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1.. Introduction

This paper concerns some new formulas for the regulator maps

Kyrc6))= CH',(nx.n) + Hb1x.Z(n)):

the maps themselves, at least in principle, have been around since the publication
of [l]. our aim is to make them more accessibie to computation. we will usually
be concemed with the case where X is an (n - l)-dimensional projective variery,
so that (ignoring torsion) the maps take the form

R: KY @.6D - H"-r (nx,C/e(n)) : Hom{H,_1(nx, z), c/efu)}.
(l.l)

To motivate our formula, we essentially generalize the approach of Bloch for
n : 2 in chapter 8 of [2] (see Section 6.4). we begin in Section 3 with the explicir
Hodge-theoretic construction of what amounts to a Deligne cycle-class map for
codimension-n relative algebraic cycles on rtx x (D,, dln), where (!,'.0n,) is
cubical relative affine n-space. we call these cycles graphs, and some nontrivial
geometry goes into computing the AJ part of this map. By identifying formal linear
combinations f € @'Z{C(X)*i with graphs yr € 2,, (rlx, n). we motivate a formula
assigning them to (n - l)-currents.

9'v"(c(X)-) ---> l('D\-t), f r+ R1

17s

*See Section 4.1 for the definition of 'D\,*1
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by means of the AJ(y1) computation, This essentially descends to a 'Miinor regu-

iator' map ofthe form (1.1). as described in Section 4.

Here is a concrete example of what a Milnor regulator current looks like, for
n - 3.lf f, g,h e C(S) are meromorphic functions on an algebraic surface S,

letTy - ./-l(IR-) (where R- is considered as the directed path [0.oo] on IPr)

and log .f = the branch with imaginary part € (-ir, zl and iump along 11. and so

on for g and ft. On the other hand dlog/ will mean df lf ;they are related by

dlog /] : dlog.f -2ni67,. Then if C is a 'topological' 2-chain (dims C : 2) on

S avoiding l("f) l u l(S)l U l(ft )l and f := "f I I I le, the period of R1 on C is by

definition

fn
I loefdloggn dlogh+2nt l- Iogsdlog h -4tr1 t loghlp).
l. l?^rue\,, I peciTtnTx

It is natural to ask whether nontrivial periods e C/Q(n) arise primarily from
integrals encirciing divisors of the functions in f, i.e. [Cl e kerIH,;(nx,Z) -
Hu-t(X, Z)), or from 'nontrivial' topological cycles on X avoiding those divisors.

To describe the first kind of periods precisely we employ a local-global spectral

sequence to define various 'residues' ofthe Miinor-reguiator currents in Section 5,

and relate these to AJ maps (on higher Chow groups) with polylogarithmic proper-

ties in Section 6. We then define a subgroup Ky (X) c Ky (C(X)) which produces

'residue-free' currents, taking periods on coim{l/,-r(r1x) + Hu-t (X)}. This is
just the Tame kemel for r : 2, 3 but is smaller for n ) 4.

The resulting restriction

R: KyG) --+ im{H'-r(X.C/Q(n)) - H'-t(nx,C/Q(n))}

is called the holomorphic Milnor regulator. It appears to be reiated to the arithmetic
rather than the geometry of X, for when X is a very general* complete intersection

in lPN, its image is zero: the periods /. Rr lie in Qtn); there is only one excep-

tion - for X a general elliptic curve (and n : 2). This is the vanishing theorem

of Section 8, which in principle is a consequence of Nori connectedness. It is a

generalization to higher dimension ofresults in [6] (also see [4]) for n :2, X a

curve.

According to Beilinson rigidity, which is proved in [1] (using rigidity of de

Rham classes), R is constant on continuous families in Ky (X) for X fixed. What
we consider in Section 7 is the situation when X : X" is allowed to very in a (com-

plete) famiiy of complete intersections in IPN. Let {f, } e ker(Tame) C KY (C(X"))
be an analytic family (in the sense described in Section 7.1); the associated RL

have trivial codimension-1 residues. Then (again excepting the case of elliptic
curves) [RL] is a flat section of lli;,I under the Gauss-Manin connection; that

*This can be taken to mean that the coordinates of

intersections) are algebraically independent.
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is, the periods are constant. while this is the basis for the vanishing result, it holds
with the weaker assumption (rl;., ker(Tame) instead of Ky (X)) and seems to be a
slightly deeper resulr.

We remark that we have taken dimX : n - I throughout part 3, because the
nontrivial (primitive) cohomology of a complete intersection is found in the middle
dimension. and K{ maps to 11,-1.

we conclude this paper with an easy. concrete regulator computation on a ,de-

generate elliptic curve'; it is a 'toy model' for the harder computations on eliiptrc
curves in 12,3,61.

PART 1. GEOMETRIC CONSTRUCTION OF R.

2: Preliminaries

2.1. HtcHnn cHow cRoups

Define the algebraic n-cube

!,, :: (tF[ \ {1})' :: (Fr)' \ n'

with faces 0!n : Ui 0;!, = lji." pl*n,-t and more generally codimension_r
subfaces 3'l' : Ui*pi,,,'.'.'.'f,'*1,-,, where for e : 0, oo the face inclusions send

(zr. . . ., i,-r) + (2r, . .., b, . . ., zn-). and so on. The n-cube is also equipped
with projections lx;,..,.,;,: 1,, -+ !,'-., where, e.g., for r - l, z; sends
(rr,..., ;,) r+ (rr....,?,..., r").

Let Y /C be a (possibly singular) quasiprojective variery and define cr'(y . n) ::
subgroup of Zp(Y x D,) generated by subvarieries intersecting all subfaces
f x (pfil"-') properly, i.e. in the right codimension. (Note that anything can
happen at I x II' if one looks at the closure of such a cycle on f x 1Fr;,.;
Let dp(Y. n) :: subgroup of cp(Y, n) generated by subvarieties pulled back from
I x !'-r by some zi.

