Boundary strata and adjoint varieties ${ }^{1}$

Matt Kerr (WUSTL/IAS)

IAS, October 15, 2014

${ }^{1}$ report on recent work with C. Robles, based in part on earlier work with G. Pearlstein as well as P. Griffiths and M. Green.

Motivating principle: use Representation Theory to classify what is possible for VHS with given "symmetries"; use that in turn to decide what is geometrically possible or expected:

\mathbb{Q}-algebraic group \rightarrow Hodge tensors \rightarrow algebraic cycles? GGK/Patrikis: poss. MTG
flag/Schubert varieties $\xrightarrow{\text { Robles }}$ maximal VHS \rightarrow geom. realization?
nilpotent cones \rightarrow bdry. components (LMHS) \rightarrow degenerations
K-Pearlstein (appr. to Torelli?)
geom. of flag var. $\check{D} \rightarrow$ diff'l. inv. of VHS \rightarrow geom. realization? (2nd FF)
smooth reps. of classes in $\leftarrow-$ - enhanced $S L_{2}$-orbits

$$
H^{*}(\check{D}, \mathbb{Z})
$$

§1. Construction of Mumford-Tate domains

- $V=$ vector space over \mathbb{Q}
- $Q: V \times V \rightarrow \mathbb{Q}$ nondegenerate symmetric bilinear form
- $\varphi: S^{1} \rightarrow \operatorname{Aut}\left(V_{\mathbb{R}}, Q\right)$, where $Q(v, \varphi(\sqrt{-1}) \bar{v})>0 \forall v \in V_{\mathbb{C}} \backslash\{0\}$ (weight 0 PHS)
- $G \leq \operatorname{Aut}(V, Q): \mathbb{Q}$-algebraic closure of $\varphi\left(S^{1}\right)$
$G=$ subgroup fixing HTs pointwise (Chevalley's thm.)
Mumford-Tate (or Hodge) group
- $D:=G(\mathbb{R}) \cdot \varphi \cong G(\mathbb{R}) / H \underset{\text { open }}{\subset} G(\mathbb{C}) / P=:$ 久

Mumford-Tate domain \subset compact dual
We think of $\mathrm{M}-\mathrm{T}$ domains as parametrizing (a connected component of) all HS on V polarized by Q, with the same Hodge numbers as φ, whose HT s include the fixed tensors of G. We shall loosely speak of (V, Q, φ) as a "Hodge representation" of G.

Problem [GGK]: How do we arrange for the M-T group

 to be a given (simple, adjoint) \mathbb{Q}-algebraic group G ?One way is to take $V=\mathfrak{g}$. We need the crucial assumption that $G(\mathbb{R})$ contains a compact maximal torus T.

Let $\mathfrak{g}_{\mathbb{R}}=\mathfrak{k} \oplus \mathfrak{k}^{\perp}$ be a Cartan decomposition with $\mathfrak{t} \subseteq \mathfrak{k}$ and involution θ. Write $\Delta:=\Delta\left(\mathfrak{g}_{\mathbb{C}}, \mathfrak{t}_{\mathbb{C}}\right)=\Delta_{c} \cup \Delta_{n}$, and $\mathcal{R} \leq \Lambda:=X^{*}\left(T_{\mathbb{C}}\right)$ for the lattice it generates.

- θ Lie-alg. homom. $\Longrightarrow \exists$ homom. $\mathcal{R} \rightarrow \mathbb{Z}$ sending $\Delta_{c} \rightarrow 2 \mathbb{Z}, \Delta_{n} \rightarrow 2 \mathbb{Z}+1$.
- G adjoint $\Longrightarrow \mathcal{R}=\Lambda \Longrightarrow$ this homom. is induced by a grading element $\mathrm{E} \in \sqrt{-1} \mathrm{t}$.
- Set $\varphi(z):=e^{2 \log (z) E}$, so that $(\operatorname{Ad} \circ \varphi)(\sqrt{-1})=\theta$.
- Since $-B$ is >0 on \mathfrak{k} and <0 on $\mathfrak{k}^{\perp},(\mathfrak{g}, \operatorname{Ad} \circ \varphi,-B)$ is a PHS (of weight 0).

