Boundary strata and adjoint varieties¹

MATT KERR (WUSTL/IAS)

IAS, October 15, 2014

¹report on recent work with C. Robles, based in part on earlier work with G. Pearlstein as well as P. Griffiths and M. Green.

Motivating principle: use Representation Theory to classify what is possible for VHS with given "symmetries"; use that in turn to decide what is geometrically possible or expected:

flag/Schubert varieties $\xrightarrow{\text{Robles}}$ maximal VHS \rightarrow geom. realization?

 $\begin{array}{c} \mbox{nilpotent cones} \rightarrow \mbox{bdry. components (LMHS)} \rightarrow \mbox{degenerations} \\ & \mbox{K-Pearlstein} & (appr. to Torelli?) \end{array}$

geom. of flag var. $\check{D} \rightarrow \text{diff'l. inv. of VHS} \rightarrow \text{geom. realization?}$ (2nd FF)

smooth reps. of classes in $\leftarrow-$ enhanced $SL_2\text{-orbits}$ $H^*(\check{D},\mathbb{Z})$

$\S1$. Construction of Mumford-Tate domains

- V = vector space over \mathbb{Q}
- $Q: V \times V \rightarrow \mathbb{Q}$ nondegenerate symmetric bilinear form
- $\varphi : S^1 \to Aut(V_{\mathbb{R}}, Q)$, where $Q(v, \varphi(\sqrt{-1})\overline{v}) > 0 \ \forall v \in V_{\mathbb{C}} \setminus \{0\}$ (weight 0 PHS)
- G ≤ Aut(V, Q): Q-algebraic closure of φ(S¹)
 G = subgroup fixing HTs pointwise (Chevalley's thm.)
 Mumford-Tate (or Hodge) group
- D := G(ℝ).φ ≅ G(ℝ)/H ⊂ open G(ℂ)/P =: Ď Mumford-Tate domain ⊂ compact dual

We think of M-T domains as parametrizing (a connected component of) all HS on V polarized by Q, with the same Hodge numbers as φ , whose HTs include the fixed tensors of G. We shall loosely speak of (V, Q, φ) as a "Hodge representation" of G.

Problem [GGK]: How do we arrange for the M-T group to be a given (simple, adjoint) \mathbb{Q} -algebraic group G?

One way is to take $V = \mathfrak{g}$. We need the crucial assumption that $G(\mathbb{R})$ contains a compact maximal torus T.

Let $\mathfrak{g}_{\mathbb{R}} = \mathfrak{k} \oplus \mathfrak{k}^{\perp}$ be a Cartan decomposition with $\mathfrak{t} \subseteq \mathfrak{k}$ and involution θ . Write $\Delta := \Delta(\mathfrak{g}_{\mathbb{C}}, \mathfrak{t}_{\mathbb{C}}) = \Delta_c \cup \Delta_n$, and $\mathcal{R} \leq \Lambda := X^*(\mathcal{T}_{\mathbb{C}})$ for the lattice it generates.

- ▶ θ Lie-alg. homom. $\implies \exists$ homom. $\mathcal{R} \rightarrow \mathbb{Z}$ sending $\Delta_c \rightarrow 2\mathbb{Z}, \ \Delta_n \rightarrow 2\mathbb{Z} + 1.$
- G adjoint $\implies \mathcal{R} = \Lambda \implies$ this homom. is induced by a grading element $E \in \sqrt{-1t}$.
- Set $\varphi(z) := e^{2\log(z)E}$, so that $(\operatorname{Ad} \circ \varphi)(\sqrt{-1}) = \theta$.
- ▶ Since -B is > 0 on \mathfrak{k} and < 0 on \mathfrak{k}^{\perp} , $(\mathfrak{g}, Ad \circ \varphi, -B)$ is a PHS (of weight 0).