We neglect these latter cycies and write

ZP (Y. n) :: cP (Y, n) I dP (Y. n),

which forms a complex with differential

" +. ".; ^^+06 :: f (-1)'(p,*' - p!.y znq,fi --+ zp(y.n - l);
i=i

in particular note that 06 o 66 :0 so we have a compiex. Define the higher Chow
groups as its homology:

CHP(f. n) :: Hnlze(Y..)1.

Note: we identify CHp(C(X). n) : CHP(Spec C(X), n) : CHr,(nx, n).
We shall think of (D,, AD,) and ((C*),. no) as dual reiarive varieties.

X rin the moduli space of complete
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2.3. rrup DLoc MAP

For us'1og' will be a (discontinuous) function from C* --+ {.1 € Cl3(z) e (-n, nl)
with branch cut 7 : R- \ {0} (or lR- u {oo} depending on context); given ./ e
C(X)-, dlog / means df lf and Tr : f -' (?.). On l' one has a topological re-
lative n-cycle T, '.: Tr, n ..' a Tr, e C,(3^,af]n) and a holomorphic n-form
Q, :: dlog a1 n . . . n dlog i, e Ho{Qi, tlog a!" ) ). To a multifunction f on X one
may associate

-s-Tr:: lm.1Ty,; O...nT.r,, =or.lfr n (X x T,)\ e Cza_"(X.Vi,

and

2.2. uir-uon K-cRouPS

We shall wnte Z{Sl for the free Abeiian group on a set S. For any fieid F > Q
and n )- 2, let Ky (F) denote the quotient of the Abelian group 8'Z{F*} by the

Steinberg relations'. the subgroup generated by all permutations of

fi@ fza..'a-f, *gr @ fz&,.' @.f^- fi8|8.fz@. " @ f,.
fi& fz I'" A f, * f:8,fr I "'& J,'
,frI(1 -"fr)I/38"'8t.

(For n < 2 just set K( lF) :: F- and I(Y (F) := Z) Boldface f or g denotes an

element of @^Z{F*\ whiie {f} or {g} is the corresponding element ot Ky (F).

LetXlC be a smooth projective variety of dimension d;to a 'multifunction' f :
L * i ft i 8. . . A f4 e @"ZIC(X)*) we associate the subvariety [ :: [-l;,; I (.li;) I

and the 'graph cycle'

v,:ll*.,tidx;"fri, ...,f^)*(x\ vO]n((X\ v1) x n').

Also denote by Vr2 the union of all intersections (and self-intersections) of all

components of Vr, by Vr3 all intersections of components of V1 and Vrl, and so

on
A fundamental result ofTotaro [28] says that the graph homomorphism

y: &'Z{C(X)*\ --+> Zn(r7y.n')

so defined, induces an isomorphism

Ky(a,6D l cH^1ttr.n1.

We shall call f 'good' if the closure fr of its graph to X x !n intersects all subfaces

X x 0'f,'properly, i.e. if /1 e Z^ (X, n). From Bloch's moving lemma [5] we have

immediately the following proposition.

PROPOSITION 2.L. For any fx e @"V'{C(X).\ there is a Steinberg relation g(i.e.

ig) : 0) such that f:: fo - g is good.

The absence of 'corners' from good f allows us to define elements

Orf :: I v,(.fit.fi 1,6l...ef,e"'8.f,1,. af :=fr-tt'art
reXl i

of f[,.a' 8'-tV'IC(x)*); and by the proposition, f r+ 0f induces a map

tame: Kf (C(x))-- U KyG,6)).
teXl

o, ,: Iotog f :L*,+ " "+ e aola](log vr)).
,t t.t J h.l

(For the definition of iog-differentials when V1 is not a NCD, see for example [20].)
Writing l4v.xH0(A|(log V)) :: Ho(S.zi0og)), we have the foliowing lemma.

LEMMA 2.2. (l) The assignment f r+ Q1 descends to a map 'dlog' on Milnor
K-theon', so that the lower-left-hand square of the following diagram commutes:

lirrrr -r'.F111(-\)
- 

.--'

t,,
I

110(0i)

llI lri"

r(,y(a(x)) dlos artoig"ell c + u^l, rrl
ll t_
]rame 1n","1__..1. II I

I_l o-*1, rcr,;r ! i'o9 
L[ H'(ai,-, nos))

e€Xr a€Xr

(ii) Assuming that always [Q1] e im{I/"1nx.Z(n)) - H"(qx.C)l lwhichwill
follow front the construction belowf, {f} e ker(Tame) =+ Qr : 0.
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Proof. (i)dlog is well-defined because Qe : 0 if {g} : 0; use good f to check

the square 
"o.tnurcS 

(easY)'-.'-ii 
N"t first the right_hand column is exacr: this is from the iocalization exact

sequence in cohomology N;; +P:i,!l\ : ry111"*e)' 
rhen Qr e ker(Res)

and we defined a functtonal on Zi\Af*") by duanty:- s r-+ lim'*6'/"t*tuu

Q1 A a. Noting that
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and integrate limc-g I,r. {2n n n}a to determine this ciass (where a €

z!0&l!]i,r*) has compact support on X \ V1). Moreover, Fl,((C-)', [n) is gen-

erated by the n-torus (Sr)n; so there should be a topological (2d * l)-chain on
X x (C*)n bounding on (i) 7*', (ii) {a relative cycleCJ x (Sr)', and (iii) components

supported on X x ll" and N.1Vg x (C*)". Thar chain will be produced in Section 3.3
by means of a 'homotopy' 0 [formula (3.1)] which pulls yr' into the 'topoiogical
trashcan' X x IIn, leaving 'residues' along' UrfVrl x (C*)"; and it will turn out
that C is just 71. Towards the goal of constructing this chain, we now make some
preliminary defi nitions.