The Hodge decomposition takes the form $\mathfrak{g}_{\mathbb{C}}=\oplus_{j \in \mathbb{Z} \mathfrak{g}^{j}}$, where

$$
\mathfrak{g}^{j}:=\mathfrak{g}_{\varphi}^{j,-j}=\left\{\begin{array}{cc}
\oplus_{\delta \in \Delta: E(\delta)=j} \mathfrak{g}_{\delta}, & j \neq 0 \\
\left(\oplus_{\delta \in \Delta: E(\delta)=0} \mathfrak{g}_{\delta}\right) \oplus \mathfrak{t}_{\mathbb{C}}, & j=0
\end{array} ;\right.
$$

write $h^{j}:=\operatorname{dim}_{\mathbb{C}} \mathfrak{g}^{j}$ for the Hodge numbers.
We also claim that the M-T group of $\operatorname{Ad} \circ \varphi$ is G. Why?
Let $M \leq G$ be (equivalently)
(a) the smallest \mathbb{Q}-algebraic group such that Ad $\circ g \varphi g^{-1}$ factors thru $M(\mathbb{R})(\forall g \in G(\mathbb{R}))$
(b) the M-T group of the family $\left\{\operatorname{Ad} \circ g \varphi g^{-1}\right\}_{g \in G(\mathbb{R})}$ of polarized Hodge structures
(c) the M-T group of Ad $\circ g_{0} \varphi g_{0}^{-1}$ for all $g_{0} \in G(\mathbb{R})$ in the complement of a meager set
Since φ is "sufficiently general", we may take $g_{0}=1$ in (c). By (a), $M \unlhd G$; so G simple $\Longrightarrow M=G$.

We remark that

- $\operatorname{dim}_{\mathbb{C}}(\check{D})=\sum_{j>0} h^{j}$
- $\operatorname{rank}(\mathcal{W})=h^{-1}$ (horizontal distribution)

Example: $\left(G=G_{2}\right)$

Generalization to fundamental adjoint varieties

Recall: upon fixing $\Delta^{+} \subset \Delta$, we have

- α_{i} simple roots $\underset{\delta_{i}^{j}}{\longleftrightarrow} S^{j}$ simple grading elements
- ω_{i} fundamental weights $\underset{\delta_{i}^{j}}{\longleftrightarrow} \underset{\left(H_{j} \in\left[\mathfrak{g}_{\alpha_{i}}, \mathfrak{g}_{-\alpha_{i}}\right], \alpha_{i}\left(H^{i}\right)=2\right)}{H_{j} \text { simple coroots }}$

Let $\mu=\sum \mu^{i} \omega_{i}$ be dominant ($\mu_{i} \geq 0$), assume $U=V^{\mu}$ real.
Consider the assoc. parabolic subgroup $P \geq B \geq T_{\mathbb{C}}$, where

- $\Delta(B)=\Delta^{+}$
- $I(\mathfrak{p}):=\left\{i \mid-\alpha_{i} \notin \Delta(\mathfrak{p})\right\}=\left\{i \mid \mu^{i} \neq 0\right\}$ and the assoc. grading element $\mathrm{E}:=\sum_{i \in I} \mathrm{~S}^{i}$. Put $m:=\mathrm{E}(\mu)$.
- $U=U^{-m} \oplus \cdots \oplus U^{m}$ is the grading induced by E
- $U^{m}=U_{\mu}=$ highest weight line
- the $G(\mathbb{C})$-orbit of $\left[U_{\mu}\right] \in \mathbb{P} U$ gives a homogeneous embedding of $G(\mathbb{C}) / P$, minimal if $\mu^{i} \in\{0,1\}(\forall i)$.

The adjoint case is $U=\mathfrak{g}$. Root/weight computations show:

- $m=2$, so $\left\{h^{j}\right\}=\{1, *, *, *, 1\}$
- unless G is of type E_{8}, there exists a level 2 faithful Hodge representation (like $(2,3,2)$ in the G_{2} example above)
- unless G is of type C, the adjoint variety $\check{D}=G(\mathbb{C}) / P \hookrightarrow \mathbb{P g}$ is minimally embedded
- unless G is of type A or C, the adjoint representation is fundamental $\left(\mathfrak{g}=V^{\omega_{k}}\right)$, and the corresponding $\{\check{D}\}$ are the fundamental adjoint varieties.

Why study the adjoint varieties as Hodge-theoretic classifying spaces?
One reason: they are the "simplest" G / P with nontrivial IPR, in the sense of being precisely the cases where \mathcal{W} is a contact distribution.

§2. Schubert VHS and classical subdomains

 Let $D \subset D$ be a M - T domain with base point $F^{\bullet}=F_{\varphi}^{\bullet} \in D$, $\mathfrak{g}=\oplus \mathfrak{g}^{j}$ the corresponding Hodge decomposition, and T, Δ as before. Write $P \geq B \geq T_{\mathbb{C}}$ for the parabolic fixing F^{\bullet}, so that we have:- $\Delta(B)=: \Delta^{+}=\Delta\left(F^{1} \mathfrak{g}\right) \cup \Delta^{+}\left(\mathfrak{g}^{0}\right)$
- $\Delta(P)=\Delta\left(F^{0} \mathfrak{g}\right)$.