The Hodge decomposition takes the form $\mathfrak{g}_{\mathbb{C}} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}^{j}$, where

$$\mathfrak{g}^{j} := \mathfrak{g}_{\varphi}^{j,-j} = \left\{ \begin{array}{cc} \oplus_{\delta \in \Delta: E(\delta) = j} \mathfrak{g}_{\delta}, & j \neq 0\\ \left(\oplus_{\delta \in \Delta: E(\delta) = 0} \mathfrak{g}_{\delta} \right) \oplus \mathfrak{t}_{\mathbb{C}}, & j = 0 \end{array} \right\}$$

write $h^j := \dim_{\mathbb{C}} \mathfrak{g}^j$ for the Hodge numbers. We also claim that the M-T group of Ad $\circ \varphi$ is G. Why? Let $M \leq G$ be (equivalently)

- (a) the smallest \mathbb{Q} -algebraic group such that Ad $\circ g\varphi g^{-1}$ factors thru $M(\mathbb{R})$ ($\forall g \in G(\mathbb{R})$)
- (b) the M-T group of the family $\{Ad \circ g\varphi g^{-1}\}_{g \in G(\mathbb{R})}$ of polarized Hodge structures
- (c) the M-T group of $\operatorname{Ad} \circ g_0 \varphi g_0^{-1}$ for all $g_0 \in G(\mathbb{R})$ in the complement of a meager set

Since φ is "sufficiently general", we may take $g_0 = 1$ in (c). By (a), $M \trianglelefteq G$; so G simple $\implies M = G$. We remark that

• dim_{$$\mathbb{C}$$}(\check{D}) = $\sum_{j>0} h^j$

▶ rank(
$$W$$
) = h^{-1} (horizontal distribution)
Example: ($G = G_2$)

Generalization to fundamental adjoint varieties

Recall: upon fixing $\Delta^+ \subset \Delta$, we have

- α_i simple roots $\underset{\delta_i^j}{\longleftrightarrow} S^j$ simple grading elements
- ► ω_i fundamental weights $\longleftrightarrow_{\delta_i^j} H_j$ simple coroots $(H_j \in [\mathfrak{g}_{\alpha_i}, \mathfrak{g}_{-\alpha_i}], \alpha_i(H^i) = 2)$

Let $\mu = \sum \mu^i \omega_i$ be dominant $(\mu_i \ge 0)$, assume $U = V^{\mu}$ real. Consider the assoc. parabolic subgroup $P \ge B \ge T_{\mathbb{C}}$, where

- $\Delta(B) = \Delta^+$
- $\blacktriangleright I(\mathfrak{p}) := \{i \mid -\alpha_i \notin \Delta(\mathfrak{p})\} = \{i \mid \mu^i \neq 0\}$

and the assoc. grading element $E := \sum_{i \in I} S^i$. Put $m := E(\mu)$.

• $U = U^{-m} \oplus \cdots \oplus U^m$ is the grading induced by E

•
$$U^m = U_\mu =$$
 highest weight line

the G(ℂ)-orbit of [U_μ] ∈ ℙU gives a homogeneous embedding of G(ℂ)/P, minimal if μⁱ ∈ {0,1} (∀i). The adjoint case is U = g. Root/weight computations show:

•
$$m = 2$$
, so $\{h^j\} = \{1, *, *, *, 1\}$

- ► unless G is of type E₈, there exists a level 2 faithful Hodge representation (like (2, 3, 2) in the G₂ example above)
- unless G is of type C, the adjoint variety $\check{D} = G(\mathbb{C})/P \hookrightarrow \mathbb{P}\mathfrak{g}$ is minimally embedded
- ► unless G is of type A or C, the adjoint representation is fundamental (g = V^{ωk}), and the corresponding {Ď} are the fundamental adjoint varieties.

Why study the adjoint varieties as Hodge-theoretic classifying spaces?

One reason: they are the "simplest" G/P with nontrivial IPR, in the sense of being precisely the cases where W is a contact distribution.

