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Motivating principle: use Representation Theory to classify
what is possible for VHS with given “symmetries”; use that in
turn to decide what is geometrically possible or expected:

RT −→ HT −→ moduli

Q-algebraic group
GGK/Patrikis: poss. MTG

→ Hodge tensors→ algebraic cycles?

flag/Schubert varieties Robles−→ maximal VHS→ geom. realization?

nilpotent cones→ bdry. components (LMHS)
K-Pearlstein

→ degenerations
(appr. to Torelli?)

geom. of flag var. Ď
(2nd FF)

→ diff’l. inv. of VHS→ geom. realization?

smooth reps. of classes in
H∗(Ď,Z)

L99 enhanced SL2-orbits



§1. Construction of Mumford-Tate domains
I V = vector space over Q
I Q : V × V → Q nondegenerate symmetric bilinear form
I ϕ : S1 → Aut(VR,Q), where

Q(v , ϕ(
√
−1)v̄) > 0 ∀v ∈ VC\{0} (weight 0 PHS)

I G ≤ Aut(V ,Q): Q-algebraic closure of ϕ(S1)
G = subgroup fixing HTs pointwise (Chevalley’s thm.)
Mumford-Tate (or Hodge) group

I D := G(R).ϕ ∼= G(R)/H ⊂
open

G(C)/P =: Ď
Mumford-Tate domain ⊂ compact dual

We think of M-T domains as parametrizing (a connected
component of) all HS on V polarized by Q, with the same
Hodge numbers as ϕ, whose HTs include the fixed tensors of
G . We shall loosely speak of (V ,Q, ϕ) as a “Hodge
representation” of G .



Problem [GGK]: How do we arrange for the M-T group
to be a given (simple, adjoint) Q-algebraic group G?

One way is to take V = g. We need the crucial assumption
that G(R) contains a compact maximal torus T .

Let gR = k⊕ k⊥ be a Cartan decomposition with t ⊆ k and
involution θ. Write ∆ := ∆(gC, tC) = ∆c ∪∆n, and
R ≤ Λ := X ∗(TC) for the lattice it generates.
I θ Lie-alg. homom. =⇒ ∃ homom. R → Z sending

∆c → 2Z, ∆n → 2Z + 1.
I G adjoint =⇒ R = Λ =⇒ this homom. is induced by

a grading element E ∈
√
−1t.

I Set ϕ(z) := e2 log(z)E, so that (Ad ◦ ϕ)(
√
−1) = θ.

I Since −B is > 0 on k and < 0 on k⊥, (g,Ad ◦ ϕ,−B) is a
PHS (of weight 0).

.



The Hodge decomposition takes the form gC = ⊕j∈Zg
j , where

gj := gj,−j
ϕ =

{
⊕δ∈∆: E(δ)=jgδ, j 6= 0(

⊕δ∈∆: E(δ)=0gδ
)
⊕ tC, j = 0 ;

write hj := dimC g
j for the Hodge numbers.

We also claim that the M-T group of Ad ◦ ϕ is G . Why?
Let M ≤ G be (equivalently)

(a) the smallest Q-algebraic group such that
Ad ◦ gϕg−1 factors thru M(R) (∀g ∈ G(R))

(b) the M-T group of the family {Ad ◦ gϕg−1}g∈G(R)
of polarized Hodge structures

(c) the M-T group of Ad ◦ g0ϕg−1
0 for all g0 ∈ G(R)

in the complement of a meager set
Since ϕ is “sufficiently general”, we may take g0 = 1 in (c).
By (a), M E G ; so G simple =⇒ M = G .



We remark that
I dimC(Ď) = ∑

j>0 hj

I rank(W) = h−1 (horizontal distribution)
Example: (G = G2)
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Generalization to fundamental adjoint varieties
Recall: upon fixing ∆+ ⊂ ∆, we have
I αi simple roots ←→

δj
i

Sj simple grading elements

I ωi fundamental weights ←→
δj

i

Hj simple coroots
(Hj∈[gαi ,g−αi ], αi (H i )=2)

Let µ = ∑
µiωi be dominant (µi ≥ 0), assume U = V µ real.

Consider the assoc. parabolic subgroup P ≥ B ≥ TC, where
I ∆(B) = ∆+

I I(p) := {i | − αi /∈ ∆(p)} = {i |µi 6= 0}
and the assoc. grading element E := ∑

i∈I Si . Put m := E(µ).
I U = U−m ⊕ · · · ⊕ Um is the grading induced by E

I Um = Uµ = highest weight line

I the G(C)-orbit of [Uµ] ∈ PU gives a homogeneous
embedding of G(C)/P, minimal if µi ∈ {0, 1} (∀i).