Put $W^{P}:=\left\{w \in W \mid w \Delta^{+} \supset \Delta^{+}\left(\mathfrak{g}^{0}\right)\right\}$, and note that

- $w \in W^{P} \Longrightarrow \Delta_{w}:=\Delta^{-} \cap w \Delta^{+}$is closed in Δ
- $\check{D}=\amalg_{w \in W^{p}} C_{w}:=\amalg_{w \in W^{p}} B w^{-1} . F^{\bullet}$.

The Schubert varieties $X_{w}:={\overline{w C_{w}}}^{\text {Uar. }} \subset \check{D}$ satisfy

- $\operatorname{dim}_{\mathbb{C}} X_{w}=\left|\Delta_{w}\right|=\ell(w)$
- $T_{F} \cdot X_{w}=\mathfrak{n}_{w}:=\oplus_{\alpha \in \Delta_{w}} \mathfrak{g}_{\alpha}$
- X_{w} Schubert VHS (ie. horizontal)

$\left(\Longrightarrow \mathfrak{n}_{w}\right.$ abelian $)$

Theorem (Robles)

$\max \operatorname{dim}(\mathrm{IVHS})=\max \operatorname{dim}(\mathrm{SVHS})=$ $\max \left\{\left|\Delta_{w}\right| \mid w \in W^{P}, \Delta_{w} \subset \Delta\left(\mathfrak{g}^{-1}\right)\right\}$

Example: $\left(G=G_{2}\right)$
There exists only one X_{w} of dimension 2, and it is an SVHS (false for higher dim.)
\Downarrow
the maximal
integral manifold of \mathcal{W}
has dimension 2

Is this X_{w} a $\mathrm{M}-\mathrm{T}$ subdomain? If so, it would be a (smooth, Hermitian) homogeneous $G^{\prime}(\mathbb{R})$-orbit, with $\mathfrak{g} \supsetneq \mathfrak{g}^{\prime}=$ Lie algebra closure of $\mathfrak{n}_{w} \oplus \overline{\mathfrak{n}_{w}}$. But this closure is all of \mathfrak{g}. NO!

More generally, what is the relationship between SVHS and horizontal (\Longrightarrow Hermitian) M-T domains?
For any subdiagram $\mathscr{D}^{\prime} \subset \mathscr{D}$ of the Dynkin diagram of \mathfrak{g}, have

- $\mathfrak{g}^{\prime} \subset \mathfrak{g}$ subalg. gen. by the root spaces $\left\{\mathfrak{g}_{\alpha} \mid \alpha \in \mathscr{D}^{\prime}\right\}$
- $X\left(\mathscr{D}^{\prime}\right):=G^{\prime}(\mathbb{C}) . F^{\bullet} \subset \check{D}$ smooth Schubert variety
$X\left(\mathscr{D}^{\prime}\right)$ is horizontal iff $\mathfrak{g}^{\prime} \subset \mathfrak{g}^{-1} \oplus \mathfrak{g}^{0} \oplus \mathfrak{g}^{1}$, in which case it is (the compact dual of) a homogeneously embedded Hermitian symmetric domain.

Theorem (K-R)
Let $X \subset \check{D}$ be a SVHS. Then
X smooth $\Longleftrightarrow X=\prod_{i} X\left(\mathscr{D}_{i}\right)$ (homog. emb. HSD).
It is instructive to compare this with another recent result:

Theorem (Friedman-Laza)

- $X \subset \check{D}$ a smooth "VHS" (horizontal subvariety)
- Y a (nonempty) connected component of $X \cap D$ with strongly quasi-projective image in $\Gamma \backslash D$
$\Longrightarrow Y$ is a (Hermitian) M-T subdomain.
On the other hand, with an arithmetic assumption on \check{D}, the [K-R] result has the following

Corolary

- $X \subset \check{D}$ a smooth Schubert VHS
- Y a (nonempty) connected component of $X \cap D$
$\Longrightarrow Y$ is a translate of a (Hermitian) M-T subdomain.

The converse of the Corollary is false: there are plenty of non-Schubert, horizontal Hermitian M -T subdomains, and we will construct maximal integral ones later.