§2. Schubert VHS and classical subdomains Let $D \subset \check{D}$ be a M-T domain with base point $F^{\bullet} = F_{\varphi}^{\bullet} \in D$, $\mathfrak{g} = \oplus \mathfrak{g}^{j}$ the corresponding Hodge decomposition, and T, Δ as before. Write $P \ge B \ge T_{\mathbb{C}}$ for the parabolic fixing F^{\bullet} , so that we have:

►
$$\Delta(B) =: \Delta^+ = \Delta(F^1\mathfrak{g}) \cup \Delta^+(\mathfrak{g}^0)$$

► $\Delta(P) = \Delta(F^0\mathfrak{g}).$
Put $W^P := \{w \in W | w\Delta^+ \supset \Delta^+(\mathfrak{g}^0)\}$, and note that

•
$$w \in W^P \implies \Delta_w := \Delta^- \cap w\Delta^+$$
 is closed in Δ

$$\blacktriangleright D = \coprod_{w \in W^P} C_w := \coprod_{w \in W^P} Bw^{-1}.F^{\bullet}.$$

The Schubert varieties $X_w := \overline{wC_w}^{Zar.} \subset \check{D}$ satisfy

• dim_{$$\mathbb{C} Xw = |\Delta_w| = \ell(w)$$}

$$T_{F^{\bullet}}X_w = \mathfrak{n}_w := \oplus_{\alpha \in \Delta_w} \mathfrak{g}_{\alpha}$$

► X_w Schubert VHS (i.e. horizontal) $\iff \mathfrak{n}_w \subset \mathfrak{g}^{-1}$ ($\implies \mathfrak{n}_w$ abelian)

Theorem (Robles)

$$\begin{split} \max \dim(\mathsf{IVHS}) &= \max \dim(\mathsf{SVHS}) = \\ \max \left\{ |\Delta_w| \left| w \in W^P, \, \Delta_w \subset \Delta(\mathfrak{g}^{-1}) \right. \right\} \end{split}$$

Example : $(G = G_2)$

There exists only one X_w of dimension 2, and it is an SVHS (false for higher dim.) $\downarrow\downarrow$ the maximal integral manifold of Whas dimension 2

Is this X_w a M-T subdomain? If so, it would be a (smooth, Hermitian) homogeneous $G'(\mathbb{R})$ -orbit, with $\mathfrak{g} \supseteq \mathfrak{g}' = \text{Lie}$ algebra closure of $\mathfrak{n}_w \oplus \overline{\mathfrak{n}_w}$. But this closure is all of \mathfrak{g} . NO!

More generally, what is the relationship between SVHS and horizontal (\implies Hermitian) M-T domains?

For any subdiagram $\mathscr{D}' \subset \mathscr{D}$ of the Dynkin diagram of \mathfrak{g} , have

• $\mathfrak{g}' \subset \mathfrak{g}$ subalg. gen. by the root spaces $\{\mathfrak{g}_{\alpha} | \alpha \in \mathscr{D}'\}$

•
$$X(\mathscr{D}') := G'(\mathbb{C}).F^{\bullet} \subset \check{D}$$
 smooth Schubert variety

 $X(\mathscr{D}')$ is horizontal iff $\mathfrak{g}' \subset \mathfrak{g}^{-1} \oplus \mathfrak{g}^0 \oplus \mathfrak{g}^1$, in which case it is (the compact dual of) a homogeneously embedded Hermitian symmetric domain.

Theorem (K-R)

Let $X \subset \check{D}$ be a SVHS. Then X smooth $\iff X = \prod_i X(\mathscr{D}_i)$ (homog. emb. HSD).

It is instructive to compare this with another recent result:

Theorem (Friedman-Laza)

• $X \subset \check{D}$ a smooth "VHS" (horizontal subvariety)

 Y a (nonempty) connected component of X ∩ D with strongly quasi-projective image in Γ\D
 ⇒ Y is a (Hermitian) M-T subdomain.

