(gi)| = ∅, so for sums over both j and k the notation∑′

j,k means to omit terms for which αij = βik. In particular, we set

Nfi,gi :=
∑
j,k

′
dijeik[

αij
βik

] ∈ Z[P1 \ {0,∞}]

andNα :=
∑

iNfi,gi . Another important notational point is that log z is regarded
as a 0-current with branch cut along Tz, so that (with dlogz := dz

z
) δTz =

1
2πi

(dlogz − d[log z]); also d[dlogz
2πi

] = δ{0} − δ{∞}. While this approach “keeps
track of branches of log”, a nasty side effect is that log a− log b 6= log a

b
; although

the discrepancy lies in Z(1) this becomes significant when multiplied by another
function.

Now recalling that

R{f, g} := log fdlogg − 2πi(log g)δTf ,

one easily checks that (in D1(Yi \ |(fi)| ∪ |(gi)|))

R{fi, gi} ≡
∑
j,k

′
dijeikR{1−

αij
zi
, 1− zi

βik
} + R{fi, Bi}+R{Ai, gi}

where the equivalence is generated by d{0-currents which are 0 at z = 0,∞} and
δ{Z(2)[ 1

2
]−chains}. This gives the r.h.s. of (6.7) (for now omitting εα)∑

i,j,k

′
dijeik

∫
Tzi

R{1−αij
zi
, 1− zi

βik
} − 2πi

∑
i

logBi

∫
Tzi

δTfi +
∑
i

logAi

∫
Tzi

dloggi.

Rewriting
∫
Tzi

(·) as 1
2πi

∫
P1(dzi

zi
−d[log zi])∧(·) = −1

2πi

∫
P1(·)∧ dzi

zi
+ 1

2πi

∫
P1(log zi)d(·)

yields
(6.11)∑′

i,j,k dijeik

(∫
T

1−
αij
zi

log(1− zi
βik

)dzi
zi

+
∫
P1

log zi
2πi

d
[
R{1− αij

zi
, 1− zi

βik
}
])

+ 1
2πi

∑
i logBi

∫
P1{(log fi)d[dzi

zi
]− (log zi)d[dfi

fi
]}+ 1

2πi

∑
i logAi

∫
P1(log zi)d[dgi

gi
].

The directed line segments (for distinct a, b ∈ C∗)

T1−a
z

= ei arg a[0, |a|] , T1− z
b

= ei arg b[−∞, |b|]

in P1 do not intersect unless arg a ≡ arg b (mod 2πZ) and |b| < |a|, in which case
a global perturbation as in §9 of [Ke1] may be deployed to kill the intersection.
Since in general

d[R{f, g}] = 2πi(log f |(g) − log g|(f))− (2πi)2δTf ·Tg ,
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(6.11) becomes (Ψ(α)
Q(2)
≡ )

(6.12)

−
∑′

i,j,k dijeik{Li2(
αij
βik

) + (logαij − log βik) log(1− αij
βik

)}

+
∑

i log gi(0)(log fi(0)− log fi(∞))

−
∑

i logBi

∑
j dj logαij +

∑
i logAi

∑
k eik log βik.

This is the best we can do without further information.
Next, suppose that we know Ψ(α) is pure imaginary (up to Q(2)), or just want

its imaginary part. Taking ={(6.12)} gives
(6.13)

−
∑′

i,j,k dijeik{=Li2(
αij
βik

) + log |αij
βik
| arg(1− αij

βik
)}

+
∑

i log |gi(0)| (arg fi(0)− arg fi(∞)) +
∑

i arg(gi(0)) log | fi(0)
fi(∞)
|

−
∑

i arg(gi(0)) log | fi(0)
fi(∞)
|+
∑

i arg(fi(∞)) log | gi(0)
gi(∞)
|

−
∑

i log |Bi|
∑

j dij argαij +
∑

i log |Ai|
∑

k eik arg βik

−
∑

i

∑
j dij argαij log

∣∣∣∏′k(1− αij
βik

)eik
∣∣∣+
∑

i

∑
k eik arg βik log

∣∣∣∏′j(1− αij
βik

)dij
∣∣∣ ,

where the
∏′

k,
∏′

j mean to omit terms which are 0. The last 4 terms of (6.13)
may be rerranged to give

∑
i

∑
ξ∈C∗

arg(ξ) log

∣∣∣∣∣∣∣
{
Ai
∏′

j(1−
αij
ξ

)dij
}νξ(gi)

{
Bi

∏′
k(1−

ξ
βik

)eik
}νξ(fi)

∣∣∣∣∣∣∣ =

∑
i

∑
ξ∈C∗

arg(ξ) log |Tameξ{fi, gi}| = 0.

The 2nd and 3rd rows of (6.13), after obvious cancellations, yield the collapsing
sum ∑

i

{log |gi(0)| arg fi(0)− log |gi(∞)| arg fi(∞)} = 0.

This leaves us with the first row, which is just

−
∑
i,j,k

′
dijeikD2(

αij
βik

) =: −D2(Nα),

where D2(z) := =(Li2(z)) + log |z| arg(1 − z) is the (real, single-valued) Bloch-
Wigner function. Summarizing this discussion and combining with (6.8) gives
immediately
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Proposition 6.4. For a family of elliptic curves as in Theorem 3.8 (n = 2),

with X̃α a Néron N-gon,56 Ψ(α)
Q(2)
≡ εα · (6.12) with =(Ψ(α)) = −εαD2(Nα). In

particular if α = t0, and K(t0) ⊂ R, we have

(6.14) log

∣∣∣∣ 1

t0

∣∣∣∣−∑
k≥1

[φk]0
k

tk0 =
εα
2π
D2(Nt0),

plus or minus πi if t0 < 0.

If the family X̃− or a t 7→ tκ quotient thereof has just three singular fibers,
then the l.h.s. of (6.12) is a special value of a “hypergeometric integral” or Meijer
G-function, and such identities seem to go back essentially to Ramanujan. In
addition, the Meijer G-functions studied in [MOY] for the E6, E7, E8 cases below
are nothing but 1

2πi
times the regulator period Ψ(tκ).

We should emphasize that (6.14) (as derived above) is amotivic identity which
directly reflects the limit AJ result Prop. 6.3.

6.3. Examples D5, E6, E7, E8. We turn now to 4 “mirror pairs” of elliptic
curve families with common fundamental periods. The Laurent polynomials
φI , φII in the first column of the table below have dual Newton polytopes and are
of the type considered in Example 3.11. The corresponding X̃I , X̃II are smooth
and the second column lists their Kodaira fiber types over t = 0, t ∈ L∩C∗, and
t =∞ (in that order). These 2 families share a common degree-κ quotient (over
simply t 7→ tκ for each X̃II), whose singular fibers (after a minimal desingulariza-
tion of the total space) are listed next. This is followed by the Dynkin diagram
type of the dual graph of the singular fiber over tκ =∞ (in the quotient), which
we use to “identify” each example. The vanishing-cycle periods about t = 0
(being pullbacks from the quotient families) take the form AI(t) = AII(t) =∑

m≥0 amt
κm, and so ΨI(t) = ΨII(t) = 2πi(log t +

∑
m≥1

am
κm
tκm). Finally, if we

take φ = φII in §5, then the {N 〈X
◦〉

D } are local Gromov-Witten invariants of the
Y ◦II indicated and these will have exponential growth rate exp(−<(ΨII(t0)

2πi
)) by

(5.10).

56this includes N = 1, 2
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φI
φII

fibers of X̃ κ
fibers of
˜̃X/Zκ

type
at ∞ am t0 Y ◦II

(x+ 1
x
)(y + 1

y
)

x+ 1
x

+ y + 1
y

I4, 2I2, I4

I8, 2I1, I2
2 I4, I1, I

∗
1 D5

(
2m
m

)2 1
4

K
P1×P1

x2

y
+ y2

x
+ 1

xy

x+ y + 1
xy

I3, 3I3, I0

I9, 3I1, I0
3 I3, I1, IV

∗ E6

(
3m

m,m,m

)
1
3

KP2

x
y

+ y3

x
+ 1

xy

x+ y + 1
x2y

I4, 4I2, I0

I8, 4I1, I0
4 I2, I1, III

∗ E7

(
4m

2m,m,m

)
1

2
√

2
KP(1,1,2)

x
y

+ y2

x
+ 1

xy

x+ y + 1
x3y2

I6, 6I1, I0

I6, 6I1, I0
6 I1, I1, II

∗ E8

(
6m

3m,2m,m

)
1

4
1
3
√

3
KP(1,2,3)

Obviously we may use either X̃I or X̃II to compute ΨII(t0)(= ΨI(t0)), and
for E6, E7, E8 we will use X̃I . For D5, we use instead the family X̃ pro-
duced by φ := (x−1)2(y−1)2

xy
, with t0 = 1

16
and A(t) =

∑
m≥0

(
2m
m

)2
tm (hence

ΨII(t) = 1
2
Ψ(t2)); in fact, its minimal desingularization is the quotient family.

What we now do in each case is find an explicit parametrization of (each
component of) X̃t0 via {fi, gi}, then compute N := Nt0 and D2(N ). First,
to record some notation: we shall consider L-functions L(χ, s) :=

∑
k≥1

χ(k)
ks

of
primitive Dirichlet characters

χ−3(·) = 0, 1, −1, . . . (mod 3)

χ−4(·) = 0, 1, 0, −1, . . . (mod 4)

χ+i,5(·) = 0, 1, i, −i, −1, . . . (mod 5)

χ−i,5(·) = 0, 1, −i, i, −1, . . . (mod 5)

χ−8(·) = 0, 1, 0, 1, 0, −1, 0, −1, . . . (mod 8)

at s = 2. An easy way to get such values is by taking Bloch-Wigner of roots of
unity: e.g. for ζa = e

2πi
a ,

D2(ζa) = =(Li2(ζa)) + 0 =
∑
k≥1

=(ζka )

k2
.

To simplify D2(N ) to terms of this form, we manipulate N in a quotient of the
pre-Bloch group B2(C). Namely, work in Z[P1

C \{0, 1,∞}] modulo (the subgroup
generated by) relations: [ξ] + [1

ξ
]; [1− ξ] + [ξ]; [ξ] + [ξ̄]; and

∑5
i=1[ξi] where (with

subscripts mod 5) ξi = 1 − ξi+1ξi−1 (∀i), pictured as in Figure 6.1. (These are
all well-known relations on D2, see [Bl2].)

D5 : In P1 × P1, 1− 1
16

(x−1)2(y−1)2

xy
= 0 is an I1 normalized by

f(z) = −
(1 + 1

z
)2

(1− 1
z
)2

, g(z) = −
(1 + z

i
)2

(1− z
i
)2
.
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Figure 6.1.

ξ

ξ

ξ

ξ

ξ

1

2

34

5

Hence N = 8[−i]− 8[i] ≡ −16[i], and

D2(N ) = −16D2(i) = −16L(χ−4, 2).

(So in fact the correct D2(Nt0) to use for φII is −8L(χ−4, 2).)

E6 : In P2, 0 = 1 − 1
3
x3+y3+1

xy
= −1

3xy
(1 + x + y)(1 + ζ3x + ζ̄3y)(1 + ζ̄3x + ζ3y)

is normalized by

f1(z1) = ζ̄3

(1− ζ3
z1

)

(1− 1
z1

)
, g1(z1) =

(1− z1
ζ̄3

)

(1− z1)
,

f2(z2) =
(1− ζ3

z2
)

(1− 1
z2

)
, g2(z2) = ζ̄3

(1− z2
ζ̄3

)

(1− z2)
,

f3(z3) = ζ3

(1− ζ3
z3

)

(1− 1
z3

)
, g3(z3) = ζ3

(1− z3
ζ̄3

)

(1− z3)
,

so that N = 3[ζ̄3]− 6[ζ3] ≡ −9[ζ3] and

D2(N ) = −9D2(ζ3) = −9
√

3

2
L(χ−3, 2).

E7 : In P(1, 1, 2), 0 = 1− 1
2
√

2

x2+y4+1
xy

= −1
2
√

2xy
(x+iy2−

√
2y−i)(x−iy2−

√
2y+i)

is normalized by

f1(z1) = −
√

2
(1− γ

z1
)(1− δ

z1
)

(1 + 1
z1

)2
, g1(z1) =

1− z1

1 + z1

,

f2(z2) =
√

2
(1− γ

z2
)(1− δ

z2
)

(1 + 1
z2

)2
, g2(z2) =

1− z2

1 + z2

,

where γ := i(
√

2− 1), δ := i(
√

2 + 1) (and γδ = −1). We read off

N = 2[γ] + 2[δ]− 2[−γ]− 2[−δ]− 2[−1] = 4[γ] + 4[δ]

using γ̄ = −γ, δ̄ = −δ. Now using the three 5-term relations pictured in Figure
6.2, together with 1+γ

1−γ = ζ8, 1+δ
1−δ = ζ3

8 , we have

[γ] + [δ]
A≡ 2([γ] + [δ]) + [

1− δ
2

] + [
1− γ

2
]
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Figure 6.2. BA

δ γ −δ −1 −γ −1

1−γ1−δ2

C

1−δ
2

1−γ
2

1+δ
1−δ

2
1−δ

 2
1−γ

1+γ
1−γ

≡ −[−γ]− [1− γ]− [−δ]− [1− δ]− [
2

1− γ
]− [

2

1− δ
]

B,C
≡ [ζ8] + [ζ3

8 ].

Hence

D2(N ) = 4D2(ζ8) + 4D2(ζ3
8 ) = −2i

∑
k≥1

k−2{ζk8 + ζ3k
8 − ζ5k

8 − ζ7k
8 }

= 4
√

2L(χ−8, 2).

E8 : In P(1, 2, 3), 1− x2+y3+1

4
1
3 3

1
2 xy

= 0 is an I1 whose normalization takes the form

f(z) =
√

3

∏3
j=1(1− αj

z
)

(1− 1
z
)3

, g(z) =
3
√

2

∏2
k=1(1− z

βk
)

(1− z)2
,

where
∏
αj =

∏
βk = 1, g(αj) = −ζj3 and f(βk) = (−1)ki.

Conjecture.
∑

i,j[
αj
βk

]− 3
∑

k[
1
βk

]− 2
∑

j[αj] ≡
20
3

[i].

If this is true then D2(N ) = 20
3
L(χ−4, 2).

In each of these 4 cases, εt0 = −1 and multiplying (6.14) by κ yields

(6.15) log

∣∣∣∣ 1

tκ0

∣∣∣∣−∑
m≥1

am
m

(tκ0)m =
−κ
2π

D2(Nt0);

or on an individual basis (writing G :=
∑

k≥0
(−1)k

(2k+1)2 for Catalan’s constant)

D5 : log 16−
∑
m≥1

(
2m
m

)2

m(16)m
=

8

π
G,

E6 : log 27−
∑
m≥1

(3m)!

m(m!)3(27)m
=

27
√

3

4π
L(χ−3, 2),

E7 : log 64−
∑
m≥1

(4m)!

m(2m)!(m!)2(64)m
=

8
√

2

π
L(χ−8, 2),
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E8 : log 432−
∑
m≥1

(6m)!

m(3m)!(2m)!m!(432)m
?
=

20

π
G.

Of these identities, D5 and E6 were known to [RV], while E7 and E8 were con-
jectured on the basis of numerical experiment in [Bo, MOY]. The latter two
examples (modulo the E8 Conjecture) make the strongest case for the method of
Prop. 6.4; they ae not amenable to the approach in §10.4 since X̃I , X̃II , X̃II/Zκ
all fail to be modular in the sense required there.

The 4 cases in this section correspond to fundamental examples in the local
mirror symmetry literature. The instanton numbers that appear in [MOY] Table
1, [S] Ex. 1-4, and [CKYZ] Table 7 (“rational”) have the same exponential growth
rates as our {N 〈X

◦〉
κD }, namely exp{r.h.s. of (6.15)}. The “κD” (instead of D)

appears due to a discrepancy in indexing of cohomology classes.

6.4. Other examples. We begin with an elliptic curve family for which Ψ(t0)
involves more than one Dirichlet character: the universal curve with a marked
5-torsion point, or “A5” family. This arises via minimal desingularization of the
X̃ obtained from

φ =
(1− x)(1− y)(1− x− y)

xy
,

and is birational to the family considered by [Bk] in relation to irrationality of
ζ(2). This has

A(t) =
∑
m≥0

(
m∑
`=0

(
m

`

)2(
m+ `

`

))
tm , t0 =

−11± 5
√

5

2
,

with singular fibers I5, I1, I1, I5; Xt0 = {1− tφ = 0} is normalized by

f(z) = γ
(1− 1

z
)2

(1− ζ2
5

z
)(1− ζ3

5

z
)
, g(z) = γ

(1− z
ζ5

)2

(1− z
ζ4
5
)(1− z

ζ3
5
)
,

where γ = −1+
√

5
2

= 2<(ζ2
5 ) = ζ̄5

2
(ζ̄5 + 1) = ζ2

5 (ζ5 + 1). This gives N = −4[ζ5]−

4[ζ2
5 ] + [ζ3

5 ] + 6[ζ4
5 ] ≡ −10[ζ5] − 5[ζ2

5 ]. Writing δ± :=
√

5±
√

5
8

(δ+ = =(ζ5), δ− =

=(ζ2
5 )) and λ0 = 11+5

√
5

2
, we compute

D2(N ) = −5{(1+
i

2
)δ++(

1

2
−i)δ−}L(χ+i,5, 2)− 5{(1− i

2
)δ++(

1

2
+i)δ−}L(χ−i,5, 2)

and

log λ0 −
∑
m≥1

∑m
`=0

(
m
`

)2(m+`
`

)
mλm0

= −D2(N )

2π
(∈ R+).

Turning to n = 3, consider the irregular (but reflexive and tempered) Laurent
polynomial

φ = (1− 1

x
)(1− 1

y
)(1− 1

z
)(1− x− y + xy − xyz).
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This gives rise to the (“Apéry”) family X̃ of singular K3’s related to irrationality
of ζ(3) from the Introduction. The general fiber has 7 A1 (node) singularities
and Theorem 3.8 applies (with K = Q), producing Ξ ∈ H3

M(X̃−,Q(3)). The
degenerations occur over L = {0, t0, 1

t0
,∞} where t0 = (

√
2 − 1)4; Xt0 and X 1

t0

just have extra nodes ( =⇒ order 2 monodromy), while X0 and X∞ are unions
of rational surfaces (and the corresponding monodromies maximally unipotent).
One can therefore use (6.7) (but with a different choice ϕ′∞ of topological 2-cycle)
to directly compute AJ(Ξ∞)(ϕ′∞) = −2ζ(3). This is done in [KL] (Example
10.21) and is behind the assertion about V (0) in the Introduction.

Now for the n = 2 families A5, D5, E6, we can take advantage of their mod-
ularity to obtain an alternate computation of limt→t0 Ψ(t); this is carried out
for D5 in §10.1 Example 1. Similarly, by identifying the Apéry K3 family as
modular (and Ξ essentially as an Eisenstein symbol), one can compute that (one
continuation of) Ψ(∞) = −48ζ(3), see §10.5 Ex. 1 and §10.1 Ex. 2. More
interestingly, we can even use (9.17-18) to compute Ψ(t0), which is not amenable
to (6.8) (due to the nodal degeneration). Since the fixed point τ0 = i√

6
∈ H of(

0 −1√
6√

6 0

)
corresponds to t0, we have (with ′ϕ̂f,+6 as in (10.5))

Ψ
(

(
√

2− 1)4
) Q(3)
≡ (2πi)3 i√

6
H

[2]
[i∞](

′ϕf,+6) +
1

2πi

∑
n

′
lim
M→∞

M∑
m=−M

′
′ϕ̂f,+6(m,n)

m(m i√
6

+ n)3
,

or dividing by −4π2,

4 log(
√

2− 1) +
∑
k≥1

(
√

2− 1)4k

k

{
k∑
j=0

(
k

j

)2(
k + j

j

)2
}

=

4
√

6π −
√

6

8π3

∑
n∈Z\{0}

∑
m≥1

′ϕ̂f,+6(m,n)
(m

2

18
− n2)

(m
2

6
+ n2)3

.

Presumably something more can be said about the r.h.s. but we haven’t at-
tempted this.

7. The classically modular analogue: Beilinson’s Eisenstein
symbol

The next three sections run parallel to what was done for the toric symbols
in §§3− 4: here we will construct the basic higher cycles, and in §§8, 9 compute
the cycle-class and evaluate the fiberwise AJ map on them (and consider some
variations on the basic cycles). Starting from an (`+ 1)-tuple of functions on an
elliptic curve with divisors supported on N -torsion (or the (`+ 1) divisors them-
selves, or even just their Pontryagin product), the goal is essentially to construct
a family of CH`+1(·, `+ 1)-cycles on the `th fiber product of the universal elliptic
curve with marked N -torsion over Γ(N)�H. The idea comes from work of Bloch
for ` = 2 [Bl2, Bl3], and first appeared in the generality considered here (but
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for infinite level) in [B2]. Interesting aspects of the story include the relation-
ship between the “vertical” choice of divisors and the “horizontal” values of the
resulting global cycle’s residues over the cusps; and the role played by modular
forms and especially Eisenstein series. Much of the material in this section (and
§8.1) is expository, but is set up to better enable the AJ computations (and
for potentially easier reading) than the presentations in the existing literature,
amongst which we have found [B2, DS, Sc, De1] to be especially helpful.

7.1. Motivation via the Beilinson-Hodge Conjecture. For a quasi-projective
variety V defined over Q̄, this Conjecture predicts that the cycle-class map

clp,rV : CHp(V, r)→ HomMHS(Q(0), H2p−r(V an
C ,Q(p)))

should surject, i.e. that there “exist enough cycles”. In the context below (with
p = r = ` + 1), it translates to the statement that every Eisenstein series is,
in a precise sense, the fundamental class of an “Eisenstein cycle” (or “symbol”).
This case will be proved in §8.1 when we compute the classes of the symbols
constructed in §7.3. In a sense our motivation is backwards since the Eisenstein
material was originally a major piece of evidence leading to the Conjecture.

7.1.1. Construction of Kuga modular varieties. Z2` acts on H × C` (H =upper
half-plane) by

((m1, n1), . . . , (m`, n`)) · (τ ; z1, . . . , z`) := (τ ; z1 +m1τ + n1, . . . , z` +m`τ + n`)

and we quotient
Z2`�H× C` =: E [`] π→ H.

Recall Γ(N) := ker{SL2(Z) → SL2(Z/NZ)} =

{(
a b

c d

)∣∣∣ ad− bc = 1
a ≡ 1 ≡ d (N)

b ≡ 0 ≡ c (N)

}
and

take Γ ⊂ SL2(Z) s.t. {−id} /∈ Γ and Γ ⊃ Γ(N) for some N ≥ 3 (such a Γ is a
congruence subgroup of SL2(Z)).

Now γ =
(
a b

c d

)
∈ Γ acts on H∗ := H ∪ P1(Q) by γ(τ) = aτ+b

cτ+d
, and we define

modular curves
Y Γ := Γ�H∗ ⊃ Γ�H =: YΓ

with the cusps as complement:

κΓ := Y Γ \ YΓ =

{
r
s
∈ P1(Q)

∣∣∣∣ ∃p, q ∈ Z/NZ s.t.
pr + qs ≡ 1 mod N

}
Γ

=

{
(−s, r) ∈ (Z/NZ)2 | | 〈(−s, r)〉 | = N

}〈
(−s, r) ∼ γ.(−s, r) = (−cr − ds, ar + bs)

(−s, r) ∼ (s,−r)

〉 .
One has also the elliptic points

εΓ :=

(
{τ ∈ H | ∃γ ∈ Γ s.t. γ(τ) = τ}︸ ︷︷ ︸

=: ε̃Γ

/
Γ

)
⊂ YΓ.

Now let Γ act on E [`] \ π−1(ε̃Γ) by

γ.(τ ; [z1, . . . , z`]τ ) :=

(
γ(τ);

[
z1

cτ + d
, . . . ,

z`
cτ + d

]
γ(τ)

)
;
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the quotient is denoted E [`]
γ

πΓ- YΓ \ εΓ and Shokurov’s smooth compatification
[So] is E [`]

Γ

πΓ- Y Γ (we just need its existence).

7.1.2. Monodromy on E [`]
Γ . To understand monodromy about εΓ ∪ κΓ, first take

` = 1 and let α resp. β be the families of 1-cycles [0, 1] resp. [0, τ ] on fibers Eτ
of E [1] → H. Each γ ∈ Γ should be thought of as a composition of monodromy
transformations with action

α 7→ aα + cβ , β 7→ bα + dβ.

If γ fixes r
s
∈ P1(Q) (resp. τ0 ∈ H) then it corresponds to going around (some

number of times) [ r
s
] ∈ κΓ (resp. [τ0] ∈ εΓ). The εΓ are just the finite monodromy

points (order= 3;57 if we hadn’t required −id /∈ Γ then they could have order 2
or 4); if Γ = Γ(N) then εΓ = ∅.

To put all the cusps on an equal footing with regard to monodromy matrices,
given r

s
∈ P1(Q) pick p, q ∈ Z such that pr+qs = 1 and define a “local monodromy

group”
MΓ

([r
s

])
:=
(
p q

−s r

)
Stab

Γ

(r
s

)(
r −q
s p

)
,

which is generated by
(

1 m
0 1

)
(or
(
−1 −m
0 −1

)
) for somem|N (resp. m|N

2
). For E [1],

this yields a fiber of type Im (resp. I∗m) in Kodaira’s classification; we subdivide
κΓ =: κIΓ ∪ κI

∗
Γ .

For ` ≥ 1, one has an isomorphism of VHS

H`
E[`]/Y

∼= ⊕0≤a≤b `2c
(
H1
E[1]/Y

(−a)⊗(`−2a)
)⊕( `

`−2a,a,a)

so that monodromy about type I cusps is (maximally) unipotent for all `, while
that about type I∗ cusps is only unipotent for ` even (by considering `th sym-
metric powers of

(
−1 −m
0 −1

)
).

