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Introduction

Mumford-Tate groups have emerged as the principal symmetry groups
in Hodge theory. Their significance is both geometric and arithmetic.
Geometrically, this is due in part to their relation with monodromy and
Noether-Lefschetz loci. Arithmetically, they arise in the study of the
endomorphism algebra of a Hodge structure and of the fields of defini-
tion associated to Noether-Lefschetz loci. The theory of Mumford-Tate
groups is relatively much more highly developed in the classical case of
weight one Hodge structures.

A Mumford-Tate domain DM is, by definition, the orbit under a
Mumford-Tate group M of a point in the period domain D classifying
polarized Hodge structures with given Hodge numbers. In the classical
weight one case, the quotient of a Mumford-Tate domain by an arith-
metic group are the complex points of a Shimura variety. These have
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been the object of extensive and deep study over the years. In con-
trast, in the non-classical case the study of Mumford-Tate domains is
relatively unexplored. In this largely expository paper we will describe
some of the main properties of Mumford-Tate domains, with special
emphasis on those aspects that are different from the classical case.
Very roughly speaking, we may say that many of the geometric aspects
of Shimura domains carry over, in some ways in a richer form, to gen-
eral Mumford-Tate domains. But the arithmetic theory is much less
developed, perhaps due at least in part to the absence thus far of any
connection between automorphic representations in L2(M(Q) \M(A))
and variations of Hodge structure in quotients of Mumford-Tate do-
mains by arithmetic groups.

As mentioned, this paper is largely expository and is intended to
be an introduction to and overview of some aspects of Mumford-Tate
domains. Very few complete proofs of stated results will be given. For
these we refer to the monograph [GGK] as well as to specific references
cited in the paper. As general references to the theory of Mumford-
Tate groups we suggest the original paper [Mu], [DMOS], the very
useful notes [Mo], and the relevant section in the recent book [PS].

We conclude this brief introduction with the

Convention. Throughout this paper, unless mentioned otherwise, Hodge
structures will always refer to ones that are polarized. Some of the as-
pects of Mumford-Tate groups are present for general Hodge structures,
but their deeper properties seem to require a polarization.

I. Definition of Mumford-Tate domains

I.A. Hodge structures. Throughout this paper, V will denote a Q-
vector space and

Q : V ⊗ V → Q

a non-degenerate bilinear form satisfying

Q(u, v) = (−1)nQ(v, u) u, v ∈ V

where n will be the weight of the Hodge structure. We denote by{
T a,b = (⊗aqV )⊗ (⊗bV )
T •,• = ⊕

a,b
T a,b

the tensor algebra associated to V where qV is the dual of V . Thus
Q ∈ T 1,1. We also set VR = V ⊗ R and VC = V ⊗ C. We will use the
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terminology of algebraic groups [Bo]; unless otherwise noted they will
be defined over Q. We set

G = Aut(V,Q)

and denote by G(R) and G(C) its real and complex points.
In keeping with general conventions, we set

S = ResC/RGm,C

where “Res” denotes the restriction of scalars à la Weil. This is an
algebraic group defined over R. For k = R or C we have

S(k) =

{(
a −b
b a

)
:
a2 + b2 /= 0
a, b ∈ k

}
U(k) =

{(
a −b
b a

)
:
a2 + b2 = 1
a, b ∈ k

}
.

Then

S(R) ∼= C∗ via

(
a −b
b a

)
→ a+ ib,

and U(R) ∼= S1 is a maximal compact subgroup of S(R).
Setting t = a+ ib, a representation

(I.A.1) ϕ : U(R)→ G(R)

decomposes over C into eigenspaces V p,q such that{
ϕ(t)u = tpt̄qu u ∈ V p,q

V p,q = V
q,p
.

The Weil operator associated to (I.A.1) is

C = ϕ(i),

so that C = ip−q on V p,q. We denote by S1
ϕ ⊂ G(R) the circle given by

the image ϕ(U(R)).

Definition. A Hodge structure of weight n is given by a representation
(I.A.1) where all non-zero eigenspaces have p + q = n and where the
Hodge-Riemann bilinear relations{

(I) Q(V p,q, V p′,q′) = 0 p′ /= n− p
(II) Q(u,Cū) > 0 0 /= u ∈ VC

are satisfied.

We will denote a Hodge structure by (V,Q, ϕ), or sometimes simply
by Vϕ, and we set Vϕ,C = ⊕

p
V p,q
ϕ .
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Remark. In general, a not-necessarily-polarized R-split mixed Hodge
structure is given by V as above together with a representation

S(R)→ GL(VR).

Then VR decomposes into a direct sum of weight spaces VR,n on which
t ∈ R∗ ⊂ C∗ acts by tn, and then under the action of S1, VC,n decom-
poses as above into a direct sum of V p,q

C,n’s, p+ q = n.

A Hodge structure induces Hodge structures T a,bϕ on the tensor spaces

T a,b.

Definition. The Hodge tensors Hga,bϕ are given by the subspace of T a,b

on which U(R) acts trivially.

Since T a,bϕ is a Hodge structure of weight n(a − b), for Hga,bϕ to be

non-zero we must have n(a− b) = 2m and then Hga,bϕ are the rational
tensors of Hodge type (m,m).

We will denote by Hg•,•ϕ = ⊕
a,b

Hga,bϕ the algebra of Hodge tensors.

Definition. A sub-Hodge structure of (V,Q, ϕ) is given by a linear
subspace V ′ ⊂ V such that V ′R is invariant under ϕ(U(R)).

It follows that Q′ := Q |V is non-singular and polarizes the (p, q)-
decomposition of V ′C given by the eigenspaces of ϕ(U(R)) acting on
V ′C. Moreover, the Q-orthogonal complement V

′⊥ := V ′′ is again a
sub-Hodge structure and V = V ′ ⊕ V ′′. Briefly, the category of Hodge
structures is semi-simple.

I.B. Period domains and their compact duals (cf. [C-MS-P] and
[CGG]). Let (V,Q) be as in section I.A above and hp,q = hq,p, p+q = n
with Σhp,q = dimV , a set of Hodge numbers.

Definition. The period domain D associated to the above data is the
set of polarized Hodge structures ϕ : U(R) → G(R) with the given
Hodge numbers.