On the other hand, with an arithmetic assumption on \check{D} , the [K-R] result has the following

Corollary

- $X \subset \check{D}$ a smooth Schubert VHS
- Y a (nonempty) connected component of $X \cap D$
- \implies Y is a translate of a (Hermitian) M-T subdomain.

The converse of the Corollary is false: there are plenty of non-Schubert, horizontal Hermitian M-T subdomains, and we will construct maximal integral ones later.

§3. Lines on \check{D} and a differential invariant of VHS

The Corollary suggests that there might be lots of singular SVHS, in view of the G_2 example. A systematic construction of Schubert varieties is given by incidence correspondences:

where $P, Q \ge B$. Note that:

- ► X, X⁻¹ preserve Schubert varieties
- a point is a Schubert variety (e.g. $P/P = F^{\bullet}$)

•
$$X(Q/Q) = X(\mathscr{D}')$$
, where $\mathscr{D}' = \mathscr{D} \setminus (I(\mathfrak{q}) \setminus I(\mathfrak{p}))$

Case of *P* maximal

P maximal ⇒ I(p) = {k}. If I(q) contains the nodes adjacent to {k}, then X(𝒫') is a ℙ¹ thru F[•].

In this case:

• $X_0 := X(X^{-1}(F^{\bullet}))$ is a Schubert variety consisting of all \mathbb{P}^1 's thru F^{\bullet} on \check{D} (in its minimal embedding).

Specializing to the case where $\check{D}(\subset \mathbb{P}\mathfrak{g})$ is a fundamental adjoint variety, let

• $\mathcal{C}_0 :=$ the $G^0(\mathbb{C})$ -orbit of the highest weight line in $\mathbb{P}\mathfrak{g}^{-1}$.

Then

- C₀ ≅ G⁰(ℂ)/{P ∩ G⁰(ℂ)} is a homogeneous Legendrian variety
- $X_0 \cong \operatorname{Cone}(\mathcal{C}_0)$ is a singular Schubert VHS

Some data for the fundamental adjoint varieties \check{D} and their associated "subadjoint" varieties C_0 of lines through a point:

$\mathfrak{g}_{\mathbb{C}}$	Ď	$\mathfrak{g}^{0,ss}_{\mathbb{C}}$	\mathcal{C}_0
$\mathfrak{so}(n)$	$OG(2,\mathbb{C}^n)$	$\mathfrak{so}(n-4)\oplus\mathfrak{sl}(2)$	$\mathbb{P}^1 imes \mathcal{Q}^{n-6}$
\mathfrak{e}_6	E_6/P_2	s l(6)	$Gr(3, \mathbb{C}^6)$
\mathfrak{e}_7	E_7/P_1	so(12)	\mathcal{S}_6
\mathfrak{e}_8	E_8/P_8	¢7	E_{7}/P_{7}
Ĵ4	F_4/P_1	$\mathfrak{sp}(6)$	$LG(3, \mathbb{C}^6)$
\mathfrak{g}_2	G_2/P_2	$\mathfrak{sl}(2)$	$ u_3(\mathbb{P}^1)$

We now relate these varieties of lines to the Griffiths-Yukawa kernel. Let $\mathcal{V} = \bigoplus_{j=0}^{n} \mathcal{V}^{n-j,j}$ be a VHS over \mathcal{S} , with associated period map $\Phi : \mathcal{S} \to \Gamma \setminus D$ (D = M-T domain). Denote by \mathcal{D} a holomorphic differential operator on $U \subset \mathcal{S}$ of order n.