3.2. ruNoeruENTAL DoMAIN FoR (c-),

Let D : closure of C- \ I with left and right-hand limits not identified; there is an

obvious map"A/: D --+ C*. Write i := Jtf-l (z 4 T) [one point]. "A,/-r(l e ?') ::
{;*.:-}. N-t(Tt: If-.7-l.f =T' -T-.ChooseanyC* map

d:[0, 1]xD-+C*

with 9(0, Z) : r, 0(1,1 : 1, so that 0(z) :: 0(r, e) gives a path from i to 1

in C*. Aiso observe that 0(:+) - 0 (z-) :: 0+ (z) - 0- (d is a circie (Sl). where
e -: [0, 1] x 7 --+ C-. If f is a topological cycle compactly supported on C*.
and i a lift to D, 9(i) denoted the image of [0, 1] x i under d, and 0d(F) :
f+0+(fnr)-B-(fur).

More generally, let D' : closure (as above) of (C*)" \Uf, and,M: D'' -+ (C*)'
take I.-, T, r--+ Tr,, etc, We define various maps

9i,...;o: [0, l]a x D' -> (C*)"

b)'formulas

1t1t;2r,...,2,) - (o(tt.2t), 22,..., z,),
9n(tt,rz: Er, ..., i") - (0(tt,2t),0(t2,7,),2,t, .... z,),

and so on, often omitting parameters t; in the argument to indicate corresponding
chains. Again certain restrictions descend to subsets of (C*)'; e.g. by restricting
0p to T] n I." we have 9$-: [0, 1]2 x (Tzt a Tz) -* (C*)u and more generally
9j,'...;i- :: 9j. For - . Tzrt n "'n 4,,, the formal sum (considered as achain)

I",....,*=*. - {- 1)I1';9; 1., yields a topological f, -torus (s I )t.
All of these definitions make sense crossed with X. Below we shall use the

shorthand Tr, for X x (,. and so on.

Is,f ,".,*, 
Q1 n dB = +:T,/,".,uu,

= tl,$.f,,*,,t

Qrnf

Res(Ar) A B :0
)

for B e f (A?-'-'), the functional descends to a ciass

( Hzd-n(x.aLl" 
= FnH^(x.c\.larl e 

l7a;:t11zd-, 1

ff @ € H0 (Qk) represents this class then [7i, arl = [Q1] e H" (nx) and so (by the

diagram) Q1 : 1|,a. airolrr"gl)' si;J: im(Gv) I H"'t't o " ' o pt n-1 
'

it follows thar F1'.0(x) @ H0''(x) 
tJl ,'or) and thus u|,al s *fui r'-rl unless

ro : 0. But [Q1l e imill'( r]v.z(n)) - Hn(nx'c)] + [ar] : *[ar] n

3. Abel-Jacobi for GraPhs

3.1. ceoNasrnlc MOTIVATIoN

LetbF=(Pr)n\(C*)',
| -,-l lforsomeil.

N.(bE;;=l:'...'.in€{F't'lleil<€or > e It'

il = rlpr)' \ N.(aFt: and put yr' ,=fi nJ{ x -! ) Note that 8yf s-'{,, >.,4=:

iini,n, f 'fbl',= [JrfiO, ,''.,," ..i,,,fttX x ir for a set S c (lPr)"' define

Ne (vr) :: ri(iv.(aE;)) 
,i maps for our graph cycre y1.

We want to construct cycle-class and Abel-Jacob

To do this, we wiil view yr' as giving a homoiogy class ln

Hzd((x,Nm) x ((C*)"' \"))= Hu-^(x' vr) 8 11'((C-)"'[')'

'a* can show this integral is convergent for any C€ form o (see tl8l)' Notation: Z;( )

means d-closed sections and 9]/--n means C@ (U - n)-forms' 'We cannot say aA/.(VP here because in general f-IQJ2, only g ,t.1V9-



The idea is to use 61 to push )21' down (along the flrst coordinate) to zr : 1' with

discrepancy arising from /r. ii, which we then push (along the second coordinate,

using d12) down to zz : l,and so on.
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3.3. BOUNDING cHAIN FoR vt'

whose boundary is a sort of 'geometric coliapsing sum' yielding

ae (/f ) :),f' + t(- 1)' li...^(yf . T,) + 0(fff)
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For a e QT;'"(X \ V) d-closed and compactly
ofl X \ &(Yr), we have that
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supported on [a closed subset

n-

that is,

f 11
torl = | erD" I I e 1H2d-"{x,vr)}' = H'(x \ yr,c).

L Jr,J

Since [(2zi)',[nJ e itn{H"(X \ y|, Z(n)'; ---> H'(X \ Vs,C)} this compleres
the proof (see Lemma 2.2) that Tame{f} : 0 :+ Qr : 0. We shall henceforth
work under the assumption that Tame{f} is trivial or n > dl1 Qr : 0 by type
considerationsl. Either condition cleariy :) tfrl - O in H2a-n(X, yr; Q).* so thar
there is a membrane ( with 0f : Zr+ chains supported on V1.; we often write
A,|,r,tf, for f . Define

o,tv1 '.:o(/;)+f x (,s1)";

modulo X x IIn and N. (Vr) x (C*)' this now bounds exactly on yf . We summarize
in the following proposition.

PROPOSITION 3.1. ffTamelfl : 0 or n > d then the relative cycle-class of yp in
Hu(6, N.(yr)) x ((C*)', n")) is tivial.

3.4. corrlpure,rloN oF AJ

We now propose to define AJ(yr) by integrating 'test forms' over 0f ly1; intuitively
this should mao to

H2n-t((x \ v1) x (!'. otr')) IFd+tH2d+t((x, vr) x ((C*),, [n))J'
Fzinum) * {num}z

the expression in braces is

periods

Fd-n+l Hz't-n+t(X,vi g (s,,') : ,u-n+t(X, yr) g (s,,'),

which is to say the ((C.1', n') part absorbs all Hodge-theoretic restrictions on the
test forms.