7.1.3. MHS on the singular fibers of E [`]

Γ . We will use the notation E
[`]
Γ,y(∼= E

[`]
τ

for some τ ∈ H) for smooth fibers and Ê[`]
Γ,y0

for singular fibers, which are NCD’s
in the Shokurov compactification. (Note: Ê[`]

Γ,y0
does not count multiple fiber-

components with multiplicity.)
(A) Elliptic points. (y0 ∈ εΓ) Take a degree-3 cover Ỹ Γ

µ- Y Γ with ramification

index 3 at ỹ0 7→ y0, and let Ẽ
[`]

Γ be a smooth resolution of E [`]

Γ ×µ ỸΓ. This maps

to ′Ẽ
[`]

Γ where

(a) ′Ẽ
[`]

Γ \ ′Ẽ
[`]
Γ,ỹ0

= Ẽ
[`]

Γ \ Ẽ
[`]
Γ,ỹ0

(here Ẽ[`]
Γ,ỹ0

is possibly singular)
(b) ′Ẽ[`]

Γ,ỹ0
is the `th self-product of a smooth elliptic curve (τ = e

2πi
3 or e

2πi
6 ),

yielding a diagram

57monodromy is locally of the form
(

0 −1

1 −1

)
in an appropriate basis (Kodaira type IV ∗).
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′Ẽ
[`]

Γ

′π̃ ��????????
Ẽ

[`]

Γ M
//

π̃
��

p
oo E [`]

Γ

π̄

��

Ỹ Γ µ
// Y Γ

Now (a)+(b) =⇒ H`+1(Ẽ
[`]

Γ \ Ẽ
[`]
Γ,y0

) = W`+2H
`+1(Ẽ

[`]

Γ \ Ẽ
[`]
Γ,ỹ0

), while 1
3
M∗M∗ is

the identity on H`+1(E [`]

Γ \ E
[`]
Γ,y0

). By the localization sequence

→ H`+1(E [`]

Γ \ Ê
[`]
Γ,y0

)→ H`(Ê
[`]
Γ,y0

)(−(`+ 1))→ H`+2(E [`]

Γ )→,

H`(Ê
[`]
Γ,y0

) is a pure HS of weight −`.
(B) Non-unipotent cusps. (y0 ∈ κI

∗
Γ , ` odd) Even in the quasi-unipotent/non-

semistable degeneration setting, if the total space is smooth (with NCD central
fiber) the Wang sequence, relative homology sequence, and deformation retract
business goes through, yielding a long-exact sequence

(7.1) → H`+2(Ê
[`]
Γ,y0

(−(`+ 1))
ξ- H`(Ê

[`]
Γ,y0
→ H`(E

[`]
Γ,y)

T−I- H`(E
[`]
Γ,y)→;

here ξ is a morphism of MHS (as ι∗y0
◦(ιy0)∗, it is motivic). For the monodromy ma-

trix, taking `th symmetric power of
(
−1 −m
0 −1

)
for ` ≥ 1 odd gives T =

(
1 ∗

. . .
0 1

)
;

hence T − I has maximal rank and ξ is surjective. Since H`+2(Ê)(−(`+ 1)) has
weights ≥ ` and H`(Ê) weights ≤ `, we find again that H`(Ê) (hence H`(Ê

[`]
Γ,y0

))
is a pure HS.
(C) Unipotent cusps. (y0 ∈ κI

∗
Γ and ` even; y0 ∈ κIΓ) Start with ` = 1: taking

y = [i∞] as our prototypical such cusp and assuming an Im degeneration there,
the choice of local parameter q

1
m =: q̃ := exp(2πi

m
τ) = exp(2πi

m

∫
β dz∫
α dz

) splits the
LMHS:

H1
limq̃→0

(EΓ,q̃) ∼= Q(0)⊕Q(−1).

Similarly, H`
lim(E

[`]
Γ,q̃) is a ⊕ of copies of Q(0) thru Q(−`) — in particular one

copy of Q(0). (Think of this as a consequence of the fact that the periods are
all powers of m log q̃; the Q(0) corresponds to α×` with period 1.) (7.1) becomes
the Clemens-Schmid sequence

→ H`+2(Ê
[`]
Γ,y0

)(−(`+ 1))
ξ- H`(Ê

[`]
Γ,y0

)→ H`
lim(E

[`]
Γ,y)

N- H`
lim(E

[`]
Γ,y)→

(where N = log(T ) now makes sense); since N is of type (−1,−1) it kills Q(0).
By the same reasoning as above, im(ξ) has pure weight `; so H`(Ê

[`]
Γ,y0

) is com-
pletely split into Q(−j)’s (independent of the choice of parameter), in particular
H`(Ê

[`]
Γ,y0

) ∼= Q(0)⊕H where W0H = {0}.
Conclusion: HomMHS(Q(0), H`(Ê

[`]
Γ,y0

)) is {0} in cases (A) and (B) (or for a smooth
fiber), and one copy of Q(0) for case (C).



94 CHARLES F. DORAN AND MATT KERR

7.1.4. Residues and Beilinson-Hodge. Let p ⊂ YΓ \ εΓ be a finite point set, and

consider open subsets of
E [`]

Γ⋂
E [`]

Γ

(E [`]
Γ )◦

π◦Γ- Y ◦Γ := YΓ \ εΓ ∪ p = Y Γ \P⋂ ⋂
(E [`]

Γ )◦
π◦Γ- Y

◦
Γ := Y Γ \ κ[`]

Γ

where P := κIΓ∪κI
∗

Γ ∪ εΓ∪ p, and κ[`]
Γ :=

{
κΓ, ` odd
κIΓ, ` even

consists of the unipotent

cusps. Applying HomMHS(Q(0),—⊗Q(`+ 1)) to the “localization sequence”

0→ coker
{
∗`+1 : H`+1(E [`]

γ )→ H`+1((E [`]
Γ )◦)

} ⊕Resy0
(2πi)`- ⊕y0∈PH`(

(∧)

E
[`]
Γ,y0

)(−(`+1))

(2πi)`+1(⊕(ıy0 )∗)
- ker

{
∗`+2 : H`+2(E [`]

Γ )→ H`+2((E [`]
Γ )◦)

}
→ 0

gives

HomMHS(Q(0), coker(∗`+1)⊗Q(`+ 1)) ∼= ⊕y0∈PHomMHS(Q(0), H`(
(∧)

E
[`]
Γ,y0

))

by §7.1.3∼= ⊕
y0∈κ[`]

Γ
Q(0),

since ker(∗`+2) has pure weight `+ 2 (and ` ≥ 1). Using

0→ im(∗`+1)→ H`+1((E [`]
Γ )◦)→ coker(∗`+1)→ 0,

we then clearly have HomMHS(Q(0), H`+1((E
[`]

γ )◦,Q(`+ 1))) ⊂

HomMHS

(
Q(0), H`+1

(
(E [`]

Γ )◦,Q(`+ 1)
))

⊂
⊕ Res

(2πi)`- ⊕
[ r
s

]∈κ[`]
Γ
Q.

Claim 7.1. The composition

CH`+1
(

(E
[`]

Γ )◦, `+ 1
)

++VVVVVVVVVVVV

[·]
��

HomMHS

(
Q(0), H`+1

(
(E

[`]

Γ )◦,Q(`+ 1)
))

⊕ Res

(2πi)`

// ⊕
[ r
s

]∈κ[`]
Γ
Q

is surjective.

If this is true, then we have clearly proved that for any P as just described

CH`+1
(

(E [`]
Γ )◦, `+ 1

)
� HomMHS

(
Q(0), H`+1

(
(E [`]

Γ )◦,Q(`+ 1)
))
,

which is the relevant special case of the Beilinson-Hodge conjecture.
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7.1.5. Holomorphic forms of top degree. Clearly on E [`](→ H) these are of the
form

Ω`+1
F := F (τ)dz1 ∧ · · · ∧ dz` ∧ dτ,

for F holomorphic (F ∈ O(H)). For this to descend to E [`]
Γ (recalling from §7.1.1

the action of γ ∈ Γ ⊂ SL2(Z) on E [`] \ π−1(ε̃Γ)), we must have

Ω`+1
F = γ∗Ω`+1

F = F (γ(τ))
dz1

cτ + d
∧ · · · ∧ dz`

cτ + d
∧

=1︷ ︸︸ ︷
(ad− bc) dτ

(cτ + d)2
,

which is equivalent to

(7.2) F (τ) =
F (γ(τ))

(cτ + d)`+2
=: F |`+2

γ (τ) (∀γ ∈ Γ).

Definition 7.2. (i) F ∈ O(H) and (7.2) holds⇐⇒ F (τ) an automorphic form
of weight `+ 2 with respect to Γ.
(ii) limτ→i∞ F (τ) =: R[i∞](F ) <∞ ⇐⇒ F (τ) bounded at i∞.
(iii) R[i∞](F ) = 0 ⇐⇒ F (τ) cusp at i∞.

Now assuming F automorphic of weight `+ 2 (w.r.t. some Γ):
(iv) F is cusp (resp. bounded) at [r

s
] ⇐⇒ F |`+2(

r −q
s p

) cusp (resp. bounded)

at i∞, where p, q are chosen so that the matrix ∈ SL2(Z); and
(v) F cusp (resp. modular) form of weight `+2 (w.r.t. Γ)⇐⇒ F cusp (resp.
bounded) at every cusp(∈ κΓ).

Remark. Unconventionally, a meromorphic modular form will mean the same
thing as modular form except that poles at cusps κΓ and elliptic points ε̃Γ

are permitted. (For each cusp [ r
s
], this means τ−KF |`+2(

r −q
s p

) is bounded at i∞

for some K ∈ Z+.) We write A`+2(Γ) (resp. S`+2(Γ), M`+2(Γ), M̌`+2(Γ)) for
automorphic (resp. cusp, modular, mero. modular) forms.

Example 7.3. Let F ∈ A`+2(Γ). If the cusp [i∞] ∈ κΓ is type Im then
(

1 m
0 1

)
∈

Γ, so that F (τ +m) = F (τ); if type I∗m then
(
−1 −m
0 −1

)
∈ Γ, ensuring F (τ +m) =

(−1)`+2F (τ). Either way, q̃ := q
1
m (see §7.1.3(C)) gives a local coordinate on

Y Γ at [i∞]. In the unipotent case, we conclude that F has a Laurent expansion
F (τ) =

∑
k∈Z akq̃

k; in the non-unipotent (I∗m and ` odd) case we get instead
F (τ) =

∑
k∈Z odd akq̃

k
2 (ΩF still gives a well-defined holomorphic form on the

quotient EΓ). Evidently, the “bounded” condition says in both cases that ak = 0
for k < 0 (and “cusp” forms have no constant term); so in the non-unipotent
case, bounded =⇒ cusp.

Shokurov ([So]) proved the following:
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Proposition 7.4. (i) Ω`+1(E [`]

Γ \ π−1(κΓ)) = {ΩF |F ∈ A`+2(Γ)}, i.e. such ΩF

extend holomorphically across the singular fibers over elliptic points;
(ii) Ω`+1(E [`]

Γ )
〈
log(π−1

Γ (κΓ))
〉

= Ω`+1(E [`]

Γ )
〈

log(π−1
Γ (κ

[`]
Γ )
〉

= {ΩF |F ∈M`+2(Γ)};
and

(iii) Ω`+1(E [`]

Γ ) = {ΩF |F ∈ S`+2(Γ)}.

This gives the dictionary between automorphic forms and holomorphic forms
that we will need. To start relating modular forms to Beilinson-Hodge, make the
following

Definition 7.5. Given F ∈ M`+2(Γ) and [ r
s
] ∈ κ[`]

Γ , take any
(
r −q
s p

)
∈ SL2(Z)

and set

R[ r
s

](F ) := lim
τ→i∞

F |`+2(
r −q
s p

)(τ) = lim
τ→i∞

F ( rτ−q
sτ+p

)

(sτ + p)`+2
∈ C.

This gives an interpretation of residues, in the sense that the following dia-
gram commutes:

HomMHS

(
Q(0), H`+1

(
(E [`]

Γ )◦,Q(`+ 1)
))

� _

��

=:θ`+2

))

��

⊕
Res[ rs ]

(2πi)`
=:Res

// ⊕
[ r
s

]∈κ[`]
Γ
Q

� _

��

Ω`+1
(
E [`]

Γ

)〈
log(π−1(κ

[`]
Γ ))
〉

++XXXXXXXXXXXXXX

M`+2(Γ)

∼=
OO

⊕R[ rs ]=:R
// ⊕

[ r
s

]∈κ[`]
Γ
C

where the vertical isomorphism sends F 7→ (2πi)`+1ΩF .

Definition 7.6. MQ
`+2(Γ) := im(Θ`+2) =modular forms corresponding to holo-

morphic forms with log poles (at cuspidal fibers) and rational periods.

By pure thought we have

Proposition 7.7. (i) R is surjective;
(ii) R|MQ

`+2⊗C
is injective; and

(iii) (MQ
`+2 ⊗ C)⊕ S`+2 ↪→M`+2(Γ).

Proof. Since ker(R) = S`+2(Γ), the kernel of the dotted arrow is actually Ω`+1(E
[`]

Γ ).
This arrow must surject, since the ⊕Q’s (hance ⊕C’s) correspond to weight
2` + 2 > ` + 2 in ⊕H`(Ê

[`]
Γ,[ r

s
])(−(` + 1)) (hence cannot be absorbed by the next

term in the localization sequence); (i) follows. Injectivity of Res =⇒ (ii), which
=⇒ (iii). �
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Now if Claim 7.1 holds, we have also MQ
`+2(Γ)� ⊕Q, hence MQ ⊗ C� ⊕C

(hence ∼=), which would imply

(7.3) M`+2(Γ) =
(
MQ

`+2(Γ)⊗ C
)
⊕ S`+2(Γ).

7.1.6. Reduction to (Γ =)Γ(N). Assume SL2(Z) ⊃ Γ ⊃ Γ(N). Since Γ(N) E
SL2(Z), Γ(N) E Γ and the coset representatives {γi}[Γ:Γ(N)]

i=1 act on the sheets of
the branched cover Y Γ(N)

ρ- Y Γ, and also on

E [`]
Γ(N) \ π

−1
Γ(N)(ρ

−1(εΓ))
P [`]

Γ(N)/Γ //

πΓ(N)

��

E [`]
Γ

πΓ

��
YΓ(N) \ ρ−1(εΓ)

ρΓ(N)/Γ // YΓ \ εΓ.

We can interpret the action of this P on holomorphic forms (and eventually,
algebraic cycles) in terms of modular forms and residues:

Ω`+1
(
E [`]

Γ(N)

)〈
log π−1

Γ(N)(ρ
−1(εΓ) ∪ κΓ(N))

〉 P∗ //
Ω`+1

(
E [`]

Γ

) 〈
log π−1

Γ (κΓ)
〉

P∗
oo

M`+2(Γ(N))
F (τ)7→

∑
i F |

`+2
γi

(τ)
//

∼=
OO

R

��

M`+2(Γ)

∼=
OO

F (τ)←F (τ)
oo

R

��
Υ2(N) := ⊕

κ
[`]
Γ(N)

C
trace T

[`]
Γ(N)/Γ

(of C-valued functions on cusps)
// ⊕

κ
[`]
Γ
C =: Υ2(Γ)

pull-back P
[`]
Γ(N)/Γ

oo

More precisely (for the “trace”): given [ r0
s0

] ∈ κ[`]
Γ , the image of an element {β :

κ
[`]
Γ(N) → C} ∈ Υ2(N) takes value (T∗β)([ r0

s0
]) =

∑
[ r
s

]∈ρ−1([
r0
s0

]) ord[ r
s

](ρ) · β([ r
s
]).

This map is surjective since unipotent cusps cover unipotent cusps; though when
` is odd, unipotent ([ r

s
] ∈ κ[`]

Γ(N)) can map to non-unipotent ([ r
s
] ∈ κI∗Γ ), in which

case the value is lost.
The main point is that

Claim 7.1 (hence Beilinson-Hodge) for Γ(N) =⇒ Claim 7.1 for Γ,

since the trace surjects and one can use P∗ on higher Chow cycles, to push them
from E [`]

Γ(N) to E
[`]
Γ . We write Y Γ(N) =: Y (N), κΓ(N) =: κ(N), etc. for simplicity.

Why do we want to do make this reduction? Y (N) is the moduli space of ellip-
tic curves with “completely marked N -torsion” (in particular, 2 marked genera-
tors), so E(N)(:= EΓ(N)) has N2 N -torsion sections — ideal for building relative
higher Chow cycles (from functions with divisors supported on that N -torsion).
Also, all cusps are (unipotent) of type IN .58 The downside is that Y (N) has
genus zero only for N = (2, )3, 4, 5.

58One reason why we exclude N = 2 is that this is false — there are two cusps of type I2
and one of type I∗2 .
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For the cusps, writing G(N) for the set of subgroups of (Z/NZ)2 isomorphic to
Z/NZ, we have κ[`](N) =

κ(N) =
{(−s, r) ∈ (Z/NZ)2 | | 〈(−s, r)〉 | = N}

〈(−s, r) ∼ (s,−r)〉
=

⋃
G∈G(N)

G∗/ 〈±1〉

∼= PSL2(Z/NZ)

/〈(
1 ∗
0 1

)〉
;

since each G ∈ G(N) has |G∗| = φeuler(N),

|κ(N)| = φeuler(N)

2
·|G(N)| = N

2

∏
p|N

(
1− 1

p

)
·N
∏
p|N

(
1 +

1

p

)
=
N2

2

∏
p|N

(
1− 1

p2

)
.

Now given a field K ⊆ C set59

ΦK
m(N) := {K-valued functions on (Z/NZ)m}

ΦK
m(N)◦ :=

{
ϕ ∈ ΦK

m(N) |ϕ(0̄, . . . , 0̄) = 0)
}

ΦK
m(N)◦ := ker

{
augmentation map:ΦK

m(N)→ K
}
.

Ultimately, ΦK
2 (N)◦ will be divisors (⊗Q) of degree 0 on N -torsion.

Choose once and for all a representative (−s, r) for each cusp σ ∈ κ(N) (s.t.
σ = [ r

s
]) and a matrix

(
p q

−s r

)
∈ SL2(Z). Writing

π[ r
s

] : (Z/NZ)2 � Z/NZ , ι[ r
s

] : Z/NZ ↪→ (Z/NZ)2,
(m,n) = a(p, q) + b(−s, r) 7→ a , a 7→ a(−s, r),

one has

(π[ r
s

])∗ : Φ2(N)(◦) trace-- Φ(N)(◦) , (ι[ r
s

])
∗ : Φ2(N)(◦)

pullback-- Φ(N)(◦),

etc.

7.2. Divisors with N-torsion support. Here we collect together related ma-
terial on finite Fourier transforms, L-functions, and meromorphic functions on
E(N) with divisors supported on the N -torsion sections. The technical “(p, q)-
vertical” subsection will be used in §9 to compute the AJ map.

7.2.1. Some Fourier theory. We define Fourier transforms

̂ : Φ(N)(◦) ∼=- Φ(N)(◦)

ϕ(a) 7→ ϕ̂(k) :=
∑
a∈Z/NZ

ϕ(a)e−
2πi
N
ka

̂ : Φ2(N)(◦) ∼=- Φ2(N)(◦)

ϕ(m,n) 7→ ϕ̂(µ, η) :=
∑

(m,n)∈(Z/NZ)2

ϕ(m,n)e
2πi
N

(µn−ηm).

59notationally, we drop m = 1 or K = C
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One can show (easily) that for ϕ0 ∈ Φ(N), ϕ ∈ Φ2(N)

(7.4)
1

N
· π̂∗[ r

s
]ϕ0 = (ι[ r

s
])∗ϕ̂0,

(7.5) ̂(π[ r
s

])∗ϕ = ι∗[ r
s

]ϕ̂,

and also (π∗[ r
s

]ϕ̂0)(·) = ̂(ι[ r
s

])∗ϕ0(−·).60 Finally, if µa : Z/NZ
∼=- Z/NZ is

multiplication (mod N) by a ∈ (Z/NZ)∗, one has

(7.6) µ̂∗aϕ0 = µ∗a−1ϕ̂0.

One wonders why undergraduates don’t learn these discrete Fourier transforms
in linear algebra (or at least before the continuous/L2/L1 theory), considering
that future mathematicians might use them in number theory and engineers in
MATLAB. Moreover, together with Bernoulli numbers and polynomials, they
have a very attractive application to computing series yielding rational multiples
of powers of π. Recall that the Bernoulli numbers

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 =

−1

30
, B5 = 0, etc.

satisfy
∑∞

k=0 Bk
tk

k!
= tet

et−1
. If we define Bernoulli polynomials

Bk(x) :=
k∑
j=0

(
k

j

)
Bjx

k−j

(e.g., B3(x) = x3 − 3
2
x2 + 1

2
x, B4(x) = x4 − 2x3 + x2 − 1

30
) then they con-

sequently satisfy
∑∞

k=0Bk(x) t
k

k!
= tet(1+x)

et−1
. One also has (for k ≥ 2) Bk ={ −k!

(2πi)k
2ζ(k), k even
0, k odd

and correspondingly Bk(x) = (−1)k−1k!
(2πi)k

∑′
m∈Z

e−2πimx

mk
.

For us the key calculation is: given ϕ ∈ Φ(N) (and ` ≥ 1),
N−1∑
a=0

ϕ(a)B`+2(
a

N
) =

(−1)`+1(`+ 2)!

(2πi)`+2

N−1∑
a=0

ϕ(a)
∑
m∈Z

′ e−2πim a
N

m`+2

=
(−1)`+1(`+ 2)!

(2πi)`+2

∑
m∈Z

′ 1

m`+2

N−1∑
a=0

ϕ(a)e−
2πi
N
ma

︸ ︷︷ ︸
ϕ̂(m)

=
(−1)`+1(`+ 2)!

(2πi)`+2
L̃(ϕ̂, `+ 2),

60Note that for N prime, one has (dividing by φeuler(N)
2 =number of cusps “in” each Z/NZ

subgroup) ϕ̂ = 2
φeuler(N)

∑
σ∈κ(N)(ι[ rs ])∗(ι[ rs ])

∗ϕ̂ =⇒ ϕ = 2
N ·φeuler(N)

∑
σ(π[ rs ])

∗(π[ rs ])∗ϕ for
ϕ ∈ Φ2(N)◦ but this doesn’t hold for N not prime.
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where L̃(ϕ̂, `+ 2) :=
∑′

m∈Z
ϕ̂(m)
m`+2 (thinking of ϕ̂ as an N -periodic function on Z).

Note that, by this calculation, if ϕ ∈ ΦQ(N) then regardless of rationality of ϕ̂,
L̃(ϕ̂, `+ 2) is always in Q(`+ 2).

Example 7.8. (for the undergraduates) N = 4, ϕ = 0, 1, 0,−1; . . .
FT7→ ϕ̂ =

0, 2i, 0,−2i; . . .. Say we want to compute 1− 1
33 + 1

53 − 1
73 + · · · =

∑
M≥0

(−1)M

(2M+1)3 .

This is 1
2
· 1

(−2i)
·
∑

m∈Z
′ ϕ̂(m)
m3 = −1

4i
· (2πi)3

(−1)23!

∑3
a=0 ϕ(a)B3(a

4
) = −8π3i

−4i·6 (B3(1
4
) −

B3(3
4
)) = π3

3

(
3
64
−
(−3

64

))
= π3

32
. Much more complicated rational numbers (than

1
32
) usually arise.

7.2.2. The horospherical map. Now we establish the central number-theoretic
Lemma 7.9 which will ultimately translate to “surjectivity of residues of higher
Chow cycle classes onto the cusps,” hence Beilinson-Hodge. Define for σ ∈ κ(N),
Q ⊆ K ⊆ C

H[`]
σ : ΦK

2 (N)◦ → K

ϕ 7→ (−1)`(`+ 1)

(`+ 2)!

N−1∑
a=0

((πσ)∗ϕ) (a) ·B`+2

( a
N

)
.

If the following is true for K = C then it holds for any K:

Lemma 7.9.
(
⊕σ∈κ(N)H

[`]
σ

)
: ΦK

2 (N)◦ → ΥK
2 (N) is surjective.

Proof. Let (Φ(N)◦ ⊃)
Υ[`](N) :=

{
functions on (Z/NZ)∗ satisfying f(−y) = (−1)`f(y)

}
∼= {functions on those cusps (−s, r) "contained" in any one G ∈ G(N)} .

Writing
L[`] : Φ(N)◦ → C

ξ 7→ − `+ 1

(2πi)`+2
L̃(ξ, `+ 2),

by results of §7.2.1 we have

⊕σH[`]
σ = ⊕σL[`] ◦̂◦ (πσ)∗ = ⊕σL[`] ◦ ι∗σ ◦̂ = ⊕

G∈G(N)
⊕
a∈(Z/NZ)∗

L[`] ◦ µ∗a ◦ ι∗σG ◦ ,̂

for σG some choice of generator (−s, r) for each G ⊂ (Z/NZ)2. Obviously

(⊕
G∈G(N)

Υ[`](N)) ⊆ image{⊕
G∈G(N)

ι∗σG : Φ2(N)◦ → ⊕G(N)
Φ(N)◦},

and ̂ : Φ2(N)◦ → Φ2(N)◦ is also obviously surjective; so it will suffice to check
the following

Sublemma :
(
⊕
a∈(Z/NZ)∗

L[`] ◦ µ∗a
) ∣∣∣Υ(N)

: Υ[`](N) (⊆ Φ(N)◦)
∼=→ Υ[`](N).

Pf. : Working over C, Υ[`](N) is spanned (depending on `) by even or odd Dirich-

let characters (mod N) {χi}
1
2
φeuler(N)

i=1 . These satisfy (by definition) (µ∗aχ)(b) =

χ(a) ·χ(b). So
(
L[`] ◦ µ∗a

)
(χi) = χi(a) · L[`](χi), and by [Ne1, sec. VII.2] L̃(χi, `+

2) 6= 0. We may therefore divide χi(·)
L[`](χi)

=: χ̃i(·), so that
(
L[`] ◦ µ∗a

)
(χ̃i) = χi(a).
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Thus each χi appears in the image (in Υ[`](N)) of this map, and since they span
Υ[`](N) we are done. �

We can be more explicit and produce a “rational basis for the surjection” of
Lemma 7.9 (onto Υ[`](N)).

Proposition 7.10. There exists a unique “fundamental vector” ϕ[`]
N ∈ ΦQ(N)◦

satisfying H
[`]
σ′

(
1
N
π∗σ(ϕ

[`]
N )
)

= δσσ′ (∀σ, σ′ ∈ κ(N)) .

Proof. The proof of the sublemma implies the existence of ϕ ∈ Φ(N)◦ with (i)

L[`](ϕ̂) = 1, (ii)L[`](µ̂∗aϕ) = 0 ∀a ∈ (Z/NZ)∗ \ {±1}, and (iii) ϕ̂(n) = 0 ∀n not
relatively prime to N . If we ask that (iv) ϕ(−a) = (−1)`ϕ(a) (∀a), then ϕ is
uniquely determined. Conditions (i)-(iii) translate to (somewhat redundantly
expressed) Q-linear conditions on ϕ:

(i′) 1 = (−1)`(`+1)
(`+2)!

