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Lreport on recent work with C. Robles, based in part on earlier work
with G. Pearlstein as well as P. Griffiths and M. Green.



Motivating principle: use Representation Theory to classify
what is possible for VHS with given “symmetries”; use that in
turn to decide what is geometrically possible or expected:

&) — D — )

(Q-algebraic group — Hodge tensors — algebraic cycles?
GGK/Patrikis: poss. MTG

flag/Schubert varieties RobIeS maximal VHS — geom. realization?

nilpotent cones — bdry. components (LMHS) — degenerations
K-Pearlstein (appr. to Torelli?)

geom. of flag var. D — diff'l. inv. of VHS — geom. realization?
(2nd FF)

smooth reps. of classes in ¢« -~ enhanced 5L2—orbits
H*(D,7)



§1. Construction of Mumford-Tate domains

» V = vector space over Q

v

@ : V x V — Q nondegenerate symmetric bilinear form
@ St — Aut(Vg, Q), where

Q(v,p(v/—1)¥) > 0 Vv € Vc\{0} (weight 0 PHS)

G < Aut(V, Q): Q-algebraic closure of p(S?')

G = subgroup fixing HTs pointwise (Chevalley's thm.)
Mumford-Tate (or Hodge) group

D:=G(R)¢ = G(R)/H ¢ G(C)/P= D

Mumford-Tate domain C compact dual

v

v

v

We think of M-T domains as parametrizing (a connected
component of) all HS on V polarized by Q, with the same
Hodge numbers as ¢, whose HTs include the fixed tensors of
G. We shall loosely speak of (V, Q, ¢) as a “Hodge
representation” of G.



Problem [GGK]: How do we arrange for the M-T group
to be a given (simple, adjoint) Q-algebraic group G?

One way is to take V = g. We need the crucial assumption
that G(R) contains a compact maximal torus T.

Let gr = £ @ £ be a Cartan decomposition with t C £ and
involution 6. Write A := A(gc, tc) = Ac U A, and
R < N:= X*(T¢) for the lattice it generates.

» O Lie-alg. homom. = 3 homom. R — Z sending
Ao — 27, A, — 27 + 1.

» G adjoint = R =\ = this homom. is induced by
a grading element E € /—1t.

» Set p(z) := €?"°8(?)E 50 that (Ad o ¢)(v/—1) = 4.

» Since —Bis >0 on tand < 0on &, (g,Adop, —B)is a
PHS (of weight 0).



The Hodge decomposition takes the form gc = @®jczg/, where

¢ =g = Dsen: E(5)=j95 J#0
Bt <@5eA: E(&):ngS) ©tc, j=0"

write ¥ := dim¢ ¢/ for the Hodge numbers.
We also claim that the M-T group of Ado ¢ is G. Why?
Let M < G be (equivalently)
(a) the smallest Q-algebraic group such that
Ad o gpg! factors thru M(R) (Vg € G(R))

(b) the M-T group of the family {Ad o gog™'}zcor)
of polarized Hodge structures

(c) the M-T group of Ad o gopgy ! for all go € G(R)
in the complement of a meager set

Since ¢ is “sufficiently general”, we may take go = 1 in (c).
By (a), M < G; so G simple — M = G.



We remark that

v

» rank(W) = h™! (horizontal distribution)

(G - G2)
i ¢ g U =7—-dim irref
[o] .
[ ) [ ) A B ° °
[o] L} [o] °
(o] dim(D)=5 . . .
° ° rk(W)=4 l g (Up):UU
E,, ) -1 0 1
2 o b2 2, 3, 2

(1, 4, 4 4 1D



Generalization to fundamental adjoint varieties
Recall: upon fixing At C A, we have
» «; simple roots «+— S/ simple grading elements
5

» w; fundamental weights <— H; simple coroots
5 (Hj€lga; 9-a;l, ci(H)=2)

Let 4 = 3 pi/w; be dominant (p; > 0), assume U = V* real.
Consider the assoc. parabolic subgroup P > B > T, where

» A(B) = AT
> I(p) := {i] —ai ¢ Alp)} = {i|n’ # 0}
and the assoc. grading element E := ", S". Put m :=E(u).
» U=U"&- - U™ is the grading induced by E
» U™ = U, = highest weight line

» the G(C)-orbit of [U,] € PU gives a homogeneous
embedding of G(C)/P, minimal if u' € {0,1} (Vi).



The adjoint case is U = g. Root/weight computations show:
» m=2,s0 {W} ={1,%x % 1}

» unless G is of type Eg, there exists a level 2 faithful Hodge
representation (like (2, 3,2) in the G, example above)

> unless G is of type C, the adjoint variety
D = G(C)/P — Pg is minimally embedded

» unless G is of type A or C, the adjoint representation is
fundamental (g = V“*), and the corresponding {D} are
the fundamental adjoint varieties.