The composition

$${\mathcal O}_U({\mathcal V}^{n,0}) \hookrightarrow {\mathcal O}_U({\mathcal V}) \stackrel{{\mathcal D}}{ o} {\mathcal O}_U({\mathcal V}) \twoheadrightarrow {\mathcal O}_U({\mathcal V}^{0,n})$$

depends only on $\sigma(\mathcal{D})$, giving rise to the G-Y coupling

$$\begin{array}{rcl} \operatorname{Sym}^{n}T_{s}\mathcal{S} & \to & \operatorname{Hom}(V_{s}^{n,0},V_{s}^{0,n}) & = & (V_{s}^{0,n})^{\otimes 2} \\ d\Phi \downarrow & \nearrow & \uparrow (*) \\ \operatorname{Sym}^{n}\mathfrak{g}^{-1} & \xleftarrow{} & \mathfrak{g}^{-1} \end{array}$$

Write $\mathcal{Y} \subset \mathbb{P}\mathfrak{g}^{-1}$ for the kernel of (*) (at $F^{\bullet} \in D$).

Example :
$$(G = G_2)$$
 $V = V^{2,0} \oplus V^{1,1} \oplus V^{0,2}$ 7-diml irrep

Given $\xi := \sum \xi_i x_i \in \mathfrak{g}^{-1}$, one computes ${}_{e^*}[\xi^2]_e = \begin{pmatrix} -2\xi_1\xi_2 + 2\xi_2^2 & \xi_1\xi_2 - \xi_0\xi_3\\ \xi_1\xi_2 - \xi_0\xi_3 & -2\xi_0\xi_2 + 2\xi_1^2 \end{pmatrix}$

whose vanishing defines the twisted cubic $\nu_3(\mathbb{P}^1) \subset \mathbb{P}\mathfrak{g}^{-1}$.

This example is generalized to E_6 , E_7 , F_4 by the

Theorem (K-R)

For $\check{D} = G(\mathbb{C})/P$ a fundamental adjoint variety, and V a level 2 Hodge representation such that $V^{2,0}$ is a faithful representation of \mathfrak{g}^0 , we have $\mathcal{Y} = \mathcal{C}_0$. (Much more generally, \mathcal{Y} contains the horizontal lines through F^{\bullet} .)

Sketch: Given
$$[\xi] \in \mathcal{Y}, \xi^2(u) = 0 \ \forall u \in V^{2,0}$$
. Fix $v \in \mathfrak{g}^2 \setminus \{0\}$, so $\operatorname{ad}_{\xi}^2 v \in \mathfrak{g}^0$. Then $(\operatorname{ad}_{\xi}^2 v)u = v\xi\xi u = 0 \xrightarrow{\text{faithful}} \operatorname{ad}_{\xi}^2 v = 0 \Longrightarrow$ second fundamental form vanishes at $\xi \implies [\xi] \in \mathcal{C}_0$. \Box

When the conclusion of the Theorem holds,

- $\mathcal{Y} = \text{ker}(G-Y)$ gives Hodge-theoretic meaning to \mathcal{C}_0
- ▶ $\mathcal{C}_0 \cong G^0(\mathbb{C})/\cdots$ gives a homogeneous description of $\mathcal Y$
- ► ad²_ξv = 0 produces explicit projective homogeneous equations for both.

§4. $G(\mathbb{R})$ -orbits in \check{D} and asymptotics of VHS

Given the input:

- $D \subset \check{D}$ M-T domain (parametrizing wt. 0 HS on V)
- $\Gamma \leq G(\mathbb{Q})$ neat arithmetic

• $\sigma^{\circ} \subset \sigma = \mathbb{Q}_{\geq 0} \langle N_1, \dots, N_m \rangle \subset \mathfrak{g}_{\mathbb{Q}}$ abelian nilpotent we define (and assume nonempty):

$$\bullet \ \tilde{B}(\sigma) := \left\{ F^{\bullet} \in \check{D} \middle| \begin{array}{c} e^{\sum t_i N_i} F^{\bullet} \in D \\ N_i F^{\bullet} \subset F^{\bullet - 1} \end{array} \right\} \text{ for } Im(\tau_i) \gg 0$$

which parametrizes LMHS $(F^{\bullet}, W(\sigma)_{\bullet})^2$

• $B(\sigma) := e^{\mathbb{C}\sigma} \setminus \tilde{B}(\sigma) =$ boundary component assoc. to σ

which parametrizes σ -nilpotent orbits ($\sigma, e^{\mathbb{C}\sigma}F^{\bullet}$), and

•
$$\overline{B}(\sigma) = \Gamma_{\sigma} \setminus B(\sigma)$$
, where $\Gamma_{\sigma} := \operatorname{stab}_{\Gamma}(\sigma)$.