§3. Lines on \check{D} and a differential invariant of VHS

The Corollary suggests that there might be lots of singular SVHS, in view of the G_{2} example. A systematic construction of Schubert varieties is given by incidence correspondences:

where $P, Q \geq B$. Note that:

- $\mathrm{X}, \mathrm{X}^{-1}$ preserve Schubert varieties
- a point is a Schubert variety (e.g. $P / P=F^{\bullet}$)
- $X(Q / Q)=X\left(\mathscr{D}^{\prime}\right)$, where $\mathscr{D}^{\prime}=\mathscr{D} \backslash(I(\mathfrak{q}) \backslash I(\mathfrak{p}))$

Case of P maximal

- P maximal $\Longrightarrow I(\mathfrak{p})=\{k\}$. If $I(\mathfrak{q})$ contains the nodes adjacent to $\{k\}$, then $X\left(\mathscr{D}^{\prime}\right)$ is a \mathbb{P}^{1} thru F^{\bullet}.

In this case:

- $X_{0}:=X\left(X^{-1}\left(F^{\bullet}\right)\right)$ is a Schubert variety consisting of all \mathbb{P}^{1} 's thru F^{\bullet} on D (in its minimal embedding).
Specializing to the case where $\check{D}(\subset \mathbb{P} \mathfrak{g})$ is a fundamental adjoint variety, let
- $\mathcal{C}_{0}:=$ the $G^{0}(\mathbb{C})$-orbit of the highest weight line in $\mathbb{P g}^{-1}$. Then
- $\mathcal{C}_{0} \cong G^{0}(\mathbb{C}) /\left\{P \cap G^{0}(\mathbb{C})\right\}$ is a homogeneous Legendrian variety
- $X_{0} \cong \operatorname{Cone}\left(\mathcal{C}_{0}\right)$ is a singular Schubert VHS

Some data for the fundamental adjoint varieties \check{D} and their associated "subadjoint" varieties \mathcal{C}_{0} of lines through a point:

$\mathfrak{g}_{\mathbb{C}}$	\check{D}	$\mathfrak{g}_{\mathrm{C}}^{0, s s}$	\mathcal{C}_{0}
$\mathfrak{s o}(n)$	$O G\left(2, \mathbb{C}^{n}\right)$	$\mathfrak{s o}(n-4) \oplus \mathfrak{s l}(2)$	$\mathbb{P}^{1} \times \mathcal{Q}^{n-6}$
\mathfrak{e}_{6}	E_{6} / P_{2}	$\mathfrak{s l}(6)$	$G r\left(3, \mathbb{C}^{6}\right)$
\mathfrak{e}_{7}	E_{7} / P_{1}	$\mathfrak{s o}(12)$	\mathcal{S}_{6}
\mathfrak{e}_{8}	E_{8} / P_{8}	\mathfrak{e}_{7}	E_{7} / P_{7}
\mathfrak{f}_{4}	F_{4} / P_{1}	$\mathfrak{s p}(6)$	$L G\left(3, \mathbb{C}^{6}\right)$
\mathfrak{g}_{2}	G_{2} / P_{2}	$\mathfrak{s l}(2)$	$\nu(2)\left(\mathbb{P}^{1}\right)$

We now relate these varieties of lines to the Griffiths-Yukawa kernel. Let $\mathcal{V}=\oplus_{j=0}^{n} \mathcal{V}^{n-j . j}$ be a VHS over \mathcal{S}, with associated period map $\Phi: \mathcal{S} \rightarrow \Gamma \backslash D(D=\mathrm{M}-\mathrm{T}$ domain). Denote by \mathcal{D} a holomorphic differential operator on $U \subset \mathcal{S}$ of order n.

The composition

$$
\mathcal{O}_{U}\left(\mathcal{V}^{n, 0}\right) \hookrightarrow \mathcal{O}_{U}(\mathcal{V}) \xrightarrow{\mathcal{D}} \mathcal{O}_{U}(\mathcal{V}) \rightarrow \mathcal{O}_{U}\left(\mathcal{V}^{0, n}\right)
$$

depends only on $\sigma(\mathcal{D})$, giving rise to the G-Y coupling

$$
\begin{array}{ccc}
\operatorname{Sym}^{n} T_{s} \mathcal{S} & \rightarrow & \operatorname{Hom}\left(V_{s}^{n, 0}, V_{s}^{0, n}\right)=\left(V_{s}^{0, n}\right)^{\otimes 2} \\
d \Phi \downarrow & \nearrow & \uparrow(*) \\
\operatorname{Sym}^{n} \mathfrak{g}^{-1} & \overleftarrow{(\cdot)^{n}} & \mathfrak{g}^{-1}
\end{array}
$$

Write $\mathcal{Y} \subset \mathbb{P g}^{-1}$ for the kernel of $(*)$ (at $\left.F^{\bullet} \in D\right)$.