-Fif may still be torsion in H24 -n(X. Vt: Z). so in particular the membrane may require Q-
coefficients.

MAIT KERR

17

I [ - a,nz'da= /- a1o, nn*a]: [ - {z,,A7T*rr
J9tvr't J9ryft Jaety;l

I n^nr-o+ [ {tnAr*a+ [ -sznAn*a,t vf J Isx (Sr rr J e(Ay; I

Inrno-(2ni\n /o+0,
J x Jr,

original graph - -
gets 'pulled to' - - -;

- -141- '

is the preimage of yf under.A/: X x D' -+ X x (C*)n' one writes the

e1/f) :: e,6;) - er2(/; .f,) + +*fi,1/1ri, n..'nr.,r
(3.1)

rf

nlf
chain

r? ?\

(3.2)

plus terms supported on X x lln. The second term is supported over T1 with

hb"r, - (Sr)";we may tacitly modify 0(/rs) by a 'trivial' chain (which wouldnot

affect integrais; umfgmglnfthese tori, and replace the second term by fr x (Sr)''

The third ierm is in lfJD * (C-)' (trivial for our immediate purposes) but gives

some insight inro residues of the AJ(and cycie-class) construcdon^s below. Ignoring

codimension 2, it turns out that 0 (yf | - I' Sl, * 0 (rf,) is a sufficientiy accurate

approximation (for good f), making the construction 'telescopic' in codimension l
loniyll. Pursuing this leads to a geomefiic proof of Proposition 5'3'

.;r= 1 (and so on)
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Remark. Since there is actualiy nothing preventing us, then, from taking an

integral basis for these test forms. we might as well substitute [Poincar6 duals ofl

topologicai (2d - n * l)-cycles. This is the point of view we take in subsequent

sections.

DEFINITIoN. AJ(yr) e Hn-|(x \ yr, C/Q(n)) : {H2d-'+t(x,vr)\" I
im{Hza-n+r(X, Vr; Q(n))} is the functional on forms a e l(Q!*.',+r) supported

on a compact subset of X \ N.(yr). given by the integral Iu;tr,Qn nrio.The
ambiguity of Q(n) . {periods} is generated by the choice of 6 : E,-"I,u,,Ii.

Remark. We usually take the image of AJ(yr) e H"-'(nx.C/Z(n)) by the

direct limit.
Now recall that

n

d,'y,:lt(/il+LeDr-'er...r(/f n 4, n "' n 4,-,) + a;,yr)rrx (sr)''.

The.first term of the integral defining AJ(1) is (partially) computed by integrating

dlog z1 along the fibers of 01Qf ):

I

I _ dlogzl n "'n dlog;,,nn'r'.r
J et\Y;)

f

- I logrr dlog:2 A... n dlogi,, A n*c,r
Jyf

f
: )'.m, I log.ftidlog/2; n... ndlog fn1 Ar"*ttt.

Jx

More generally,

| _ ^ {2,An*o.t
Jel..r(/fnf.r n ..nT.r_t )

r:l_ - 9i.*(dloglrn...ndlog;,nr*ot)
J(t f nr,r... nLr-r )xt0.1lr

r
= I a*(dlogzr) n '.. n g*(dlogzl) n

J1ff ni, n...nio, i'10.t1/'

n dlog zr+r n dlog l, n z*ror
f

: (2zi)t-r I logzkdiogei+r n "'n dloga, n 7r*o
JyfnT-j^.n7:^_l

- (2tri)k-tLr,, I logfi;dlog .f&+r1i r: "' ndlog fn1 Ato.
J r,, .o ..or r, ,

where 1og fi; is understood as having argument € (-ir, zl. Therefore the whole
integral [AJ(yr)](ro) :

r 
- 

Ir
I Q,,  iT*a = )'.^il I lo1 ftidlog/2, n...n dlog.f4 rxttt-
Ja:'n ,rtr

- rrt Jr,,log fzidlog /3; n ..' n dlog fn1 n o *
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=: I o; n,.
JX

PROPOSITION 3.2. AJ(yr) e Hn-I (rtx, A/Q(n)) is computed b1; the class of the
cuffent Ri.

Any given topological (n - 1 )-cycle C on X \ V1 has a C* Poincar6-dual (2d -
n - I )-form ,Jc compactly supported on X \ Vs: so one defines periods t, n, ::
lr R', n @c and observes that their values € C/Q(n) determine [Ri] : AJ(Zr).
Since (2ni)" Ir rg it an intersection number e Q(n), from this point of view [R1]
will suffice.

Remark. One can also check geometrically that f r+ AJ(]ur) descends to Milnor
K-theory (see [18, Section 2.1]), but it is much easier to do algebraically with the
bit of formaiism we deveioo in the next section.

4. Milnor-regulator Currents

4.1. cunneNrs oN XAND 4y

An m-current on X is a section of the sheaf 'DI : D(AZN;') of distributions on
C*- forms.

EXAMPLE 4.1 . Let Y c X be a real-codimension-k analytic subset. 4 an l-form
with singularities along D C Y. Then 4.6y defines a cunent € l-('Di+t) by the
formula [r(q . Ar) A @ :: lim.*s f,.,r.,, )n /\ tio. provided the limit converges

forall r,-, e t1Ol.d-t-l).
Like C*-forms, currents form a complex of acyclic sheaves with

H. (X,' D') = H* (l (X.' D'rll = l.6R(X, C),

under the differential defined by [15]
rf
/ a1s1 n<o:(-l)l+dees / Sndrr.r.
Jx Jx

+ .. . + (2ni)n-t [ 
"og 

,,, ^r,l] -JT.'trn'-nrt,,-ttt )

a eni)' I a
J 3ti 

"'7i
=: Iorn",+(zrit" [ ,

J x J a-,l.r,rr
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EXAMPLE 4.2. d[dlog .f ] :2ni6ct on X.