The real Lie group G(R) acts transitively on D by conjugation, and
because for ϕ ∈ D the polarizing forms are definite on the V p,q

ϕ , the
isotropy group Hϕ of ϕ is a compact subgroup of G(R). It is clear that
S1
ϕ ⊂ Hϕ, and that

Hϕ = Z(S1
ϕ) is the centralizer of S1

ϕ in G(R).

Fixing a reference point ϕ0 ∈ D, there is an identification

D = G(R)/Hϕ0 .
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This gives D the structure of a manifold. As will be seen shortly, it
is in fact a homogeneous complex manifold. A useful equivalent set-
theoretic identification is

D =

{
set of conjugacy classes
g−1Hϕ0g of Hϕ0 in G(R)

}
.

The Hodge structure associated to the conjugacy class g−1Hϕ0g is given
by ϕ = g−1 ◦ ϕ0 ◦ g : U(R)→ G(R).

The Lie algebra g of the simple algebraic group G is a Q-linear
subspace of Hom(V, V ), and the form Q induces on g a non-degenerate,
symmetric bilinear form

B : g⊗ g→ C,
which is (up to scale) just the Cartan-Killing form. For each point
ϕ ∈ D

Adϕ : U(R)→ Aut(gR, B)

induces a Hodge structure of weight zero on g. This Hodge structure

is polarized by B, and it is a sub-Hodge structure of qV ⊗ V . We have
the description

gC = ⊕g−i,iϕ

g−i,iϕ =

{
X ∈ gC satisfying
X : V p,q

ϕ → V p−i,q+i
ϕ

}
.

The complexified Lie algebra of the isotropy group is

hϕ,C = g0,0
ϕ .

We note that

(I.B.1)
[
g−i,iϕ , g−j,jϕ

]
⊆ g−(i+j),i+j

ϕ .

Setting
g−ϕ = ⊕

i>0
g−i,iϕ

we have
gC = g−ϕ ⊕ g−ϕ ⊕ hϕ,C.

The complexification of the real tangent space Tϕ,R(D) to D at ϕ is

Tϕ,R(D)⊗ C ∼= g−ϕ ⊕ g−ϕ ,

and setting
TϕD = g−ϕ

defines a G(R)-invariant almost complex structure. By (I.B.1) this al-
most complex structure is integrable, verifying thatD is a homogeneous
complex manifold.
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We are denoting by TϕD the usual holomorphic or (1, 0) tangent
space at ϕ to the complex manifold D, and by TD the holomorphic
tangent bundle.

To define the compact dual qD of D we need to give the

Alternate definition of a Hodge structure. This is given by a
Hodge filtration F n ⊂ F n−1 ⊂ · · · ⊂ F 0 = VC satisfying{

Q(F p, F n−p+1) = 0
Q(u,Cū) > 0 0 /= u ∈ VC.

Here we set

V p,q = F p ∩ F q

and define C to be ip−q on V p,q. The relation to the previous definition
is given by defining the subspaces F p

ϕ in the Hodge filtration associated
to ϕ ⊂ D by

F p
ϕ = ⊕

p′=p
V p′,q′

ϕ .

We set

fp =
¸
p′=p

hp
′,q′ .

Definition. The compact dual qD of D is defined to be the set of flags
F • = {F n ⊂ F n−1 ⊂ · · · ⊂ F 0 = VC} where dimF p = fp and where
the first Hodge-Riemann bilinear relation

Q(F p, F n−p+1) = 0

is satisfied.

We note that by the non-degeneracy of Q

F p = (F n−p+1)⊥.

The complex group G(C) acts transitively on qD with isotropy group
PF • a parabolic subgroup of G(C). The identification

qD = G(C)/PF •

gives qD the structure of a homogeneous, rational projective algebraic
variety. The above Q-bilinear relations and the inclusions

qD ↪→
¹
p

Grass(fp, VC),

together with the standard Plücker embedding of the Grassmanians,

show that qD is defined over Q. Thus, we may talk about the field of

definition of a point F • ∈ qD.
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For a point ϕ ∈ D we denote by F •ϕ the corresponding point in qD.
Since G(R) acts transitively on D, it follows that D is the open G(R)-
orbit of a point F •ϕ ∈ D. This provides an alternate description of the
complex structure on D.

We denote by qD0 ⊂ qD the (real-Zariski-) open set of all filtrations
F • that define Hodge structures; i.e. that satisfy the open conditions

F p ⊕ F n−p+1 ∼→ VC

for all p. Filtrations in some of the topological components of qD0

outside of D define Hodge structures that satisfy Hodge-Riemann I
and where the Hermitian forms in Hodge-Riemann II are non-singular
but indefinite. These components are orbits of G(R) where the isotropy
groups are non-compact.

Among the interesting points in qD are those corresponding to the
limiting Hodge filtrations that arise when a family of Hodge structures
arising from a variation of Hodge structure degenerates.

I.C. Mumford-Tate groups.

Definition. Given a Hodge structure (V,Q, ϕ), the Mumford-Tate group
Mϕ is the smallest Q-algebraic subgroup of G with the property that

ϕ(U(R)) ⊂Mϕ(R).

In other words, Mϕ is the intersection of all Q-algebraic subgroups
M ′ ⊂ G such that M ′(R) contains the circle S1

ϕ. The following is the
basic property of Mumford-Tate groups (cf. [Mu], [DMOS], [Mo]):

(I.C.1) Mϕ is the subgroup of G that fixes pointwise the algebra of
Hodge tensors.

We will deduce (I.C.1) from the following more general result:

(I.C.2) Mϕ is the subgroup of G with the property that the Mϕ-stable
subspaces W ⊂ T a,bϕ are exactly the sub-Hodge structures of these tensor
spaces.

Proof of (I.C.2). If Mϕ(W ) ⊆ W then Mϕ(R)(WR) ⊆ WR, and since
the circle S1

ϕ ⊂Mϕ(R) it follows that W is a sub-Hodge structure.

Conversely, if W ⊂ T a,bϕ is a sub-Hodge structure, then the form QW

induced by Q is non-degenerate on W and we have

T a,bϕ = W ⊕W⊥.