∑N−1
c=0 ϕ(c)B`+2

(
c
N

)
(ii′) 0 =

∑N−1
c=0 ϕ(ac)B`+2

(
c
N

)
(∀a /≡ ±1 (N) with gcd(a,N) = 1)

(iii′) 0 =
∑r−1

b=0 ϕ(a+ bN
r

) (∀a = 0, . . . , N
r
− 1) for each r(6= 1, N) dividing N .

Then H
[`]
σ′(

1
N
π∗σϕ) = L[`]( 1

N
π̂σ′∗π

∗
σϕ) = L[`](ι∗σ′ισ∗ϕ̂), which is 0 if σ′ “belongs to a

different subgroup” than σ (using condition (iii) if N is not prime); otherwise it
becomes L[`](µ∗a−1ϕ̂) (= 0 if σ′ /≡ σ[↔ a /≡ ±1], by (ii); or = 1 by (i)). �

Example 7.11. Here are a few of the fundamental vectors for ` = 1, 2 (where
we list the values ϕ(0), . . . , ϕ(N − 1))

ϕ
[1]
3 = 0,−81

2
,
81

2
; ϕ

[1]
4 = 0,−32, 0, 32 ; ϕ

[1]
5 = 0,−25,−25

2
,
25

2
, 25 ;

ϕ
[2]
3 = −162, 81, 81 ; ϕ

[2]
6 = −432

5
,−216

5
,
216

5
,
432

5
,
216

5
,−216

5
.

7.2.3. Pontryagin products. Consider the map(
ΦQ2 (N)◦

)⊗`+1 ∗`+1

- ΦQ2 (N)◦

ϕ1 ⊗ · · · ⊗ ϕ`+1 7→ (ϕ1 ∗ · · · ∗ ϕ`+1)(m,n) :=
∑

{mi,ni}∈(Z/NZ)2`+2∑
(mi,ni)

(N)
≡ (m,n)

`+1∏
i=1

ϕi(mi, ni)

which becomes Pontryagin product when Φ2(N)◦ is interpreted as divisors on
N -torsion.

Lemma 7.12. (i) ∗`+1 is surjective;
(ii) ̂ϕ1 ∗ · · · ∗ ϕ`+1 =

∏`+1
i=1 ϕ̂i.

Proof. (ii) is a trivial computation.

For (i) write βN(m,n) :=

{
N2−1
N2 (m,n) ≡ (0, 0)

1
N2 otherwise

, and let ϕ ∈ ΦQ2 (N)◦. Then

ϕ ∗ βN ∗ · · · ∗ βN︸ ︷︷ ︸
` times

= ϕ. �
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7.2.4. Decomposition into (p, q)-verticals. For (p, q) ∈ (Z/NZ)2 such that 〈(p, q)〉 ∼=
Z/NZ, define in ΦQ2 (N)◦ a subgroup of “(p,q)-vertical-degree-0” functions

ΦQ2 (N)◦(p,q) :=

ϕ ∈ ΦQ2 (N) |
∑
a∈Z/NZ

ϕ(a(p, q) + (m,n)) = 0 ∀(m,n) ∈ (Z/NZ)2

 .

Inside this we have the set

S(N)(p,q) :=

translates of the function ϕ(p,q)(m,n) :=


−2, (m,n)

(N)
≡ (0, 0)

1, (m,n)
(N)
≡ ±(p, q)

0, otherwise

 .

The next result says that ϕ ∈ ΦQ2 (N)◦ can be written as a sum of Pontryagin
products where each term contains only functions from S(N)(p,q) for some (p, q).

Decomposition Lemma: (i) the map

Q[S(N)
×(`+1)
(p,q) ]→ ΦQ2 (N)◦(p,q)∑

aj[(ϕ
(j)
1 , . . . , ϕ

(j)
`+1)] 7→

∑
ajϕ

(j)
1 ∗ · · · ∗ ϕ

(j)
`+1

is surjective (` ≥ 0);
(ii) If σ ∈ κ(N) corresponds to

(
p q
−s r

)
∈ SL2(Z) (see the end of §7.1.6), then

ΦQ2 (N)◦(p,q) ⊃ π∗σΦQ(N)◦;

(iii) ⊕
G∈G(N)

π∗σGΦQ(N)◦ � ΦQ2 (N)◦ (σG as in the proof of Lemma 7.9).

Proof. (i) First note ⊗`+1ΦQ2 (N)◦(p,q)
∗`+1

-- ΦQ2 (N)◦(p,q) using

β
(p,q)
N (m,n) :=


N−1
N
, (m,n)

(N)
≡ (0, 0)

1
N
, (m,n) ∈ 〈(p, q)〉 \ {(0, 0)}

0, otherwise

in place of βN above; so it suffices to prove case ` = 0. Put ϕ{k}(p,q)(m,n) :=

ϕ(p,q)((m,n) − k(p, q)) and ∆(p,q)(m,n) :=


1, (m,n)

(N)
≡ (p, q)

−1, (m,n)
(N)
≡ (0, 0)

0, otherwise

. Translates

of ∆(p,q) clearly generate ΦQ2 (N)◦(p,q), and
∑N

k=1
k
N
ϕ
{k}
(p,q) = ∆(p,q).

(ii) obvious.
(iii) Follows from

Φ̂2(N)◦ = Φ2(N)◦ =
∑

G∈G(N)

(ισG)∗(Φ(N)◦) =
∑

G∈G(N)

̂(πσG)∗(Φ(N)◦).

�
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7.2.5. Functions with divisors supported on N-torsion. Writing E(N), E for E [1](N),
E [1] we have

E
PN
// //

π

��

E(N) �
� //

π(N)

��

E(N)

π(N)
��

H ρN
// // Y (N) �

� // Y (N).

Let U(N)
(N)
⊂ E(N) be the complement of the N2 N -torsion sections; there

is a “relative divisor” map61

O∗(U(N))
÷- Φ2(N)◦

f 7→ ϕf
(which ignores divisor components supported on the singular fibers over cusps
{Êy0(N) | y0 ∈ κ(N)}). Now assume p, q have been chosen as in the beginning of
§7.2.4. Taking any r, s such that γ :=

(
p q

−s r

)
∈ SL2(Z) , define F(N)γ :=f ∈ O

∗(U(N))

∣∣∣∣∣∣∣∣∣
P∗Nf has "(p, q)-vertical" TP∗Nf over the hyperbolic geodesic

(τ ∈)Aγ := { ibr−qibs+p | b ∈ R
+} ⊂ H connecting [ rs ] and [−qp ],

in the sense that its support in Eτ lies in one connected component
of W (p,q)

τ (N) := {ξ(pτ + q) + mτ+n
N |m,n ∈ Z/NZ, ξ ∈ C/Z}

 .

Lemma 7.13. (i) ÷ is surjective.
(ii) ÷(F(N)γ) ⊃ S(N)(p,q).

Remark 7.14. (a) Together with the Decomposition Lemma, (ii) ensures that we
can actually compute with the KLM formula (because we are able to work with
functions with known Tf on π−1 of the arc Aγ).

(b) It is obvious that the definition of F(N)γ only depends on the coset of γ
in SL2(Z)/Γ(N), but we won’t need this.

Proof. (i) Working on E , we will construct a meromorphic function f ∈ im(P∗N)
with divisor

∑
(m,n)∈(Z/NZ)2 am,n

[
mτ+n
N

]
for any given {am,n}(m,n)∈(Z/NZ)2

satisfy-

ing
∑
am,nm

(N)
≡ 0

(N)
≡
∑
am,nn and

∑
am,n = 0. In fact, we can choose

{ãm,n}(m,n)∈Z2 (all but finitely many zero) “lifting” {am,n} such that
∑
ãm,nm =

0 =
∑
ãm,nn exactly; this leads (following [Bl3, p. 8.8]) to the construction of a

function f0 on H× C descending to E :

(7.7) f0(τ, z) :=
∏
k∈Z

∏
(m,n)∈Z2

(
1− e2πi(kτ+z−mτ+n

N
)
)am,n

.

Factoring f0 if necessary, we may assume that some (m0, n0) ∈ (Z/NZ)2 has
am0,n0 = 0; then

(7.8) f(τ, z) :=
f0(τ, z)

f0

(
τ, m0τ+n0

N

) descends to E(N).

61note that O∗(U(N)) ⊂ C(E(N))∗
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(ii) We will use the proof of (i) to construct f ∈ F(N)(1 0
0 1

) with ϕf (m,n) =
−1, (m,n)

(N)
≡ (±1, 0)

2, (m,n)
(N)
≡ (0, 0)

0, otherwise

; then the idea is simply to translate and pull back

(using the action of
(
p q
−s r

)
∈ SL2(Z) on E(N) induced from that on E) this f .

Taking ã0,0 = 2, ã1,0 = ã−1,0 = −1 (all other ãm,n = 0) in (7.7), one easily
computes that (with τ = iy ∈ iR+) f0(iy, iY ) ∈ R≤0 for Y ∈ (−y

N
, y
N

). So on
each Eτ=iy, |Tf0| ⊃ {z = iY |Y ∈ [−y

N
, y
N

]}, while f0 is of degree 2; it follows
that Tf0 is just the sum of two directed line segments, from ± τ

N
(= ± iy

N
) to 0. In

(7.8), we take (m0, n0) = (0, 1), and check that Tf = Tf0 over τ = iy (y ∈ R+),
or equivalently that f(iy, 1

N
) ∈ R+. To do this, observe that f0(iy, z) is (a)

holomorphic and has (b) the same divisor as f0(iy, z) and (c) the same leading
coefficient of power series expansion at z = 0 (f0 = Cz2+· · · , where [0 6=]C ∈ R+

since Tf0 is vertical). Thus f0(z) = f0(z), which =⇒ f0( 1
N

) = f0( 1
N

) (∈ R).
Since 1

N
/∈ Tf0 , f0( 1

N
) ∈ R+. �

Now we can obtain meromorphic functions on E [`](N) by noting that E [`](N) =
×`Y (N)E(N), E [`] = ×`HE , and (by abuse of notation) writing the projections to
these factors E [`](N)

zi
//

##HHHHHHHHH
E(N)

{{xxxxxxxxx

Y (N)

so that f(zi) denotes z∗i f , etc.

7.3. Construction of the Eisenstein symbols.

7.3.1. Eisenstein series. Since the cycle-class computation (§8.1) will show that
these series actually yield modular forms, we won’t bother proving this directly.
Note that for the double sums

∑′
m,n means to omit (m,n) = (0, 0).

For N ≥ 3 and ` ∈ Z+ define

E`+2(Γ(N)) :=

F ∈ O(H)

∣∣∣∣∣∣F of form
∑

(m,n)∈Z2

′ ψ(m,n)

(mτ + n)`+2
for ψ ∈ Φ2(N)

 .

(The series is necessarily convergent.)

Lemma 7.15. The map

Φ2(N)◦
E[`]
- E`+2(Γ(N))

defined by

ϕ 7→ E[`]
ϕ (τ) :=

−(`+ 1)

(2πi)`+2

∑
(m,n)∈Z2

′ ϕ̂(m,n)

(mτ + n)`+2

is surjective.
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Proof. Let ψ0 :=

{
N `+2 − 1, (m,n)

(N)
≡ (0, 0)

−1 , otherwise
; then

∑′ ψ0(m,n)
(mτ+n)`+2 is obviously

0. This implies that we may assume ψ ∈ Φ2(N)◦ ( =⇒ ψ = ϕ̂,ϕ ∈ Φ2(N)◦) in
the definition. �

Put EQ`+2(Γ(N)) := E[`]
(
ΦQ2 (N)◦

)
. (Clearly E`+2 = EQ`+2 ⊗ C.)

Lemma 7.16. For E[`]
ϕ ∈ EQ`+2(Γ(N)), limτ→i∞E

[`]
ϕ (τ) = H

[`]
[i∞](ϕ) (∈ Q).

Proof. limτ→i∞
∑′

m,n
ϕ̂(m,n)

(mτ+n)`+2 =
∑′

n
ϕ̂(0,n)
n`+2 =

∑′
n

(ι∗
[i∞]

ϕ̂)(n)

n`+2 =
∑′

n

̂π[i∞]∗ϕ(n)

n`+2

= L̃(π̂[i∞]∗ϕ, `+ 2) =
−(2πi)`+2

`+ 1
H

[`]
[i∞](ϕ),

by §§7.2.1− 2. �

7.3.2. Group actions. WritingS` for the symmetric group, let G := S`n(Z/2Z)`

act on H× C` by
(c, ε)(τ ; z1, . . . , z`) := (τ ; (−1)ε1zc(1), . . . , (−1)ε`zc(`)) ;

this descends to E [`] and E [`](N). Fixing N , let Λ` := (Z/NZ)2` act on E [`] via
translations

trλ(τ ; z1, . . . , z`) :=

(
τ ; z1 +

λ1τ + λ2

N
, . . . , z` +

λ2`−1τ + λ2`

N

)
;

this descends to E [`](N).

7.3.3. Inclusions and open subsets of E [`](N). ⊃ Ū [`](N) ⊃ Ũ [`](N)
∪ ∪

U [`](N) ⊃ Û [`](N)

(to be

defined). Writing “FP” for fixed points, set

Ŵ
[`]
N :=

⋃
λ∈Λ`

trλ
{
∪(c,ε)∈GFP((c, ε))

}
⊂ E [`] , Ŵ [`](N) := PN(W

[`]
N ),

Û [`](N) := E [`](N) \ Ŵ [`](N).

Next, generalize U(N) in two different ways:

U [`](N) := ×`Y (N)U(N) , Ū [`](N) := E [`](N) \ {N2` N -torsion sections}.

The inclusion H× C` ↪→ H× C`+1 given by

(z1, . . . , z`) 7→ (−z1, z1 − z2, . . . , z`−1 − z`, z`) =: (u1, . . . , u`+1)

descends to define maps ι : E [`] ↪→ E [`+1] and

ι(N) : E [`](N) ↪→ E [`+1](N).

Finally, put
Ũ [`](N) := ι(N)−1

(
U [`+1](N)

)
.
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To summarize,

Ū [`](N)

Û [`](N)

Ũ [`](N)
U [`](N)


means the

"complement of
translates of"


z1 = · · · = z` = 0
all zi = ±zj, zi = 0

z1 = 0, z1 = z2, . . . , z`−1 = z`, z` = 0
z1 = 0, z2 = 0, . . . , z` = 0

and makes sense in E [`] or E [`](N) (where in E [`] these open sets are denoted
instead Ū

[`]
N , Û

[`]
N , etc.). Denote the U -complements (i.e. the translates of the

sets on the r.h.s.) by W̄ , Ŵ , etc.

7.3.4. Completion of symbols. Write Q[O∗(U(N))] for the ⊗Q free-abelian group
on the set of elements of O∗(U(N)), and recall � := P1 \ {1}. To each monomial
f := f1 ⊗ · · · ⊗ f`+1 ∈ ⊗`+1Q[O∗(U(N))] we associate the graph cycle {f} :=

{f1(u1), . . . , f`+1(u`+1)} :=
{

(τ ; u; f1(τ, u1), . . . , f`+1(τ, u`+1))
∣∣∣ (τ, u) ∈ U [`+1](N)

}
⊂ U [`+1](N)×�`+1.

Its pullback by ι(N) should be thought of as the symbol

(7.9) ι∗{f} := {f1(−z1), f2(z1 − z2), . . . , f`(z`−1 − z`), f`+1(z`)},

which is evidently in good position (i.e. yields a higher Chow precycle) over all
of Ū [`](N). To kill ∂B of this symbol in Ŵ [`](N), we flip it about components of
Ŵ [`](N) and subtract the result: writing G̃ := G n Λ`, define

G̃∗ :=
1

`!2`N2`

 ∑
(c,ε,λ)∈G̃

(−1)sgn(σ)+
∑
εi(c, ε)∗(trλ)∗

 ,

and G̃∗0 if signs are removed. (There is also G∗, defined by forgetting the
1
N2`

∑
λ(trλ)

∗ part.)
Now consider the diagram

⊗`+1Q [O∗(U(N))]

{·}
��

G̃∗ ◦ ι(N)∗ ◦ {·}, followed
by Zariski closure

��

Z`+1
∂B-cl.

(
U [`+1](N), `+ 1

)
{
∑
ui=0}

ι(N)∗

��

Z`+1
∂B-cl.

(
Ũ [`](N), `+ 1

)
G̃∗
��[

Z`+1
∂B-cl.

(
Û [`](N), `+ 1

)]G̃ [
Z`+1
∂B-cl.

(
Ū [`](N), `+ 1

)]G̃restrictionoo

in which we denote the images of f as follows:
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f_

��

 

��

{f}
_

��
ι∗
(N)
{f}

_

��
Zf Zf.

�oo

Unless62 α1 + · · · + α`+1 6= 0 ∀{α1, . . . , α`+1} ∈ |(f1)| × · · · × |(f`+1)|, extend-
ing the cycle over the N -torsion sections to E [`](N) requires a “move” (by adding
a ∂B-coboundary); such a move always exists, as

[
CH`+1(E [`](N), `+ 1)

]G̃ ∼=
restriction

-
[
CH`+1(Û [`](N), `+ 1)

]G̃
,

but of course this eliminates well-definedness on the level of precycles (but not
cycle-class) for the resulting

Zf ∈ Z`+1
∂B-cl.

(E [`](N), `+ 1).

Proposition 7.17. We have a well-defined map of precycles

⊗`+1Q[O∗(U(N))] −→ [Z`+1
∂B-cl.

(Ū [`](N), `+ 1)]G̃

f 7−→ Zf.

Going modulo relations, this induces a well-defined map

O∗(U(N))⊗`+1 //

))SSSSSSSSSSSSSSS

[
CH`+1(Ū [`](N), `+ 1)

]G̃

f �

))TTTTTTTTTTTTTTTTTTTTTTTT
[
CH`+1(E [`](N), `+ 1)

]G̃∼=

OO

〈Zf 〉 .

8. Fundamental class computations

8.1. Cycle-class of the Eisenstein symbol.

62This condition just says 0 /∈ |(f1)| ∗ · · · ∗ |(f`+1)|.
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8.1.1. More Fourier theory. Now we introduce “fiberwise Fourier series” for
E
π
��
H

e:=zero section.

\\

Writing coordinates (τ, u = x + yτ) on E , and ν := τ̄ − τ , we note that du
is only well-defined in Ω1(E/H), whereas

d̃u := du− ū− u
ν

dτ ∈ A1,0(E) [resp. d̃ū := d̃u ∈ A0,1(E)]

make sense on E .
Let Γ := Γ(H, R1π∗Z) ∼= Z 〈[α], [β]〉, so that γ = m[β]+n[α] =“(m,n)”∈ Γ has

period ω(γ) := π∗(du · δγ) = mτ + n against du; and write

χγ(u) := exp(2πi(mx− ny)) , dχγ(u) =
2πi

ν
{ω(γ)du− ω(γ)du}χγ.

Associate to a current K ∈ DM(E) “Fourier coefficients”

K̂(γ) :=

{
π∗(K · χγ) ∈ DM−2(H), M ≥ 2

ν−1π∗(K · χγ d̃u ∧ d̃ū) ∈ DM(H), M < 2

for each γ ∈ Γ. (Note: ν−1du ∧ dū = dx ∧ dy.)

Lemma 8.1. (i) If K ∈ AM(E) (M < 2) then

e∗K =
∑
γ∈Γ

K̂(γ),

and the r.h.s. is absolutely convergent.
(ii) Recalling the notation of §7.2.5,63 if K ∈ D0(Eτ ) is a smooth function on

the complement of64 W (p,q)
τ (N) \ {connected component of u = 0}, then

K(0) = e∗K =
∑
k∈Z

P.V.∑
j∈Z

K̂(jp− ks, jq + kr)

where
∑P.V.

j∈Z := limJ→∞
∑J

j=−J (or alternatively, add ±j terms then sum j ≥ 0).

Proof. (i) is just the statement “K(0) ={inverse FT evaluated at 0}=
∑

{Fourier
coefficients}” for smooth functions.

(ii) Say (p, q) = (1, 0), M = 0. Then (working on some Eτ ) put Gk(x) :=∫ 1

0
K(x, y)e−2πinydy ∈ D0(C/Z); this restricts to a smooth function on the com-

plement of { 1
N
, 2
N
, . . . , N−1

N
}. By [WM, Cor. 41.4] Gk(0) =

∑P.V.
j∈Z Ĝk(j) =∑P.V.

j∈Z
∫ 1

0
Gk(x)e2πijxdx =====

Fubini ∑P.V.
j∈Z
∫ ∫

Eτ
K(x, y)χ(j,k)dx ∧ dy =

∑P.V.
j∈Z K̂(j, k).

But the {Gk(0)} are the Fourier coefficients of the smooth function K(0, y) =⇒
K(0, 0) =

∑
Gk(0). �

63Warning: in this section we are no longer using γ to denote
(
p q
−s r

)
∈ SL2(Z).

64Obviously the singularities are L1-integrable since K is a current.
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Lemma 8.2. If F ∈ D0(E), ∂F
∂ū
∈ D0(E) is defined and ∂̂F

∂ū
(γ) = 2πiω(γ)

ν
F̂ (γ).

Lemma 8.3. Let f ∈ O∗(UN), and write ϕ̂f (γ) := ϕ̂f (m,n).

(i) δ̂(f)(γ) = ϕ̂f (γ);

(ii) l̂og f(γ) =

∫
Tf
χγdu

ω(γ)
for γ 6= (0, 0), while l̂og f(0) = 0 if f ∈ F(N)( p q

−s r

);
(iii) dlogf = αf d̃u+ βfdτ =⇒ α̂f (0) = β̂f (0) = 0 while for γ 6= (0, 0),

α̂f (γ) =
−ϕ̂f (γ)

ω(γ)
and β̂f (γ) =

φ̂f (γ)

2πi(ω(γ))2
.

Proof. Lemma 8.2 and 8.3(i), (iii) (which uses 8.2) are essentially done in [B2].
For (ii) (and to get a feel for how the others go),

l̂og f(γ) = ν−1π∗(log f χγdu ∧ dū) = (2πi)−1ω(γ)−1π∗

(
log f

2πi

ν
{ω(γ)du− ω(γ)dū}χγ ∧ du

)

= (2πi)−1ω(γ)−1π∗(log f dχγ ∧ du) = (2πi)−1ω(γ)−1{−π∗(χγd[log f ] ∧ du) + π∗(χγ
df

f
∧ du︸ ︷︷ ︸
0

)}

= ω(γ)−1π∗(χγδTf ∧ du) =

∫
Tf
χγdu

ω(γ)
,

where at the end we have used d[log f ] = df
f
− 2πiδTf . As for l̂og f(0), we have

l̂og |f |(0) = ν−1π∗(log |f | du ∧ dū) = 0 since log |f |du ∧ dū = dlog|f | ∧ dū =
d[log |f |dū]. Now, using our prototype (from the proof of Lemma 7.13(ii)) for
f ∈ F(N)(1 0

0 1

) with f(z̄) = f(z), one finds (τ ∈ iR+) that π∗(arg f du ∧

dū) = π∗(arg f̄ du ∧ dū) = π∗(− arg f du ∧ dū). (A similar argument works in
general.) �

Lemma 8.4. Let f ∈ F(N)( p q

−s r

), γ = (m,n). Then over (τ ∈)A( p q

−s r

) ⊂ H,

∫
Tf

χγd

{
u
ū

}
=

p

{
τ
τ̄

}
+ q

2πi(mq − np)
ϕ̂f (γ)

if mq − np 6= 0; otherwise the l.h.s. is 0.

Proof. Represent Tf as a sum of straight paths of the following type, assuming
(f) =

∑N−1
K=0 aK

[
K pτ+q

N
+ L−sτ+r

N

]
(L ∈ {0, . . . , N − 1} fixed). For the paths,

write
P : [0, 1] ↪→ Eτ

t 7→ L
−sτ + r

N
+ t(pτ + q);



110 CHARLES F. DORAN AND MATT KERR

then

Tf =
∑
K

aK

{
N −K
N

· P ([0,K/N])− K

N
· P ([K/N, 1])

}
+ b ·P([0, 1]) =: T̃f +Sf ,

where b ∈ Q. We have

P∗(χγdu) = e2πi{m(LrN +qt)−n(−LsN +pt)}(pτ+q)dt = e2πit(mq−np)e
2πiL
N

(mr+ns)(pτ+q)dt.

Now 1
pτ+q

∫
Sf
χγdu = b ·e 2πiL

N
(mr+ns)

∫ 1

0
e2πit(mq−np)dt is obviously 0 if mq−np 6=

0; but if mq − np = 0 then

e
−2πiL
N

(mr+ns)

pτ + q

∫
Tf

χγdu =

∫
Tf

du =
1

2πi

∫
(
df

f
−d[log f ])∧du =

1

2πi

∫
(log f)d[du] = 0.

For mq − np 6= 0 we have
1

pτ + q

∫
T̃f

χγdu = e
2πiL
N

(mr+ns)
∑
K

aK

{
N −K
N

∫ K
N

0
e2πit(mq−np)dt−

K

N

∫ 1

K
N

e2πit(mq−np)dt

}

=
e2πi

L
N

(mr+ns)

2πi(mq − np)

(∑
K

aKe
2πiK

N
(mq−np) −

∑
K

aK

)
=

1

2πi(mq − np)
∑
K

aKχγ

(
K
pτ + q

N
+ L
−sτ + r

N

)

=
ϕ̂f (γ)

2πi(mq − np)
(where we have used that

∑
aK = 0). �

Remark 8.5. Lemma 8.3(iii) can be read
∫
Eτ
χγdlogf ∧ dū =

−νϕ̂f (γ)

ω(γ)
.

8.1.2. Main computation; proof of Beilinson-Hodge. We now use the Fourier
“technology” to compute

CH`+1(E [`](N), `+ 1)
[·]- HomMHS

(
Q(0), H`+1

(
E [`](N),Q(`+ 1)

))
for

Zf 7−→ ΩZf ∈ Ω`+1(E [`]
(N))

〈
log π−1(κ(N))

〉
.

By §7.1.5, P∗NΩZf = (2πi)`+1ΩFf = (2πi)`+1Ff(τ)dz1 ∧ · · · ∧ dz` ∧ dτ for some
Ff(τ) ∈ MQ

`+2(Γ(N)), and it is this modular form we must identify. Consider

Ωι(N)∗{f} ∈ Ω`+1(E [`]
(N))

〈
log
(
W̃ [`](N) ∪ π−1(κ(N))

)〉
, which pulls back by G̃∗

to ΩZf
. The latter is not affected by moving Zf into good position over W̄ [`](N)

and completing it to Zf; so ΩZf = G̃∗Ωι(N)∗{f} = G̃∗ι(N)∗dlogf1(u1) ∧ · · · ∧
dlogf`+1(u`+1).