The adjoint case is U = g. Root/weight computations show:
I m = 2, so {hj} = {1, ∗, ∗, ∗, 1}

I unless G is of type E8, there exists a level 2 faithful Hodge
representation (like (2, 3, 2) in the G2 example above)

I unless G is of type C , the adjoint variety
Ď = G(C)/P ↪→ Pg is minimally embedded

I unless G is of type A or C , the adjoint representation is
fundamental (g = V ωk ), and the corresponding {Ď} are
the fundamental adjoint varieties.

Why study the adjoint varieties as Hodge-theoretic classifying
spaces?
One reason: they are the “simplest” G/P with nontrivial IPR,
in the sense of being precisely the cases where W is a contact
distribution.



§2. Schubert VHS and classical subdomains
Let D ⊂ Ď be a M-T domain with base point F • = F •ϕ ∈ D,
g = ⊕gj the corresponding Hodge decomposition, and T ,∆ as
before. Write P ≥ B ≥ TC for the parabolic fixing F •, so that
we have:
I ∆(B) =: ∆+ = ∆(F 1g) ∪∆+(g0)
I ∆(P) = ∆(F 0g).

Put W P := {w ∈ W |w∆+ ⊃ ∆+(g0)}, and note that
I w ∈ W P =⇒ ∆w := ∆− ∩ w∆+ is closed in ∆
I Ď = ∐

w∈W P Cw := ∐
w∈W P Bw−1.F •.

The Schubert varieties Xw := wCw
Zar. ⊂ Ď satisfy

I dimC Xw = |∆w | = `(w)
I TF•Xw = nw := ⊕α∈∆wgα

I Xw Schubert VHS (i.e. horizontal) ⇐⇒ nw ⊂ g−1

( =⇒ nw abelian)



Theorem (Robles)

max dim(IVHS) = max dim(SVHS) =
max

{
|∆w |

∣∣∣w ∈ W P , ∆w ⊂ ∆(g−1)
}

Example : (G = G2)
There exists only one

Xw of dimension 2,
and it is an SVHS

(false for higher dim.)
⇓

the maximal
integral manifold of W

has dimension 2
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+
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Is this Xw a M-T subdomain? If so, it would be a (smooth,
Hermitian) homogeneous G ′(R)-orbit, with g ) g′ = Lie
algebra closure of nw ⊕ nw . But this closure is all of g. NO!



More generally, what is the relationship between SVHS
and horizontal ( =⇒ Hermitian) M-T domains?
For any subdiagram D ′ ⊂ D of the Dynkin diagram of g, have
I g′ ⊂ g subalg. gen. by the root spaces {gα|α ∈ D ′}
I X (D ′) := G ′(C).F • ⊂ Ď smooth Schubert variety

X (D ′) is horizontal iff g′ ⊂ g−1 ⊕ g0 ⊕ g1, in which case it is
(the compact dual of) a homogeneously embedded Hermitian
symmetric domain.

Theorem (K-R)

Let X ⊂ Ď be a SVHS. Then

X smooth ⇐⇒ X =
∏

i
X (Di) (homog. emb. HSD).

It is instructive to compare this with another recent result:



Theorem (Friedman-Laza)
I X ⊂ Ď a smooth "VHS" (horizontal subvariety)
I Y a (nonempty) connected component of X ∩ D

with strongly quasi-projective image in Γ\D
=⇒ Y is a (Hermitian) M-T subdomain.

On the other hand, with an arithmetic assumption on Ď, the
[K-R] result has the following

Corollary
I X ⊂ Ď a smooth Schubert VHS
I Y a (nonempty) connected component of X ∩ D

=⇒ Y is a translate of a (Hermitian) M-T subdomain.

The converse of the Corollary is false: there are plenty of
non-Schubert, horizontal Hermitian M-T subdomains, and we
will construct maximal integral ones later.



§3. Lines on Ď and a differential invariant of VHS
The Corollary suggests that there might be lots of singular
SVHS, in view of the G2 example. A systematic construction
of Schubert varieties is given by incidence correspondences:

G(C)/{P ∩ Q}
uu ))

G(C)/Q G(C)/P Ď

Σ
?�

X
// X(Σ)
?�X−1

oo

where P,Q ≥ B. Note that:
I X,X−1 preserve Schubert varieties

I a point is a Schubert variety (e.g. P/P = F •)

I X(Q/Q) = X (D ′), where D ′ = D \ (I(q) \ I(p))



Case of P maximal

I P maximal =⇒ I(p) = {k}. If I(q) contains the nodes
adjacent to {k}, then X (D ′) is a P1 thru F •.