Moreover, the image ϕ(U(R)) respects this decomposition. Thus, if
MW ⊂ G is the Q-algebraic subgroup of G stabilizing the subspace
W ⊂ T a,bϕ , it follows that ϕ(U(R)) ⊂MW (R) and thus Mϕ ⊆MW . �
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Let M ′
ϕ be the subgroup of G that pointwise fixes the algebra of

Hodge tensors. We first show that Mϕ ⊂ M ′
ϕ. Since Hga,bϕ ⊂ T a,bϕ is

a sub-Hodge structure and Mϕ is faithfully represented acting on T a,bϕ ,

and since ϕ(U(R)) acts trivially on Hga,bϕ,R, it follows that the image of

Mϕ acting on T a,bϕ splits according to T a,bϕ = Hga,bϕ ⊕ (Hga,bϕ )⊥ and acts
as the identity on the first factor.

To show that M ′
ϕ ⊆ Mϕ, we let W ⊂ T a,bϕ be a sub-Hodge struc-

ture and we have to show that M ′
ϕ(W ) ⊆ W . If dimW = d, then

the line ΛdW in Λd(T a,bϕ ) consists of Hodge classes and therefore, by
assumption, is left fixed by M ′

ϕ. It then follows that M ′
ϕ(W ) ⊆ W .

�

Other properties of Mϕ are:

(i) Mϕ is a connected, reductive Q-algebraic group.

We note that Mϕ(R) may not be connected as a real Lie group.

(ii) If ρ : Aut(V,Q) → Aut(Vρ, Qρ) is a representation of G =
Aut(V,Q) and ϕ is a Hodge structure for V , then ρ(ϕ) is a
Hodge structure for Vρ and

Mρ(ϕ) = ρ(Mϕ).

(iii) When Mϕ is a simple Q-algebraic group, Mϕ(R) may not be
a simple real Lie group. More generally, the almost product
decomposition of Mϕ(R) into simple factors and an abelian part
may be finer than the Q-almost product decomposition of Mϕ.

Using (I.C.1) we may give the following

Definition. For F • ∈ qD, we define the Mumford-Tate group MF • to
be the subgroup of G that pointwise fixes the algebra Hg•,•F • of Hodge
tensors.

Of particular interest are the Mumford-Tate groups MF • that arise

when F • ∈ qD is the Hodge filtration arising from a mixed Hodge
structure, especially in the case of limiting mixed Hodge structures.
The relation of these, together with that of Mumford-Tate domains as
defined in the next section, to the Kato-Usui spaces ([KU]) remains to
be carried out and seems to us a project of fundamental interest.

Example. The classical example is when the weight n = 1 and the
Hodge number h1,0 = 1. We take V = Q2 written as column vectors,

Q =

(
0 1
−1 0

)
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and

Q(u, v) = tv Qu.

Then qD = P1(C) and every point ϕ ∈ D has a unique homogeneous
coordinate representative

ϕ↔
[
τ
1

]
, Im τ > 0.

The group G(R) is equal to SL2(R) with elements g =

(
a b
c d

)
, ad −

bc = 1, acting as usual by linear fractional transformations. Taking our
reference point ϕ0 to be given by τ = i and letting ϕ ∈ D correspond
to the conjugacy class g−1Hϕ0g, for t ∈ S(R) represented as above by
(v, u) with u2 + v2 = 1, we have

ϕ(t) =

(
u+ v(ab+ cd) v(b2 + d2)
−v(a2 + c2) u− v(ab+ cd)

)
.

The only proper reductive subgroups of SL2(Q) defined over Q are
algebraic 1-tori, such as

Hϕ0 =

{(
a b
−b a

)
, a2 + b2 = 1

}
.

So Mϕ is either SL2 or a 1-torus, and the latter happens precisely when
τ = g · i is a quadratic irrationality.

I.D. Mumford-Tate domains. Let ϕ ∈ D be a Hodge structure with
Mumford-Tate group Mϕ.

Definition. A Mumford-Tate domain DMϕ ⊂ D is the Mϕ(R)-orbit
of ϕ.

We shall sometimes omit reference to ϕ and shall simply speak of a
Mumford-Tate domain DM ⊂ D.

A fundamental property is

(I.D.1) DMϕ is a homogeneous complex submanifold of D.

Proof. The basic observation is that

(I.D.2) mϕ is a sub-Hodge structure of gϕ.

This is simply because

Adϕ : S(R)→ mϕ(R).
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We thus have

mϕ,C = ⊕
i

m−i,iϕ

= m−ϕ ⊕m−ϕ ⊕m0,0
ϕ

where m−ϕ = ⊕
i>0

m−i,iϕ and m0,0
ϕ is the complexified Lie algebra of the

isotropy group Mϕ(R) ∩Hϕ at ϕ of the action of Mϕ(R) on DMϕ . As
in the discussion in I.B above,m−ϕ gives the (1, 0) tangent space at ϕ ∈
DMϕ to an Mϕ(R)-invariant integrable almost complex structure. �

Let

mϕ,R =
k
⊕
α=1

mα ⊕ a

be the direct sum decomposition of mϕ,R into R-simple factors mα and
an abelian part a. We observe that Adϕ(S(R)) preserves this decom-
position. Moreover, since hϕ,R is the centralizer in gR of Adϕ(S(R)) it
follows that a ⊂ hϕ,R. Thus the Mumford-Tate domain

DMϕ = D1 × · · · ×Dk

is a product of homogeneous, complex submanifolds where Dα is the
exp Mα-orbit of ϕ, where Mϕ is the almost direct product

±
αMα×T .

In practice we will be interested in the quotient Γ \ DMϕ by an
arithmetic subgroup of Mϕ. The group Γ will not in general split so
that Γ \DMϕ may be irreducible whereas DMϕ is not. An example of
this is in Mumford’s original paper [Mu] where D is the Siegel upper-
half space H4 and Mϕ is simple whereas mϕ,R ∼= sl2(R)⊕ sl2(R)⊕ su(2).
Higher weight examples are given in section III of [GGK].

A fundamental difference between the classical and general cases is
the following:

(I.D.3) In the weight n = 1 case, the orbit of any compact factor of
Mϕ(R) is a point. This is not true when n = 2.