A different kind of example concerns us here, where we are not interested in
'residues' of this sort, and want to work'away' from Vr.lf l: X \ V1'-+ X is the

inclusion, ,,,(-2?1it,* is the sheaf of C*-forms compactly supported away from V1

Let'Di- c'Dibethesubsheaf of culrentsannihilatingtheseforms; thesearethe
'currents on X supported on V' (distinct from currents 'Df, 'on V'). Ignoring these

we get currents on X \ V,

' Dirrr,* ::' Di /'Di.* : Ot 1,n2,fl7i,* t.

These form a complex, and /" S n rr.r induces a perfect pairing between

H^ll(x, 'Di;\y)-)) = H^(x \ y' c)'
and

H2d-^ll(x,.71ei7,.1yy-)) = p2d-m1y \ y, c).

EXAMPLE 4.3. dllog /l : dlog .f - 2ni3y, on 4x. where 11 is oriented so that

071 :1710 - ("f)*.

With the convention that the dr,'s anti-commute with the dlog.f,'s and the

like. we may differentiate combinations of these exactly like forms (with regard

to signs).

4.2. FoRMALIZATIoN oF THE MAP {r) e Rr

Define a map

R: @' ZIC.(X \-l - f (D'x"t t

induced by sending

"fr o.'. @ f, : f r+ R1 ,:l{+zni)'-t log-f,dlog.f,11 n
i=l

z\..' n dlog .fn'3r1,o...nr1,_,'

where * : (-l)'-r. Singularities are integrabie even for f 'bad' so this makes

sense as a current on all of X. Now modulo 'Di*, applying d gives a coliapsing

sum:

d[Rr] = f r+Zzit'-' dlog.f zr '" n dlog .fn ' 6rr,o...nrt-t -
i=1

_r_
- lt+Znil'dlog i*1 ^ 

" n dlog f, ' 6rrtn..nrti
i:l

: dlog fin... ndlog/, -(2ni)n67r,7,...nry,:Q1 -(2ni)"67,.
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Assuming n > d or Tame{f} : 0. (-2r : 0 and O-,}.r,,7, :: fr exists. so that

the (n - l)-current Ri : Rr * (2ni)'6a, has d[R[] e f ('Di*) and so is closed in
f ('D;x\1,)-). We get a class in H'-1(X\ Vr, C) well defined up to classes generated

by cunents {(Zni)'lcllCl € Hu-t(X, Vs; Q)}as before.

PROPOSITION 4.4. For n > tJ the assignment f r+ Ri induces a well-defined
map R''. KyGIX)) --+ Hn-t(rlx,C/Q(n)).

Proof. For f any Steinberg we must write R; (for some choice of (r) as a
coboundary d[S] in f('Di"1vp*) - that is, modulo components with support in
codimension ) 1.

Casel: f: /8(l-l)Ag.
As T7 o Tt-f C V1. we ma] choose f1 : 0 and so

Ri : log /dlog(l - ./) n Qe + (-1)"-r2zi log(l - .f )Qs .6r,.
Now one may view all the poiylogarithrns as single-vaiued functions
with branch cut at ft-: = [1, oo] C lR+, and so as 0-cunents on IFl

with i*i
dll-i,(z)l -Li,-t (e)dlog. +#logn-t 2.67,-..

(This formula follows from the discussion of monodromy in [16].) Setting
S : -Liz(l - /t n Q*. we have dlSl : R;.

Case 2: f : B8 fiJt - EA.fl - CA,A.
The difficulty here is the branch change: log .lj * log fz - log .f 1 .f 2 :1
Ztt 13 6, I 0, for some (2d - l)-chan A 1 with 6 L.s : T y, 7, - T.f, - T h.
Since dlog fi.fi : diog,fi + dlog .fi, mostterms cancel in R1 : Rgo./r"f:-
Rg67, - Ry6 ;, : t (2n i)n 6 r r. 6r". By choosing h : TeO L f we actually
cancel this term and get Ri' : 0 (no need for 5).

Case 3: Altemation is more involved. We do increasins levels of difficulty.
n : 2'.f= "f E)8 + g a.f. On X - V

Ri : log/dlogg - QnJll logs' 61, *
* log g dlog / - Qt.FTt log / ' 6a : dllog .f log gl'

n : 3: f:.f 8S I h + g @.f @h + Ri: dflog/ loggdlogr]

f : .1 888ft+.f Ih@g+Ri :d[2nv:Ttogslog/r'61r]
f : .f I g @h *ft 8s a .f + n'r: 1og/dlogg ndloglr *

+ Qn J 1) log g dlog /r . 67, - 4r2 log ft . 61rn1* +
f logft dlogg ndiog/ * i2rJilloggdlog J . 6r,, -
- 4tr2log f .lronr,