Write A{f} := (−1)`ΩP∗N{f} ∧ d̃ū1 ∧ · · · ∧ d̃ū` ∈ A`+1,`(E [`+1])
〈

logW
[`+1]
N

〉
and

ι∗A{f} = P∗NΩι(N)∗{f}∧d̃z̄1∧· · ·∧d̃z̄` ∈ A`+1,`(E [`])
〈

log W̃
[`]
N

〉
⊂ D`+1,`(E [`]). Using

the diagram

(8.1) E [`] � � ι //

π[`]

''OOOOOOOOOOOOOOO E [`+1] P // //

π[`+1]

��

E
π

wwooooooooooooooo

H e

BB
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where P (τ ; [u1, . . . , u`+1]τ ) := (τ ; [u1 + · · · + u`+1]τ ), we compute π[`]
∗ (ι∗A{f}) in

two different ways.
For the first,

π[`]
∗ (ι∗A{f}) = π[`]

∗ (G̃0ι
∗A{f}) = π[`]

∗ {G̃∗(P∗NΩι(N)∗{f}) ∧ d̃z̄1 ∧ · · · ∧ d̃z̄`}

= π[`]
∗

{
(2πi)`+1Ff(τ)dz1 ∧ · · · ∧ dz` ∧ dτ ∧ d̃z̄1 ∧ · · · ∧ d̃z̄`

}
= (−1)(

`+1
2 )(2πi)`+1ν`Ff(τ)dτ ∈ A1,0(H).

For the second,

π[`]
∗ (ι∗A{f}) = e∗P∗A{f} =========

Lemma 8.1(i) ∑
γ∈Γ

P̂∗A{f}(γ)

= ν−1
∑
γ∈Γ

π∗(χγP∗A{f} ∧ d̃u ∧ d̃ū)

= ν−1
∑
γ∈Γ

π[`+1]
∗

(
(P ∗χγ)A{f} ∧ (d̃u1 + · · ·+ d̃u

`+1
) ∧ P ∗d̃ū

)
.

Writing dlog(P∗Nfi(ui)) = αid̃ui + βidτ , this

= (−1)(
`+2

2 )ν−1
∑
γ∈Γ

`+1∑
i=1

π
[`+1]
∗


(
`+1∏
k=1

χγ(uk)

)
βi
∏
j 6=i

αj d̃u1 ∧ d̃ū1 ∧ · · · ∧ d̃u`+1
∧ d̃ū

`+1
∧ dτ


= (−1)(

`+2
2 )ν`

∑
γ∈Γ

`+1∑
i=1

β̂i(γ)
∏
j 6=i

α̂i(γ)dτ =
(−1)`(`+ 1)

2πi
(−1)(

`+2
2 )ν`

∑
γ∈Γ

′
∏`+1

i=1 ϕ̂fi(γ)

(ω(γ))`+2
.

So defining ϕf := ϕf1 ∗ · · · ∗ϕf`+1
∈ ΦQ2 (N)◦ (and linearly extending this to sums

of “monomials” f1 ⊗ · · · ⊗ f`+1), we have proved

Theorem 8.6. Ff(τ) = −(`+1)
(2πi)`+2

∑
m,n∈Z2

ϕ̂f(m,n)
(mτ+n)`+2 = E

[`]
ϕf(τ).

Together with Lemma 7.12(i), the Decomposition Lemma (i), and Lemma 7.15,
this immediately yields

Corollary 8.7. E`+2(Γ(N)) ⊂M`+2(Γ(N)), EQ`+2(Γ(N)) ⊂MQ
`+2(Γ(N)).

(In particular, the map O∗(U(N))⊗`+1 → EQ`+2(Γ(N)) defined by f1 ⊗ · · · ⊗
f`+1 7→ E

[`]
ϕf(τ) is surjective.)

What is striking here is how simple cycles (once they are constructed) make
it to prove statements about related objects: in this case, that Eisenstein series
are modular forms ; in the same spirit we can identify their “values” at cusps, and
show that they yield all holomorphic forms with log poles and Q-periods.

Corollary 8.8. For σ ∈ κ(N),

1

(2πi)`
Resσ(ΩZf) = Rσ(Ff) = H[`]

σ (ϕf) =
−(`+ 1)

(2πi)`+2
L̃( ̂(πσ)∗ϕf, `+ 2).
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Proof. The outer equalities are just §7.1.5 and §7.2.2, respectively (∀σ). For
σ = [i∞], R[i∞](Ff) := limτ→i∞ Ff(τ) = limτ→i∞E

[`]
ϕf(τ) = H

[`]
[i∞](ϕf) by §7.3.1.

Now SL2(Z) acts compatibly on the diagram

W̄
[`+1]
N

P

""FFFFFFFF
� � // E [`+1]

P

  AAAAAAAAAA
//

��

E [`+1](N)

P

))RRRRRRRRRRRRRRRR

��

W̄N
� � // E //

~~|||||||||
E(N)

uulllllllllllllllll

H // Y (N) �
� // Y (N) = Y (N) ∪ κ(N)

since Γ(N) E SL2(Z). In particular, the action on connected components of W̄N

(the union of N -torsion sections) induces an action (by pullback) on ΦQ2 (N)◦

compatible with Pontryagin ∗ and pullbacks of functions ∈ O∗(UN), etc. Explic-
itly, Mσ :=

(
r −q
s p

)
sends: (in κ(N)) [i∞] 7→ [ r

s
] =: σ, (in H) τ 7→ rτ−q

sτ+p
=: τ0, (in

W̄N) m τ
N

+ n 1
N
7→ 1

N
mτ+n
sτ+p

= (mp − ns) τ0
N

+ (mq + nr) 1
N

=: µ τ0
N

+ η 1
N
, and (in

ΦQ2 (N)◦, by pullback) ϕf(µ, η) 7→
((

r −q
s p

)∗
ϕf

)
(m,n) := ϕf(mp− ns,mq+ nr).

So(
π[i∞]∗

(
r −q
s p

)∗
ϕf

)
(m) =

∑
n∈Z/NZ

ϕf(mp−ns,mq+nr) =
∑
n

ϕf(m(p, q)+n(−s, r))

=
(
π[ r

s
]∗ϕf

)
(m),

and

Resσ
(2πi)`

(ΩZf) =
Res[i∞]

(2πi)`
(M∗

σΩZf) =
Res[i∞]

(2πi)`

(
ΩZM∗σf

)
=
−(`+ 1)

(2πi)`+2
L̃
(
̂π[i∞]∗ϕM∗σf, `+ 2

)

=
−(`+ 1)

(2πi)`+2
L̃
(
π̂σ∗ϕf, `+ 2

)
.

�

Corollary 8.9. (i) Claim 7.1 holds for Γ(N) ( =⇒ Beilinson-Hodge for E [`](N)).
(ii) EQ`+2(Γ(N)) = MQ

`+2(Γ(N)) ∼= HomMHS

(
Q(0), H`+1(E [`](N),Q(`+ 1)

)
, with

dimension |κ(N)|.
(iii) M`+2(Γ(N)) = E`+2(Γ(N))⊕ S`+2(Γ(N)).

Remark. Note that dimC E = dimQ EQ = dimQM
Q ≤ dimCM in general.
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Proof. is basically contained in the diagram
O∗(U(N))⊗`+1

⊗`+1÷

ssssgggggggggggggggggggggg
Z

**UUUUUUUUUUUUUUUUUU

(
ΦQ

2 (N)◦
)⊗`+1

∗
`+1

����

CH`+1(E [`](N), `+ 1)

[·]

��
ΦQ

2 (N)◦

H=⊕
σ∈κ(N)

H
[`]
σ

(( ((QQQQQQQQQQQQQQQQQQQQQQQQQQQQQ
// // EQ

`+2(Γ(N))
� � //

⊕Rσ|EQ

!!BBBBBBBBBBBBBBBBB
MQ
`+2(Γ(N))

[(2πi)`+1Ω(·)]

∼=
//

⊕Rσ|MQ

��

HomMHS

(
Q(0), H`+1(E [`](N),Q(`+ 1))

)
jJ

Res=⊕ Resσ
(2πi)`

xxppppppppppppppppppppppppθ`+2

oo

ΥQ
2 (N)

(The arrows around the outer left surject by §§7.2.5, 7.2.3, 7.2.2 (resp.), as does
the map to EQ`+2 by §7.3.1; the map from EQ`+2 injects by Cor. 8.7 and Res by
§7.1.4. The upper pentagon commutes by Theorem 8.6, and the lower triangles
by Cor. 8.8.) We can track f := f1 ⊗ · · · ⊗ f`+1 though the diagram:

f.

wwnnnnnnnnnnnnnnn �

##HHHHHHHHHH

ϕf1 ⊗ · · · ⊗ ϕf`+1_

��

〈Zf〉_

��
ϕf

� //
�

''OOOOOOO Ff
� //

_

��

[ΩZf ]7

{{w w
w

w
w

�oo

R(Ff)

To see (i), note the composition H ◦ ∗`+1 ◦ ⊗`+1÷ surjective =⇒ Res ◦ [·] ◦ Z
surjective =⇒ Res◦ [·] surjective (=Claim 5.1) ( =⇒ [·] surjective (=Beilinson-
Hodge)).

For (ii), Res ◦ [·] ◦ Z surjective =⇒ [·] ◦ Z surjective (and Res ∼=) =⇒
θ`+2 ◦ [·] ◦ Z surjective =⇒ EQ ⊆MQ is equality. Finally, dim ΥQ

2 (N) = |κ(N)|.
Now (iii) follows from eqn. (7.3). �

Remark 8.10. Corollary 8.9 holds for arbitrary congruence subgroups Γ (between
Γ(N) and SL2(Z)), given an appropriate definition of Eisenstein series for Γ. This
is (referring to §7.1.6)

EQ`+2(Γ) := R−1
(
P

[`]
Γ(N)/Γ(ΥQ

2 (Γ))
)
∩ EQ`+2(Γ(N)),

the important point being that these are generated by ϕ ∈ Φ2(N)◦ satisfying
H

[`]
[ r
s

](ϕ) = H
[`]

[ r
′
s′ ]

(ϕ) whenever [ r
s
], [ r

′

s′
] ∈ κ(N) map to the same cusp in κ(Γ).

We’ll look at this condition further below (in §8.2.1).
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Also, a version of the above construction can be made to work for PΓ(2) (by
choosing an ∼= subgroup of SL2(Z)) if ` is even, but we have omitted this.

8.1.3. Additional calculations for the cycle-class. The results of §8.1.2 lead natu-
rally to a basis for EQ`+2(Γ(N)) whose elements correspond to holomorphic (`+1)-
forms with Q(` + 1) periods and log poles along the fiber over exactly one cusp
σ. (In some sense this is the most explicit confirmation of Beilinson-Hodge.)

Writing

Γ(N)i∞ := Stab(i∞ ∈ H∗) =

{(
1 aN
0 1

)}
⊂ Γ(N)

PSL2(Z)i∞ := Stab(i∞ ∈ H∗) =

{
±
(

1 a
0 1

)}
⊂ PSL2(Z),

we have a short-exact sequence

Γ(N)i∞�Γ(N) −→ PSL2(Z)i∞�PSL2(Z) −→
〈(

1̄ ā

0̄ 1̄

)〉
�PSL2(Z/NZ)︸ ︷︷ ︸
∼= κ(N)

.

Hence

E[`]
ϕ (τ) =

−(`+ 1)

(2πi)`+2

∑
(m,n)∈Z2

′ ϕ̂(m,n)

(mτ + n)`+2

=
−(`+ 1)

(2πi)`+2

∑
±(m0, n0) ∈ Z2/±

rel. prime

l γ =

(
∗ ∗
m0 n0

)
∑
γ∈ PSL2(Z)

PSL2(Z)i∞

∑
z∈Z

′ ϕ̂(zm0, zn0)

(zm0τ + zn0)`+2

=
−(`+ 1)

(2πi)`+2

∑
σ ∈ κ(N)

‖
[ r
s

]

∑
γ′ ∈ Γ(N)

Γ(N)i∞
·
(
p q

−s r

)
l γ′ =

(
∗ ∗
m0 n0

)
∑

(m0, n0) rel. prime,
(N)
≡ (−s, r)

∑
z∈Z

′ ϕ̂(zm0, zn0)

z`+2(m0τ + n0)`+2
.

Now since (in the sum) (m0, n0)
(N)
≡ (−s, r), ϕ̂(zm0, zn0) = ϕ̂(−zs, zr) = (ι∗[ r

s
]ϕ̂)(z) =

π̂[ r
s

]∗ϕ(z) and the above

=
∑

σ∈κ(N)

[
−(`+ 1)

(2πi)`+2

∑
z∈Z

′ π̂[ r
s

]∗ϕ(z)

z`+2

] ∑
(m0, n0)

(N)
≡ (−s, r)

gcd(m0, n0) = 1

1

(m0τ + n0)`+2

=:
∑

σ∈κ(N)

H[`]
σ (ϕ)Ẽ[`]

σ (τ),
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where the
∑

z = L̃(π̂[ r
s

]∗ϕ, ` + 2) and H
[`]
σ (ϕ) (σ = [ r

s
]) is the entire bracketed

quantity.

Proposition 8.11. (i) We have, for σ = [ r
s
],

Ẽ[`]
σ (τ) =

∑
(m0, n0) ∈ Z2

rel. prime,
(N)
≡ (−s, r)

1

(m0τ + n0)`+2
=

∑
(α′, β′) ∈ Z2

gcd(r +Nα′, s+Nβ′) = 1

1

(r +Nα′ − (s+Nβ′)τ)`+2

=
∑

(α, β) ∈ Z2

gcd(1 +Nα,Nβ) = 1

1

[(1 + αN)(r − sτ) + βN(q + pτ)]`+2

In particular,

Ẽ
[`]
[i∞](τ) =

∑
(α, β) ∈ Z2

gcd(1 +Nα,Nβ) = 1

1

(1 +Nα−Nβτ)`+2
.

(ii) The {Ẽ[`]
σ (τ)}σ∈κ(N) give a basis for the EQ`+2(Γ(N)), satisfying Rσ′(Ẽ

[`]
σ ) =

δσσ′ .
(iii) Given f ∈ O∗(U(N))⊗`+1,

Ff(τ) =
∑

σ∈κ(N)

H[`]
σ (ϕf)Ẽ

[`]
σ (τ).

Proof. for (ii), pick for each σ a ϕ ∈ ΦQ2 (N)◦ so that H
[`]
σ′(ϕ) = δσσ′ , and plug

into the computation above. The remainder is clear. �

Next, we have a q-series expansion at [i∞] for the usual Eisenstein series
associated to a “divisor on N -torsion” ϕ ∈ ΦQ2 (N)◦: write q0 := e

2πiτ
N =“q

1
N ”,

ξN(a) := e
2πia
N , `ϕ̂(m,n) := ϕ̂(m,n) + (−1)`ϕ̂(−m,−n).

Proposition 8.12. E[`]
ϕ (τ) =

H
[`]
[i∞](ϕ) +

(−1)`+1

N `+2`!

∑
M≥1

qM0

∑
r|M

r`+1

 ∑
n0∈Z/NZ

ξN(n0r) · `ϕ̂(
M

r
, n0)

 .

Proof. essentially in [Gu] for ` even (also see [Mi]), but can be derived from
scratch using ideas in [Si] (will be done below for q-series of regulator periods).

�

Since q0 is the local coordinate at [i∞] ∈ Y (N), this yields a power-series
expansion for Ff there. We have not tried to directly compute q-expansions
for the Ẽ[`]

σ , but one can plug ϕ := 1
N
π∗σϕ

[`]
N into E

[`]
ϕ to have the same effect

(see Prop. 7.10). We are particularly interested in the case σ = [i∞]. First, a
simplification of Prop. 8.12:
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Corollary 8.13. For ϕ0 ∈ ΦQ(N)◦, ϕ := 1
N
π∗[i∞]ϕ0, we have

E[`]
ϕ (τ) =

(−1)`

`!(`+ 2)

N∑
a=0

ϕ0(a)B`+2(
a

N
) +

(−1)`+1

N `+1`!

∑
µ≥1

qNµ0

∑
r|µ

r`+1 · `ϕ0(r)

 ,

where `ϕ0(a) = ϕ0(a) + (−1)`ϕ0(−a).

Proof. `ϕ̂ = ` ̂( 1
N
π∗[i∞]ϕ0) = ι[i∞]∗

`ϕ̂0 =⇒
∑

n0
ξN(n0r) · `ϕ̂(M

r
, n0) = 0 if N - M

r
;

otherwise =
∑

n0
ξN(n0r) · `ϕ̂0(n0) = N · `ϕ0(r). Put M = µN . �

Now take ϕ0 to be the “fundamental vector” ϕ[`]
N ; then

E[`]
ϕ (τ) = 1 +

2(−1)`+1

N `+1`!

∑
µ≥1

qNµ0

∑
r|µ

r`+1ϕ
[`]
N (r)


has Rσ(E

[`]
ϕ ) = δσ,[i∞].

Example 8.14. If ` = 1 and N = 3, from Example 7.11 we get

1− 9
∑
µ≥1

q3µ
0

∑
r|µ

r2χ−3(r)

 .

8.2. Push-forwards of the construction.

8.2.1. Eisenstein symbols for other congruence subgroups Γ. Recall that this
means Γ(N) ⊆ Γ ⊆ SL2(Z) (N ≥ 3), {−id} /∈ Γ; that automatically Γ(N) E

Γ; and that there are corresponding quotients (E [`](N) \ fibers)
P [`]

Γ(N)/Γ-- E [`]
Γ ,

(Y (N) \ pts.)
ρΓ(N)/Γ-- YΓ \ εΓ. Our main examples will be

Γ1(N) :=

{(
a b

c d

)
∈ SL2(Z)

∣∣∣ a (N)
≡ 1

(N)
≡ d, c

(N)
≡ 0

}
=
〈

Γ(N),
(

1 1

0 1

)〉
,

Γ
′

1(N) :=

{(
a b

c d

)
∈ SL2(Z)

∣∣∣ a (N)
≡ 1

(N)
≡ d, b

(N)
≡ 0

}
=
〈

Γ(N),
(

1 0

1 1

)〉
=
(

0 1

−1 0

)
Γ1(N)

(
0 1

−1 0

)
.

Already for Γ
(′)
1 (N), N not prime, one has type I∗m cusps — e.g. Y

′

1(4) has cusps
[i∞] (I4), [0] (I1), [2] (I∗1 ). (Also, Y

(′)
1 (3) has an elliptic point, but for simplicity

our notation will ignore this fact.)
However, we will consider also “traditional” congruence subgroups that don’t

fit our convention: e.g.

Γ0(N) :=

{(
a b

c d

)
∈ SL2(Z)

∣∣∣ c (N)
≡ 0

}
(3 {−id}),
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Figure 8.1. I
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I
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κ (5)
0

κ (5)
1

κ(5)

for which one has Y Γ but no canonically defined E [`]
Γ (though when N = 3, 4, 6

one can get around this problem by observing that SL2(Z) � PSL2(Z) sends
Γ1(N)

∼=- PΓ0(N)). We will also consider (in §8.2.2)

Γ+N :=
〈

Γ, ιN :=
(

0 −1/
√
N√

N 0

)〉
(* SL2(Z))

for Γ = Γ0(N),Γ1(N).

We will now (e.g. using P [`]
Γ(N)/Γ∗) push the {Zf} constructed in §7.3.4 forward to

cycles (on families) over these new YΓ. The aim in doing this is to produce more
Eisenstein symbols (on families of abelian varieties or CY ’s) that live over genus 0
curves, in order to link up with those cases of the construction of §§3−4 which are
classically modular. We note that, while g(Y (N)) = 0 only for N = (2, ) 3, 4, 5,
on the other hand Y (′)

1 (2−10, 12) and Y0(2−10, 12, 13, 16, 18, 25) are all rational.
To get a feel for the behavior of cusps under the various ρΓ′/Γ, consider the

maps Y (N) → Y 1(N) → Y 0(N) → Y 0(N)+N for N prime, with (resp.) N2−1
N

(all IN), N − 1 (half each of IN , I1), 2 (IN , I1), and 1 cusp(s). Since N is
prime, one has a correspondence κ(N) ∼= (Z/NZ)2\{(0,0)}

〈±id〉 , and one can picture how
these get equated (e.g. for N = 5) as in Figure 8.1, where circles are chosen
representatives of equivalence classes. Flipping about the diagonal gives the
picture for κ(5)→ κ′1(5).

For Γ′ ⊂ Γ if index r, ρΓ′/Γ : Y Γ′ → Y Γ is of degree r; if Γ′ E Γ then ρΓ′/Γ

(omitting cusps/elliptic points and their preimages) is a Galois covering, so that
one has deck transformattions {j}rj=1 satisfying

∑
∗j = ρ∗ρ∗ (on forms, cycles,

etc.), and corresponding transformations on the Kuga varieties. For example,
one has a diagram (j = 1, . . . , N)
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E [`]

π[`]

��

P [`]
Γ1(N) //

P [`]
Γ(N)

>>>>>>>>>

��>>>>>>>>

E [`]
Γ1(N)

π
[`]
1 (N)

��
H

ρΓ1(N) //

ρΓ(N)

??????????

��?????????

Y1(N)

E [`](N)

Jj
��

π[`](N)
��

P [`]
Γ(N)
Γ1(N)

}}}}}}}

>>}}}}}}}

Y (N)

j

UU

ρ Γ(N)
Γ1(N)|||||||||

>>|||||||||

(and a similar diagram for Γ
′
1(N)) where (′)Jj and (′)j are induced by the action

of coset representatives γ(′)
j =

(
1 j
0 1

)
[resp.

(
1 0
j 1

)
]∈ SL2(Z) for Γ

(′)
1 (N)/Γ(N), on

E [`] and H. Now define

Zf,1(′) :=
1

N

(
P [`]

Γ(N)/Γ(′)
1 (N)

)
∗
Zf ∈ CH`+1(E [`]

Γ
(′)
1 (N)

, `+ 1);

then we have

Ff,1(′) := θ`+2(ΩZ
f,1(′)

) = θ`+2

((
P [`]

Γ(N)/Γ(′)
1 (N)

)∗
Zf,1(′)

)
=

1

N
θ`+2

(
N∑
j=1

(′)J ∗j ΩZf

)

=
1

N

N∑
j=1

θ`+2(ΩZf)|`+2

γ
(′)
j

=
1

N

N∑
j=1

Ff|`+2

γ
(′)
j

,

i.e.

Ff,1(τ) =
1

N

N−1∑
j=0

Ff(τ + j) and Ff,1′(τ) =
1

N

N−1∑
j=0

Ff(
τ

jτ+1
)

(jτ + 1)`+2
.

Writing

(8.2) (ρ∗ϕ̂f)(m,n) :=
∑
j

ϕ̂f(m,n−mj) , (ρ∗
′ϕ̂f)(m,n) :=

∑
j

ϕ̂f(m− nj, n)

we get

Ff,1(′)(τ) =
−(`+ 1)

(2πi)`+2

∑
m,n

′
1
N

(ρ(′)
∗ ϕ̂f)(m,n)

(mτ + n)`+2
.

Using Corollary 8.9(ii) for Γ
(′)
1 (N) and surjectivity of κ(N) → κ

(′)
1 (N), this im-

plies

Proposition 8.15.
(
P [`]

Γ
(′)
1 (N)

)∗
of any class in F `+1 ∩ H`+1(E [`]

Γ
(′)
1 (N)

,Q(` + 1))

is (2πi)`+1ΩF for F = E
[`]
ϕ , ϕ ∈ ΦQ2 (N) with ϕ̂ = 1

N
ρ(′)
∗ ϕ̂.
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The effect of ρ∗ on the q-expansion is especially simple:

Ff(τ) =
∑
M≥0

αMq
M
0 =⇒ Ff,1(τ) =

1

N

∑
M≥0

αM

N−1∑
j=0

(ξN(j) q0)M =
∑
m≥0

αmNq
m,

which makes sense since q is the local coordinate at [i∞] on Y 1(N).
We are interested in Eisenstein symbols with their only residue at [i∞], in

analogy to §§3− 4. If Ff = Ẽ
[`]
[i∞], then clearly

Ff,1 = Ẽ
[`]
[i∞] , while Ff,1′ =

1

N

N−1∑
j=0

Ẽ
[`]

[ 1
j

]
=

1

N

∑
(α, β) ∈ Z2

gcd(1 +Nα, β) = 1

1

(1 +Nα + βτ)`+2
.

Once Γ and ` are specified, such symbols (or rather, their cycle-classes) are unique
(up to scaling), so for Γ1(N) and Γ

(′)
1 (N) this is it!

8.2.2. Eisenstein symbols for K3 surfaces and CY 3-fold families. Given a cycle
Z ∈ CH`+1(E [`]

Γ , `+1) (e.g., Γ = Γ(N) or Γ
(′)
1 (N)), we have ΩZ = (2πi)`+1FZ(τ) dz1∧

· · · ∧ dz` ∧ dτ (FZ ∈ EQ`+2(Γ)), which we assume 6= 0. If ` = 2, then there is an

involution I : (τ ; z1, z2) 7→ (τ ;−z1,−z2), with I∗ΩZ = ΩZ. Set X̌ [2]
Γ :=

E [2]
Γ

I
, and

let X [2]
Γ → X̌ [2]

Γ be the (smooth) Kummer K3 family over YΓ \ εΓ obtained by
blowing up the 2-torsion multisections. Using the diagram

(8.3) ˜X [2]
Γ ×X̌ [2]

Γ
E [2]

Γ

p2

		

}
�

�

�

�

�

�� p1

��

A
;

6

2

.