One may "partially compactify" $\Gamma \setminus D$ by $\overline{B}(\sigma)$ s (log manifold).

$${}^{2}N(W(\sigma)_{\bullet}) \subset W(\sigma)_{\bullet-2} \text{ and } N^{k}: \ Gr_{k}^{W(\sigma)} \xrightarrow{\cong} Gr_{-k}^{W(\sigma)} \ (\forall N \in \sigma^{\circ}).$$

Structure of $B(\sigma)$

Write

- $M_{\sigma} = \exp \{ \operatorname{im}(\sum N_i) \cap (\cap \operatorname{ker}(N_i)) \}$
- $Z(\sigma) = Z_0(\sigma) \cdot M_\sigma$ for the centralizer of σ in G
- ► $G_{\sigma} \leq Z_0(\sigma)$ for the M-T group of generic $Gr^W(F^{\bullet}, W(\sigma)_{\bullet})$

Then we have

► fibration
$$B(\sigma) \xrightarrow{\longrightarrow} D(\sigma) = M$$
-T domain of generic
 $\overleftarrow{\nabla} = \overleftarrow{\nabla} = \overleftarrow{\nabla} = Gr^{W}(F^{\bullet}, W(\sigma)_{\bullet})$

•
$$B(\sigma) = \{G^{ss}_{\sigma}(\mathbb{R}) \ltimes M_{\sigma}(\mathbb{C})\}.F^{\bullet}_{0}$$
 and
 $D(\sigma) = G^{ss}_{\sigma}(\mathbb{R}).Gr^{W}F^{\bullet}_{0}$

 [K-R] contains a general prescription for using a set $\mathfrak{B} = \{\beta_1, \ldots, \beta_s\} \subset \Delta(\mathfrak{g}^1)$ of strongly orthogonal roots to explicitly construct \mathbb{Q} -split (σ, F_0^{\bullet}). The motivation is to parametrize $G(\mathbb{R})$ -orbits in ∂D in the image of Φ_{∞}^{σ} . I will discuss only s = 1. Fix a base point $o (\longleftrightarrow F^{\bullet})$ in D.

Let $\beta \in \Delta(\mathfrak{g}^1)$, with associated $\mathfrak{sl}_2^\beta = \langle N, Y, N^+ \rangle$ $(N \in \mathfrak{g}_{-\beta})$. Apply the Cayley transform $\mathbf{c}_\beta = \operatorname{Ad}\left(e^{\frac{\pi}{4}(X_{-\beta}-X_\beta)}\right)$ to

• $\mathfrak{t}_{\mathbb{C}} \rightsquigarrow \mathfrak{h}$ • $\mathfrak{g}_{\alpha} \rightsquigarrow '\mathfrak{g}_{\alpha}$ • $\mathbb{E} \rightsquigarrow '\mathbb{E}$ • $o \rightsquigarrow 'o$ ($F^{\bullet} \rightsquigarrow 'F^{\bullet}$)

Then

•
$${}^{\prime}F^{\bullet} \in \tilde{B}(N)$$
, and $\mathfrak{g}_{N}^{ss} = \ker\{\beta|_{\mathfrak{h}}\} \oplus \bigoplus_{\alpha \perp \perp \beta} {}^{\prime}\mathfrak{g}_{\alpha}$

▶ 'E, Y give a (Deligne) bigrading $\mathfrak{g}^{p,q} = \mathfrak{g}^p_{\stackrel{}{}_{E}} \cap \mathfrak{g}_{p+q}$ of $\mathfrak{g}_{\mathbb{C}}$ whose dimensions $h^{p,q}$ are the Hodge-Deligne numbers of the (limit) MHS (' F^{\bullet} , $W(N)_{\bullet}$) associated to 'o.