: d[ - log /loglr dlog g * 2n J 1 \og f log g . 67n +

+ 2n J=T log h log g . 31,1 .
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n > 3: f :.fi 8.'.Si8.. S fi8...A f,* fi@. "@ fiA"'a
"f, e "' I J,. Then on X\ V1' Ri : dlsl (choosing a,i.r,T, -,-' g - 0)

where

Sil : (2r {J)t-t log .filog f t dlog .fl,,;

n... ndlogfi_r ndlog fj*t r,... n dlog fu. 6rr.n...nrr_t I

+ Qn,J -tli ltog j log Jll dlog fi+z A .. . n dlog l;-r n

n dlog.f;a1 ,r' ''' n dlog f,' lrttn.nrt _t.r.r *
* log./, log.[*r dlog 1..2 ^ 

'" n dlog.f;-r n dlog,/]+r

n... n dlog f,. 6Trtn...arti-,nrr,l *... +

I Qv Jjli-2[log j log /r-1 dlog fi+r
n'.. n dlog fn' 3rtr.,nTti_rt\11,aT1,*,n...or1,_, x

x log f ilog /, _r dlog 
"f7+ 

r

/l... ndiog f,r. 6r.rl....Th_,nr1,nT1*rn...AT1,_.). I

Remarks. (i) Let n and d be arbitrary. Clearly the proof also shows that R' induces

a map {ker(Tamq . Ky (C,(X))) --+ Hn-| (nx, C/Q(n)). on the other hand, to

induce a map on all of K( one needs the triple. ((2nt)'Tr, Qr, Rr). The resulting
general version of the Milnor regulator. Kf (A(X)) --+ H$(nx,Z(n)),is also the

form in which it is compatible with products. That is, K,y (A(x)) I rK# (C(X)) --+

KY+,,(C(X)) never aorresponds to simply wedging together Ri', - 
you have to

use the multiplication tabie (in [8] or [19]) for computing Hb(X.Z(n)) @

HBG,Z(m)) -'+ H$"(X,Z(n + m)). This boiis down to the formula Rroe :
R1 A f2g * (Zni)" R". d1, in general.

(ii) -omposition R' with the 'real' projection Hn-t (nx , C/Q(lz)) ", Hn-t (nx ,

R.(n - 1)) gives a map rt Ky (C(X)) --+ Hn-t (rlx ,lR), corresponding to the real

(imaginary) part of Ri for n odd (even). [Note that the ambiguous

membrane term is killed.l This regulator r agrees (up to factors of (2:ri)) with the

induced by the map in [11, Section 2.2], see [18, Section 3.1].

Composing r with further projection to ({H'-l'0(X,C) @ FI.o'-r(X,C)} n

Hn-t(x.lR))" on the right. and on the left with H(t(X,Ky'1'-3a'ker(Tame)

tg K,y(A(X))l (see [27]), induces the real regulator in [23] (for the case m,

k:n).

---1i". 
S""rion 6.1 (and [ 19. Section 5.9]). Technically fgr. d 2 n one needs to replace X\ V1 by

a nomal-crossings pair ilVg fiust for the map on all ot f {).we have carefully pursued lines of
reasoning (and cases) in this paper that avoid this complication.
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PART 2. RESIDUES AND POLYLOGARITHMS

5. Higher Residues for Currents

5.1. DEFINITION OF Rqi

Following a suggestion in [9], we now construct a iocal-global spectral picture

which will aid in describing the 'residues' of the Milnor currents. We must avoid
the assumption of normal crossings, since even for good f the situation may not be

this nice.
Consider the following inclusions for the 'f-substrata' V!:

7(t): X\V1 .-+ X, t&'k+t).. yl\yf*t.* yf,

,t.kt. yrt ,+ X, l(,t.l+l). Vf+t .-* V/,

where Vro :: X and Vl :: yr. Pushing forward by r we have the exact sequence

of sheaves

0 --+ r(*+rtc + iftr6 -- ttltg1$+rtg --+ 0

(2nr)k ' 1{tt 1=
Jk'k+t)C

in which we may resolve terms by

,t*t6- _'1). t(k,f /t(k+1)C _ '7). /,.n
'* -E, ?tt'ft-' { u/'* -; "tvfpt "{vl-t,n

(Zni)k 'rf) t:
t6. t at.1
" r r'1 r''l-' )a L -" 

' 
'

Here
,T\. ._' ?n. t ttr\. r t.t1. I
"rv,lqtf*rr' ': "tt';tt I /,yr'lra r' utVltl

are (quotients of) currents on Vf - not currents on X with support on Vf, which
is what they are mapping to via rf) (essentially multiplication by dy;,). The (2:ri)r
twist will make sense later. The short-exact sequence reflects a descending filtration
by coniveau

pP

FfiC:= rlP'C. GrflC: -* = J(P'Prr'C.

and from the acyclic resolutions we get the initial 'exact triangles'

.'. 3 H;**,(X. c) --+ r1)*(X, c) -

for the corresponding spectral sequence.
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H:,k,,,^*'(X'C)

(2tri)k . ,y) I=
H--2i(vf\vf+l, c). (5.1)
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The E1-term is then"

zl-q1n1.- n2n+p-q-I {f (x, cri,a))
_ H2n+p-q-t Il qx,, Diyoy l,Divp* ,_))

- 
:- g2'-tO-qr-111112P r71o

(2zi)p.rlp) 
-'v-s'-'{l'(vi''2tv'tr'*'r-)l

= 112n-rp+q-1rVf ltzf*r. ct
+ GrXH2n+P-q-r(X.C) :: E$-q.

We use the d;: Ef'-'(n) --> gi'-'-i+r (n) in this spectral sequence to get 'residue'

maps

Resi: {ker(Resi-t) c Hn-t(X\Yr, C)}
--+ {subquotient of H'-2i 1v;1Vl*t. C)).

Replacing the left-hand column ff qtnl 
= H2^-c(X\Vt,C) by zeroes, one has

a spectral sequence 'E converging to'r$-q = Grern2i,'+0-o-t(x, C); a simple

algebraic argument then gives the long-exact sequence

- HJ.(X\ 2 n.qt 
- 

H.(X\V1 Ia a;.*'txr -*' ,1" Jl,

in which the N-graded pieces of Res are exactly the Rest.

PROPOSITION 5.1. f saccesslve Res'[Rf) are all trivial, then lR'r] comes from
H*(X\,

This means (a) l, n|t 1.1gives a well-defined functional on F{(X\ yr)/ker(;l'))

and (D) Ri may be 'completed' to a closed current on all of X by adding cuffents

supported on the V1 
> I.