In the classical case, the orbit of any connected compact factor of
Mϕ(R) is a compact, complex submanifold of a bounded Hermitian
symmetric domain and therefore is a point. In the general case the
fibres of

G(R)/Hϕ → G(R)/Kϕ,

where Kϕ is the unique maximal compact subgroup of G(R) that con-
tains Hϕ, are compact, complex submanifolds of D. One may show by
examples that there are points ϕ ∈ D where Hϕ ( Mϕ ⊆ Kϕ.
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Example. For a weight n = 2 Hodge structure with decomposition
over R

VR = (V 2,0 ⊕ V 2,0
)R ⊕ V 1,1,

assume that this decomposition is actually defined over Q. Then for

a general Hodge structure of this type with W = (V 2,0 ⊕ V 2,0
)Q and

QW = Q |W , it may be shown that

Mϕ = Aut(W,QW ) ⊂ G.

Since QW is positive definite, it follows that Mϕ(R) is compact and
that DMϕ is the fibre through ϕ of the map G(R)/Hϕ → G(R)/Kϕ.

II. The structure theorem

II.A. Variations of Hodge structure. The main difference between
the classical case when the weight n = 1 and D is a bounded Hermitian
symmetric domain and the higher weight case is that in the latter case
the maps to D arising from algebraic geometry satisfy a differential
constraint. To explain this, we recall the natural identification

TE Grass(d, VC) ∼= Hom(E, VC/E)

for the tangent space to the Grassmannian of d-planes in VC at a point
E ∈ Grass(d, VC). It follows that there is a natural inclusion

TF • qD ⊂ ⊕
p

Hom(F p, VC/F
p).

Definition. The canonical sub-bundle W ⊂ T qD given by the infini-
tesimal period relation is defined by

(II.A.1) WF • = TF • qD ∩
(
⊕
p

Hom(F p, F p−1/F p)

)
.

We will continue to denote byW the restriction toD of the infinitesimal

period relation. The bundle W → qD is acted on by G(C) and the action
of G(R) on W → D leaves invariant the metric given by the Cartan-
Killing form at each point. With the identification of the holomorphic
tangent space

TϕD ∼= ⊕
i>0

g−i,iϕ

we have that

(II.A.2) Wϕ = g−1,1
ϕ .

Although in this paper we shall not get into a detailed discussion,
we note that the negative curvature properties of period domains that
hold in the sub-bundle W ⊂ TD — but except in the classical case not
in the whole tangent bundle — carry over to Mumford-Tate domains
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and allow the application of hyperbolic complex analysis to variations of
Hodge structure in Mumford-Tate domains as in the structure theorem
(II.B.6) below.

We will define variations of Hodge structure in the setting most ap-
propriate for this paper. For this we assume given a lattice

VZ ⊂ V

with VZ ⊗Q = V . We then have the subgroup

G(Z) = GL(VZ) ∩G
of G.

Definition. A variation of Hodge structure is given by

(II.A.3) Φ : S → Γ \D
where

(i) S is a connected, smooth, quasi-projective complex algebraic
variety;

(ii) Γ is a subgroup of G(Z); and
(iii) Φ is a locally liftable holomorphic mapping whose local lifts are

integral manifolds of the canonical distribution given by W .

Condition (iii) means the following: Around each point s ∈ S there
is a neighborhood U and a local lifting

D

��

U

Φ̃
<<yyyyyyyyy Φ // Γ \D

where Φ̃ is holomorphic and

(II.A.4) Φ̃∗ : TU→ W.

Although general period domains are very far from being Hermitian
symmetric, a guiding principle in Hodge theory has been

Variations of Hodge structure have the same properties
as they do when D is Hermitian symmetric.1

In fact, so far as we know, the only properties special to the classical
case have to do with the presence of automorphic forms. As an example
of this we have the result

1A similar statement holds with respect to variations of Hodge structure that
arise from families of algebraic varieties. Again, so far as we are aware all prop-
erties that hold for these have been shown to hold for general variations of Hodge
structure.
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(II.A.5) Let M be a Mumford-Tate group with M(R) compact. Then
the image of DM in Γ\D meets the image Φ(S) of a variation of Hodge
structure in points.

Idea of the proof. There are two steps:

(i) Any Mumford-Tate groupMϕ withMϕ(R) compact is contained
in the maximal compact subgroup Kϕ.2

(ii) At any point ϕ ∈ D, the subspaces Wϕ and Tϕ(Kϕ · ϕ) of TϕD
intersect only in zero.

Here, Kϕ · ϕ ⊂ D is the Kϕ-orbit of ϕ. Except in the classical case, it
is positive dimensional.

The proof of (ii) comes by observing that the complexified Lie aglebra
of Kϕ is

kϕ,C = ⊕
i≡0(2)

g−i,iϕ

whereas
Wϕ = g−1,1

ϕ .

For (i), since m ⊂ g is a sub-Hodge structure, we have

(II.A.6) mC = ⊕
i

m−i,i where m−i,i = g−i,i ∩mC.

The assumption that M(R) is compact comes in by observing that,
since the Cartan-Killing form is negative on the semi-simple part of
mR, only terms m−i,i with i ≡ 0(2) enter in (II.A.6).

II.B. The structure theorem. We begin by defining the Mumford-
Tate group MΦ for a variation of Hodge structure (II.A.3). For this we
observe that for any γ ∈ Γ and ϕ ∈ D, we have

γ(Hg•,•ϕ ) = Hg•,•γ(ϕ).

Thus the algebra of Hodge tensors is well-defined at a point of Γ \D.

Definition. The Mumford-Tate group MΦ of a variation of Hodge
structure Φ : S → Γ \ D is defined to be the Mumford-Tate group
MΦ(η) where η is a generic point of S.

More precisely, in the path-connected complement of a countable
union Z of proper analytic subvarieties of S, the algebra of Hodge
tensors will be locally constant. Generic means that η ∈ S \ Z.

Since Φ is locally liftable, choosing a base point s0 ∈ S there will be
a monodromy representation

(II.B.1) ρ : π1(S, s0)→ Γ.