<u>**Remark</u>** : We can use this to construct non-Schubert M-T subdomains. Define the "enhanced SL_2 -orbit"</u>

$$X(\mathsf{N}) := \overline{e^{\mathbb{C}N}G_{\mathsf{N}}^{ss}.'o}^{\mathsf{Zar}} = G_{\mathsf{N}}^{ss} imes SL_2^{\beta}.'o \subset \check{\mathsf{D}};$$

then (with an arithmetic assumption on o)

•
$$Y(N) := X(N) \cap D$$
 is a M-T domain

- $X(N) = \check{D}(N) \times \mathbb{P}^1 \supset D(N) \times \mathfrak{H} = Y(N)$
- ▶ If $E(\alpha) \in \{-1, 0, 1\} \forall \alpha \perp \beta$, then Y(N) is a HSD.
- If Ď = G(ℂ)/P (P maximal) and dim X(N) ≥ 2, then X(N) is not Schubert.

§5. "Minimal" boundary of adjoint varieties

Let \check{D} be a fundamental adjoint variety (note $E = S^{i}$).

Proposition (K-R)

There is a unique codimension-1 $G(\mathbb{R})$ -orbit in ∂D .

Sketch:

- [K-P] \mathbb{R} -codim. of orbit \ni 'o is given by $\sum_{p,q>0} h^{p,q}$;
- [KP] codim.-1 orbits are of the form $G(\mathbb{R}).\mathbf{c}_{\beta}o, \ \beta \in \Delta(\mathfrak{g}^1)$. Acting by $W(\mathfrak{g}^0)$, wma $(\beta, \alpha_j) \leq 0 \ \forall j \neq i$, i.e. $\alpha_j(H^{\beta}) \leq 0$. In the bigrading defined by \mathbf{c}_{β} , $\mathfrak{g}^{1,1} \supset '\mathfrak{g}^1 \supset '\mathfrak{g}^{\beta}$
 - $\implies \beta = \alpha_i + \sum_{j \neq i} m_j \alpha_j \quad (m_j \ge 0)$ $\implies p(\alpha_i) + q(\alpha_i) = \alpha_i(H^\beta) = \beta(H^\beta) - \sum_{j \neq i} m_j \alpha_j(H^\beta) \ge 2$ $\implies q(\alpha_i) \ge 1 \implies \text{codim} > 1 \text{ unless } \beta = \alpha_i. \square$

Let $o (= \mathbf{c}_{\alpha_i} o)$ belong to this real codimension-1 orbit, with associated MHS $(F^{\bullet}, W(N)_{\bullet})$ and bigrading $\mathfrak{g}^{p,q}$.

Proposition (K-R)

Sketch:

We know dim $\mathfrak{g}^2 = 1$, $\mathfrak{g}^{>2} = \{0\}$, dim $\mathfrak{g}_2 = 1$, $\mathfrak{g}_{>2} = \{0\}$. Now $\alpha_i, \tilde{\alpha}$ are non-short roots, and • $H^i \in [\mathfrak{g}_{\alpha_i}, \mathfrak{g}_{-\alpha_i}]$ s.t. $\alpha_i(H^i) = 2$ • $S^i \in [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]$ s.t. $\tilde{\alpha}(S^i) = 2$. $\implies \exists w \in W$ sending $H^i \mapsto -S^i$ $\implies w(\mathfrak{g}^{p,q}) = w(\mathfrak{g}^p \cap \mathfrak{g}_{p+q}) = \mathfrak{g}_{-p} \cap \mathfrak{g}^{-(p+q)} = \mathfrak{g}^{-p-q,q}$. \Box Note that w identifies the (faithful) representations of \mathfrak{g}_0 on \mathfrak{g}_1 and \mathfrak{g}^0 on \mathfrak{g}^{-1} . Moreover, $D(N) (\subset \mathbb{P}\mathfrak{g}_1)$ is the M-T domain for the Hodge representation of G_0 on \mathfrak{g}_1 , which leads to:

Theorem (K-R)

Applications? Automorphic cohomology; geometric realizations; cohomology of \check{D} .