*

X [2]
Γ ×X̌ [2]

Γ
E [2]

Γ

2:1
yytttttttttt

$$JJJJJJJJJJ

X [2]
Γ

%%KKKKKKKKKKKK
E [2]

Γ

2:1
yyssssssssssss

X̌ [2]
Γ

we define a (nontrivial) cycle by ZX := 1
2
p2∗p

∗
1Z ∈ CH3(X [2]

Γ , 3). (This will have
the same regulator periods and higher normal function as Z by the monodromy
argument below. Note also that if we take Γ = Γ1(N), then quotienting E [2]

Γ by
the action of Γ0(N)/Γ1(N) and blowing up also yields — due to the presence of(
−1 0
0 −1

)
— a family of Kummer K3 surfaces over Y0(N) \ · · · and a nontrivial

cycle.) There is a fiberwise involution I ′ : X [2]
Γ → X [2]

Γ induced by (z1, z2) 7→
(z1,−z2) [or equivalently (−z1, z2)], sending dz1 ∧ dz2 7→ −dz1 ∧ dz2 and fixing
the exceptional divisors.
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Passing to ` = 3, and taking Z ∈ CH4(E [3]
Γ , 4), we can apply the process

above to the first two fiber-factors to obtain Z′ ∈ CH4(X [2]
Γ ×YΓ\εΓ

EΓ, 4). Writing
I ′′ : EΓ → EΓ [z 7→ −z], we have an involution I ′×I ′′ on X [2]

Γ ×···EΓ evidently fixing
ΩZ′ . Blowing up along the singular set (in each fiber this looks like a disjoint
union of 64 rational curves) and applying a process similar to the ` = 2 case,
yields a family X [3]

Γ of Borcea-Voisin (CY ) 3-folds over YΓ \ εΓ, and a nontrivial
cycle ZX ∈ CH4(X [3]

Γ , 4). (Again, this will have the same regulator periods as
Z.)

Here is a more interesting construction, which yields aK3-class on aK3 surface
family over Y1(N)+N . Recall that the Fricke involution ιN ∈ SL2(R) acts on H
by τ 7→ − 1

Nτ
; this yields an action of Γ1(N)+N on H∗ with Y 1(N)+N as quotient.

By normality of Γ1(N) E Γ1(N)+N , ιN also acts on Y 1(N) with quotient map
ρ+N : Y 1(N)� Y 1(N)+N .

Set ′E1(N) := E(N)×ιN Y1(N), representing points by (τ ; [z] −1
Nτ

), and consider
the relative N -isogeny (not an involution!) JN : ′E1(N) → E1(N) induced by
(τ ; z) 7→ (τ ;−Nτz). Writing ′E [2]

1 (N) := E1(N)×
Y1(N)

′E1(N), we have id×JN =:

J
[2]
N : ′E [2]

1 (N) → E [2]
1 (N); given F ∈ MQ

4 (Γ1(N)), ′ΩF := − 1
N

(J
[2]
N )∗ΩF = τΩF .

Also write J̃ [2]
N : E [2]

1 (N)→ ′E [2]
1 (N) for (τ ; z1, z2) 7→ (τ ; z1,

z2
τ

).
Now we are ready to consider the involution

′E [2]
1 (N)

π

��

I
[2]
N // ′E [2]

1 (N)

π

��
H

ιN // H

induced by exchanging factors: (τ ; [z1]τ , [z2] −1
Nτ

) 7→ (−1
Nτ

; [z2] −1
Nτ
, [z1]τ ). We have

(I
[2]
N )∗(′ΩF ) =

−1

Nτ
F

(
−1

Nτ

)
dz2 ∧ dz1 ∧ d

(
−1

Nτ

)

= τ

(
1

N2τ 4
F

(
−1

Nτ

))
dz1 ∧ dz2 ∧ dτ

= ′ΩF |4ιN
,

where F |kιN (τ) := F (ιN (τ))

(
√
Nτ)k

. Set

(8.4) F+ :=
1

2

(
F + F |4ιN

)
.

Taking the quotient by I [2]
N

E [2]
1 (N)+N :=

′E [2]
1 (N) \ π−1(i/

√
N)

I
[2]
N

��P+N ′E [2]
1 (N) \ π−1(i/

√
N)
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and replacing E [2]
Γ in (8.3) by this, we get a family65 X [2]

1 (N)+N of (smooth)
Kummer K3 surfaces over Y1(N)+N \ {i/√N}. If Z ∈ CH3(E [2]

1 (N), 3) with
θ4(ΩZ) =: FZ, we may define a cycle

(8.5) Z+N :=
−1

4N
p2∗p

∗
1(P+N)∗(J

[2]
N )∗Z ∈ CH3(X [2]

1 (N)+N , 3).

Also take W ∈ CH3(X [2]
1 (N)+N , 3) to be an arbitrary cycle.

Proposition 8.16. (i) ′ΩF descends to a holomorphic 3-form with Q(3) periods
on X [2]

1 (N)+N ⇐⇒ F ∈MQ
4

(
Γ1(N)+N

)
:= [MQ

4 (Γ1(N))]+.
(ii) W̃ := (J̃

[2]
N )∗(P+N)∗p1∗p

∗
2W (on E [2]

1 (N)) has “cycle-class” θ4(ΩW̃ ) ∈
MQ

4

(
Γ1(N)+N

)
.

(iii) θ4(ΩZ̃+N
) = F+

Z .

Because ′E [2]
1 (N)+N is not a Kuga variety, we no longer have that pullbacks

ΩW̃ to E [2]
1 (N) have equal residues at cusps ∈ κ1(N) mapping to the same cusps

∈ κ(N)+N . Consider for simplicity the residues at66 [0] and [i∞], which are
exchanged by the involution on E [2]

1 (N) induced by γ0 =
(

0 −1

1 0

)
∈ SL2(Z), and

assume F ∈MQ
4 (Γ1(N)+N) ( =⇒ N−2τ−4F

(−1
Nτ

)
= F (τ)). Then

R[0](F ) = lim
τ→i∞

F |4γ0
(τ) = lim

τ→i∞
τ−4F

(
−1

τ

)
=====
τ0:= τ

N

lim
τ0→i∞

N−4τ−4
0 F

(
−1

Nτ0

)
= N−2 lim

τ0→i∞
F (τ0) =

R[i∞](F )

N2
.

If we assume only F ∈MQ
4 (Γ1(N)), then

lim
τ→i∞

N−2τ−4F

(
−1

Nτ

)
=====
τ1:=Nτ

N2 lim
τ1→i∞

τ−4
1 F

(
− 1

τ1

)
= N2 lim

τ1→i∞
F |4γ0

(τ1)

= N2R[0](F ).

So
(8.6)

R[i∞](F
+) =

1

2

{
R[i∞](F ) +N2R[0](F )

}
, R[0](F

+) =
1

2

{
1

N2
R[i∞](F ) + R[0](F )

}
.

This calculation shows
〈
Z̃+N

〉
is nontrivial if one picks Z so that R[i∞](FZ) 6=

−N2R[0](FZ) (obviously possible by §8.1.2).

Remark 8.17. If we replace I [2]
N by the order 4 automorphism ′I

[2]
N (τ ; [z1]τ , [z2] −1

Nτ
) =

(−1
Nτ

; [−z2] −1
Nτ
, [z1]τ ), then the corresponding quotient ′P+N yields a family of sin-

gular Kummer surfaces which is then resolved to yield a smooth K3 family

65It may be more desirable to try to construct cycles on a Shioda-Inose K3 family, especially
one over Y0(N)+N — but this seems difficult to do canonically.

66Note: the residues of F (hence F+) at all [j] (j ∈ Z) are the same (as the residue at [0]).
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′X [2]
1 (N)+N π-- Y1(N)+N . Reworking this in analogy to (8.3) (so as not to

pass through a singular variety), one constructs a cycle ′Z+N and most of the
exposition goes through as above with the crucial replacement of F |4ιN by −F |4ιN
(and N2 by −N2 in (8.6)). In some sense this is the more natural construction
(as the examples in §10 will suggest).

9. Regulator periods and higher normal functions (bis)

9.1. Setup for the fiberwise AJ computation. We restrict once more to
Γ = Γ(N) and the Kuga modular varieties E [`](N)

π[`](N)-- Y (N), and write their
middle relative cohomology groups: H[`]

N := R`π[`](N)∗Z, H
[`]
N := H[`]

N ⊗ OY (N),
H[`],∞
N := H[`]

N ⊗ OY (N)∞ , etc. — dropping the “N ” to work on E [`]/H, and
flipping super/sub-scripts for homology. One has the subsheaves of G∗( =⇒
G̃∗)-invariants Sym`H[1]

N,Q ⊂ H
[`]
N,Q, Sym

`H[1]
N ⊂ H

[`]
N ; as well as G∗-coinvariants

HN,Q
[`] � Sym`H

N,Q
[1]

G∗◦P.D.
∼=
- Sym`H[1]

N,Q. There are the following well-defined sec-
tions /H (multivalued /Y (N)):

α =
−−→
[0, 1], β =

−−→
[0, τ ] ∈ Γ(H,H[1])

γ
[`]
k := α`−kβk ∈ Γ(H, Sym`H

Q
[1])

γ̃
[`]
k := G∗(α1 × · · · × α`−k × β`−k+1 × · · · × β`) ∈ Γ(H, Sym`H[1]

Q )

η
[`]
`−k := G∗(dz1 ∧ · · · ∧ dz`−k ∧ dz̄`−k+1 ∧ · · · ∧ dz̄`) ∈ Γ(H,F `−kSym`H[1],∞),

where one should think of G∗ as reordering the dz/dz̄’s or α/β’s in all possible
ways and dividing by

(
`
k

)
. Writing [·]k =“term of homogeneous degree k in τ, τ̄ ”,

(9.1)〈
γ

[`]
k , η

[`]
`−j

〉
=

(
`

k

)−1 [
(1 + τ)`−j(1 + τ̄)j

]
k

=

∑k
a=0

(
`−j
a

)(
j

k−a

)
τaτ̄ k−a(

`
k

) =: P
[`]
jk

Viewed as the monodromy transformation corresponding to an element of π1(Y (N)),
γ ∈ Γ(N) acts on (γ

[`]
0 , . . . , γ

[`]
` ) from the right, as Sym`γ; we think of the γ[`]

i

as degree-` homogeneous polynomials in α and β, with µi∞ :=
(

1 N

0 1

)
: β 7→

β + Nα, α 7→ α and µ0 :=
(

1 0

N 1

)
: β 7→ β, α 7→ α + Nβ. (Also, γ sends

η
[`]
`−k 7→

η
[`]
`−k

(cτ+d)`−k(cτ̄+d)k
; note that the {η[`]

`−k} and γ
[`]
0 are well-defined over an

analytic neighborhood of [i∞] in Y (N).)
Now refer to the cycle-construction of §7.3.4, denote the fiberwise “slices” (pull-

backs) of 〈Zf〉 by 〈Zf〉y (or τ), etc.; and consider the diagram
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O∗(U(N))⊗`+1

f7→〈Zf〉��

R[`]
N :=

%%

H◦∗`+1◦⊗`+1÷ // // ΥQ
2 (N)

Res−1∼=
��[

CH`+1(E [`](N), `+ 1)
]G̃
〈Z〉
↓{

AJ`+1,`+1(〈Z〉y)
}
y∈Y (N)

��

[·]

〈Zf〉7→[ΩZf ]
// // HomMHS

(
Q(0), H`+1(E [`](N),Q(`+ 1))

)
� _

locally
Fdz ∧ dτ
↓

(Fdz)⊗ dτ

"Leray
{1, `}
part"

��

Γ

(
Y (N),

Sym`H[1]
N

(Sym`H[1]
N )⊗Q(`+1)

)
� _

��

Γ

(
Y (N),

H[`]
N

H[`]
N,Q(`+1)

)
(−1)`·∇

// Γ
(
Y (N),F `H[`]

N ⊗ Ω1
Y (N)

)
in which the upper square commutes by the proof of Cor. 8.9. Write simply
Rf(y) for the R[`]

N -image of f; if we pull this back to H, we may choose a well-
defined lift R̃f(τ) ∈ Γ(H, Sym`H[1]).

Lemma 9.1. (i) The bottom square commutes.
(ii) ∇ is surjective.

Proof. (i) 〈Z〉 ∈ CH`+1(E [`](N), `+1) has TZ
hom≡ 0 on (π[`](N))−1(disk); so locally

we may write R′Z := RZ + (2πi)`+1δ∂−1TZ and compute ∇[R′Z]y = (d[R′Z]){1,`} =

Ω
{1,`}
Z .

(ii) follows from irreducibility of the monodromy action on Sym[`]H[1]
N and

consequent vanishing of the space of (∇-)flat G∗-symmetric normal functions

Γ

(
Y (N),

(Sym`H[1]
N )⊗C

(Sym`H[1]
N )⊗Q(`+1)

)
. Explicitly, given any Γ =

∑`
k=0 εkγ̃

[`]
k ({εk} ∈ C),

the coefficients of γ̃[`]
j in µi∞(Γ)−Γ =

∑`−1
j=0

(∑`
k=j+1

(
k
j

)
εkN

k−j
)
γ̃

[`]
j must belong

to Q(` + 1); inductively one has ε`, ε`−1, . . . , ε1 ∈ Q. To show ε0 ∈ Q, similarly
apply µ0 − id. �

Corollary 9.2. Rf(y) depends only on {H[`]
σ (ϕf)} ∈ ΥQ

2 (N) (or on ϕf ∈ ΦQ2 (N)).

According to §§7.2.4-5, it therefore suffices to computeRf for f ∈ Q

F(N)
×(`+1)(
p q
−s r

)


for “each” (p, q). (In fact, it suffices to do so for (p, q) = (0, 1) and (1, 0), but it is
computationally convenient to consider at least our choices of

(
p q

−s r

)
for each

cusp σ ∈ κ(N).)
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For a fixed choice of lift R̃[`]
f (to be discussed), write

(9.2) R̃[`]
f (τ) =:

∑̀
k=0

R
[`]
f,j(τ)

[
η

[`]
`−j

]
.

We then define regulator periods

(9.3) Ψ
[`]
f,k(τ) :=

〈
γ

[`]
k , R̃

[`]
f (τ)

〉
(k = 0, . . . , `)

and a higher normal function67

(9.4) V
[`]
f (τ) :=

〈
R̃[`]

f (τ), η
[`]
`

〉
= (−1)(

`+1
2 )ν`R

[`]
f,`(τ).

These are the objects which we aim (in the next subsection) to compute with
the [KLM] formula; first we can derive a number of their properties by “pure
thought”.
Holomorphicity: Since ∇∂τ̄ R̃f(τ) = 0 ∈ Γ(H,H[`]), V [`]

f and the {Ψ[`]
f,k} belong to

O(H). The {R[`]
f,j} are not holomorphic since the [η

[`]
j ] aren’t (except for η[`]

` ):

(9.5) ∇η[`]
j = j

[η
[`]
j−1]− [η

[`]
j ]

ν
⊗ dτ − (`− j)

[η
[`]
j+1]− [η

[`]
j ]

ν
⊗ dτ̄ .

Picard-Fuchs equations: Let ∇f
PF = ∇`+1

∂τ
+ · · · denote the PF operator for

Ω
[`]
f (τ) := (2πi)`+1Ff(τ)[η

[`]
` ] ∈ Γ(H,F `H[`]). Writing ∇̄∂τ : Fj/Fj+1 → Fj−1/Fj,

(9.5) =⇒ ∇̄∂τη
[`]
j = j

ν
[η

[`]
j−1] =⇒ ∇̄`

∂τ
η

[`]
` = `!

ν`
[η

[`]
0 ], which yields the “stupid

Yukawa coupling”

Yτ`(τ) :=
〈
η

[`]
` , ∇

`
∂τη

[`]
`

〉
= (−1)(

`
2) `!

ν`

∫
dz1 ∧ dz̄1 ∧ · · · ∧ dz` ∧ dz̄` = (−1)(

`
2)`!.

Moreover, ∇`+1
∂τ
η

[`]
` = 0 as η[`]

` has periods 1, τ, . . . , τ `.

Proposition 9.3. (i) The {Ψ[`]
f,k} satisfy the homogeneous equation (Df

PF ◦

∂τ )(·) = 0. More precisely,
dΨ

[`]
f,k
dτ

= (−1)`(2πi)`+1τ kFf(τ).

(ii) V [`]
f satisfies, for any lift R̃f, the inhomogenous equation

(9.6) ∂`+1
τ (·) = (−1)(

`+1
2 )(2πi)`+1`!Ff(τ);

i.e. the higher normal function is (const. ×) an Eichler integral of Ff. The
various {V [`]

f } resulting from the different lifts yield a basis of solutions for (9.6).

Proof. (i) Lemma 9.1(i) says ∇∂τ R̃
[`]
f = (−1)`Ω

[`]
f ; the result follows.

(ii) There are two ways to do this, both instructive:
Method I: ∂`+1

τ

〈
R̃f, η`

〉
= ∂`τ

〈
R̃f,∇∂τη`

〉
= · · ·

[using
〈
η`,∇p

∂τ
η`
〉

= 0 ∀p < `]

67It would make more sense on Y (N) to take V (τ) =
〈
R̃,Fη`

〉
for some F ∈M`(Γ(N)); we

will essentially do this later.
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· · · = ∂τ

〈
R̃f,∇`

∂τη`

〉
= (−1)`(2πi)`+1

〈
Ffη`,∇`

∂τη`
〉

+
〈
R̃f,∇`+1

∂τ
η` [= 0]

〉
= (−1)`(2πi)`+1

〈
Ffη

[`]
` ,

`!

ν`
η

[`]
0 + F1

〉
= (−1)`+(`2)(2πi)`+1`!

Ff

ν`
ν`.

Method II: Note that log(µi∞)γ̃
[`]
j = jγ̃

[`]
j−1(= 0 if j = 0). Taking the priveleged

extension basis (single-valued on Y (N), in a neighborhood of [i∞])

γ̂
[`]
j := e−τ log(µi∞)γ̃

[`]
j

∇∂τ7→ −e−τ log(µi∞) log(µi∞)γ̃
[`]
j = −jγ̂[`]

j−1,

we write R̃[`]
f =

∑
ψ̂j γ̂

[`]
j . Applying ∇∂τ , and using γ̂[`]

` ≡ η
[`]
` , yields(

`−1∑
j=0

{
∂ψ̂j
dτ
− (j + 1)ψ̂j+1

}
γ̂

[`]
j +

dψ̂`
dτ

γ̂
[`]
`

)
⊗ dτ = (−1)`Ω

[`]
f ⊗ dτ

= (−1)`(2πi)`+1Ffγ̂
[`]
` ⊗ dτ.

So

(9.7)

 ψ̂` = (−1)`(2πi)`+1
∫
Ffdτ

ψ̂j = (j + 1)
∫
ψ̂j+1dτ (j = 0, . . . , `− 1);

while V [`]
f =

∑
ψ̂j 〈γ̂j, γ̂`〉 = (−1)(

`
2)ψ̂0. To see the “basis” assertion: modifying

R̃f changes Vf by a polynomial in τ (coefficients ∈ Q(`+ 1)) of degree ≤ `. �

Remark. If we notate R̃[`]
f =

∑
ψj γ̃j, then

 ψ`
...
ψ0

 = eτ log[µi∞]γ

 ψ̂`
...
ψ̂0

 and

this may be used to “compute” Ψ
[`]
f,k = 〈γ̃k, γ̃`−k〉ψ`−k = (−1)

k+(`2)

(`k)
ψ`−k.

Monodromy and special values at [i∞]: (This cusp will play a distinguished role
later.) If Ff(τ)→ 0 as τ → i∞, then integrating (−1)`(2πi)`Ff(q)γ̂

[`]
` ⊗

dq
q

= ∇R̃[`]
f

yields on a disk ∆ ⊂ Y (N) (containing {y = 0} = [i∞]):

(9.8) (2πi)`+1
∑̀
j=0

(Qj + qPj(τ)) γ̃
[`]
j , Qj ∈ C and Pj ∈ O(∆)[X].

Since (µi∞−id)R̃[`]
f is of the form (2πi)`+1

∑`
j=0Q

′
j γ̃

[`]
j , we deduce that theQj ∈ Q

for j 6= 0. A change of lift R̃f merely changes the {Qj} (including Q0) by rational
numbers.

Proposition 9.4. Suppose H
[`]
[i∞](ϕf) = 0, and set Ki := limτ→i∞Ψ

[`]
f,i(τ).

(i) Ki ∈ Q(`+ 1) for 0 ≤ i < `.
(ii) The value of K` ∈ C/Q(`+ 1) is independent of the lift (i.e. depends only

on the other {H[`]
σ (ϕf)}(σ 6=i∞)).
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(iii) Lift R̃[`]
f chosen so that {Ki}`−1

i=0 vanish ⇐⇒ K := limτ→i∞ V
[`]
f (τ) defined.

In this case, K = (−1)`K` and

(9.9) V
[`]
f (q) = K + (−1)(

`+1
2 )`!

∫
0

Ff(q)
dq

q
◦ · · · ◦ dq

q
.

Proof. (i) and (ii) are clear from (9.8). For (iii) (except (9.9)), plug (9.8) into〈
· , η[`]

`

〉
. (9.9) follows from (τ → i∞) {Ψ[`]

f,i → 0 for 0 ≤ i < `} ⇐⇒ {ψi →
0 for 0 < i ≤ `} ⇐⇒ {ψ̂i → 0 for 0 < i ≤ `} ⇐⇒every

∫
but the last in (9.7) is

taken from τ = i∞. �

Remark 9.5. (a) H
[`]
[i∞](ϕf) = 0 means that (an AJ-trivial modification of) 〈Zf〉

extends across the Néron N -gon Ê[`]
[i∞](N), and K` is essentially AJ of its restric-

tion (in H`(Ê
[`]
[i∞](N),C/Q(`+ 1))). Even with this being well-defined, and even

if R̃[`]
f is normalized as in (iii) above, it need not be free of monodromy about

y = 0! (Of course, when it is monodromy-free, the {Rf,k}, Vf, and Ψf,0 all follow
suit.) This issue has to do with π[`](N) (|TZf|) ⊂ Y (N) and is related to Prop.
4.12.

(b) The lifts used below are chosen for computability rather than vanishing of
{Ki}.

(c) One reason we have to do the AJ computation below is to find K`, if
H

[`]
[i∞](ϕf) = 0 (though we are most interested in the case H

[`]
[i∞](ϕf) 6= 0).

For an arbitrary f, here is the “lift” we use to apply KLM:
• break it up in O∗(U(N))⊗(`+1) into

∑
α f

α, with each ϕfα ∈ ΦQ2 (N)◦(p,q)
for some (p, q) as in §7.2.4. This step is not well-defined w.r.t. the final
outcome. Next,
• break each fα into

∑
β f

αβ, with each fαβ = (fαβ1 , . . . , fαβ`+1) ∈ F(N)
×(`+1)(
p q
−s r

)
for some (−s, r) as in §7.2.5; then
• construct R̃fαβ as in the next section, and apply KLM.

The last 2 steps will yield a well-defined map

ΦQ2 (N)◦(p,q) → Γ(H, Sym`H[1]),

as will be clear from the computations.

Remark. Hσ(ϕfα) (or Hσ(ϕfαβ)) is 0 for those σ ←→ (−s0, r0) ∈ 〈(p, q)〉 ⊂
(Z/NZ)2, but not necessarily for any other σ ∈ κ(N).

9.2. Applying the KLM formula. This will take place on (subsets of) E [`]

rather than E [`](N); instead of writing P∗N constantly to pull functions and cycles
back to E ( π- H), we will take this to be understood.

Fix a choice of p, q ∈ Z such that 〈(p̄, q̄)〉 ∼= Z/NZ ⊂ (Z/NZ)2. Taking
any r, s “completing” this to an element M =

(
p q
−s r

)
∈ SL2(Z), we consider

f = (f1, . . . , f`+1) ∈ F(N)
×(`+1)
M , and compute the {R[`]

f,k(τ)} for a particular choice
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of lift R̃[`]
f (τ) over (τ ∈)AM .68 We then use this to compute the Ψ

[`]
f,j over AM ,

analytically continue these to H, and employ the result to find the (nonholomor-
phic) {R[`]

f,k(τ)} over all of H.
The choice of lift over AM must be dealt with in two cases, according as

whether for the Pontryagin product of (p, q)-vertical sets

(9.10) 0 /∈ |Tf1| ∗ · · · ∗ |Tf`+1
| on π−1(AM) ⊂ E .

If this is true, then (on all of E) {0} /∈ |(f1)| ∗ · · · ∗ |(f`+1)| and (on E [`]) we can
take Zf :=Zariski closure of Zf = G̃∗ι∗{f} (see §7.3.4). With this understood, we
have

Lemma 9.6. (9.10) ⇐⇒ |TZf| = ∅ on E
[`]
AM := (π[`])−1(AM) ⊂ E [`].

Proof. Since ι(E[`]
τ ) = {u1 + · · · + u`+1 = 0} ⊂ E

[`+1]
τ , 0 ∈ |Tf1| ∗ · · · ∗ |Tf`+1

| ⊂
Eτ ⇐⇒ 0 ≡ u1 + · · · + u`+1 for some (u1, . . . , u`+1) ∈ |Tf1 | ∩ · · · ∩ |Tf`+1

| ⊂
E

[`+1]
τ ⇐⇒ ∃(u1, . . . , u`+1) ∈ Tf1 ∩ · · · ∩ Tf`+1

∩ ι(E[`]
τ )⇐⇒ |Tι∗{f}| nonempty. �

As a consequence we can take as our lift

R̃[`]
f (τ) := [RZf,τ ] ∈ H`(E[`]

τ ,C) for τ ∈ AM ,

since (on each fiber) dRZf,τ = (2πi)`+1δTZf,τ = 0.

Informal remarks on well-definedness: Given f ∈ F(N)
×(`+1)(
p q

−s r

), g ∈ F(N)
×(`+1)(
p q

−s′ r′

),
with ϕf = ϕg ∈ ΦQ2 (N)◦(p,q) and satisfying (9.10), taking limits along AM resp.
AM ′ one finds that limτ→− q

p
R̃[`]

f , limτ→− q
p
R̃[`]

g yield classes in H`(Ê
[`]

− q
p
,C) (the

{K(′)
i }`−1

i=0 vanish). Also, by Prop. 9.4(ii) these classes are equal up to
H`(Ê

[`]

− q
p
,Q(` + 1)); hence the lifts differ at most by Q(` + 1) 〈p[β] + q[α]〉 on

H. That they are in fact equal may be argued from Lemma 8.4, but the compu-
tations below will bear witness to all of this (including the irrelevancy of (−s, r)).

Now we compute the {R[`]
f,j} for our lift. the diagram (8.1) is replaced for this

purpose by69

E`
τ
⊂

ι- E`+1
τ

P-- Eτ , τ ∈ AM ,
and the π’s by integration. Write Γ := H1(Eτ ,Z) = Z 〈[α], [β]〉 , γ = m[β] +
n[α] = (m,n) ∈ Γ.
Remarks on currents: (i) The fact that Zf = Zf means that if ŪN,ε ⊂ Eτ de-
notes the complement of ε-disks about the N -torsion points, then

〈
[RZf ], η

[`]
j

〉
=

limε→0

∫
Ū`N,ε

RZf ∧ η
[`]
j — but we will just view RZf as an L1-form on E`

τ (rather
than write this).