2More precisely, we have Mϕ(R) ⊂ Kϕ.
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In what follows, we will take Γ to be the image of π1(S, s0).
We shall consider the variation of Hodge structure (II.B.3) up to

isogeny. This means that if S̃
π→ S is a finite cover, then Φ and

Φ̃ = Φ ◦ π : S̃ → Γ̃ \D

are considered equivalent. Here Γ̃ is the subgroup of finite index in Γ
given by the Φ̃ image of π1(S̃, s̃0) where π(s̃0) = s0. The reason for
doing this is the following: Assuming that the base point s0 ∈ S is
generic in the above sense, the algebra of Hodge tensors at any point
ϕ(s0) ∈ D lying over Φ(s0) is invariant under the monodromy group

Γ. Since the polarizing form is definite on each Hga,bϕ(s0) and Γ acts by

integral matrices, it follows that Γ acts on Hga,bϕ(s0) as a finite group.

Thus, by passing to a finite covering S̃ → S we may assume that
monodromy acts trivially on Hg•,•

rϕ(s0).

Assuming this has been done, so that Γ fixes Hg•,•ϕ(s0), we observe first

that

(II.B.2) Γ ⊂ G(Z) ∩MΦ.

Secondly, if ϕ ∈ D is any point lying over Φ(η) ∈ Γ\D, then Mϕ = MΦ

and we have that

(II.B.3) Φ : S → Γ \DMΦ
.

That is, by (II.B.1) the Mumford-Tate domain DMΦ
is invariant under

Γ so that Γ \ DMΦ
is defined. Then, by the definition of genericity of

η, the image Φ(S) lies in the subvariety Γ \DMΦ
⊂ Γ \D.

We now let

(II.B.4) MΦ = M1 × · · · ×M` × T

be the almost product decomposition of MΦ into Q-simple factors Mi

and an algebraic torus T . Denoting by Di ∈ DΦ the Mi(R) orbit
of ϕ(s0), and noting that T fixes ϕ(s0), we have a splitting of the
Mumford-Tate domain

DMΦ
= D1 × · · · ×D`.

(II.B.5) Structure theorem: The monodromy group Γ splits as an
almost direct product

Γ = Γ1 × · · · × Γk, k 5 `

where Γi(Q) = Mi.
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The notation means that Γi ⊂ Mi ∩ G(Z) and that the Q-Zariski
closure Γi(Q) of Γi in Mi is equal to Mi. Letting D′ = Dk+1× · · ·×D`

be the factors where the monodromy is trivial, the structure theorem
and its proof have the implication:

(II.B.6) The variation of Hodge structure is given by

Φ : S → Γ1 \D1 × · · · × Γk \Dk ×D′ ⊂ Γ \D
where Γi(Q) = Mi. Moreover, Γi and Mi(Z) = Mi ∩ G(Z) have the
same algebra of tensor invariants in T •,•.

Thus, since it seems not to be known — one way or the other —
whether Γi is an arithmetic group; i.e., a subgroup of finite index in
Mi(Z), we know at least that as far as their tensor invariants go Γi and
Mi(Z) are indistinguishable.

The structure theorem is a consequence of the theorem on the fixed
part (cf. [Sc] and the argument given by André [A]).

Discussion. It is known that a variation of Hodge structure (II.A.3)
is algebro-geometric in the following sense: The image Φ(S) ⊂ Γ \ D
is a quasi-projective algebraic subvariety of the analytic variety Γ \D.
It is also known that Φ(S) has finite volume relative to the volume
form induced by the natural G(R)-invariant metric on D. One may
then infer that the same properties hold for the non-trivial irreducible
factors

(II.B.7) Φi : S → Γi \Di

in the structure theorem. If Γ′i ⊂ Mi(Z) is any subgroup with Γi ⊂ Γ′i
and such that Γ′i leaves invariant the inverse image of Φi(S) in Di, it
follows that Γi is of finite index in Γ′i.

Suppose now that the variation of Hodge structure (II.A.3) is one
of the irreducible factors in (II.B.6) and set D = DM where M is the
Mumford-Tate group. We say that Φ : S → Γ \DM is maximal if, as
always up to isogeny, S is a Zariski open set in any variation of Hodge
structure

Φ′ : S ′ → Γ′ \DM

where S ⊂ S ′, Γ ⊂ Γ′ and Φ′ = Φ |S. In the classical case it is known
that

(i) any variation of Hodge structure is contained in a maximal one;
and

(ii) for any maximal variation of Hodge structure the monodromy
group is arithmetic.

Question. Are (i) and (ii) true in the general case?
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Remark. Once one leaves the classical case, certain phenomena that
might be described as anomalous enter. The use of Mumford-Tate
groups and the structure theorem help to siphon out anomalous phe-
nomena. Here is an example.

Definition. A set of Hodge numbers {hp,q}p+q=n is connected if hp0,q0 ,
hp1,q1 /= 0 ⇒ hp,q /= 0 for all integers p ∈ [p0, p1]. This property is
equivalent to any two points of D being connected by an integral curve
of the distribution W ⊂ TD. If the set of Hodge numbers is not
connected then anomalous phenomena arise. For example, suppose
n = 5 and h4,1 = h1,4 = 0 but all other hp,q /= 0. The Hodge structures
are then

(II.B.8)

{
VC = V 5,0 ⊕ V 3,2 ⊕ V 2,3 ⊕ V 0,5

V 0,5 = V
5,0
, V 2,3 = V

3,2
.

We note that for such a Hodge structure there is an associated abelian
variety arising from

V ′ := V 5,0 ⊕ V 3,2,

where we have {
Q(V ′, V ′) = 0
Q(u,Cū) > 0 0 /= u ∈ V ′.

For any variation of Hodge structure of type (II.B.8), the subspace
V 5,0 is constant. Hence, if V f ⊂ V is the fixed part where monodromy
is trivial, we have

(V 5,0 ⊕ V 5,0
)R ⊂ V f

R .

Writing V ν = (V f )⊥ for the part on which monodromy has no trivial
factors, the variation of Hodge structure is just that of the family of
abelian varieties given by the Hodge decomposition of V ν

C

(V 3,2 ∩ V ν
C )⊕ (V 3,2 ∩ V ν

C ).

This phenomenon is detected by splitting off the constant factors in
the structure theorem.