Why study the adjoint varieties as Hodge-theoretic classifying
spaces?

One reason: they are the “simplest” G/P with nontrivial IPR,
in the sense of being precisely the cases where VV is a contact
distribution.



§2. Schubert VHS and classical subdomains

Let D C D be a M-T domain with base point F*® = F; e D,
g = @¢ the corresponding Hodge decomposition, and T, A as
before. Write P > B > T for the parabolic fixing F*, so that
we have:

> A(B) =: AT = A(Flg) UA™(g°%)

» A(P) = A(F).
Put WP :={w e W|wA* > A*(g%)}, and note that

» we WP = A, =A"NwA" is closed in A

> D =T1Twewr Co = Lwewr Bw L.F*.
The Schubert varieties X, := mzar' ch satisfy

» dime X, = |Ay| = 4(w)

> TreXw =1y = Qacanbo

» X,, Schubert VHS (i.e. horizontal) <= n, Cg™!
(= n, abelian)



Theorem (Robles)

max dim(IVHS) = max dim(SVHS) =
max {|AW| ’W e WP, A, C A(g_l)}

Example 1 (G = Gp) ﬁnw et
There exists only one o+
X,, of dimension 2, Q ot
and it is an SVHS o . ot
(false for higher dim.) . o
U [ ]
the maximal + WP
integral manifold of W il S T
has dimension 2 g‘l p

Is this X,, a M-T subdomain? If so, it would be a (smooth,
Hermitian) homogeneous G’(RR)-orbit, with g 2 g’ = Lie
algebra closure of n,, ® n,,. But this closure is all of g. NO!



More generally, what is the relationship between SVHS
and horizontal ( = Hermitian) M-T domains?

For any subdiagram 2’ C & of the Dynkin diagram of g, have
» g’ C g subalg. gen. by the root spaces {g,| o € '}
» X(2') := G'(C).F* C D smooth Schubert variety

X(2') is horizontal iff g’ C g7! @ g° @ g, in which case it is
(the compact dual of) a homogeneously embedded Hermitian
symmetric domain.

Let X C D be a SVHS. Then

X smooth <= X =[[X(Z;) (homog. emb. HSD).

It is instructive to compare this with another recent result:



» X C D a smooth "VHS" (horizontal subvariety)
» Y a (nonempty) connected component of X N D
with strongly quasi-projective image in '\D
—> Y is a (Hermitian) M-T subdomain.
On the other hand, with an arithmetic assumption on D, the
[K-R] result has the following

» X C D a smooth Schubert VHS
» Y a (nonempty) connected component of X N D
—> Y is a translate of a (Hermitian) M-T subdomain.

The converse of the Corollary is false: there are plenty of
non-Schubert, horizontal Hermitian M-T subdomains, and we
will construct maximal integral ones later.



§3. Lines on D and a differential invariant of VHS

The Corollary suggests that there might be lots of singular
SVHS, in view of the G, example. A systematic construction
of Schubert varieties is given by incidence correspondences:

G(C)/{PNQ}
/ \ 5
G(C)/Q G(C)/P=—=D
U X1 U
> x X(X)

where P, Q@ > B. Note that:

» X, X1 preserve Schubert varieties
» a point is a Schubert variety (e.g. P/P = F*®)
> X(Q/Q) = X(Z'), where 7" = 7\ (I(a) \ I(p))



Case of P maximal

» P maximal = I(p) = {k}. If I(q) contains the nodes
adjacent to {k}, then X(2') is a P! thru F*.
In this case:
> Xo := X(X“!(F*®)) is a Schubert variety consisting of all
PY's thru F* on D (in its minimal embedding).
Specializing to the case where D(C Pg) is a fundamental
adjoint variety, let
» Co := the G°(C)-orbit of the highest weight line in Pg~*.
Then
» Cop = G°(C)/{P N G°(C)} is a homogeneous Legendrian
variety

» Xp = Cone(Cy) is a singular Schubert VHS



Some data for the fundamental adjoint varieties D and their
associated “subadjoint” varieties Cy of lines through a point:

L oc | D | gc” [ G |
so(n) | OG(2,C") | so(n—4) dsl(2) | P x Q"°
Cq E6/P2 5[(6) Gr(3, (Cﬁ)
¢7 E;/P; 50(12) S
¢ E8/P8 €7 E7/P7
f4 F4/P1 5p(6) LG(3, C6)
do G2/P2 5[(2) Vg(]Pl)




We now relate these varieties of lines to the Griffiths-Yukawa
kernel. Let V = @7_,V"7Y be a VHS over S, with associated
period map ® : S — '\D (D = M-T domain). Denote by D
a holomorphic differential operator on U C S of order n.