68F(N)M and AM as in §7.2.5.
69with resp. coordinates z1, . . . , z`; u1, . . . , u`+1; u.
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(ii)R{f} =
∑`+1

j=1(2πi)j−1(−1)`(j−1) log fj(uj)dlogfj+1(uj+1)∧· · ·∧dlogf`+1(u`+1)·
δTf1(u1)

· · · · · δTfj−1(uj−1)
is a normal current (of intersection type with respect to

ι(E`
τ )) on E`+1

τ , so admits pullback ι∗R{f} = Rι∗{f} to E`
τ (see §8 of [KL]). We also

note that the “singularities” of P∗(R{f}∧ η̃[`]
j ) are contained in |Tf1|∗ · · ·∗ |Tf`+1

| ⊂
Eτ , and so are as in Lemma 8.1(ii). Write

∑̂
γ∈Γ for the

∑
k

∑P.V.
j described

there (and depending on (p, q)).

Writing

E`+1
τ

π̂̀+1-- E`
τ

(u1, . . . , u`, u`+1) 7→ (u1, . . . , u`),

let

η̃
[`]
j := (−1)`π∗̂̀+1

η
[`]
j = (−1)`

(
`

j

)−1 ∑
|J | = j

J ⊆ {1, . . . , `}

du
{J}
1 ∧ · · · ∧ du{J}` ∈ A`−k, k(E`+1

τ )

where du{J}i :=

{
dui, i ∈ J
dūi, i /∈ J . We then have ι∗η̃[`]

j = η
[`]
j , and so:

(−1)(
`+1

2 )(−1)`−jν`(
`
j

) R
[`]
f,j(τ) = R

[`]
f,j(τ)

∫
E`τ

η
[`]
`−j ∧ η

[`]
j

=
〈
R̃[`]

f , η
[`]
j

〉
=

∫
E`τ

RZf ∧ η
[`]
j =

∫
E`τ

G̃∗Rι∗{f} ∧ G̃∗η[`]
j

=

∫
E`τ

Rι∗{f} ∧ η[`]
j =

∫
ι(E`τ )

R{f} ∧ η̃[`]
j =

{
P∗

(
R{f} ∧ η̃[`]

j

)}
(0)

=
∑̂
γ∈Γ

̂
P∗(R{f} ∧ η̃

[`]
j )(γ) = ν−1

∑̂
γ∈Γ

∫
Eτ

χγP∗(R{f} ∧ η̃[`]
j ) ∧ du ∧ dū

= ν−1
∑̂
γ∈Γ

∫
E`+1
τ

P ∗χγ ·R{f} ∧ η̃[`]
j ∧ P ∗(du ∧ dū)

= ν−1
(
`
j

)−1∑`+1
j0=1(2πi)j0−1(−1)`j0

∑
|J | = j

J ⊆ {1, . . . , `}

∑̂
γ∈Γ

∫
E`+1
τ

P ∗χγ ·
(

log fj0dlogfj0+1 ∧ · · · ∧ dlogf`+1

·δTf1 · · · · · δTfj0−1

)
∧

du
{J}
1 ∧ · · · ∧ du{J}` ∧ (du1 + · · ·+ du`+1) ∧ (dū1 + · · ·+ dū`+1)

= ν−1
(
`
j

)−1∑`+1
j0=1(2πi)j0−1(−1)(`+1)(j0+1)

∑
|J0| = j

J0 ⊆ {1, . . . , j0 − 1}

∑̂
γ∈Γ

∫
E`+1
τ

P ∗χγ

(
log fj0dlogfj0+1 ∧ · · · ∧ dlogf`+1

·δTf1 · · · · · δTfj0−1

)
∧

du
{J0}
1 ∧ · · · ∧ du{J0}

j0−1 ∧ duj0 ∧ dūj0 ∧ dūj0+1 ∧ · · · ∧ dū`+1
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= (−1)(
`
2)ν−1

(
`
j

)−1∑`+1
j0=j+1(2πi)j0−1∑

|J0| = j
J0 ⊆ {1, . . . , j0 − 1}

∑̂
γ∈Γ

(∏j0−1
m=1

∫
Tfm

χγdu
{J}
m

)(∫
Eτ
χγ log fj0duj0 ∧ dūj0

)
×
(∏`+1

m=j0+1

∫
Eτ
χγdlogfm ∧ dūm

)
=======

Lemmas
8.3-4

(−1)(
`
2)ν−1

(
`
j

)−1∑`+1
j0=j+1(2πi)j0−1(−1)`+1−j0

(
j0−1
j

)
×∑̂

γ∈Γ

′ (pτ + q)j+1(pτ̄ + q)j0−j−1ν`−j0+2
∏`+1

m=1 ϕ̂fm(γ)

(2πi)j0(mq − np)j0ω(γ)`−j0+2

= (−1)(
`+1

2 )ν`
2πi(`j)

∑`+1
j0=j+1(−1)j0−1

(
j0−1
j

) (pτ+q)j+1(pτ̄+q)j0−j−1

νj0−1 ×∑̂
γ∈Γ

′ ϕ̂f(m,n)

(mτ + n)`−M−j+1(mq − np)M+j+1
,

where the primed sum means to omit terms with mq − np = 0. Taking M =
j0 − j − 1 as summation index, we have therefore
(9.11)

R
[`]
f,j(τ) =

(−1)`

2πi

`−j∑
M=0

(−1)M
(M + j

j

) (pτ + q)j+1(pτ̄ + q)M

νM+j

∑̂
(m,n)∈Z2

′ ϕ̂f(m,n)

(mτ + n)`−M−j+1(mq − np)M+j+1
.

We now treat the second case, where

{0} ∈ |Tf1| ∗ · · · ∗
∣∣Tf`+1

∣∣ over AM
so that |TZf| 6= ∅ there. Without loss of generality the reader can have in mind the
case where each Tfi (hence |(fi)|) lies in the connected component of W (p,q)

τ (N)
containing {0}. Let (ε1, . . . , ε`+1) ∈ {|x| < ε |x ∈ R}×(`+1) be a very general
point in a small polycylinder; we sketch a deformation argument which shows a
lift of R[`]

f (τ) (τ ∈ AM) is still given by (9.11).
Begin by replacing each fj by fjeiεj globally on E(N), denoting the resulting

cycles (from §7.3.4) by {fε}, Zε
f = G̃∗ι∗{fε}; and note that Zε

f is still closed,
and now in real good position, on the complement Ū [`](N) of the N2` N -torsion
sections. To obtain Zεf , we must “move and complete” Zε

f ; that is,

Zεf |Ū [`](N) = Zε
f + ∂BWε

f

for someWε
f ∈ Z

`+1
R (Ū [`](N), `+ 2). Since obviously ϕf = ϕfε , we have ΩZ

ε
f

= ΩZf

(Theorem 8.6) and thereforeR[`]
fε ≡ R

[`]
f (Corollary 9.2). So it suffices to calculate

a lift R̃[`]
fε for any ε, or limε→0 R̃fε — which is in fact what we shall do, working

henceforth over a point τ ∈ AM .
Inside E[`]

τ we have the open sets

Ū
[`]
N,ε ⊂ Ū

[`]
N := complement of N2` N -torsion points

Û
[`]
N,ε ⊂ Û

[`]
N := complement of the {zi = 0, zj,−zj},
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where the ε-subscript denotes removing a closed ε-ball/tube neighborhood. We
want to compute (compatible lift-components)

(−1)(
`
2)+jν`(
`
j

) R
[`]
fε,j(τ) =

∫
E`τ

RZ
ε
f
∧ η[`]

j

lim
ε→0

∫
Ū

[`]
N,ε

RZ
ε
f
∧ η[`]

j = lim
ε→0

∫
Ū

[`]
N,ε

(
R
Z
ε
f

+ d[RWε
f
] + (2πi)`+1δSεf

)
∧ η[`]

j

(9.12) = lim
ε→0

∫
Û

[`]
N,ε

R
Z
ε
f
∧ η[`]

j + lim
ε→0

∫
∂Ū

[`]
N,ε

RWε
f
∧ η[`]

j + (2πi)`+1

∫
Sεf
η

[`]
j ,

where Sεf is an `-chain with ∂(Sεf ) = T
Z
ε
f

+N (with |N | ⊂ N -torsion points, and
nonzero only for ` = 1). One can show that the middle term of (9.12) goes to
zero (with ε→ 0) at worst like ε logκ ε.

Now take the (previously very general) ε2, . . . , ε`+1 → 0; then |Tι∗{fε}| limits
into {z1 ≡ 0} and so |T

Z
ε
f
| limits into Ŵ [`]

N (while R
Z
ε
f
still makes sense on the

complement). Since Zε
f is G̃∗-invariant by construction, everything else in (9.12)

— Wε
f , S

ε
f , etc. — can be taken to be G̃∗-invariant as well. But if S(ε1,0,...,0)

f is
G̃∗-invariant and bounds on Ŵ [`]

N it must in fact be a cycle on E`
τ . This means

that in constructing our lift, the third term of (9.12) can simply be thrown out
(which must be done (∀j)). Finally, taking the limit as ε1 → 0 and using G̃∗-
invariance of η[`]

j , the first term of (9.12) becomes limε→0

∫
Û

[`]
N,ε
Rι∗{f} ∧ η[`]

j which
puts us back at the start of the computation which led to (9.11).

9.3. Regulator periods and analytic continuation. The computations us-
ing (9.11) that follow may be justified by appealing to absolute convergence of
the series of the form

(9.13)
∑̂

(m,n)∈Z2

′
:=
∑
κ ∈ Z
κ 6= 0

lim
J→∞

J∑
=−J

{
m = p− κs κ = np−mq

←→
n = q + κr  = ns+mr

}

if ± terms are added first (replacing the “ lim
∑

” by
∑

≥0). Moreover, the series
of this form which occur do not actually depend on the choice of (r, s).

We start by computing the Ψ
[`]
f,k(τ) for the lifts R̃[`]

f (τ) (τ ∈ AM) of the last
section. Recycling “ε”, we let it now denote a formal variable, and work in C[[ε]].
Referring to (9.1), if we write

γ[`] :=
∑̀
k=0

εk
(
`

k

)
γ

[`]
k ,
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then
〈
γ[`], η

[`]
`−j

〉
= (1 + τε)`−j(1 + τ̄ ε)j, so that

∑̀
k=0

Ψ
[`]
f,k(τ)

(
`

k

)
εk =

〈
γ[`], R̃[`]

f

〉

(9.14) =
∑̀
j=0

R
[`]
f,j(1 + τε)`−j(1 + τ̄ ε)j

(9.15)
= (−1)`

2πi
(1 + τε)`(pτ + q)

∑̂′

m,n
ϕ̂f(m,n)

(mτ+n)`+1(mq−np)×∑`
j=0

∑`−j
M=0

(
(mτ+n)(pτ̄+q)

(np−mq)ν

)M+j (
M+j
j

) (
− (1+τ̄ ε)(pτ+q)

(1+τε)(pτ̄+q)

)j
.

Replacing M + j by K and
∑

j

∑
M by

∑`
K=0

∑K
j=0, and using

K∑
j=0

(
K

j

)(
−(1 + τ̄ ε)(pτ + q)

(1 + τε)(pτ̄ + q)

)j
=

(
1− (1 + τ̄ ε)(pτ + q)

(1 + τε)(pτ̄ + q)

)K
=

(
ν(p− εq)

(1 + τε)(pτ̄ + q)

)K
the double-sum in (9.15) becomes

∑̀
K=0

(
(mτ + n)(p− εq)
(np−mq)(1 + τε)

)K
=

(np−mq)`+1(1 + τε)`+1 − (mτ + n)`+1(p− εq)`+1

(np−mq)`(1 + τε)`[(np−mq)(1 + τε)− (mτ + n)(p− εq)]
.

Simplifying the expression in square brackets to (pτ+q)(nε−m), (9.15) becomes

(−1)`+1

2πi

∑̂
m,n

′ ϕ̂f(m,n)
{

(np−mq)`+1(1 + τε)`+1 − (mτ + n)`+1(p− εq)`+1
}

(np−mq)`+1(mτ + n)`+1(nε−m)

— a “zipped” formula for the {Ψ[`]
f,k} which is obviously holomorphic in τ , and

hence yields the analytic continuation to H. Since it was substituting (9.11) in
(9.14) which yielded this continuation, (9.11) is the correct lift over all of H (not
just AM).

To get explicit formulas for the regulator periods, we reverse the last step to
get (9.15) =

(−1)`+1

2πi

∑̂
m,n

′
ϕ̂f(m,n)(pτ + q)

∑̀
µ=0

(1 + τε)µ(p− qε)`−µ

(np−mq)`−µ+1(n+mτ)µ+1
,

and take coefficients of {εk}`k=0 (and divide by
(
`
k

)
) to find

(9.16)

Ψ
[`]
f,k(τ) =

(−1)`+1

2πi
(pτ + q)

∑̂
m,n

′
ϕ̂f(m,n)

∑̀
µ=0

min{k,`−µ}∑
a=max{0,k−µ}

(−1)a
(
`−µ
a

)(
µ
k−a
)(
`
k

)−1
p`−µ−aqaτk−a

(np−mq)`−µ+1(mτ + n)µ+1
.

One can check that this is compatible with Prop. 9.1(i).
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Now if we write

F(N)(p,q) :=
⋃

(r, s) :(
p q
−s r

)
∈ SL2(Z)

F(N)( p q

−s r

),

then (9.11) and (9.16) extend linearly in an obvious way to sums of “monomials”∈
F(N)

×(`+1)
(p,q) (we did this for f 7→ ϕf in §8.1.2).

Theorem 9.7. Formulas (9.11) and (9.16) yield an abelian group homomor-
phism R̃[`]

(p,q) inducing AJ on “(p, q)-vertical Eisenstein symbols”, as described in
the diagram

ΦQ2 (N)◦(p,q)

(9.11)

!!DDDDDDDDDDDDDDDDDDDDDDDD

(9.16)

}}{{{{{{{{{{{{{{{{{{{{{{{

Q
[
F(N)

×(`+1)
(p,q)

]

f7→〈Zf〉

++

((RRRRRRRRRRRRR

vvmmmmmmmmmmmmm
R̃[`]

(p,q)

��

f7→ϕf

OO

(OH)`+1

����

Γ
(
H, Sym`H[1]

)∼=
ev{γ[`]

k }
∗

oo � �

ev{η[`]
`−j}

//

��

(OH∞)`+1

����
(OH)`+1

L Γ
(
H, Sym`H[1]

(Sym`H[1])Q(`+1)

)∼=oo � � // (OH∞ )`+1

L∞

Γ
(
H, CH

(
E [`]/H, `+ 1

))AJ

OO

where “ev” means to write a vector with respect to the given basis, { }∗ is the dual

basis, while L = Q(`+1)

〈
1

0
...
0

 ,


0
1

0
...
0

 , . . . ,


0
...
0

1


〉
and L∞ ====

(7.1)
Q(`+1)

〈
P

[`]
00
...

P
[`]
`0

 , . . . ,


P

[`]
0`
...

P
[`]
``


〉
.

The two “extreme” periods are of special interest. For the α`-period, (9.16)
yields

(9.17)
Ψ

[`]
f,0(τ) = (−1)`(2πi)`+1(τ + q

p
)H

[`]
[i∞](ϕf)

+ (−1)`+1

2πi

∑̂′

m,n

m 6= 0
ϕ̂f(m,n) (mτ+n)`+1p`+1−(np−mq)`+1

m(mτ+n)`+1(np−mq)`+1

if p 6= 0, and

(9.18) Ψ
[`]
f,0(τ) =

(−1)`

2πi

∑̂′

m,n

ϕ̂f(m,n)

m(mτ + n)`+1
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if p = 0 (q = 1). For the β`-period, we have

(9.19)
Ψ

[`]
f,` = (−1)`+1(2πi)`+1( 1

τ
+ p

q
)H

[`]
[0](ϕf)

+ (−1)`+1

2πi

∑̂′

m,n
n 6= 0

ϕ̂f(m,n) (np−mq)`+1τ`+1+(−1)`(mτ+n)`+1q`+1

n(mτ+n)`+1(np−mq)`+1

if q 6= 0 and

(9.20) Ψ
[`]
f,`(τ) =

(−1)`+1

2πi
τ `+1

∑̂′

m,n

ϕ̂f(m,n)

n(mτ + n)`+1

if q = 0 (p = 1). We also record the higher normal function for convenience:
using (9.4) and (9.11), this is

(9.21) V
[`]
f (τ) =

(−1)(
`
2)

2πi
(pτ + q)`+1

∑̂′

(m,n)∈Z2

ϕ̂f(m,n)

(mτ + n)(mq − np)`+1
.

By the monodromy argument (Lemma 9.1(ii)) together with §8.1.2, AJ factors
through ΥQ

2 (N). That is, for any f ∈ O∗(U(N))⊗(`+1)

(9.22) Ψ
[`]
f,k(τ) =

∑
σ∈κ(N)

H[`]
σ (ϕf)Ψ̃

[`]
σ,k(τ) mod Q(`+ 1)

where (using our chosen
(
p q

−s r

)
∈ SL2(Z) for each σ = [ r

s
]) Ψ̃

[`]
σ,k = Ψ

[`]
fσ ,k for

some fσ ∈ Q[F(N)
×(`+1)(
p q

−s r

)] satisfying H
[`]
σ′(ϕfσ) = δσσ′ . We take ϕfσ = 1

N
π∗σϕ

[`]
N , so

that (9.16)70 yields
(9.23)

Ψ̃
[`]
σ,k(τ) :=

(−1)`+1

`+ 1
(2πi)`+1(pτ + q)

∑̂
α, β ∈ Z2

gcd(1 +Nα,Nβ) = 1

∑̀
µ=0

∑min{k,`−µ}
a=max{0,k−µ}(−1)a

(`−µ
a

)( µ
k−a

)(`
k

)−1
p`−µ−aqaτk−a

(1 +Nα)`−µ+1{(1 +Nα)(r − sτ) +Nβ(q + pτ)}µ+1
,

where we have computed as in §8.1.3 with (m,n) =: z(m0, n0), (m0, n0) =:

(r + N(βq + αr), −s + N(βp − αr)) and where
∑̂

means to sum ±β first. A
similar result holds for V [`]

f (τ), only modulo polynomials (of degree ≤ ` with
Q(`+ 1) coefficients).

Also as in §8.1.3 one can do the Fourier expansions in some cases (and we need
these for the examples below). For instance, for (p, q) = (1, 0) and k = 0, (9.16)
becomes

(9.24) (−1)`(2πi)`+1τH
[`]
[i∞](ϕf) +

(−1)`+1

2πi

∑̂′

m,n

m 6= 0

ϕ̂f(m,n)
(mτ + n)`+1 − n`+1

m(mτ + n)`+1n`+1

where
∑̂′

m,n means
∑

n ∈ Z
n 6= 0

limM→∞
∑M

m=−M . Assuming additionally that

ϕf(m,n) = ϕf(m,−n) [⇐⇒ ϕ̂f(m,n) = ϕ̂f(−m,n)], the
∑̂′

m,n
m 6= 0

ϕ̂f(m,n)
mn`+1 = 0

70choice of (p, q) in (9.16) is different for each σ.
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and the second term of (9.24) becomes

(9.25)
(−1)`

2πi

∑
(m,n)∈(Z\0)2

ϕ̂f(m,n)

m(mτ + n)`+1
.

Proposition 9.8. If ϕf = 1
N
π∗[i∞]ϕ (ϕ ∈ ΦQ(N)◦) then ϕ̂f = ι[i∞]∗ϕ̂ and we have

(9.26)
Ψ

[`]
f,0(τ) = (2πi)`(`+1)N

(`+2)!

(∑N−1
b=0 ϕ(b)B`+2( b

N
)
)

log q0

− (2πi)`

`!N`+1

∑
M≥1

(
∑
r|M r`+1·`ϕ(r))

M
qMN

0 ,

where `ϕ(r) = ϕ(r) + (−1)`ϕ(−r).

Proof. Let ξ ∈ {1, 2, . . . , N − 1}, and m0 ∈ N. Using the product expansion of
sin(π(α + z)) from [Ah, sec. 2.3, Ex. 2], we have

(9.27)
d`+1

dτ `+1
log

{
sin

(
πξ

N
+ πm0τ

)}
=

d`+1

dτ `+1

{
πm0τ cot

(
πξ

N

)
+
∑
n0∈Z

[
log

(
1 +

Nm0τ

Nn0 + ξ

)
− Nn0τ

Nn0 + ξ

]}
=

− d`

dτ `

{∑
n0∈Z

N2m2
0τ

(Nm0 + ξ)(Nn0 + ξ +Nm0τ)

}
=

(−1)``!N `+1m`+1
0

∑
n0∈Z

1

(Nn0 + ξ +Nm0τ)`+1
.

On the other hand using the Taylor expansion for log, (9.27) becomes

d`+1

dτ `+1
log

{
1

2i

(
e
πi
N

(ξ+m0Nτ) − e−
πi
N

(ξ+m0Nτ)
)}

=

d`+1

dτ `+1
log
(

1− e2πim0τe
2πi
N
ξ
)

= − d`+1

dτ `+1

∑
r≥1

1

r
e

2πirξ
N e2πim0rτ =

−(2πi)`+1m`+1
0

∑
r≥1

r`e
2πirξ
N qrm0N

0 ;

hence we have (for m0 > 0) α(ξ,m0) :=∑
n0∈Z

1

(Nn0 + ξ +Nm0τ)`+1
=

(−1)`+1(2πi)`+1

`!N `+1

∑
r≥1

r`e
2πiξr
N qrm0N

0 .

Substituting ϕ̂f = ι[i∞]∗ϕ̂ in (9.25) therefore yields

(−1)`

2πi

∑
(n,m0)∈(Z\{0})2

ϕ̂(n)

Nm0(n+Nm0τ)`+1
=

(−1)`

2πiN

N−1∑
ξ=1

ϕ̂(ξ)
∑
m′0≥1

1

m′0

{
α(ξ,m′0) + (−1)`α(−ξ,m′0)

}
=
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−(2πi)`

`!N `+2

∑
M≥1

qMN
0

∑
r|M

r`+1

M

∑
ξ∈Z/NZ

ϕ̂(ξ)
{
e

2πiξr
N + (−1)`e−

2πiξr
N

}
=

−(2πi)`

`!N `+1

∑
M≥1

qMN
0

∑
r|M

r`+1

M
`ϕ(r),

where we have reindexed M = m′0r. The first term of (9.26) is much easier. �

We turn briefly to the higher normal function. In analogy to (9.24), for (p, q) =
(1, 0) equation (9.21) becomes
(9.28)

V
[`]
f (τ) =

(−1)(
`+1

2 )(2πi)`+1

`+ 1
τ `+1H

[`]
[i∞](ϕf)−

(−1)(
`+1

2 )

2πi
τ `+1

∑̂′

m,n

m 6= 0

ϕ̂f(m,n)

(mτ + n)n`+1
,

and if ϕf = 1
N
π∗[i∞]ϕ we can calculate its q0-expansion as follows. Using

τ `+1

(Nm0τ + n)n`+1
=
∑̀
j=1

(−1)j−1τ `−j+1

(Nm0)jm`−j+2
+

(−1)`τ

(Nm0τ + n)(Nm0)`n
,

the second term of (9.28) becomes

(−1)(
`+1

2 )

2πi

b `2c∑
J=1

τ `−2J+1

N2J

∑
(m0,n)∈(Z\{0})2

ϕ̂(n)

m2J
0 n`−2J+2

− (−1)(
`
2)

2πiN `+2

N−1∑
ξ=1

ϕ̂(ξ)
∑
m0∈Z

′ 1

m`+1
0

∑
n0∈Z

N2m0τ

(ξ +Nn0)(ξ +Nn0 +Nm0τ)
.

For m0 > 0 the
∑

n0∈Z is

π

(
i+ cot

(
πξ

N

))
+ 2πi

∑
r≥1

e
2πirξ
N qm0Nr

0

by an argument like that in the above proof. Writing

Θ`(ϕ) :=

 −
i
N

∑
ξ∈Z/NZ ϕ̂(ξ) cot

(
πξ
N

)
, ` odd

ϕ(0) , ` even

and noting ζ(2J) = −(2πi)2J

2(2J)!
B2J , we eventually arrive at this expression for the

higher normal function (associated to our lift):71
(9.29)

(−1)(
`
2)N`+1

(`+2)!


(∑N−1

a=0 ϕ(a)B`+2

(
a
N

))
log`+1 q0

+
∑b `2c

J=1
(−2πi)2J

N4J

(
`+2
2J

)
B2J

(∑N−1
a=0 ϕ(a)B`−2J+2

(
a
N

))
log`−2J+1 q0


− (−1)(

`
2)

N`+1

{
ζ(`+ 1)Θ`(ϕ) +

∑
M≥1 q

MN
0

(∑
r|M r`+1·`ϕ(r)

M`+1

)}
.

71the first big braced expression in (9.29) is a polynomial in τ with Q(`+ 1)-coefficients.
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Both (9.29) and (9.26) check against Proposition 9.3 and Corollary 8.13, as the
reader may verify.

Finally, one can evaluate the regulator periods at cusps where ΩZf has no
residue. We demonstrate this for the α×`-period.

Proposition 9.9. Assume that H[`]
[ r
s

](ϕf)
[
= −(`+1)

(2πi)`+2 L̃(ϕ̂f, `+ 2)
]

= 0; then

lim
τ→ r

s

Ψ
[`]
f,0(τ) ≡ −s

`

2N
L̃−(π[ r

s
]∗ϕ̂f, `+ 1) mod Q(`+ 1),

where L̃−(φ, `+ 1) :=
∑

m∈Z\{0}
φ(m)· |m|

m

m`+1 .