III. Universal characteristic cohomology of
Mumford-Tate domains

III.A. Characteristic cohomology. Let X be a complex manifold
and W ⊂ TX a holomorphic sub-bundle. Then

I := W⊥ ⊂ T ∗X
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is a holomorphic bundle and we let I be its conjugate in (T ∗RX) ⊗ C.
Denoting by A•,•(X) = ⊕

p,q
Ap,q(X) the algebra of smooth differential

forms on X we have the

Notation. I•,• ⊂ A•,•(X) is the differential ideal generated by the
smooth sections of I ⊕ I.

Concretely, if locally I is generated over an open set U by holomor-
phic 1-forms θα, then I•,• consists of global forms ψ that locally are
expressed as

ψ = ψα ∧ θα + ψαθ
α

+ Ψα ∧ dθα + Ψα ∧ dθα.
An integral manifold of I•,• is given by a manifold Y and a smooth
mapping

(III.A.1) f : Y → X

such that f ∗(I•,•) = 0. We may think of integral manifolds as solutions
to the differential equations

(III.A.2)

{
θα = θ

α
= 0

dθα = dθα = 0.

In case Y is a complex manifold and f is holomorphic – the case we
will be considering in this paper — integral manifolds satisfy

f∗ : TY → W ⊂ TX.

The quotient space

Q•,• = A•,•(X)/I•,•

has an induced exterior derivative dQ.

Definition. The characteristic cohomology H∗I (X) is the cohomology
of the complex (Q•, dQ) where Qn = ⊕

p+q=n
Qp,q.

For an integral manifold, we have a map

(III.A.3) f ∗ : Hn
I (X)→ Hn(Y )

from the characteristic cohomology asssociated to (X, I•,•) to the usual
cohomology of Y . We may think of characteristic cohomology as that
cohomology that induces ordinary cohomology on integral manifolds by
virtue of their being solutions to the PDE system (III.A.2).

In this paper we will be interested in the case where X is a Mumford-
Tate domain and W is the infinitesimal period relation. In preparation
for this we assume that X is a homogeneous complex manifold of the
form

X = A/B
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where A is a real, semi-simple Lie group and B is a compact, con-
nected subgroup. For the complexified Lie algebras, we have the AdB-
invariant splitting

gC = t⊕ bC

where {
t = t1,0 ⊕ t0,1

t0,1 = t
1,0

defines the complex structure on X. We also assume that the Cartan-
Killing form defines an A-invariant Hermitian metric h on X. We
denote by w ⊂ t1,0 the subspace given by the fibre W at the identity
coset, and we have the AdB-invariant decomposition

t1,0 = w⊕ v.

Using the metric, we identify t with its dual ť and v with its dual v̌.
Finally we denote by [w,w]v the image in v of the brackets of elements
in w. Since [bC,w] ⊆ w, this is well-defined and we set{

k = ker {[ , ]v : ∧2w→ v}
∧2w = l⊕ k

Notation. We set{
Λ1,0 = w,Λ0,1 = w

Λp,q = (l ∧ Λp−1w)⊗ (l ∧ Λq−1w).

Basic observation. Λ•,• is isomorphic to the complex of A-invariant
forms in I•,•.

The points are: (i) We identify the various vector spaces with their

duals using the invariant metric; (ii) In degree one, w̌ ⊕ w̌ gives the

fibres of ŤX/I ⊕ ŤX/I; and (iii) Using the Maurer-Cartan equation,
ǩ ⊂ Λ2w̌ gives the values at the identity coset of the forms dθ where θ
is a section of I — this is the main point.

The induced exterior derivation dQ induces a differential

δ : Λn → Λn+1

where Λn = ⊕
p+q=n

Λp,q and we have the result

(III.A.4) The cohomology of the A-invariant forms in I•,• is isomor-
phic to H∗(Λ•, δ).

Definition. We shall call H∗(Λ•, δ) the invariant characteristic coho-
mology.
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It is this that in the next section we shall be interested in for Mumford-
Tate domains. To conclude this section we mention what we feel is a
very interesting question.

To explain this we assume that X is compact but do not assume that
it is homogeneous. We also assume that the sections of

W + [W,W ]

generate a sub-bundle of TX. Using an Hermitian metric h on X, we
may define Q•,• to be a subspace of A•,•(X) by taking the orthogonal
complements to the values of the forms in I•,• at each point of X. This
enables us to define a global inner product on Q•,•, an adjoint d∗Q to
dQ, and a Laplacian

∆Q = dQd
∗
Q + d∗QdQ.

Then as usual we may define a “harmonic” space

Hn
I (X, h) = ker{∆Q : Qn → Qn}.

In order for this to have relevance to Hn
I (X) we make the following

Assumption. W is bracket-generating.

This means that

W + [W,W ] + [W, [W,W ]] + · · · = TX.

It may be checked that this assumption is equivalent to the operator ∆Q

being hypoelliptic, and in this case we have the following Hodge-type
theorem communicated to us by Michael Taylor:

The natural map

Hn
I (X)

∼→ Hn
I (X)

is an isomorphism.

For applications one would like to have a Hodge structure on Hn
I (X).

The natural way this could arise is if one has the commutation relation

(III.A.5) [∆Q,Π
p,q] = 0

where

Πp,q : Q• → Qp,q

is the projection onto forms of type (p, q). For Hermitian manifolds
when W = TX, Chern [C] proved that (III.A.5) is equivalent to the
metric h being Kähler. This leads to the

Question. What are the necessary and sufficient conditions, expressed
in terms of the metric h and distribution W , that (III.A.5) holds?
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III.B. Invariant characteristic cohomology for Mumford-Tate
domains. We consider the situation of section III.A when X = DM ⊂
D is a Mumford-Tate domain and WM ⊂ TDM is the infinitesimal
period relation. We shall denote by Λ•,•M the complex of G(R)-invariant
forms in A•,•(DM)/I•,•, with the operator δM : Λ•M → Λ•+1

M being
induced by the exterior derivative.

Definition. In this situation we shall refer to H∗(Λ•M , δM) as the uni-
versal characteristic cohomology.