In this case:
I X0 := X(X−1(F •)) is a Schubert variety consisting of all

P1’s thru F • on Ď (in its minimal embedding).
Specializing to the case where Ď(⊂ Pg) is a fundamental
adjoint variety, let
I C0 := the G0(C)-orbit of the highest weight line in Pg−1.

Then
I C0 ∼= G0(C)/{P ∩ G0(C)} is a homogeneous Legendrian

variety

I X0 ∼= Cone(C0) is a singular Schubert VHS



Some data for the fundamental adjoint varieties Ď and their
associated “subadjoint” varieties C0 of lines through a point:

gC Ď g0,ss
C C0

so(n) OG(2,Cn) so(n − 4)⊕ sl(2) P1 ×Qn−6

e6 E6/P2 sl(6) Gr(3,C6)
e7 E7/P1 so(12) S6
e8 E8/P8 e7 E7/P7
f4 F4/P1 sp(6) LG(3,C6)
g2 G2/P2 sl(2) ν3(P1)



We now relate these varieties of lines to the Griffiths-Yukawa
kernel. Let V = ⊕n

j=0Vn−j,j be a VHS over S, with associated
period map Φ : S → Γ\D (D = M-T domain). Denote by D
a holomorphic differential operator on U ⊂ S of order n.
The composition

OU(Vn,0) ↪→ OU(V) D→ OU(V)� OU(V0,n)

depends only on σ(D), giving rise to the G-Y coupling

SymnTsS → Hom(V n,0
s ,V 0,n

s ) = (V 0,n
s )⊗2

dΦ ↓ ↗ ↑ (∗)
Symng−1 ←

(·)n
g−1

Write Y ⊂ Pg−1 for the kernel of (∗) (at F • ∈ D).



Example : (G = G2) V = V 2,0 ⊕ V 1,1 ⊕ V 0,2 7-diml irrep

action of
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Given ξ := ∑
ξixi ∈ g−1, one computes

e∗[ξ2]e =
(
−2ξ1ξ2 + 2ξ2

2 ξ1ξ2 − ξ0ξ3
ξ1ξ2 − ξ0ξ3 −2ξ0ξ2 + 2ξ2

1

)

whose vanishing defines the twisted cubic ν3(P1) ⊂ Pg−1.



This example is generalized to E6, E7, F4 by the
Theorem (K-R)

For Ď = G(C)/P a fundamental adjoint variety, and V a
level 2 Hodge representation such that V 2,0 is a faithful
representation of g0, we have Y = C0. (Much more
generally, Y contains the horizontal lines through F •.)

Sketch: Given [ξ] ∈ Y , ξ2(u) = 0 ∀u ∈ V 2,0. Fix v ∈ g2 \ {0},
so ad2

ξv ∈ g0. Then (ad2
ξv)u = vξξu = 0faithful=⇒ ad2

ξv = 0 =⇒
second fundamental form vanishes at ξ =⇒ [ξ] ∈ C0. �

When the conclusion of the Theorem holds,
I Y = ker(G-Y) gives Hodge-theoretic meaning to C0

I C0 ∼= G0(C)/· · · gives a homogeneous description of Y
I ad2

ξv = 0 produces explicit projective homogeneous
equations for both.



§4. G(R)-orbits in Ď and asymptotics of VHS
Given the input:
I D ⊂ Ď M-T domain (parametrizing wt. 0 HS on V )
I Γ ≤ G(Q) neat arithmetic
I σ◦ ⊂ σ = Q≥0〈N1, . . . ,Nm〉 ⊂ gQ abelian nilpotent

we define (and assume nonempty):

I B̃(σ) :=
{

F • ∈ Ď
∣∣∣∣∣ e
∑

ti Ni F • ∈ D for Im(τi)� 0
NiF • ⊂ F •−1

}
which parametrizes LMHS (F •,W (σ)•),2

I B(σ) := eCσ\B̃(σ) = boundary component assoc. to σ
which parametrizes σ-nilpotent orbits (σ, eCσF •), and
I B̄(σ) = Γσ\B(σ), where Γσ := stabΓ(σ).