Proof. will proceed by first showing that

(9.30) lim
τ→i∞

Ψ
[`]
f,`(τ) ≡ −1

2N
L̃−(π[i∞]∗ϕ̂f, `+ 1)

when H
[`]
[i∞](ϕf) = 0. We can write ϕf = ϕf′ + ϕf′′ where ϕf′ ∈ π∗[0]Φ

Q(N)◦ ⊂
ΦQ2 (N)◦(0,1) and ϕf′′ ∈ ΦQ2 (N)◦(1,0), then apply (9.19) [with (p, q) = (0, 1)] resp.
(9.20) to conclude

(9.31) lim
τ→i∞

Ψ
[`]
f,`(τ) ≡ lim

τ→i∞

(−1)`+1

2πi

∑
(m,n)∈(Z\0)2

ϕ̂f(m,n)

n(m+ n
τ
)`+1

mod Q(`+ 1)

after “reassembling” the results. (In (9.19) the sum becomes

1

N

∑̂′

m,n0

n0 6= 0

(
ϕ̂f(m, 0)

n0(m+ Nn0

τ
)`+1
− ϕ̂f(m, 0)

n0m`+1

)
,

where the
∑̂

means to sum ±n0 first, so that one can delete the second term
inside the sum. Then one can remove the “ ”̂, in both (9.19) and (9.20)72, since the
double-sum is now absolutely convergent.) The r.h.s. of (9.31) is now (summing
±n first)

lim
τ→i∞

(−1)`+1

2πi

N−1∑
ξ=0

∑
m∈Z

′
ϕ̂f(m, ξ)

∑
n≥1

 1

(n0N − ξ)
(
M + n0N−ξ

τ

)`+1
−

1

(n0N − ξ)
(
m− n0N−ξ

τ

)`+1


where we have made the (unnecessary) assumption that ϕ̂f(m,−n) = ϕ̂f(m,n)
to simplify the exposition. This becomes (writing τ = it)

2(−1)`+1i`+1

2πiN

∑
m∈Z

′
N−1∑
ξ=0

ϕ̂f(m, ξ)
∑̀
k=0

(−1)k

 lim
t→∞

∑
n0≥1

N/t(
n0N−ξ

t
+ im

)`−k+1 (
n0N−ξ

t
− im

)k+1


where the limit in braces is the Riemann sum for∫ ∞

0

dX

(X + im)`−k+1(X − im)k+1
=

1

2
(2πi)(−1)`+k

|m|
m

(
`

k

)
1

(2mi)`+1

72where it means to sum ±m first.
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(using residues), and so we get

−
∑`

k=0

(
`
k

)
2`+1N

∑
m∈Z

′ |m|
m`+2

N−1∑
ξ=0

ϕ̂f(m, ξ)

which is just the r.h.s. of (9.30).
Now let f be as in the statement of the Proposition:

lim
τ→ r

s

Ψ
[`]
f,0(τ) =

〈
[α×`], lim

τ→ r
s

R[`]
f (τ)

〉
=

〈
[α×`],

(
p q

−s r

)∗
R[`](

r −q
s p

)∗
f
(τ)

〉
.

By (9.30) this is

−(−1)(
`+1

2 )

2N
L̃−

(
π[i∞]∗

(
r −q
s p

)∗
ϕ̂f, `+ 1

)〈
[α×`],

(
p q
−s r

)∗
[α×`]

〉
= −(−1)(

`+1
2 )

2N
L̃−

(
π[ r

s
]∗ϕ̂f, `+ 1

) 〈
[α×`], [(rα− sβ)×`]

〉
which yields the result. �

Remark. In fact, Prop. 9.8 leads to a more general result when combined with
results from previous sections:

Corollary 9.10. For any f ∈ O∗(U(N))⊗(`+1),

Ψ
[`]
f,0(τ)

Q(`+1)
≡ (−2πi)`H

[`]
[i∞](ϕf)N log q0

− (2πi)`

N `+1`!

∑
M≥1

qM0
M

∑
r|M

r`+1

 ∑
n0∈Z/NZ

e
2πin0r
N · `ϕ̂f

(
M

r
, n0

) .

Proof. Split ϕf = ϕf′ + ϕf′′ with ϕf′ ∈ π∗[i∞](Φ
Q(N)◦), and ϕf′′ (0, 1)-vertical so

that H
[`]
[i∞](ϕf′′) = 0. By Prop. 9.4(i), limτ→i∞Ψ

[`]

f′′,0(τ) = 0 while the constant
and divergent terms (as τ → i∞) for Ψ

[`]

f′,0 (hence Ψ
[`]
f,0) are given by Prop. 9.8.

Using this together with Prop. 8.12 and Prop. 9.3(i) (which says that Ψ
[`]
f,0 =

(−1)`(2πi)`+1
∫
Eϕf(τ)dτ) gives the result. �

10. Toric vs. Eisenstein: comparing constructions

In this final section we consider the possible coincidence of (push-forwards
of) Beilinson’s Eisenstein symbol over genus zero modular curves, and the toric
symbol on suitably “modular” hypersurface pencils. This will be done on the level
of regulator periods and cycle-classes, and the general result in §10.3 is followed
by many examples. To whet the reader’s appetite we include two motivating
examples in §10.1, which come from extending the computations of regulator
periods and their special values to the cycles considered in §8.2.
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10.1. Regulator periods for other congruence subgroups. It is worth men-
tioning a subtlety that enters into computations for the “push-forward cycles” of

§8.2.1 Zf,1(′) := 1
N

(
P [`]

Γ(N)/Γ(′)
1 (N)

)
∗
Zf ∈ CH`+1(E [`]

Γ
(′)
1 (N)

, ` + 1) (equivalently one

can consider Z̃f,1(′) :=

(
P [`]

Γ(N)/Γ(′)
1 (N)

)∗
Zf,1(′) on E [`](N)). Letting Ψ

[`]

f,1(′);k
denote

the period over γ[`]
k (= α`−kβk) for an appropriate lift of the fiberwise AJ of Zf,1(′)

over Y (′)
1 (N), we have obviously

(10.1) Ψ
[`]
f,1;0(τ) =

1

N

N−1∑
j=0

Ψ
[`]
f,0(τ + j)

but also

(10.2) Ψ
[`]
f,1;`(τ) =

1

N

N−1∑
j=0

∑̀
k=0

(
`

k

)
(−j)`−kΨ[`]

f,k(τ + j)

(10.3) Ψ
[1]
f,1′;0(τ) =

1

N

N−1∑
j=0

{
Ψ

[1]
f,0

(
τ

jτ + 1

)
− jΨ[1]

f,1

(
τ

jτ + 1

)}
since (see §8.2.1) Jj∗β = β − jα (resp. J ′j ∗α = α − jβ). Likewise, for the
“K3(K3)” cycles Zf,+N := −1

4N
(p2)∗(p1)∗(P+N)∗(J

[2]
N )∗Zf,1 ∈ CH3(X [2]

1 (N)+N , 3)
(resp. ′Zf,+N) of §8.2.2, we find

(10.4) (′)Ψ
[2]
f,+N ;0(τ) =

1

2

{
Ψ

[2]
f,1;0(τ) +

(−)NΨ
[2]
f,1;2

(
−1

Nτ

)}
for the periods of AJ

(〈
(′)Zf,+N

〉
[τ ]∈Y1(N)+N

)
against (P+N)∗(J

[2]
N )∗(α× α). (The

latter, it turns out, is divisible by 2N in the integral homology of the K3 fibers.)
To obtain limiting values of (10.1-4) at a cusp, one could apply the proof of Prop.
9.9 to each term.

An easier approach is to consider the effect of Zf 7→ Z̃f,1(′) (or ′Z̃f,+N) on
the residues of the cycle-class, transform ϕ̂f accordingly (cf. (8.2)), and plug
the result into Prop. 9.9. We carry this out in two examples related to toric
constructions in this paper.

Example 10.1. (` = 1, N = 4, Γ = Γ
′
1(4))

Begin with f so that ϕf = −1
4
π∗[i∞]ϕ

[1]
4 (see Prop. 7.10) and consider Zf,1′ ; the

corresponding divisor ϕf,1′ has ϕ̂f,1′ = 1
4
ρ
′
∗ϕ̂f = −1

4
ρ
′
∗ι[i∞]∗ϕ̂

[1]
4 = −1

4
π∗[0]ϕ̂

[1]
4 where

ϕ̂
[1]
4 = 0, 26i, 0,−26i. We have π[0]∗ϕ̂f,1′ = −ϕ̂[1]

4 and so

lim
τ→0

Ψ
[1]
f,1′;0(τ) ≡ 1

8
L̃−(ϕ̂

[1]
4 , 2) = −16iG mod Q(2);

this corresponds exactly to the D5 example of §6.3.
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Example 10.2. (` = 2, N = 6, Γ = Γ1(6)+6)
Start with ϕf = −4π∗[i∞]ϕ

[2]
6 , and consider ′Z̃f,+6: from (8.6) (and Remark 8.17)

we know that if Hσ(ϕf) = −24δσ,[i∞] then H[i∞](
′ϕf,+6) = −12 and H[j](

′ϕf,+6) = 1
3

(∀j ∈ Z). As ϕ̂[2]
6 = 0,−64

5
, 0, 0, 0,−64

5
, this leads to

(10.5) ′ϕ̂f,+6(m,n) =


2·65

5
, (m,n)

(6)
≡ ±(0, 1)

−2·63

5
, m

(6)
≡ ±1

0, otherwise,

and π[−1
2

]∗
′ϕ̂f,+6 = −8·63

5
· {0, 1,−9, 1,−9, 1; . . .} so that

lim
τ→− 1

2

′Ψ
[2]
f,+6;0(τ)

Q(3)
≡ − 4

12
· −8 · 63

5
· 2L({0, 1,−9, 1,−9, 1; . . .}, 3)

=
25 · 62

5
ζ(3) ·

(
1− 10

23
+

9

63

)
= −48ζ(3).

This means that the AJ class of
〈
′Z̃f,+6

〉
τ
limits to 12ζ(3) [(α + 2β)×2] , which

is the pullback from the K3 family of 2ζ(3) times a vanishing cycle at [−1
2

] ∈
Y 1(6)+6. This suggests a link to the Apéry-Beukers higher normal function from
the introduction; the precise relation will be established in §10.5 below.

10.2. Uniformizing the genus zero case. Let Γ ⊂ SL2(Z) be a congruence
subgroup in the sense of §7.1.1 ({−id} /∈ Γ, Γ ⊃ Γ(N) for some N ≥ 3), and
assume Y Γ

∼= P1. To fix a uniformizing parameter, note that Y Γ has local
coordinate73 q0 := q

1
NΓ = e

2πiτ
NΓ in a neighborhood of [i∞], and let H ∈ M̌0(Γ) be

the (unique) Hauptmodul with Fourier expansion H(q0) = const. · q0 + h.o.t..74

Given an “Eisenstein symbol” Z ∈ CH`+1(E [`]
Γ , ` + 1) (with (P [`]

Γ(N)/Γ)∗Z ≡ Zf ∈
CH`+1(E [`](N), ` + 1)), writing the data {ΩZf ,Ψ

[`]
f,0, V

[`]
f , PF-equations, etc.} in

terms of t := H(τ) yields expressions resembling those of §§3 − 4 arising from
the “toric symbols”.

While there are intersections between the two constructions (systematically
developed in §§10.3-6), neither one includes the other. Let ωΓ

E/Y := KE [`]
Γ
⊗

π−1(θ1
Y Γ

) denote the relative dualizing sheaf; if deg(πΓ∗ω
Γ
E/Y ) (always ≥ 1) is > 1,

then EΓ cannot be birational to a Fano n (= ` + 1)-fold P∆. Conversely, the
construction of Theorem 3.8 need not yield a modular family — e.g. the E7 and
E8 families of elliptic curves (cf. §6.3) have marked nontorsion points (which are
used in the construction of the toric symbol); other examples will be given in
§§10.4-6.

73e.g. NΓ = N for Γ = Γ(N) or Γ′1(N), while NΓ = 1 for Γ = Γ1(N) (or Γ1(N)+N , though
we don’t treat this yet).

74We will assume H is normalized so that this constant is a root of unity.
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To begin “uniformizing” the data, let {σj} ⊂ κΓ be the cusps other than [i∞]
where Z has nonvanishing residue, and differentiate the AJ class over P1 to get

ωf := ∇δtR̃
[`]
f ∈ Γ

(
Y Γ, ω

Γ
E/Y ⊗OY Γ

(
∑

σj)
)
.

Pulling this back to (E [`] →)H yields

(−2πi)`Af(τ)η
[`]
` , Af(τ) ∈ M̌`(Γ);

here Af may have “poles” (as an automorphic form) at elliptic points, non-
unipotent cusps, and the {σj}. Similarly, writing H ′ := dH

dq0
, dt

t
pulls back to

2πiBf(τ)dτ , where

Bf(τ) :=
dlogt
dlogq

=
q0

NΓ

· H
′

H
∈MQ

2 (Γ).

Pulling back the cycle-class ΩZf = (−1)`∇δtR̃
[`]
f ∧ dt

t
, we see that

Ff(τ) = Af(τ) ·Bf(τ) (∈MQ
`+2(Γ)).

Now we can write down a power-series expansion for the period of ωf over
the (locally defined) family of topological cycles α×` ∈ H`(E

[`]
Γ,t,Z) vanishing at

t = 0. Using Prop. 8.12 and inverting the Fourier expansion of H, one has∫
α×`

ωf(t) = (−2πi)`
(
Ff

Bf
◦H−1

)
(t) = (−2πi)`NΓ

t(H−1)′(t)

H−1(t)
· Ff(H

−1(t))

=: (2πi)`
∑
m≥0

amt
m,

where (H−1)′ = dq0
dt
. Moreover a0 = (−1)`NΓ · H[`]

[i∞](ϕf), and

ΨΓ
f (t) :=

∫
α×`

R(
Z|
E

[`]
Γ,t

) Q(`+1)
≡ Ψ

[`]
f,0(H−1(t)) = (2πi)`

{
a0 log t+

∑
m≥1

am
m
tm

}

(compare Theorem 4.3).
A key observation is that Af(τ)η

[`]
` descends to EΓ, whereas the relative dif-

ferentials (η[`]
` or Ff(τ)η

[`]
` ) used in previous sections did not. This leads to a

higher normal function and PF equations which make sense over YΓ. Recalling
∇f

PF = ∇`+1
∂τ

+ l.o.t. from §9.1,

∇ω
PF :=

1

(2πiBf(τ))`+2
◦ ∇f

PF ◦ (2πiBf(τ)) = ∇`+1
δt

+ l.o.t.

descends to P1, yielding the homogeneous equation

(Dω
PF ◦ δt)ΨΓ

f = 0.

Writing

νf(τ) :=
〈
R̃[`]

f , ωf

〉
= (−2πi)`V

[`]
f (τ) · Af(τ),
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we have the inhomogeneous equation

Dω
PFνf =

〈
∇δtR̃

[`]
f ,∇

`
δtωf

〉
=
〈
ωf,∇`

δtωf
〉

=: Y [`]
f (t),

where the Yukawa coupling

Y [`]
f (H(τ)) = (−2πi)2`A2

f (τ)

〈
η

[`]
` ,

1

(2πiBf)`
∇`
∂τη

[`]
`

〉
= (2πi)`

A2
f

B`
f
Yτ`(τ)

= (−1)(
`
2)`!

(
2πi

Bf(τ)

)`
(Af(τ))2.

Obviously the weights cancel so that Y [`]
f ◦H ∈ M̌0(Γ), i.e. Y [`]

f yields a rational
function on P1.

Suppose H[`]
[i∞](ϕf) 6= 0 and |κ[`]

Γ | > 1, so that one can choose g ∈ ΦQ2 (N)◦ (such
that Zg also descends to E [`]

Γ ) with H
[`]
[i∞](ϕg) = 0 but H

[`]
σ (ϕg) 6= 0 (for some

σ 6= [i∞]). Then one can consider Af ·V [`]
g = 1

(−2πi)`

〈
R̃[`]

g , ωf

〉
, where R̃[`]

g is a lift
with all Kg,i = 0 (0 ≤ i < `).75 This is the more general type of higher normal
function implicit in the Apéry-Beukers irrationality proofs (cf. Introduction).
(The general idea is this: one must show the radius of convergence of its t-series
expansion to be “much larger” than that for either Af or Af · (V [`]

g − Kg), while
the latter expansions must satisfy certain integrality properties.) The story will
be related from a less “modular” perspective in [Ke2].

10.3. Identifying pullbacks of toric symbols. If (in oversimplified terms)
the idea of §10.2 was to pull back the Eisenstein construction along H−1 (when
it exists), here we pull back a given toric symbol (if possible) along some H, and
try to recognize the result as an Eisenstein symbol. This leads to motivic proofs
of several of the Mahler measure computations in [S, Be1, Be2].

We begin with an “anticanonical pencil” X̃ = {1− tφ(x) = 0} ⊂ P1×P∆̃ satis-
fying the assumptions of Theorem 3.8, with its attendant cycle Ξ̃ ∈ Hn

M(X̃−,Q(n))
for n = 2, 3, 4. We also require φ to have root-of-1 vertex coefficients so that The-
orem 4.3 holds. Set ` := n− 1, and restrict/refine this family in several steps:

• (1) ` = 3: assume that P∆̃ is smooth (so that t = 0 is a point of maximal
unipotent monodromy).
• (2) If φ is regular, define76 X (

π→ P1) to be the (smooth) proper transform
of X̃ under successive blow-up of the components of the base locus77

P1× (X̃η∩ D̃) ⊂ P1×P∆̃; this accomplishes semistable reduction at t = 0.
When φ is not regular this must be combined with the desingularization
of X̃− from the proof of Theorem 3.8 (to produce X ). Denote that pulled-
back cycle by Ξ ∈ CH`+1(X \X0, `+ 1).

75cf. Prop. 9.4: in this case Kg := limτ→i∞ V
[`]
g (τ) = (−1)` limτ→i∞ V

[`]
g (τ).

76preferring inconsistent notation to writing everywhere ˜̃X . We retain this convention for
the rest of the paper.

77Xη denotes a very general fiber.
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(In what follows, one could also replace X by a [desingularized] quotient — if
one exists — over a t 7→ tκ quotient of the base preserving unipotency at t = 0,
and Ξ by the push-forward cycle.)

• (3) ` = 2 : assume rk(Pic(Xη)) = 19
` = 3 : assume h2,1(Xη) = 1, and that

the VHS has no "instanton
corrections" (cf. [Do1])

Then H`(Xt) (or H2
tr(Xt) for ` = 2) is the symmetric `th power of a

weight 1 (rank 2) VHS; likewise for the PF equation of the section of
ωX/P1 := KX ⊗ π−1θ1

P1 given by ω := ∇δtRt (cf. §§4.2-3).
In fact, ω is (up to scaling) the unique section of ωX/P1 ⊗OP1(−[∞]) ∼= OP1 .

Now let U ⊂ P1 be a small neighborhood of t = 0. Working over U∗, denote
by W• the weight monodromy filtration on H`(Xt,Q) (H2

tr if ` = 2) and set
W Z
• := W• ∩H`

(tr)(Xt,Z). There are unique generating sections ϕ0 ∈ Γ(U,W Z
0 ),

−ϕ1 ∈ Γ(U∗,W Z
2 /W

Z
0 ) positively oriented as topological cycles; the latter lifts

to a multivalued section of W Z
2 with monodromy ϕ1 7→ ϕ1 + NXϕ0. The mirror

map

(10.6) (q =)M(t) = exp

{
2πi

∫
ϕ1(t)

ωt∫
ϕ0(t)

ωt

}

is well-defined on U∗; its logarithm µ = logM
2πi

extends to a multivalued map
P1  H∗. Recall A(t) :=

∫
ϕ0(t)

ωt, Ψ(t) :=
∫
ϕ0(t)
Rt (with ∂tΨ = A).

• (4) Assume the mirror map is “modular”: that is, ∃ Ñ ≥ 3 such that
µ−1 =: H̃(τ) is a well-defined automorphic function for Γ(Ñ) (H ∈
M̌0(Γ(Ñ))); for odd `, we also demand that {−id} /∈monodromy group
of R`π∗Z. (Obviously this implies NX |Ñ and H̃(τ) = C · q̃0 +h.o.t. where
q̃0 = q

1
NX .) Then

A(H̃(τ)) ∈ M̌`(Γ(Ñ)),

where the “poles” come from non-unipotent singular fibers and are can-
celled by H̃∗ dt

t
to yield

F(t) :=
(−1)`

(2πi)`+1
∂τΨ(H̃(τ)) = (−1)`

d log H̃

dτ
· A(H̃(τ))

(2πi)`+1
∈M`+2(Γ(Ñ)).

Now we want to force F to be an Eisenstein series; the following stronger as-
sumption (which for ` = 1 follows from the previous) does the job after a slight
adjustment to H̃ (and Ñ).

• (5) Assume X is “modular”: i.e. in addition to assumptions (1)-(3),
∃N ≥ 3, H ∈ M̌0(Γ(N)), and a (surjective) rational map θ : E [`]

(N) 99K
X over H : Y (N) � P1

t (which can include e.g. a fiberwise Kummer-
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or Borcea-Voisin- type construction).78 Define θ∗Ξ ∈ CH`+1(E [`](N), ` +
1) by pulling back (to an appropriate blow-up of E [`](N)) and pushing
forward. Then

(10.7) Ωθ∗Ξ = (2πi)`+1Fθ∗Ξ(τ)η
[`]
` ∧ dτ ∈ F

`+1 ∩H`+1(E [`](N),Q(`+ 1)),

where Fθ∗Ξ ∈MQ
`+2(Γ(N)). If we know the divisor

(10.8) θ∗(X0) =: (−1)`
∑

σ∈κ(N)

rσ(Ξ) · π−1
Γ(N)(σ),

then taking f ∈ O∗(U(N))⊗(`+1) with H
[`]
σ (ϕf) = rσ(Ξ) (∀σ ∈ κ(N)), ΩZf

and Ωθ∗Ξ have the same residues. By §7.1.5 they are equal (i.e. Fθ∗Ξ = Ff)
hence (by Lemma 9.1(ii)) so are the fiberwise AJ classes.

To compute further we need precise information about θ: consider the positive
integers Mθ := deg(θ), m0 := θ∗(α`)

ϕ0
, m1 := θ∗(G∗(α`−1β))

ϕ1
(see §9.1), mθ := m0

m1
, and

(in suggestive notation) NΓ := NX
mθ

.79 One easily checks that H(τ) = H̃(mθτ) =

C0 · q0 + h.o.t., when q0 := q
1
NΓ (by abuse of notation we will write this H(q0),

and H ′(q0) := dH
dq0

). We then have

θ∗ω = m0A(H(q0))η
[`]
` ∈ Γ(Y (N), ω

Γ(N)
E/Y ),

H∗
dt

t
=

2πi

NΓ

q0

H(q0)
H ′(q0)dτ ∈ Ω1(Y (N))

〈
log(H−1(0) ∪H−1(∞))

〉
,

θ∗ΩΞ = θ∗
(
dt

t
∧∇δtRt

)
= (−1)`θ∗ω ∧H∗dt

t

= (−1)`
2πim0

NΓ

q0

H(q0)
H ′(q0)A(H(q0))η

[`]
` ∧ dτ ∈ Ω`+1(E [`]

(N)) 〈log θ∗(X0)〉 .

Under pullback the regulator period becomes (for f as above)
(10.9)

Ψ(H(τ)) =

∫
ϕ0(H(τ))

R̃H(τ) =
1

m0

∫
α`(τ)

R̃θ∗Ξ(τ) =
1

m0

∫
α`
R̃[`]

f (τ) =
1

m0

Ψ
[`]
f,0(τ),

so that (by Prop. 9.3(i))

∂τΨ(H(τ)) = (−1)`(2πi)`+1m−1
0 Fθ∗Ξ(τ).

That
Ψ(H(τ)) is of the form (9.17)

is of fundamental importance; if one divides by (2πi)` and takes the real parts
it essentially says the real regulator period (or Mahler measure, in the region
described in Cor. 4.8) pulls back to an Eisenstein-Kronecker-Lerch series (noticed
in examples by [Be1, Be2, RV]). Furthermore, this allows us to use Prop. 9.9 to

78While there are plenty of examples for ` = 1, 2, we will see that for ` = 3 there are
no modular anticanonical families of this form; the problem already arises in hypothesis (3).
However, there are relaxations of the hypothses that are likely to produce examples. See §10.6.

79For ` = 1 we just have m0 = m1 = mθ = 1 ( =⇒ NΓ = NX ), Mθ = κ.
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compute its special values atH{unipotent cusps}, which therefore must be a sum
(with coefficients ∈ Q(e

2πi
N )) of (`+ 1)st special values of Dirichlet L-functions.80

Our last object of interest is the Yukawa coupling Y (t) =
〈
ωt,∇`

δt
ωt
〉
, which

becomes
Y (H(q0)) = M−1

θ

〈
θ∗ω, θ∗∇`

δtω
〉

=
N `

Γ

(2πi)`Mθ

· 1

{H ′(q0)}`
〈
θ∗ω,∇`

∂τ θ
∗ω
〉

=
N `

Γm
2
0

(2πi)`Mθ

· {A(H(q0))}2

{H ′(q0)}`
〈
η

[`]
` ,∇

`
∂τη

[`]
`

〉
(10.10) =

(−1)(
`
2)`!N `

Γm
2
0

(2πi)`Mθ

· {A(H(q0))}2

{H ′(q0)}`
,

a rational function on Y (N). Noting A(0) = (2πi)` and using (10.7) and Prop.
9.9 gives

Theorem 10.3. Assuming modularity of a family of CY `-folds X arising (as
described) from the toric construction, we have

(10.11)
(−1)`m0

(2πi)`NΓ
δq0Ψ(H(q0)) = (−1)`m0

(2πi)`NΓ

q0
H(q0)

H ′(q0)A(H(q0))

= Fθ∗Ξ(q0) =
∑

σ∈κ(N) rσ(Ξ)Ẽ
[`]
σ (q0)

for the pulled-back cycle-class of the toric symbol, and also

(10.12)
Y (0)

(2πi)`
=

(−1)(
`
2)`!N `

Γm
2
0

MθC`
0

∈ Q(C0).

Finally, if Xt0 6=0 is a maximally unipotent singular fiber, then81 µ(t0) ≡ [ r0
s0

] ∈
κ(N) and

(10.13) lim
t→t0

Ψ(t)
Q(`+1)
≡ (−1)`+1

2N

∑
[ r
s

] ∈ κ(N)

[ r
s

] /≡ [ r0
s0

]

s`r[ r
s

](Ξ)L̃−

(
π[

r0
s0

]∗ι[ rs ]∗ϕ̂
[`]
N , `+ 1

)
.

By comparing values at [i∞] (i.e. q0 = 0) in (10.11), we have the interesting

Corollary 10.4. r[i∞](Ξ) = (−1)` m0

NΓ
.

Remark. If the rσ(Ξ) are known but the series expansion t = H(q0) = C0q0 + · · ·
for the mirror map is not, one can in principle determine the latter from

Ψ(H(τ)) =
1

m0

Ψ
[`]
f,0(τ)

(cf. (10.9)), by using (4.5) for the l.h.s. and Cor. 9.10 for the r.h.s. (In the
computations below, we have preferred to take H from other sources, in order to

80This is similar to the case in §6 of L/Q abelian (which however does not imply modularity).
81The specific choice of representative r0

s0
of the cusp µ(t0) depends on the path along which

Ψ(t) has been continued prior to taking limt→t0 .
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partially vet our formulas.) Since the “log + constant” terms of both sides must
agree (mod Q(n)), an immediate consequence is

Corollary 10.5. C0 (hence Y (0)
(2πi)`

) is a root of unity.