In order to work modulo the choice of membrane (1. we need to modify the

spectral sequence for C/Q(n) coefficients. Just as l(X, 'Dirry) computed f1*(X,

r'$C) above. cohomologies of Fi(C/Q(n )) are given by taking H* of

,,p 5,

Cone{Cri_.r x. Qtn) r 
j- | (X.'Dit.e ))l

- = cone{c27-.{t'ro,Qt, - plr]::' F(lip.'D;e)l
(2ri)P.iil 

t rt '

-*si*ilu.ly, 

the choice of indices will also make sense later

/{ ?\
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The corresponding R-esi map from kerlR6r-r; e Hn-t (x\ v1, C/Q(n)) to a sub-
quorient of H'-2'(yl\y;+" c/Q(n - i)).

COROLLARY 5.2. If the n.r'tnil are trivial. then a suitable modifcation of the

choice of \ gives an R'l completable to a closed section € | (D\-) ). A/1 Resi[R/]
are zero.

Remark.

(i) We frequently work with d{: dimXt : n - l. To ger nontrivial RE in this
case. we mtst take d 2 2i .

(ii1 By similar reasoning, if Res-' [R;] : 0 for all i ( r. 3Ri wirh Resi[fii'] : 0 for
alli(r.

5.2. INTERPRETATIoN oF Resl

This is essentially just d[.]. Tracing through d1 in the spectral sequence, [Ri] e
H'-r(X\ yr. C) lifts to a closed section Ri e | (X, 'D\:r l'Diwl;, then to a non-

closed section € f(X,'Dkt), so that d[Ri] e f(X,'D'lvr\*) --+ f(X,'Diro*/
'Dit\*). Modulo currents exact in the iast complex, the image (of d[Ri]) lifts to

(l/zni).dtRll€r,(v,'DX;z/'Diu;,-)unOer(2ni).1!t);rhenRestlR;lisrheclass

of the latter. in f/"-2(Yr\Yr:. C).
lf f : .ft A'" A fi is good, then in f ('D!)

-nrn-l
dtRrl : ol )-t+zn'ilt-' log./odlog.f1*1 n...n dlog./".6r,,....nr,, 

I. ,^_ 
.l- ir=l

n 7 l-l

= )- | )-(+2ni)u-'2lti(-l)x-k-t log ftdiogfi*l n...n x/-) | /-"-
I=I L k=)

n

" ftogJi n'..n dlogl, . 6ry,n...aryr_, * | t*2nitt-r x

x (-l)'f+r-k-r iog fi*r dlog.fta2 n . . . n 
rio|t 

,,,

. Srrrn...niln...n.r*_, 
| 

. 8t.t, * (Ztri)' 37,
J

= 2n i Lt - I)' R/, e...o,e...o f^ 
. 6 ort * (2n t)" 67,.

l:l

Now writing yr : U( | 
(.fe ) t - : V sl. W, :: V r n Vr2. the boundary of the membrane

ls

n un-l - \-r_tril-l .r^..oxtotX-VtJIIt : tt - Z_\-t I dtir.wotlEtt.

MAIT KERR
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and so

n

dlRf : Zzi ft-t)rn'a,r' 6{frt;

dividing by 2zi gives Resr.
Noticing that

{g} : 0 =+ R; : dlsl on X\vr --+ all Rest[nr] : 0

then gives the

PROPOSITION 5.3. For n > d we have a commutative diagram

K#(a(x)) R' - H'-'l,tr.a/e(n))
llrl-
lTame lRes'
IJJ

rl Dl

LI r,[,(c(,)) ]J]i If. u"-'(r..4/e(n - 1)),
o€Xl 0€X1

and.for aII n, d{f} e ker(Tame) a no'JR;1 = O.

; g'f rvil !
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First use d[.1] to 'move' suppon of dtRi'J to I'r:. obtaining dtRi' - Sl e I-
(X.'D',',,:,*t - f (X.'Di',r,*/'Di,,r.-)l then move the image by a coboundarytti'* 0ir^ ttit*'

lal
and lltt vla \z7rtr .t:'w

*,|

-dlRi' 
- .Sl e l(Vr 'z11n-4 1t'6n-1 1

+jr- f '"''i' s(lirr6''

finally going modulo im(dr) (and exact curents).

EXAMPLE 5.4. Take the case n : 4. X : a 3-fold, f good e ker(Tame). For
simplicity we restrict to a Zariski-open neighborhood U c X of a normai crossing
in V1, so that Vr = VrUVz, Vi = VlnV2:: W. Now Ri is closed in codimension 0,
and Tame{f} : 0 + dtR;fl is exact (: d[S;] o1 V7) in codimension 1. So Ri'- Si
(on Vi) is closed in codimension l,and (ll4n2)dtq - Ril : 0/4r2)d[S;] is
our answer in codimension 2. Intuitively

Res21Ri1 : Resw{d-r(Resy, [RilJ) - a-1Resv, [Ri])]

modulo Resly of currents on V; closed in codimension 1; this formula is the key to
understanding what these higher residues are.