The composition
Ou(V™0) = Oy(V) B Oy(V) — Oy(V*")
depends only on o(D), giving rise to the G-Y coupling

Sym"T,§ — Hom(V™0 Vo) = (Von)®2

do | /" )
Sym"g~! 5 g

-1

Write Y C Pg~! for the kernel of () (at F* € D).



(G=Gy) V=V2Xg Vg V02 7-diml irrep

.xo

.x3

.V °

N NS
action of g~

Given € := Y &x; € gL, one computes

[, = (

—26:& + 283
§1§2 — &3

§16 — &&s
—260&0 + 2%

whose vanishing defines the twisted cubic v3(P!) C Pg!.



This example is generalized to Eg, E7, F4 by the

For D = G(C)/P a fundamental adjoint variety, and V a
level 2 Hodge representation such that V20 is a faithful
representation of g°, we have Y = (. (Much more
generally, ) contains the horizontal lines through F*.)

Given [¢] € Y, &(u) =0 Vu € V0. Fix v € g%\ {0},
so adzv € g°. Then (adv)u = v&€u = 0'2thty! adiv =0 =
second fundamental form vanishes at §¢ — [¢] € Cp. O
When the conclusion of the Theorem holds,

» YV = ker(G-Y) gives Hodge-theoretic meaning to Cy
» Co = G°(C)/--- gives a homogeneous description of )

> adgv = 0 produces explicit projective homogeneous
equations for both.



§4. G(R)-orbits in D and asymptotics of VHS

Given the input:

» D C D M-T domain (parametrizing wt. 0 HS on V)

» [ < G(Q) neat arithmetic

» 0° C o =Qso(N,...,N,) C gg abelian nilpotent
we define (and assume nonempty):

e tNiF* ¢ D for Im(7;) >0 }

NiF* C oL
which parametrizes LMHS (F*, W(0),),>?

» B(c) := €%\ B(c) = boundary component assoc. to ¢

v

» B(o) = {F' eD

which parametrizes o-nilpotent orbits (o, €““F*), and
» B(o) =T,\B(c), where ', := stabr (o).
One may “partially compactify” [\D by B(c)s (log manifold).

2N(W(0)s) € W(0)e—z and N¥: GrM) 5 6@ (yN € 0°).



Structure of B(o)
Write
» M, =exp{im(>_ N;) N (Nker(N;))}
» Z(0) = Zo(c) - M, for the centralizer of o in G
» G, < Zy(0o) for the M-T group of generic
Gr'(F*, W(o).)
Then we have
» fibration B(o) —= D(0) = M-T domain of generic
x - - Gr(F*, W(0o).)
splie(F W (0)s)
» B(o) = {GZ(R) x M,(C)}.F§ and
D(c) = G=(R).Gr'VFs

» naive limit map 5
®7 : B(o) — obcD
F* +— lim e NF* (any N € 0°).

Im(7)—00



[K-R] contains a general prescription for using a set

B ={b1,...,0s} C A(g') of strongly orthogonal roots to
explicitly construct Q-split (o, F$). The motivation is to
parametrize G(IR)-orbits in 9D in the image of ®7_. | will
discuss only s = 1. Fix a base point o (+— F*) in D.

Let 3 € A(g"), with associated sl; = (N, Y, NT) (N € g_g).
Apply the Cayley transform ¢z = Ad (e%(x—ﬁ_xﬁ)) to
o tc~h

e go~'ga D
e E~'E o
e o~'o e

(Fo W,F.) 0



Then

> 'F* € B(N), and gi; = ker{f8];} & D, || ;00

» 'E, Y give a (Deligne) bigrading gP9 = g/;p N @p+q Of g
whose dimensions h?9 are the Hodge—DeIigneEnumI;/ers of the

(limit) MHS ("F*, W(N),) associated to ’o.

Remark : We can use this to construct non-Schubert M-T
subdomains. Define the “enhanced SL-orbit”

X(N) = eNGo /0™ = G x SLE /o  D;
then (with an arithmetic assumption on o)
» Y(N):=X(N)nDisaM-T domain
» X(N) = D(N) x P 5 D(N) x $ = Y(N)
» If E(o) € {—1,0,1} Ve IL 3, then Y(N) is a HSD.

» If D= G(C)/P (P maximal) and dim X(N) > 2, then
X(N) is not Schubert.



§5. “Minimal” boundary of adjoint varieties

Let D be a fundamental adjoint variety (note E = §/).

There is a unique codimension-1 G(R)-orbit in 9D.

o [K-P] R-codim. of orbit > o is given by >°, .o h”;

e [KP] codim.-1 orbits are of the form G(R).czo0, 3 € A(g').
Acting by W(g°%), wma (53,05) < 0Vj # i, i.e. a;(H?) <O0.
In the bigrading defined by ¢, g'! D 'g! D ’g?