Clearly one can normalize φ (retaining the assumption on vertex coefficients)
so that Y (0) ∈ Q(`).

10.4. The elliptic curve case. Start with a reflexive tempered Laurent poly-
nomial φ ∈ Q̄[x±1, y±1] defining a family of (generically smooth) elliptic curves,
X̃ ⊂ P1

t × P∆̃φ
. Possibly after a finite (t 7→ tκ) quotient82 we desingularize this

and blow down all (−1)-curves contained in fibers. The resulting elliptic sur-
face is denoted X , and is relatively minimal in the sense that ωX/P1

∼= π∗π∗ωX/P1 ;
the singular fibers are therefore of the types described by Kodaira [Ko]. Clearly
χ(X ) = 12 · deg(π∗ωX/P1) is 12, either by looking at zeroes of ω = ∇δtRt ∈
Γ(π∗ωX/P1) or the fact that X is birational to P∆φ

hence to P2. This constrains
the possible combinations of singular fibers in light of the table:
sing. fiber type contrib. to χ(X ) ord. of monodromy no. of components

In≥1

I∗n≥0

n
n+ 6

∞
∞

n
n+ 5

II
IV ∗

2
8

6
3

1
7

III
III∗

3
9

4
4

2
8

IV
II∗

4
10

3
6

3
9

where we have paired those types related by a quadratic transformation (“adding
a ∗”). We identify families by the set of fiber types, e.g. I4

1/I
∗
4 means 4 I1’s and

1 I∗4 .
Now referring to (10.6), we make a precise

Definition 10.6. M is weakly modular ⇐⇒ µ−1(=: H) is a Hauptmodul for
Γ ⊂ SL2(Z) of finite index. We sayM is modular if in addition {−id} /∈ Γ and
Γ ⊃ Γ(N) for some N ≥ 3.

Obviously ifM is modular then one has a canonical quotient E [1]

Γ(N)

θ
99K E [1]

Γ
∼=

X and X is modular in the sense of §10.3.

Lemma 10.7. [Do1, Prop. 2]M is weakly modular⇐⇒ the J-invariant J(µ(t))
ramifies only over J = 0 (to order 1 or 3), J = 1 (to order 1 or 2), and J =∞
(to any order).

The point is that µ−1 cannot possibly be single-valued if J ◦ µ has “excess
ramification” (which explains why we wanted to allow order-κ quotients of the
base in constructing X ). It folllows (cf. [Do1]) that fiber types II∗ and IV
are not permitted (so no I2

1/II
∗), and neither are certain other combinations

82again preserving unipotency at t = 0
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(e.g. I6
1/I6); in [Do2, Thm. 4.12] the remaining possibilities are listed (up to

“transfer of ∗”). Disallowing those fiber types left which contain −id in their
local monodromy group (II, III, III∗), and checking for −id also in global
monodromy, one arrives at the list below.

Proposition 10.8. Suppose the singular fiber configuration of X is one of those
shown in the table, with fiber InX at t = 0. (This gives an additional degree of
freedom.) ThenM is modular, X ∼= EΓ (for Γ ⊃ Γ(N) as displayed), and83

(10.14) − 1

nX

∑
σ∈|H−1(0)|⊂κ(N)

Ẽ[1]
σ (q0) = Fθ∗Ξ(q0)

where |H−1(0)| is not counted with multiplicity. Finally, all the configurations
below occur in the toric construction.

configuration Γ N

I4
3 Γ(3) 3

I1/I3/IV
∗ Γ(′)(3) 3

I1/I
∗
1/I4 Γ

(′)
1 (4) 4

I2
2/I

2
4

〈
Γ(4),

(
1 2

0 1

)〉
4

I2
2/I

∗
2 Γ̃(2) :=

〈(
1 2

0 1

)
,
(

1 0

2 1

)〉
4

I2
1/I

2
5 Γ

(′)
1 (5) 5

I1/I2/I3/I6 Γ
(′)
1 (6) 6

I2
1/I2/I8

〈
Γ
′
1(8),

(
−3 −8
−1 −3

)〉
8

I2
1/I

∗
4

〈
Γ
′
1(8),

(
−3 −8
−1 −3

)
,
(
−1 −4
0 −1

)〉
8

I3
1/I9

〈
Γ
′
1(9),

(
−4 −9
1 2

)〉
9

For computations it is desirable to replace − 1
nX

∑
Ẽ

[1]
σ by Ff with ϕf chosen

to have Hσ(ϕf) =

{ −1
nX
, σ ∈ |H−1(0)|

0, otherwise . Note that by (10.9), for τ ∈ H

(10.15) Ψ(H(τ)) ≡ Ψ
[1]
f,0(τ) modQ(2).

The two “E6” examples below both correspond to the second row of the table,
and their difference illustrates a technical subtlety. The first computation is
essentially that in [S, Ex. 3]; Ex. 4,5,6 in op. cit. also fall under Prop. 10.7’s
aegis, and correspond to lines 3,6,7 (resp.) in the table.

Example 10.9. φ = x2y−1 + x−1y2 + x−1y−1, κ = 3 (quotient).
This yields X with fibers Xt

∼= {1− t
1
3φ = 0} ⊂ P2, Γ = Γ1(3), and nX = 1.

(This is just the Hesse pencil, which appears as Ex. 1 in [RV] and Ex. 3 in
[S].) The singular fibers occur at t = 0 (I1), 1

33 (I3), ∞ (IV ∗); whereas if we had

83here q0 = q
1
nX
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not taken the quotient (κ = 1), there would be 4 I1’s (at t = 0, 1
3
, ζ3

3
,
ζ2
3

3
) with

Γ = Γ(3). This will be useful in Example 10.9.
From [S],

H(q) = HΓ1(3)(q) :=

(
27 +

η(q)12

η(q3)12

)−1

= q(1− 15q + 171q2 − 1679q3 + · · · )

where of course η(q) = q
1
24

∏
n≥1(1− qn), and we have

A(t) = 2πi
∑
m≥0

(3m)!

(m!)3
tm = 2πi(1 + 6t+ 90t2 + 1680t3 + · · · ).

Since |H−1(0)| = {[i∞]}, we put ϕf := −1
3
π∗[i∞]ϕ

[1]
3 ; by Example 8.14

Ff(q) = −1 + 9
∑
K≥1

qK
∑
r|K

r2χ−3(r) = −1 + 9q − 27q2 + 9q3 + · · · .

The Proposition says this equals

−q
H(q)

H ′(q)
A(H(q))

2πi
=

−(1+15q+54q2−76q3 + · · · )(1−30q+513q2−6716q3 + · · · )(1+6q+6q3 + · · · ),
which is clearly plausible from the first 3 terms of the series. From (9.26) we
have

Ψ
[1]
f,0(q) = 2πi

{
log q − 9

∑
K≥1

(∑
r|K r

2χ−3(r)

K

)
qK

}

while Ψ(t) = 2πi
{

log t+
∑

m≥1
(3m)!
(m!)3 t

m
}
; computation again suggests that Ψ(H(q)) =

Ψ
[1]
f,0(q), which is (mod Q(2)) exactly what (10.15) asserts.

Example 10.10. φ = x+ y + x−1y−1, κ = 3.
This gives X with Γ = Γ

′
1(3), nX = 3, and singular fibers at t = 0 (I3), 1

33 (I1),
∞ (IV ∗); before the quotient these are t = 0 (I9) and t = 1

3
, ζ3

3
,
ζ2
3

3
(I1). Put

g(u) = 1−
(

1−3u
1+6u

)3; by considering locations of singular fibers one deduces

H(q0) = HΓ′1(3)(q0) =
1

33
g
(
HΓ(3)(q0)

)
=

1

33
g
[(
HΓ1(3)(q

3
0)
) 1

3

]
= q0(1− 15q0 + 171q2

0 − 5q3
0 + · · · ).

This is so similar to the previous example that the A(t)’s are the same, and

−1

3

q0

H(q0)
H ′(q0)

A(H(q0))

2πi
= −1

3
+ 3q0 − 9q2

0 + · · · .
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We want ϕ̂f = −1
3
ρ′∗(ι[i∞]∗ϕ̂

[1]
3 ) = −1

3
π∗[0]ϕ̂

[1]
3 ( =⇒ ϕf = 1

3
ι[0]∗ϕ

[1]
3 ) since |H−1(0)| =

{[i∞], [1], [1
2
]}. Using Prop. 8.12

Ff(q0) = −1

3
+ 3

∑
K≥1

qK0
∑
r|K

r2χ−3(r),

in agreement with the above.

It is interesting to explain why the “E8” family ([S, Ex. 1], [RV, Ex. 3])

φ = xy−1 + x−1y2 + x−1y−1, κ = 6, I2
1/II

∗

and “E7” family

φ = xy−1 + x−1y3 + x−1y−1, κ = 4, I1/I2/III
∗

fail to yield Eisenstein series (despite nontriviality of Ξ ∈ CH2(X \X0, 2)). More
to the point,

(10.16)
q

µ−1(q)
(µ−1)′(q)

A(µ−1(q))

2πi
=:
∑
m≥0

αmq
m

does not even yield a modular form (of any level) since lim supM→∞
M
√
|αM | =:

γ > 1. (At least one infers this from the data {bn} in [S].) It is insufficient to say
that the divisors of {x|Xt , y|Xt} are not supported on torsion (perhaps this could
be fixed by an AJ-equivalence), although this is probably required for instances
where Prop. 10.7 fails.

In the E8 case, J(µ(t)) vanishes to order 2 at t = ∞ (the II∗ fiber), so that
µ−1 is multivalued at τ = e

2πi
6 . As a result (10.16) both is multivalued and blows

up there.
According to Lemma 10.6, for the E7 family µ−1 is a Hauptmodul. However,

the fact that Γ = Γ1(2) 3 {−id} manifests itself in (±) multivaluedness of A ◦H
about τ = 1+i

2
(where J = 1 and t =∞).

In neither case does one have θ : E [1]
Γ(N) 99K X along which to pull back

Ξ. Perhaps this suggests a study of “generalized Eisenstein symbols” on families
over finite covers of H, with additional (nontorsion) marked structure; the elliptic
Bloch groups of Wildeshaus [Wi] seem quite suitable for this purpose.

10.5. Examples in the K3 case. Up to unimodular transformation, there are
4319 reflexive polytopes in R3 [KS]; according to Cor. 3.10ff we immediately
get (at least) 358 examples for ` = 2 where the toric symbol completes by
taking φ = characteristic polynomial of vertices. (Putting “random” roots of
unity instead of “1” on each vertex renders all 1071 polytopes from Remark 3.12
usable.) For each X/Ξ to be a candidate for modularity/Eisenstein-ness, we must
have rk(Pic(Xη)) = 19, in which case Xη has the Shioda-Inose structure [Mo]
(and one can then ask whether the underlying family of elliptic curves is suitably
modular). Such candidates are nontrivial to produce, but “non-candidates” seem
much more elusive.
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Problem. Does Theorem 3.8 produce any families of K3’s with generic Picard
rank ≤ 18? Or does the tempered condition indirectly furnish enough additional
divisors to preclude this possibility?

Here are eight Laurent polynomials which satisfy Theorem 3.8 and produce
(after desingularization84) 1-parameter K3 families X provably of generic Picard
rank 19 (together with the method of proof).

family φ(x, y, z)
A(t)

(2πi)2
method

1 Fermat quartic 1+x4+y4+z4

xyz

∑
m≥0

(4m)!

(m!)4
t4m

symmetry
G ∼= (Z/4Z)2

2 quartic mirror x+ y + z + 1
xyz same restrict from P∆̃

3 WP(1, 1, 1, 3)
"Fermat"

1+x6+y6+z2

xyz

∑
m≥0

(6m)!

(m!)3(3m)!
t6m

symmetry
G ∼= Z/6Z× Z/2Z

4 WP(1, 1, 1, 3)
mirror x+ y + z + 1

xyz3
same restrict from P∆̃

5 “box” (x−1)2(y−1)2(z−1)2

xyz

∑
m≥0

(2m
m

)3
tm Shioda

6 Fermi [PS] x+ 1
x + y + 1

y + z + 1
z

∑
m≥0 t

2m
(2m
m

)∑m
k=0

(m
k

)2(2k
k

) "double cover"
of Apery

7 Apéry (x−1)(y−1)(z−1)[(x−1)(y−1)−xyz]
xyz

∑
m≥0 t

m∑m
k=0

(m
k

)2(m+k
k

)2 Shioda

8 Verrill [Ve] (1+x+xy+xyz)(1+z+zy+zyx)
xyz

∑
m≥0 t

m∑
p+q+r+s=m

(
m!

p!q!r!s!

)2
intersection form

(The “Apéry” family is birational to the one studied in [Bk, BP, Pe].) Fami-
lies #1-4 and 6 are instances of Example 3.11 (with Remark 3.12 for #1 and
#3). The other three φ’s are not regular and need Theorem 3.8 with K = Q (for
#5 and #7) or Remark 3.9(iv) (for #8).85

We quickly summarize the “methods” in the r.h. column; a study (including
most of these examples) can be found in [Wh]. If X̃η is nonsingular (= Xη) then
[Ro]

rk(Pic(Xη)) ≥ rk{im(Pic(P∆̃)→ Pic(Xη))} = `(∆◦)−
∑

σ∈∆◦(1)

`∗(σ)− 4,

which = 19 for families #2 and #4 and = 1 for #1 and #3. For the latter cases,
the action on Xη by a finite subgroup G ⊂ (C∗)3 augments the Picard rank by

rk
[(
H2(Xη,Z)G

)⊥]
([Ni, Wh]), which turns out to be 18. For #5 (resp #7), Xη is obtained from X̃η

(remember Xη is really
˜̃Xη) by blowing up the 12 (resp. 7) A1 singularities. The

elliptic fibration Xη → P1
z has singular fibers (I∗1 )2/I8/I

2
1 (resp. I∗1/I5/I8/I

4
1 ). By

[Sd]
rk(Pic(Xη)) = 2 + r +

∑
(Mi − 1),

where r = rank of group of sections = 0 (resp. 186) and Mi = # of fiber
components in each singular fiber; this yields 19. This result is transferred to
the Fermi family by observing that its pullback {1 − 1

u+u−1φFermi = 0} has a
2 : 1 rational map (over u 7→ u2 = t) onto the Apéry family {1 − tφApery = 0}

84see §10.3 for the definition of X
85applied to the equivalent symbol {xy, y, z}
86the existence of a nontorsion section is demonstrated in [BP]
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Figure 10.1.
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(see [PS]). Finally, to deal with #8, [Ve] adds some lines to the components of
D ⊂ Xt and shows the rank of the resulting intersection form is 19.

The Fermi, Apéry and Verrill pencils (which are modular) yield an instructive
set of examples for Theorem 10.3: N = 6 in all three cases but the {rσ(Ξ)},
hence {Fθ∗Ξ}, are all different.

Example 10.11. By [Pe], the Apéry pencil’s Z-PVHS is equivalent to that
coming from the construction of of Remark 8.17 for N = 6 (and we will assume
the 2 X ’s birational). This gives87 (with Γ = Γ1(6)+6)

m0 = −12, m1 = 1, NΓ = 1, Mθ = 24 =⇒ Y (0)

(2πi)2
= −12;

moreover, ϕ̂f should be a constant multiple of (10.5). Since (by Cor. 10.4)
r[i∞](Ξ) = −12, we take

ϕ̂f := (10.5) =

−2 · 63

5
{ϕ̂{1,1}− ϕ̂{2,1}− ϕ̂{3,1} + ϕ̂{6,1}} +

2 · 65

5
{ϕ̂{6,1}− ϕ̂{6,2}− ϕ̂{6,3} + ϕ̂{6,6}}

where ϕ̂{a,b}(m,n) :=

{
1, a|m and b|n
0, otherwise . (See Figure 10.1 for a depiction of

5
2·65 ϕ̂f; any places where it takes the value 0 are simply left blank.) By Prop.
8.12, E[2]

ϕ{a,b}(q) =

=
−3

(2πi)4
L̃
(
ι∗[i∞]ϕ̂{a,b}, 4

)
− 1

64

∑
M≥1

q
M
6

∑
r|M

r3

 ∑
n0∈Z/6Z

e
2πin0r

6 ϕ̂{a,b}

(
M

r
, n0

)
=
−1

240b4
− 1

b4

∑
K≥1

q
a
b
K

∑
r|K

r3


87See below for C0. Singularities: monodromy is maximally unipotent about 0, ∞(= t),

finite (order 2) about (
√

2 + 1)4, (
√

2− 1)4.
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=
−1

240b4
E4(q

a
b ),

using substitutions M = 6a
b
K and r = 6

b
r. So we have, with E4(q) = 1 + 240(q+

9q2 + 28q3 + 73q4 + · · · ),

E[2]
ϕf

(q) =
−12

240 · 5
{

(1− 62)E4(q) + (62 − 24)E4(q2) + (62 − 34)E4(q3) + (64 − 62)E4(q6)
}

=
7

20
E4(q)− 1

5
E4(q2) +

9

20
E4(q3)− 63

5
E4(q6)

= −12 + 84q + 708q2 + 2460q3 + · · · .
On the other hand, from [Be2] u = η(τ)6η(6τ)6

η(2τ)6η(3τ)6 =⇒

H(q) = u2 = q(1− 12q + 66q2 − 220q3 + · · · ),
while from the table

A(t) = (2πi)2(1 + 5t+ 73t2 + 1445t3 + · · · );
therefore (from Theorem 10.3)

Fθ∗Ξ =
m0

(2πi)2NΓ

q

H(q)
H ′(q)A(H(q)) = −12 + 84q + 708q2 + 2460q3 + · · · .

So here we were able to correctly predict the Eisenstein series; in the remaining
examples (where obviously Thm. 10.3 predicts (10.11) is an Eisenstein series)
we have found ϕf essentially by solving for the correct combination of ϕ{a,b}’s.

Example 10.12. (Compare [Be2, Ex. 1].) For the Fermi family, one deduces
from Apéry (and the relationship between the two) that

m0 = −12, m1 = 1, C0 = 1, NΓ = 2, Mθ = 24

=⇒ r[i∞](Ξ) = −6,
Y (0)

(2πi)2
= −48;

so q0 = q
1
2 and

H(q0) =
1

u+ 1
u

= q0(1− 7q2
o + 34q4

0 − 204q6
0 + · · · ).

(The family has order 2 monodromy about t = ±1
2
,±1

6
and maximally unipotent

monodromy about t = 0.) From the table A(t) = (2πi)2(1+6t2 +90t4 +1860t6 +
· · · ), and by Theorem 10.3

Fθ∗Ξ(q0) = −6
q0

H(q0)
H ′(q0)

A(H(q0))

(2πi)2
= −6 + 48q2

0 + 240q4
0 + 1776q6

0 + · · · .

An educated guess for ϕ̂f(m,n) is 65

5
times Figure 10.2

=
(
ϕ̂{6,1} − ϕ̂{6,2} − ϕ̂{6,3} + ϕ̂{6,6}

)
− 1

36

(
ϕ̂{1,1} − ϕ̂{2,1} − ϕ̂{3,1} + ϕ̂{6,1}

)
+

1

9

(
ϕ̂{2,1} − ϕ̂{2,2} − ϕ̂{6,1} + ϕ̂{6,2}

)
− 1

4

(
ϕ̂{3,1} − ϕ̂{3,3} − ϕ̂{6,1} + ϕ̂{6,3}

)
,
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Figure 10.2.
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which yields

E[2]
ϕf

(q) =
1

5
E4(q)− 4

5
E4(q2) +

9

5
E4(q3)− 36

5
E4(q6)

= −6 + 48q + 240q2 + 1776q3 + · · ·
in agreement with the above.

Example 10.13. Verrill’s pencil has order 2 monodromy at t = 1
16
, 1

4
and max-

imal unipotent monodromy at 0, ∞; it is modular with Γ = Γ1(6)+3, and pre-
sumably a construction analogous to that in Remark 8.17 (with ι3 replacing ι6)
yields the total space (up to birational equivalence). This implies

m0 = −6, m1 = 1, NΓ = 1, Mθ = 12 =⇒ r[i∞] = −6,
Y (0)

(2πi)2
= −6.

Verrill’s Λ = − η(τ)6η(3τ)6

η(2τ)6η(6τ)6 − 4 =⇒ our t =

H(q) =
1

Λ + 4
= −η(2τ)6η(6τ)6

η(τ)6η(3τ)6
= −9(1 + 6q + 21q2 + 68q3 + 198q4 + · · · );

together with A(t)
(2πi)2 = 1 + 4t+ 28t2 + 256t3 = · · · , this gives

Fθ∗Ξ = −6
q

H(q)
H ′(q)

A(H(q))

(2πi)2
= −6− 12q + 84q2 − 228q3 + · · · .

Put ϕ̂f := 65

5
times Figure 10.3

=
(
ϕ̂{6,1} − ϕ̂{6,2} − ϕ̂{6,3} + ϕ̂{6,6}

)
− 1

9

(
ϕ̂{2,1} − ϕ̂{2,2} − ϕ̂{6,1} + ϕ̂{6,2}

)
;

then indeed

E[2]
ϕf

(q) = − 1

20
E4(q) +

4

5
E4(q2) +

9

20
E4(q3)− 36

5
E4(q6)

= −6− 12q + 84q2 − 228q3 + · · · .
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Figure 10.3.
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10.6. Remarks on the CY 3-fold case. In this subsection we present no fur-
ther examples of Theorem 10.3, because there aren’t any (Prop. 10.15). To
illustrate what the problem is, we begin by describing a local modularity cri-
terion for π : X → P1 in terms of the associated limit mixed Hodge structure
at t = 0. This is a necessary condition for applying that result, and it fails
dramatically for the celebrated quintic mirror family (as we shall see).

Let (HZ,H,F•) be a weight 3 rank 4 polarized Z-VHS over a punctured disk
U = D∗ε (0) with maximal unipotent monodromy T ∈ Aut(HZ) about t = 0. The
weight monodromy filtration W• can be defined on HZ, with adapted symplectic
Z-basis {ϕi}3

i=0:

GrWϕi ∈ Γ

(
U,

W2i

W2i−2

HZ

)
, [〈ϕi, ϕj〉] =

 1

1

−1
−1

 .

Moreover, there is a unique (OU -) basis {ωi}3
i=0 for H adapted to the Hodge

filtration (ωi ∈ Γ(U,F i)) and satisfying

GrWωi = GrWϕi ∈ Γ

(
U,

W2i

W2i−2

H
)
.

Replacing t by q := exp
(

2πi 〈ϕ1,ω3〉
〈ϕ0,ω3〉

)
, an “integral” basis for the LMHS

(H lim
Z ,W•,Hlim,Flim) is {ei := ϕ̃i(0)}, where ϕ̃i(q) := exp

(
− log q

2πi
log T

)
ϕi(q).

The period matrix Ω of Hlim is given by writing the ωi(0) ∈ F ilim as vectors
w.r.t. the basis {ei}. If H = Sym3H[1] as in the beginning of §9.1, then since
β̃ = β − log q

2πi
α and [β̃(0)] = limq→0[dz] ∈ H[1]

lim, Ω = Sym3Ω[1] = identity (up to
unimodular transformations preserving W•). This leads to (ii) in the following

Proposition 10.14. (i) [GGK2] In the above situation,

Ω =


1 0 f

2a
ξ

1 e
a

f
2a

1 0
1

 with a, e, f ∈ Z (but ξ ∈ C).
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(ii) If H = R3π∗C ⊗ OU comes from a modular family π : X → P1 of CY
3-folds (in the sense of §10.3), then ξ ∈ Q.

In the language of [Do1], ξ ∈ C/Q detects the presence of instanton correc-
tions : in fact ξ is nothing but −1

2
F (0) where F is the prepotential. This is

considered in [CdOGP] for the quintic mirror, which in our setup is

φ = x+ y + z + w +
1

xyzw
.

(Obviously this satisfies Cor. 3.10 for n = 4.) Indeed, for this most fundamental
example (by [GGK2])

Ω =


1 0 25

12
−200ζ(3)

(2πi)3

1 −11
2

25
12

1 0
1


tells us that X is not modular.

Now consider the 5 Laurent polynomials

φ(x) corresponding CY family {X̃t}
x1 + x2 + x3 + x4 + 1

x1x2x3x4
quintic mirror

x1 + x2 + x3 + x4 + 1
x2

1x2x3x4
sextic mirror

x1 + x2 + x3 + x4 + 1
x4

1x2x3x4
octic mirror

x1 + x2 + x3 + x4 + 1
x5

1x
2
2x3x4

dectic mirror
x1 + x2 + x3 + x1x

2
2x

3
3x

5
4 + 1

x2
1x

3
2x

4
3x

5
4

quintic twin mirror

all of which fall under the aegis of Corollary 3.10 (n = 4). These are the only fam-
ilies88 of smooth h2,1 = 1 Calabi-Yau anticanonical hypersurfaces in Gorenstein
toric Fano fourfolds, and their Picard-Fuchs equations are all classical general-
ized hypergeometric equations [DM1]. Moreover, none of these is a symmetric
cube of a second-order ODE whose projective normal form is the uniformizing
differential equation for a modular curve [Do1]. We conclude:

Proposition 10.15. There are no anticanonical toric modular families of CY
3-folds in the precise sense of (5) from §10.3.

There are a couple of ways to relax the toric hypotheses that would likely lead
to modular examples. What does not work is relaxing the rank 4 (h2,1 = 1)
hypothesis on H3(Xt) (e.g. to H3 having a rank 4 level 3 sub-Hodge-structure),
since the geometric information of θ : E [`]

(N) 99K X is crucial and birational
(smooth) CY’s have equal Hodge numbers [Ba2].

One possibility is to consider a toric 4-fold P∆̃ whose anticanonical hypersur-
faces have multiple moduli, and choose our 1-parameter family (1 − tφ = 0) to

88In particular, the corresponding polytopes ∆ have only 6 integral points, so the anti-
canonical hypersurfaces in P∆̃ have one modulus and modifying the monomial coefficients
yields isomorphic families.
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have (fiberwise) crepant singularities on its generic member. Resolving the sin-
gularities would then yield a family of CY’s with hp,q’s distinct from those of the
generic (smooth) anticanonical hypersurface. This approach will require a gen-
eralization of Theorem 3.8 to treat such singularities. Alternately, one could try
to extend the construction of motivic cohomology classes from §3 to families of
complete intersections in toric ≥ 5-folds. The generation of such families by way
of nef-partitions of polytopes [BB] yields an as-yet unknown number of h2,1 = 1
examples.
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