The reason for the term is that the image of H∗(Λ•M , δM) in H∗I (DM)
is G(R) invariant. Hence, for any variation of Hodge structure (II.A.3)
there is an induced map

Φ∗ : H∗(Λ•M , δM)→ H∗(S)

independent of the monodromy group Γ.

(III.B.1) Proposition: For the universal characteristic cohomology
we have H2p+1(Λ•M , δM) = 0 and

H2p(Λ•M , δM) ∼= (Λp,p)m0,0

.

That is, the universal characteristic cohomology vanishes in odd degree,
and in even degrees it is all of Hodge type (p, p) and given by the G(R)-
invariant (p, p) forms in the complex Q•,•.

Proof. Using the Hodge structure on m we have

mC = ⊕m−i,i

and the notational correspondence with that in the previous section is
t ↔ ⊕

i>0
m−i,i

w ↔ m−1,1

bC ↔ m0,0.

The proposition will follow from

(III.B.2)
(
Λpm−1,1 ⊗ Λqm1,−1

)m0,0

= 0 if p /= q.

The reason for this is that the circle S1 acts by Adϕ(S(R)) on m with
eigenspaces m−i,i, and for t ∈ S1 we have{

t(u) = t−2u, u ∈ m−1,1

t(v) = t2v, v ∈ m1,−1.

Since ϕ(S(R)) ⊂ H, where H = M(R) ∩Hϕ is the isotropy group, the
result follows. �

Remark. We note that, consistent with (II.A.5), when M(R) is com-
pact it follows that Λ•,•M = (0).
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Discussion. The proposition should be viewed as a very partial result.
The desired result would be to explicitly identify the AdH-invariants
in Λp,p

M . We note that the integrability condition arising from

[ , ] : Λ2m−1,1 → m−2,2

did not enter into the proof, and those will need to play a crucial role
in determining (Λp,p

M )m0,0
.

For any period domain D there are defined the Hodge bundles

Vp,q → D

with fibre V p,q
ϕ over ϕ ∈ D. In a separate work it will be proved that

(III.B.3) In the case when DM = D; i.e., M = G, the universal
characteristic cohomology is generated by the Chern forms of the Hodge
bundles.

The proof is based on a detailed analysis of the representation theory
of the isotropy group Hϕ. An interesting point is that except in the
classical case, where the relations among the Chern forms are universal
and well-known, there are additional relations

(III.B.4) ci(Fp)cj(Fn−p) = 0 if i+ j > hp,n−p

imposed by the integrability conditions.
For a Mumford-Tate domain DM ⊂ D, the Hodge bundles on D

restrict to Hodge bundles on DM . We ask the question

(III.B.5) In general, do the Chern forms generate the universal char-
acteristic cohomology?

Since the conditions that a reductive Q-algebraic group be a Mumford-
Tate group are not known,3 one may ask more specifically the follow-
ing

(III.B.6) Let M be a Mumford-Tate group such that M(R) is a simple
Lie group and the representation M(R)→ GL(VR) is irreducible. What
are the conditions in the highest weight that the Chern forms generate
the characteristic cohomology?

In case this holds, what are the relations on the generators?

This seems to us a particularly interesting question because the inter-
action between representation theory and the integrability conditions
will have to enter.

3We believe that this is an interesting and feasible question.
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Remark. At the end of section II.B we have remarked on “anoma-
lous phenomenon” that arise in non-classical Hodge-theoretic consid-
erations. Another type of anamolous phenomenon concerns the old

(III.B.7) Question: Can one give sufficient conditions that a varia-
tion of Hodge structure arise from algebraic geometry?

As previously noted, all to us known properties of a variation of Hodge
structure arising from algebraic geometry4 hold for general variations
of Hodge structure. However, a guess such as “a variation of Hodge
structure given by

(III.B.8) Φ : S → Γ1 \D1 × · · · × Γk \Dk

in (II.B.6) is motivic” is false, because one may do something stupid like
taking a motivic variation of Hodge structure and tensoring it with a
general constant, non-motivic Hodge structure. What has been missing
is some good notion of primitive, which would mean that the variation
of Hodge structure is not composed as above from lower weight varia-
tions of Hodge structure. It seems possible that universal characteristic
cohomology might be relevant to this issue.

IV. Noether-Lefschetz loci

IV.A. Mumford-Tate domains and Noether-Lefschetz loci. Let
ϕ ∈ D be a Hodge structure with algebra Hg•,•ϕ ⊂ T •,• of Hodge tensors.
Because we will be interested in the algebra Hg•,•ϕ and not the particular
ϕ, we denote Hg•,•ϕ by H•,• and by M the Mumford-Tate group Mϕ.
We think of M as a subgroup of G and not as an abstract group.

Definition. The Noether-Lefschetz locus NLM ⊂ D is defined by

NLM =
{
ϕ ∈ D : H•,• ⊆ Hg•,•ϕ

}
.

That is, NLM consists of all Hodge structures whose algebra of Hodge
tensors is at least as big as the algebra H•,•.

We may give the same definition of the Noether-Lefschetz locus |NLM
associated to a point F • ∈ qD. When F • = F •ϕ for some ϕ ∈ D, it is
clear that

NLM = |NLM ∩D.
It is also clear that

(IV.A.1) |NLM ⊂ qD is an algebraic subvariety defined over Q.

4We shall refer to these as motivic variations of Hodge structure.
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As will be discussed below, |NLM will not in general be irreducible
and NLM will be smooth but generally will not be connected. For the
individual components we have the

(IV.A.2) Theorem: When H•,• = Hg•,•ϕ for a point ϕ ∈ D, the
component of NLM passing through ϕ is equal to the component D◦Mϕ

of the Mumford-Tate domain passing through ϕ.

This result is plausible because both NLM and Mϕ are defined over
Q in terms of the algebra of Hodge tensors associated to the Hodge
structure ϕ. However, since DMϕ is defined using Mϕ(R) it does not
seem to be entirely obvious.

One consequence of the theorem is that the components of NLM are
smooth submanifolds of D. Another is the dimension count

(IV.A.3) codimD NLM = codimg−(m−ϕ ).