Example : $\left(G=G_{2}\right) V=V^{2,0} \oplus V^{1,1} \oplus V^{0,2} 7$-diml irrep

Given $\xi:=\sum \xi_{i} x_{i} \in \mathfrak{g}^{-1}$, one computes

$$
e^{*}\left[\xi^{2}\right]_{e}=\left(\begin{array}{cc}
-2 \xi_{1} \xi_{2}+2 \xi_{2}^{2} & \xi_{1} \xi_{2}-\xi_{0} \xi_{3} \\
\xi_{1} \xi_{2}-\xi_{0} \xi_{3} & -2 \xi_{0} \xi_{2}+2 \xi_{1}^{2}
\end{array}\right)
$$

whose vanishing defines the twisted cubic $\nu_{3}\left(\mathbb{P}^{1}\right) \subset \mathbb{P g}^{-1}$.

This example is generalized to E_{6}, E_{7}, F_{4} by the

Theorem (K-R)

For $\check{D}=G(\mathbb{C}) / P$ a fundamental adjoint variety, and V a level 2 Hodge representation such that $V^{2,0}$ is a faithful representation of \mathfrak{g}^{0}, we have $\mathcal{Y}=\mathcal{C}_{0}$. (Much more generally, \mathcal{Y} contains the horizontal lines through F^{\bullet}.)

Sketch: Given $[\xi] \in \mathcal{Y}, \xi^{2}(u)=0 \forall u \in V^{2,0}$. Fix $v \in \mathfrak{g}^{2} \backslash\{0\}$, so $\operatorname{ad}_{\xi}^{2} v \in \mathfrak{g}^{0}$. Then $\left(\operatorname{ad}_{\xi}^{2} v\right) u=v \xi \xi u=0 \stackrel{\text { faithful }}{\Longrightarrow} \operatorname{ad}_{\xi}^{2} v=0 \Longrightarrow$ second fundamental form vanishes at $\xi \Longrightarrow[\xi] \in \mathcal{C}_{0} . \square$

When the conclusion of the Theorem holds,

- $\mathcal{Y}=\operatorname{ker}(\mathrm{G}-\mathrm{Y})$ gives Hodge-theoretic meaning to \mathcal{C}_{0}
- $\mathcal{C}_{0} \cong G^{0}(\mathbb{C}) / \cdots$ gives a homogeneous description of \mathcal{Y}
- $\operatorname{ad}_{\xi}^{2} v=0$ produces explicit projective homogeneous equations for both.

§4. $G(\mathbb{R})$-orbits in \check{D} and asymptotics of VHS

Given the input:

- $D \subset \check{D} \mathrm{M}$ - T domain (parametrizing wt. 0 HS on V)
- $\Gamma \leq G(\mathbb{Q})$ neat arithmetic
- $\sigma^{\circ} \subset \sigma=\mathbb{Q} \geq 0\left\langle N_{1}, \ldots, N_{m}\right\rangle \subset \mathfrak{g}_{\mathbb{Q}}$ abelian nilpotent we define (and assume nonempty):

$$
\tilde{B}(\sigma):=\left\{\begin{array}{l|l}
F^{\bullet} \in \Sigma & \begin{array}{l}
e^{\sum t_{i} N_{i} F^{\bullet} \in D} \in \\
N_{i} F^{\bullet} \subset F^{\bullet-1}
\end{array}
\end{array} \text { for } \operatorname{Im}\left(\tau_{i}\right) \gg 0\right\}
$$

which parametrizes LMHS $\left(F^{\bullet}, W(\sigma)\right.$.), ${ }^{2}$

- $B(\sigma):=e^{\mathbb{C} \sigma} \backslash \tilde{B}(\sigma)=$ boundary component assoc. to σ which parametrizes σ-nilpotent orbits ($\sigma, e^{\mathbb{C} \sigma} F^{\bullet}$), and
- $\bar{B}(\sigma)=\Gamma_{\sigma} \backslash B(\sigma)$, where $\Gamma_{\sigma}:=\operatorname{stab}_{\Gamma}(\sigma)$.

One may "partially compactify" $\Gamma \backslash D$ by $\bar{B}(\sigma) \mathrm{s}$ (\log manifold).

$$
{ }^{2} N(W(\sigma) \cdot) \subset W(\sigma) \cdot-2 \text { and } N^{k}: G r_{k}^{W(\sigma)} \xlongequal{\cong} G r_{-k}^{W(\sigma)}\left(\forall N \in \sigma^{\circ}\right) .
$$