One may “partially compactify” Γ\D by B̄(σ)s (log manifold).
2N(W (σ)•) ⊂W (σ)•−2 and Nk : GrW (σ)

k
∼=→ GrW (σ)

−k (∀N ∈ σ◦).



Structure of B(σ)
Write
I Mσ = exp {im(∑Ni) ∩ (∩ ker(Ni))}
I Z (σ) = Z0(σ) ·Mσ for the centralizer of σ in G
I Gσ ≤ Z0(σ) for the M-T group of generic

GrW (F •,W (σ)•)
Then we have
I fibration B(σ) // // D(σ)

Q-split(F•0 ,W (σ)•)
hh

= M-T domain of generic
GrW (F •,W (σ)•)

I B(σ) = {G ss
σ (R) n Mσ(C)}.F •0 and

D(σ) = G ss
σ (R).GrW F •0

I naive limit map
Φσ
∞ : B(σ) → ∂D ⊂ Ď

F • 7→ lim
Im(τ)→∞

eτNF • (any N ∈ σ◦).



[K-R] contains a general prescription for using a set
B = {β1, . . . , βs} ⊂ ∆(g1) of strongly orthogonal roots to
explicitly construct Q-split (σ,F •0 ). The motivation is to
parametrize G(R)-orbits in ∂D in the image of Φσ

∞. I will
discuss only s = 1. Fix a base point o (←→ F •) in D.
Let β ∈ ∆(g1), with associated slβ2 = 〈N ,Y ,N+〉 (N ∈ g−β).
Apply the Cayley transform cβ = Ad

(
e π

4 (X−β−Xβ)
)
to

• tC  h
• gα  ′gα
• E ′E
• o  ′o

(F •  ′F •)

D

’o

o

c
β



Then
I ′F • ∈ B̃(N), and gss

N = ker{β|h} ⊕
⊕

α |= β
′gα

I ′E,Y give a (Deligne) bigrading gp,q = gp
′E
∩ gp+q

Y
of gC

whose dimensions hp,q are the Hodge-Deligne numbers of the
(limit) MHS (′F •,W (N)•) associated to ′o.

Remark : We can use this to construct non-Schubert M-T
subdomains. Define the “enhanced SL2-orbit”

X (N) := eCNG ss
N .
′oZar = G ss

N × SLβ2 .′o ⊂ Ď;
then (with an arithmetic assumption on o)
I Y (N) := X (N) ∩ D is a M-T domain
I X (N) = Ď(N)× P1 ⊃ D(N)× H = Y (N)

I If E(α) ∈ {−1, 0, 1} ∀α |= β, then Y (N) is a HSD.

I If Ď = G(C)/P (P maximal) and dimX (N) ≥ 2, then
X (N) is not Schubert.



§5. “Minimal” boundary of adjoint varieties
Let Ď be a fundamental adjoint variety (note E = Si).

Proposition (K-R)
There is a unique codimension-1 G(R)-orbit in ∂D.

Sketch:
• [K-P] R-codim. of orbit 3 ′o is given by ∑p,q>0 hp,q;
• [KP] codim.-1 orbits are of the form G(R).cβo, β ∈ ∆(g1).
Acting by W (g0), wma (β, αj) ≤ 0 ∀j 6= i , i.e. αj(Hβ) ≤ 0.
In the bigrading defined by cβ, g1,1 ⊃ ′g1 ⊃ ′gβ

=⇒ β = αi +∑
j 6=i mjαj (mj ≥ 0)

=⇒ p(αi) + q(αi) = αi(Hβ) = β(Hβ)−∑j 6=i mjαj(Hβ) ≥ 2
=⇒ q(αi) ≥ 1 =⇒ codim > 1 unless β = αi . �



Let ′o (= cαi o) belong to this real codimension-1 orbit, with
associated MHS (′F •,W (N)•) and bigrading gp,q.