 $H^*(\check{D}, \mathbb{Z})$ is generated by Schubert vareities, and the "horizontal" part (invariant characteristic cohomology) by Schubert VHS. Do the subadjoint cylinder classes [X(N)] yield smooth representatives of the subadjoint cone classes $[X_w]$?

$$(\omega_1, \omega_1) = 2(\omega_1, \alpha_1) \implies [\Sigma(N)] = 2[\Sigma] \\ \implies [X(N)] = 2[X_w]$$

$\S6. A (partial) geometric realization$

We look for degenerations of varieties predicted by the "codim. 1" boundary components of adjoint domains. For G_2 , this should take the form of a 1-parameter family of surfaces $\{X_t\}$ with H_{tr}^2 Hodge numbers (2, 3, 2), M-T group G_2 , and LMHS of the form

where N is the monodromy logarithm and bullets denote 1-dimensional spaces. In fact, just such a family has been constructed by N. Katz using elliptic fibrations; the M-T group is determined by a moment computation using elliptic convolution over finite fields. We shall describe a special case. Begin with the rational elliptic surface

$$\mathcal{E} \to \mathbb{P}^1_z$$
: $y^2 = x(1-x)(x-z^2)$

with singular fibers $(2 I_4, 2 I_2)$ at $z = -1, 0, 1, \infty$. For any $t \neq 0, \frac{\pm 2}{3\sqrt{3}}, \infty$, base change by

$$E_t
ightarrow \mathbb{P}^1_z$$
: $w^2 = tz(z-1)(z+1) + t^2$

to obtain an elliptic surface $X_t \rightarrow E_t$ with 7 singular fibers,

Degenerating X_t as $t o t_0 = rac{2}{3\sqrt{3}}$ yields

with

$$\mathsf{E} = \{y^2 = x(1-x)(x-\frac{1}{3})\}.$$

The part of $H^2(X_{t_0})$ not coming from the 19 algebraic classes on Y indeed takes the form

In fact, we can "determine" the limiting period in

$$\overline{B}(N) \to \Gamma \setminus \mathfrak{H}.$$

• Since
$$G_N \cong SL_2$$
 and $j(\mathsf{E}) \notin \mathbb{Z}$,

$$H^2_{tr}(Y) \cong Sym^2 H^1(\mathsf{E})$$

and the point in the base is determined by the (non-CM) Hodge structure $H^{1}(E)$.

The point in the fiber

$$\begin{split} \mathbb{C}^2/\mathbb{Z}\langle \binom{1}{0}, \binom{2\tau/3}{1}, \binom{\tau^2/3}{2\tau}, \binom{0}{3\tau^2} \rangle &\cong J(Sym^3H^1(\mathsf{E}))\\ &\subset J(H^2_{tr}(Y)^{\vee}\otimes H^1(E)) \end{split}$$
 is given by $\int_{B_1} \omega, \int_{B_2} \omega \ (\omega \in \Omega^2(Y)). \end{split}$

The image of the period map into $\Gamma \setminus D$ is contained (at least locally) in 2-dimensional integral manifolds. Does X_t belong to a 2-parameter family?

(For F_4 , one expects a 7-parameter family of surfaces with H_{tr}^2 Hodge numbers (6, 14, 6)!)

To determine which deformations of X_t "preserve G_2 ", it may be necessary to "see" the cubic Hodge tensor geometrically: we need $\mathfrak{Z} \in CH^3(X_t \times X_t \times X_t)$ inducing an "octonionic cross-product" on $H^2_{tr}(X_t)$.

– Thank You –