Structure of $B(\sigma)$

Write

- $M_{\sigma}=\exp \left\{\operatorname{im}\left(\sum N_{i}\right) \cap\left(\cap \operatorname{ker}\left(N_{i}\right)\right)\right\}$
- $Z(\sigma)=Z_{0}(\sigma) \cdot M_{\sigma}$ for the centralizer of σ in G
- $G_{\sigma} \leq Z_{0}(\sigma)$ for the M-T group of generic $G r^{W}\left(F^{\bullet}, W(\sigma).\right)$
Then we have
- fibration $B(\sigma) \longrightarrow D(\sigma)=$ M-T domain of generic

$$
\underset{\mathbb{Q}-\operatorname{split}\left(F_{0}^{\boldsymbol{\theta}}, \bar{W}(\sigma)_{\bullet}\right)}{\bar{F}}
$$

- $B(\sigma)=\left\{G_{\sigma}^{s s}(\mathbb{R}) \ltimes M_{\sigma}(\mathbb{C})\right\} . F_{0}^{\bullet}$ and

$$
D(\sigma)=G_{\sigma}^{s s}(\mathbb{R}) \cdot G r^{W} F_{0}^{\bullet}
$$

- naive limit map

$$
\begin{aligned}
\Phi_{\infty}^{\sigma}: B(\sigma) & \rightarrow \quad \partial D \subset \check{D} \\
F^{\bullet} & \mapsto \lim _{\operatorname{Im}(\tau) \rightarrow \infty} e^{\tau N} F^{\bullet} \quad\left(\text { any } N \in \sigma^{\circ}\right) .
\end{aligned}
$$

[K-R] contains a general prescription for using a set $\mathfrak{B}=\left\{\beta_{1}, \ldots, \beta_{s}\right\} \subset \Delta\left(\mathfrak{g}^{1}\right)$ of strongly orthogonal roots to explicitly construct \mathbb{Q}-split $\left(\sigma, F_{0}^{\bullet}\right)$. The motivation is to parametrize $G(\mathbb{R})$-orbits in ∂D in the image of Φ_{∞}^{σ}. I will discuss only $s=1$. Fix a base point $o\left(\longleftrightarrow F^{\bullet}\right)$ in D.
Let $\beta \in \Delta\left(\mathfrak{g}^{1}\right)$, with associated $\mathfrak{s l}_{2}^{\beta}=\left\langle N, Y, N^{+}\right\rangle\left(N \in \mathfrak{g}_{-\beta}\right)$. Apply the Cayley transform $\mathbf{c}_{\beta}=\operatorname{Ad}\left(e^{\frac{\pi}{4}\left(X_{-\beta}-X_{\beta}\right)}\right)$ to

- $\mathfrak{t}_{\mathbb{C}} \rightsquigarrow \mathfrak{h}$
- $\mathfrak{g}_{\alpha} \rightsquigarrow{ }^{\prime} \mathfrak{g}_{\alpha}$
- $E \rightsquigarrow{ }^{\prime} E$
- $0 \rightsquigarrow{ }^{\prime} 0$ $\left(F^{\bullet} \rightsquigarrow{ }^{\prime} F^{\bullet}\right)$

Then
${ }^{\prime} F^{\bullet} \in \tilde{B}(N)$, and $\mathfrak{g}_{N}^{s s}=\operatorname{ker}\left\{\left.\beta\right|_{\mathfrak{h}}\right\} \oplus \bigoplus_{\alpha \Perp \beta}{ }^{\prime} \mathfrak{g}_{\alpha}$

- ${ }^{\prime} \mathrm{E}, \mathrm{Y}$ give a (Deligne) bigrading $\mathfrak{g}^{p, q}=\underset{\mathfrak{g}^{p}}{\mathfrak{g}^{p} \cap \mathfrak{g}_{p_{++}}}$of $\mathfrak{g}_{\mathbb{C}}$ whose dimensions $h^{p, q}$ are the Hodge-Deligne numbers of the (limit) MHS ($\left.{ }^{\prime} F^{\bullet}, W(N).\right)$ associated to ${ }^{\prime} o$.

Remark: We can use this to construct non-Schubert M-T subdomains. Define the "enhanced $S L_{2}$-orbit"
then (with an arithmetic assumption on O)

- $Y(N):=X(N) \cap D$ is a M-T domain
- $X(N)=\check{D}(N) \times \mathbb{P}^{1} \supset D(N) \times \mathfrak{H}=Y(N)$
- If $\mathrm{E}(\alpha) \in\{-1,0,1\} \forall \alpha \Perp \beta$, then $Y(N)$ is a HSD.
- If $\check{D}=G(\mathbb{C}) / P(P$ maximal $)$ and $\operatorname{dim} X(N) \geq 2$, then $X(N)$ is not Schubert.

§5. "Minimal" boundary of adjoint varieties

Let \check{D} be a fundamental adjoint variety (note $\mathrm{E}=\mathrm{S}^{i}$).

Proposition (K-R)

There is a unique codimension-1 $G(\mathbb{R})$-orbit in ∂D.