— [ =aj+ Y, ma; (m>0)

= p(a;) +q(a) = a;(H) = B(H") — 34 mjey(H?) > 2
— ¢g(o;) > 1 = codim > 1 unless = ;. O



Let ‘o (= c,,0) belong to this real codimension-1 orbit, with
associated MHS ("F*, W(N),) and bigrading g”9.

o I
The hP9 — c||m(C gP7q are D . 1
. q . \a'
a b a d
hd . —=p
(eg for G2? a = b — 1 ol ¢a e .{\N
o
for F47 a==6and b= 10) Lol (highest root)

We know dimg? =1, g2 = {0}, dimg, = 1, g-» = {0}.
Now «;, & are non-short roots, and

o H € 9o, 8_a;] st a;(H) =2

e S' € [ga, g-a) s.t. &(8') =2.

— Jw € W sending H' — —8*

= w(g?) = w(g” N gpsq) =g Ng PH) =g P99 [



Note that w identifies the (faithful) representations of go on g;
and g° on g~!. Moreover, D(N)(C Pg;) is the M-T domain
for the Hodge representation of Gy on gy, which leads to:

(a) D(N) c Pgy is = Cy c Pg L.

(b) X(N) = P* x Cy (cylinder on Cp)

(c) B(N) — Tn\D(N) is a family of intermediate
Jacobians associated to a VHS (with Hodge numbers
(1,a,a,1)) over a Shimura variety.

(d) Over D(N), these VHS recover the Friedman-Laza
list of maximal weight 3 Hermitian VHS of CY type.

Applications? Automorphic cohomology; geometric
realizations; cohomology of D.



H*(D,Z) is generated by Schubert vareities, and the
“horizontal” part (invariant characteristic cohomology) by
Schubert VHS. Do the subadjoint cylinder classes [X(N)] yield
smooth representatives of the subadjoint cone classes [X,,]?

CHrE
O
(G = G) Ny s’

e\ % o,
L .
' ® @

. B \\.Mq %
X 2 X(6°.Q/Q), X(N)=(SL5.Q/Q)
> (V)
(w1, w1) = 2(w1,01) = [X(N)] = 2[X]
= [X(N)] = 2[X,].



86. A (partial) geometric realization
We look for degenerations of varieties predicted by the
“codim. 1" boundary components of adjoint domains.
For G,, this should take the form of a 1-parameter family of
surfaces {X;} with H2 Hodge numbers (2,3,2), M-T group
G,, and LMHS of the form

P Y
. H, (X))

p

where N is the monodromy logarithm and bullets denote
1-dimensional spaces. In fact, just such a family has been
constructed by N. Katz using elliptic fibrations; the M-T group
is determined by a moment computation using elliptic
convolution over finite fields. We shall describe a special case.



Begin with the rational elliptic surface
E—PL: y?=x(1—-x)(x—2?)

with singular fibers (21, 2h) at z=—1,0,1, c0.
For any t #£ 0, = 3\/5, 00, base change by

E.— Pl w?=tz(z - 1)(z+ 1)+ t?
to obtain an elliptic surface X; — E; with 7 singular fibers,
Q*(X;) = Clwi(t), wa(t)) = C(&ns% erz), and
dim(H (X ))=7: o = locations of
r Y.

singular fibers

2 cycles/ each 1 cycle/ each
A,A,B,B, C, (i=1,2,3)



Degenerating X; as t — to = 32 yields

E E

K3 surface
Picard rank 19

with

E = {y? = x(1 - x)(x - )}
The part of H?(X,,) not coming from the 19 algebraic classes
on Y indeed takes the form

q

P
HYE)  HXY)



In fact, we can “determine” the limiting period in

B(N) — T'\$.

» Since Gy = SL, and j(E) ¢ Z,
H2(Y) 2 Sym®H ()

and the point in the base is determined by the (non-CM)
Hodge structure H*(E).

» The point in the fiber
C?/Z{Q). () (50) (%)) = J(Sym*H' (E))
C J(H(Y)" ® HY(E))
is given by [; w, [p w (w € Q%(Y)).



The image of the period map into '\D is contained (at least
locally) in 2-dimensional integral manifolds. Does X; belong to
a 2-parameter family?

(For F4, one expects a 7-parameter family of surfaces with H2
Hodge numbers (6,14, 6)!)

To determine which deformations of X; “preserve G,", it may
be necessary to “see” the cubic Hodge tensor geometrically:
we need 3 € CH3(X; x X; x X;) inducing an “octonionic
cross-product” on H2(X,).



— Thank You —