This result is also not obvious. For example, if the weight n = 2m is
even and ζ ∈ V , then the locus

NLζ ⊂ D

where ζ ∈ Hg2m
ϕ = V ∩ V m,m

ϕ is easily seen to be smooth and of codi-
mension

(IV.A.4) h2m,0 + · · ·+ hm+1,m−1

in D. However, since to our knowledge there is as of yet no information
on the effective generators of the algebra Hg•,•ϕ ,5 there does not seem to
be a direct way to iterate this procedure to estimate the codimension
of NLM .

For a variation of Hodge structure (II.A.3), the pullback under Φ of
the image in Γ\D of a Noether-Lefschetz locus is an object of classical
and continuing algebro-geometric interest. The quantity on both sides
of (IV.A.3) gives an upper bound which, except in the classical case,
is way off. A first correction comes from the 1st order information in
the differential constraints given by the infinitesimal period relation.
For example, in case H•,• is effectively generated by the polarization
and a single Hodge class ζ ∈ V •, the quantity (IV.A.4) is replaced by
hm+1,m−1. When the second order, or integrability conditions, are taken
into account a further decrease occurs. This is explained in section

5Effective generator means a generator in Hga,b
ϕ of the algebra such that adding

it to the algebra generated by the tensors in Hga′,b′

ϕ for all a′, b′ with a′ + b′ <
a + b decreases the corresponding locus, either by decreasing the dimension or by
eliminating one or more components.
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(II.F) of [GGK] (cf. Theorem (II.F.5)), where the estimate given there
is shown by example to in general be sharp.

IV.B. Arithmetic properties of Noether-Lefschetz loci. For sim-
plicity of exposition, in this section we will assume that Hodge struc-
tures Vϕ are simple, i.e. have no non-trivial sub-Hodge structures.6

Then the endomorphism algebra

Eϕ =

{
α : V → V with
α(V p,q

ϕ ) ⊆ V p,q
ϕ

}
is a division ring over Q.

One extreme of Mumford-Tate domains occurs when DMϕ = D; i.e.
Mϕ = G. The other extreme is when DMϕ is a point. We recall that a
CM-field is a totally imaginary extension L of Q having a totally real
subfield K with [L : K] = 2.

(IV.B.1) Proposition: The following are equivalent:

(i) DMϕ is a point;
(ii) Mϕ is an algebraic torus Tϕ;
(iii) Eϕ is a CM-field of degree dim(V ) over Q.

Sketch of the proof. (i) =⇒ (ii) If DMϕ = Mϕ(R).ϕ is just the point
{ϕ}, then Mϕ is contained in the isotropy group7 Hϕ. Now Hϕ(Q) is
equal to Aut(V,Qϕ) = Eϕ ∩G(Q) and thus

Mϕ(Q) ⊆ Eϕ.

But Mϕ always commutes with Eϕ, so here it commutes with Mϕ(Q).
Since Mϕ is defined over Q, Mϕ(Q) is Q-Zariski dense in Mϕ and thus
Mϕ is abelian and is an algebraic torus.

(ii) =⇒ (iii) This is a standard argument in the literature (cf. [Mo]
and [GGK]).

(iii) =⇒ (i) The assumption that Eϕ is a field of degree8 dim(V )

implies that E∗ϕ are the Q-points of a maximal torus rT (defined over
Q) of GL(V ) which diagonalizes with respect to some Hodge basis.

Therefore rT (R) ⊃ ϕ(S(R)), which implies M ⊂ rT ∩G. Moreover, sincerT ∩G ⊂ Hϕ, Mϕ ⊂ Hϕ so that Mϕ(R).ϕ = {ϕ}. �

6The general case is treated in detail in sections III and IV of [GGK].
7In this proof, Hϕ is treated (notationally) as an algebraic group rather than as

a real Lie group.
8Note that we do not need to use the fact that Eϕ is a CM-field.
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In section III of [GGK] there is a detailed analysis and numerous
examples of CM-Hodge structures. There it is also shown that the
CM-Hodge structures are topologically dense in NLM . There also the
following result of Abdulali [Ab] is discussed:

A CM-Hodge structure is motivic.

This is the only result we know, aside from the classical case, where suf-
ficient conditions are given to ensure that an abstract Hodge-theoretic
object is motivic. In this regard, we know no example of an explicitly
given Hodge structure that is not motivic.

As mentioned above, |NLM is in general not irreducible and NLM =|NLM ∩ D is not connected. For example, there may be several CM-
Hodge structures corresponding to a fixed CM-field E. It is interesting
to know the answer to questions such as:

(i) What is the largest subgroup of G(R) stabilizing NLM?
(ii) Does this group transitively permute the components of NLM?
(iii) What is the field of definition of the irreducible components of|NLM?

Regarding (i) one has the

(IV.B.2) Theorem: The largest subgroup of G(R) stabilizing NLM
is the normalizer NG(M,R) of M(R) in G(R). A similar result holds

regarding |NLM and NG(M,C).

Regarding (ii), we first note that in the classical case, NLM is a single
M(R)-orbit, whereas this is definitely not so in the non-classical case.

(IV.B.3) Proposition: Let T ⊂ G be a maximal anisotropic real torus
which is defined over Q. Then the Weyl group WG(T,R) of T (R) in
G(R) acts transitively on the components of NLT . There is a similar

statement for WG(T,C) and the components of |NLT .

Turning to (iii), we say that a Hodge structure ϕ is non-degenerate
if Hg•,•ϕ is effectively generated by Hg1,0

ϕ and Hg1,1
ϕ . For example, in

the situation where the equivalent conditions of (IV.B.1) hold, Vϕ is
nondegenerate if and only if Tϕ is a maximal torus in G.

Let ϕ0 be a non-degenerate CM-Hodge structure of odd weight and
L ⊂ End(Vϕ0) its CM-field (assumed Galois). Using the non-degeneracy
assumption, it follows that the Mumford-Tate group Tϕ0 is just the
commutator of L in G, written T = GL. Letting K ⊆ L be a normal
subfield we have the
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(IV.B.4) Theorem: For M = GK, the permutation action of

WG(M) :=
NG(M) ∩NG(T )

NM(T )

on the components of |NLM reproduces that of Gal(C/Q). In particular,
the orbits of WG(M) acting on components are defined over Q, and

individual components of |NLM are defined over K.
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