Sketch:

- $[\mathrm{K}-\mathrm{P}] \mathbb{R}$-codim. of orbit $\ni^{\prime} \circ$ is given by $\sum_{p, q>0} h^{p, q}$;
- $[K P]$ codim.-1 orbits are of the form $G(\mathbb{R}) \cdot \mathbf{c}_{\beta} 0, \beta \in \Delta\left(\mathfrak{g}^{1}\right)$. Acting by $W\left(\mathfrak{g}^{0}\right)$, wma $\left(\beta, \alpha_{j}\right) \leq 0 \forall j \neq i$, i.e. $\alpha_{j}\left(H^{\beta}\right) \leq 0$. In the bigrading defined by $\mathbf{c}_{\beta}, \mathfrak{g}^{1,1} \supset{ }^{\prime} \mathfrak{g}^{1} \supset{ }^{\prime} \mathfrak{g}^{\beta}$
$\Longrightarrow \beta=\alpha_{i}+\sum_{j \neq i} m_{j} \alpha_{j}\left(m_{j} \geq 0\right)$
$\Longrightarrow p\left(\alpha_{i}\right)+q\left(\alpha_{i}\right)=\alpha_{i}\left(H^{\beta}\right)=\beta\left(H^{\beta}\right)-\sum_{j \neq i} m_{j} \alpha_{j}\left(H^{\beta}\right) \geq 2$
$\Longrightarrow q\left(\alpha_{i}\right) \geq 1 \Longrightarrow \operatorname{codim}>1$ unless $\beta=\alpha_{i}$. \square

Let ' $o\left(=\mathbf{c}_{\alpha_{i}} 0\right)$ belong to this real codimension-1 orbit, with associated MHS (' $F^{\bullet}, W(N) \bullet$) and bigrading $\mathfrak{g}^{p, q}$.

Proposition (K-R)

The $h^{p, q}=\operatorname{dim}_{\mathbb{C}} \mathfrak{g}^{p, q}$ are
(e.g. for $G_{2}, a=b=1$
for $F_{4}, a=6$ and $b=10$)

Sketch:

We know $\operatorname{dim} \mathfrak{g}^{2}=1, \mathfrak{g}^{>2}=\{0\}, \operatorname{dim} \mathfrak{g}_{2}=1, \mathfrak{g}_{>2}=\{0\}$.
Now $\alpha_{i}, \tilde{\alpha}$ are non-short roots, and

- $H^{i} \in\left[\mathfrak{g}_{\alpha_{i}}, \mathfrak{g}_{-\alpha_{i}}\right]$ s.t. $\alpha_{i}\left(H^{i}\right)=2$
- $\mathrm{S}^{\mathrm{i}} \in\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right]$ s.t. $\tilde{\alpha}\left(\mathrm{S}^{\mathrm{i}}\right)=2$.
$\Longrightarrow \exists w \in W$ sending $H^{i} \mapsto-S^{i}$
$\Longrightarrow w\left(\mathfrak{g}^{p, q}\right)=w\left(\mathfrak{g}^{p} \cap \mathfrak{g}_{p+q}\right)=\mathfrak{g}_{-p} \cap \mathfrak{g}^{-(p+q)}=\mathfrak{g}^{-p-q, q} . \square$

Note that w identifies the (faithful) representations of \mathfrak{g}_{0} on \mathfrak{g}_{1} and \mathfrak{g}^{0} on \mathfrak{g}^{-1}. Moreover, $D(N)\left(\subset \mathbb{P} \mathfrak{g}_{1}\right)$ is the M-T domain for the Hodge representation of G_{0} on \mathfrak{g}_{1}, which leads to:

Theorem (K-R)
(a) $\check{D}(N) \subset \mathbb{P g}_{1}$ is $\cong \mathcal{C}_{0} \subset \mathbb{P g}^{-1}$.
(b) $X(N) \cong \mathbb{P}^{1} \times \mathcal{C}_{0}$ (cylinder on \mathcal{C}_{0})
(c) $\bar{B}(N) \rightarrow \Gamma_{N} \backslash D(N)$ is a family of intermediate Jacobians associated to a VHS (with Hodge numbers ($1, a, a, 1$)) over a Shimura variety.
(d) Over $D(N)$, these VHS recover the Friedman-Laza list of maximal weight 3 Hermitian VHS of CY type.