Proposition (K-R)

The hp,q = dimC g
p,q are

(e.g. for G2, a = b = 1
for F4, a = 6 and b = 10) (highest root)

p

q

a

a a

aa

b

a 1

1

1

1

1

1

α

α

i

Sketch:
We know dim g2 = 1, g>2 = {0}, dim g2 = 1, g>2 = {0}.
Now αi , α̃ are non-short roots, and
• H i ∈ [gαi , g−αi ] s.t. αi(H i) = 2
• Si ∈ [g~α, g−~α] s.t. α̃(Si) = 2.
=⇒ ∃w ∈ W sending H i 7→ −Si

=⇒ w(gp,q) = w(gp ∩ gp+q) = g−p ∩ g−(p+q) = g−p−q,q. �



Note that w identifies the (faithful) representations of g0 on g1
and g0 on g−1. Moreover, D(N) (⊂ Pg1) is the M-T domain
for the Hodge representation of G0 on g1, which leads to:

Theorem (K-R)

(a) Ď(N) ⊂ Pg1 is ∼= C0 ⊂ Pg−1.
(b) X (N) ∼= P1 × C0 (cylinder on C0)
(c) B̄(N) � ΓN\D(N) is a family of intermediate
Jacobians associated to a VHS (with Hodge numbers
(1, a, a, 1)) over a Shimura variety.
(d) Over D(N), these VHS recover the Friedman-Laza
list of maximal weight 3 Hermitian VHS of CY type.

Applications? Automorphic cohomology; geometric
realizations; cohomology of Ď.



H∗(Ď,Z) is generated by Schubert vareities, and the
“horizontal” part (invariant characteristic cohomology) by
Schubert VHS. Do the subadjoint cylinder classes [X (N)] yield
smooth representatives of the subadjoint cone classes [Xw ]?
Example :
(G = G2)
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Xw ∼= X(G0.Q/Q︸ ︷︷ ︸
Σ

) , X (N) ∼= (SLβ2 .Q/Q)︸ ︷︷ ︸
Σ(N)

(ω1, ω1) = 2(ω1, α1) =⇒ [Σ(N)] = 2[Σ]
=⇒ [X (N)] = 2[Xw ].



§6. A (partial) geometric realization
We look for degenerations of varieties predicted by the
“codim. 1” boundary components of adjoint domains.
For G2, this should take the form of a 1-parameter family of
surfaces {Xt} with H2

tr Hodge numbers (2, 3, 2), M-T group
G2, and LMHS of the form

tr

q

p

q

p

N

N

‘‘H  (X  )’’
t0

2

where N is the monodromy logarithm and bullets denote
1-dimensional spaces. In fact, just such a family has been
constructed by N. Katz using elliptic fibrations; the M-T group
is determined by a moment computation using elliptic
convolution over finite fields. We shall describe a special case.



Begin with the rational elliptic surface
E → P1

z : y 2 = x(1− x)(x − z2)

with singular fibers (2 I4, 2 I2) at z = −1, 0, 1,∞.
For any t 6= 0, ±2

3
√

3 ,∞, base change by

Et → P1
z : w2 = tz(z − 1)(z + 1) + t2

to obtain an elliptic surface Xt → Et with 7 singular fibers,
Ω2(Xt) = C〈ω1(t), ω2(t)〉 = C〈 dx

y ∧
dz
w ,

dx
y ∧

zdz
w 〉, and

i

α β

= locations of
singular fibersγ

i

dim(H  (X ))=7:
2

tr t

Et

2 cycles/ each
A , A , B , B1 2 1 2

1 cycle/ each
C   (i=1,2,3)



Degenerating Xt as t → t0 = 2
3
√

3 yields

desing.
X

E

Yt0

t0

E E E

K3 surface
Picard rank 19

with
E = {y 2 = x(1− x)(x − 1

3 )}.

The part of H2(Xt0) not coming from the 19 algebraic classes
on Y indeed takes the form

tr

q

p

H (E)1 H  (Y)2



In fact, we can “determine” the limiting period in

B̄(N)→ Γ\H.

I Since GN ∼= SL2 and j(E) /∈ Z,

H2
tr (Y ) ∼= Sym2H1(E)

and the point in the base is determined by the (non-CM)
Hodge structure H1(E).

I The point in the fiber

C2/Z〈(1
0),(2τ/3

1 ),(τ2/3
2τ ),( 0

3τ2)〉 ∼= J(Sym3H1(E))
⊂ J(H2

tr (Y )∨ ⊗ H1(E ))

is given by
´

B1
ω,
´

B2
ω (ω ∈ Ω2(Y )).



The image of the period map into Γ\D is contained (at least
locally) in 2-dimensional integral manifolds. Does Xt belong to
a 2-parameter family?

(For F4, one expects a 7-parameter family of surfaces with H2
tr

Hodge numbers (6, 14, 6)!)

To determine which deformations of Xt “preserve G2”, it may
be necessary to “see” the cubic Hodge tensor geometrically:
we need Z ∈ CH3(Xt × Xt × Xt) inducing an “octonionic
cross-product” on H2

tr (Xt).



– Thank You –