Applications? Automorphic cohomology; geometric realizations; cohomology of \check{D}.
$H^{*}(\check{D}, \mathbb{Z})$ is generated by Schubert vareities, and the "horizontal" part (invariant characteristic cohomology) by Schubert VHS. Do the subadjoint cylinder classes [$X(N)$] yield smooth representatives of the subadjoint cone classes [X_{w}]?
Example :
$\left(G=G_{2}\right)$

$$
\begin{aligned}
X_{w} \cong X(\underbrace{G^{0} \cdot Q / Q}_{\Sigma}) & , X(N) \cong(\underbrace{\left.S L_{2}^{\beta} \cdot Q / Q\right)}_{\Sigma(N)} \\
\left(\omega_{1}, \omega_{1}\right)=2\left(\omega_{1}, \alpha_{1}\right) & \Longrightarrow[\Sigma(N)]=2[\Sigma] \\
& \Longrightarrow[X(N)]=2\left[X_{w}\right] .
\end{aligned}
$$

§6. A (partial) geometric realization

We look for degenerations of varieties predicted by the "codim. 1" boundary components of adjoint domains. For G_{2}, this should take the form of a 1-parameter family of surfaces $\left\{X_{t}\right\}$ with $H_{t r}^{2}$ Hodge numbers (2,3,2), M-T group G_{2}, and LMHS of the form

where N is the monodromy logarithm and bullets denote 1-dimensional spaces. In fact, just such a family has been constructed by N . Katz using elliptic fibrations; the $\mathrm{M}-\mathrm{T}$ group is determined by a moment computation using elliptic convolution over finite fields. We shall describe a special case.

Begin with the rational elliptic surface

$$
\mathcal{E} \rightarrow \mathbb{P}_{z}^{1}: y^{2}=x(1-x)\left(x-z^{2}\right)
$$

with singular fibers $\left(2 I_{4}, 2 I_{2}\right)$ at $z=-1,0,1, \infty$.
For any $t \neq 0, \frac{ \pm 2}{3 \sqrt{3}}, \infty$, base change by

$$
E_{t} \rightarrow \mathbb{P}_{z}^{1}: w^{2}=t z(z-1)(z+1)+t^{2}
$$

to obtain an elliptic surface $X_{t} \rightarrow E_{t}$ with 7 singular fibers,

$$
\begin{gathered}
\Omega^{2}\left(X_{t}\right)=\mathbb{C}\left\langle\omega_{1}(t), \omega_{2}(t)\right\rangle=\mathbb{C}\left\langle\frac{d x}{y} \wedge \frac{d z}{w}, \frac{d x}{y} \wedge \frac{z d z}{w}\right\rangle \text {, and } \\
\operatorname{dim}\left(H_{t r}^{2}\left(X_{t}\right)\right)=7:
\end{gathered}
$$

Degenerating X_{t} as $t \rightarrow t_{0}=\frac{2}{3 \sqrt{3}}$ yields

with

$$
\mathrm{E}=\left\{y^{2}=x(1-x)\left(x-\frac{1}{3}\right)\right\}
$$

The part of $H^{2}\left(X_{t_{0}}\right)$ not coming from the 19 algebraic classes on Y indeed takes the form

In fact, we can "determine" the limiting period in

$$
\bar{B}(N) \rightarrow \Gamma \backslash \mathfrak{H}
$$

- Since $G_{N} \cong S L_{2}$ and $j(\mathrm{E}) \notin \mathbb{Z}$,

$$
H_{t r}^{2}(Y) \cong \operatorname{Sym}^{2} H^{1}(\mathrm{E})
$$

and the point in the base is determined by the (non-CM) Hodge structure $H^{1}(E)$.

- The point in the fiber

$$
\begin{aligned}
\mathbb{C}^{2} / \mathbb{Z}\left\langle\binom{ 1}{0},\binom{2 \tau / 3}{1},\binom{\tau^{2} / 3}{2 \tau},\binom{0}{3 \tau^{2}}\right\rangle & \cong J\left(S_{y m}^{3} H^{1}(\mathrm{E})\right) \\
& \subset J\left(H_{t r}^{2}(Y)^{\vee} \otimes H^{1}(E)\right)
\end{aligned}
$$

is given by $\int_{B_{1}} \omega, \int_{B_{2}} \omega\left(\omega \in \Omega^{2}(Y)\right)$.

The image of the period map into $\Gamma \backslash D$ is contained (at least locally) in 2-dimensional integral manifolds. Does X_{t} belong to a 2-parameter family?
(For F_{4}, one expects a 7-parameter family of surfaces with $H_{t r}^{2}$ Hodge numbers $(6,14,6)$!)

To determine which deformations of X_{t} "preserve G_{2} ", it may be necessary to "see" the cubic Hodge tensor geometrically: we need $\mathfrak{Z} \in C H^{3}\left(X_{t} \times X_{t} \times X_{t}\right)$ inducing an "octonionic cross-product" on $H_{t r}^{2}\left(X_{t}\right)$.

- Thank You -