Notice that if S; has rerms of the form 2triLiz(f)dlogg; .6y, [which one
expects from Case 1, proof of Proposition 4.41 and gi : 0 or oc ai I/, then the
O-current Re.s2[R;]l has terms Liz(f ) on W. One expecrs a certain rigidity here:
namely, Res2[Ri] musr acrually (up to 4n-2Q 'jumps') be consranr on W. That is
because we have just iocally traced through the cornposition

MATTKERR

5.3. INTERPRETATION oF Res2

This is defined when codimension-l residues are trivial. From the remark to Co-
rollary 5.2, Res'iRll : 0 =:+ ResilRlll - 0 =+ d[RiJ] exact in I-(X,'Div,\*l
'Dirzr). That is, lS e f (X,'Diwl*) such that dtRill : d[S] modulo 'Divh*
Now to see how to compute Res2[Ri], we paste together exact triangies (5.1):

H*3 Q4\ Ht?6)

ker(Tame) j* ker(Resl) F*; U''ex: rlu(ry'' C/Q(2))

n n irr(dt)

K{ G.6)\ H3(tlx,C./Qlg))

LJ"ex: C/Q(2)

im(d.:)

,,r. dy{) 

-

Logically. the nexr srep should be to define ,Tame2, on ker(Tame) g Ky @(.XD,
so as to get a diagram for Res2 analogous to proposition 5.3. First recall ihe Bloch
group 6z (C(X 11 :: Z{C.(X)\ 0. 1, oo} } modulo the'dilogarithm' relarions.

t./l - tsl +tsl.fl - I(1 - dl0 - "f)t + t(l - 8-1)/Q -.f-')1,
and st: 62(C(X)) * A'C(X)- maps {,f }: r* (l - f) n ./. Ciearly

Ky rc.6)) = coker(st).

K{(C(X)) : coker{st @id: B2(C(X), AC(X). - i O,",r},t - /\-'-.,1'
let us also suppose the existence of ?": fia C(X)* - U,..x, A3 C(X)* inducing
Tame.

----NJ., 
these are reiations on L2k): S{Liz(r)} + log lrl arg(l - x).
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Now start by lifting {f} e ker(Tamd c Ky(C(x)) to f € [aCtX)-. and

assume one can trace through a diagram like the following (with f " 7 : 0)

4-3ry2
Acrxr. t TT A nr-\* r. 

L[ Actrt./\v\1r) 

- 

I I /\",-'
a€Xr y€X2

L[ B,(a(
{ti'
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Note that rrf'* inuolves 'fiberwise integration' when fiber dimension of Z; + X rs

>r.
Cohomology of the complex.

Ci6,Z(eD:: Cone{Cza-.6,2(p)) O f (X, FP'D'X) -+ I'(X,'D')It-11

computes Deligne cohomology: H. (Cb6. Z(p))) = H S(X, Z( p) ). Since

1Tv : Tuu". dl?sl - fl6us' and

d[R3] = -2niR6us * Qz - (2nl)' 37r,

sending (for -r : lz;

Z r--+ (-Ztr i)n-n (/n i)h Tz, Q z, R z) :: R(IZ)

induces a map of complexes

R: Zp(X.-r) 
- 

C2l*'tX.Z1plt.

and thus

AJf ': CHrrX. nt H{-'{X.Z\p\t.

Remark.

(i) WheneverQz:0(e.9. p > d,p < n)and \sZ - 0,d[Rz] - (/v1)'t[7, 1
3 topological Q-chain ( with 0( - 7z.So Rz - (.2n1)"6, -: R'z is aciosed
(2p - n - 1)-current andl(1lG2nD'-n)R'v): AI1"(Z) (modulo torsion).

(ii) The composition of AJ with the real projection rrfr : H3 -' 6, Z(n)) -+ Hf; -'
(X,R.(n)), coincides with Goncharov's regulator map (in [11]); see [18, Sec-
tion 3.1.11 for the proof.

6.2. oertntrloN oFTAME/

Now R essentially respects coniveau. and we can use this to induce a map of locar-
global spectral sequences for CH and Ho.The general case requires reduction to
a normal-crossings/log-poles setting (as does AJ for quasi-projectives, e.g. X\V);
see [8, Section 2.4.1) and [19. Section 5.9]. An exception is the case p > d,where
H{-' (x, Q(p)) = ,zp-n-t 1x , a/Q(p)), the middle term of rhe cone compiex
drops out, and

Ci,(X, Q(p)) - ConelCza-.(X, Q(p)) -+ f (X,'D'x)lt-ll

lsteid I'tll
r)) ec(e)-f 1s"@(y))

ut^ -

ro get an element L"lS,l, =: Tame2{f} e ker(st). It certainly seems plausibie

that (for some variant Liz of the dilogarithm)

nes]tRlt ifli'gamellq), (s'3)

especially in light of the above 'rigidity' (as ker(st) is generated by algebraic_ num-

bers, see [29]). Similar arguments suggest an lJogarithmic behavior for Res'[Ri].

These suggestions are not entirely wrong, but (except perhaps for individual

computations) the approach outlined here would not wolk. To prove something

like (5.3), one would need maps directly from the groups in the diagram' to corres-

ponding curents. This is fine for Goncharov's real currents but ours are only well

defined on the level q4Z,IC(X)-l and so on. Moreover, while there is no problem

with defining the first l, issues invoiving norm maps (encountered in the passage

from codimension I to 2, seell2) or [18]) have so far proved fatal for defining the

other two.

6. Higher Residues for Kf;

6.1. erFoR HIcHER cHow cRouPS

Since one therefore cannot define the higher residue maps for Milnor K-theory on

the level of functions, we are forced to use the higher Chow complex'

Recall that on n'we haveT, : Tzt o "'lTr, e C^(J')' Q, = dlogi' n
... n dlogin e l(F''Dfi,), and set in : Rzr@..oi, e f('D3;1).Given-Z e

Zp(X,n) [X smooth projective / C] with irreducibie components Z.1,let Z* ::
2, Z,*

LT x'r o itE : ano oenne

R3 :: ZaRn e lt'D2rl-'-|). Qv '.: Z*{2n a 1 1Fn'D2r!-" ),

and

Tz:: nx((X x f,) n Z) € Czd-zp+,(X,Z)'

*Equivalently lcza-.(X,Z(p)) O f(X, FP'D') @ ftX.'Oi-\ il wirh differenrial
D(u.b.ct:=r-0a.-dlbl.dtcl -h+at.(SeellTl loradiscussionofDelignehomology.r
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is easily filtered by F'NC|6, Q(p)) := limit of

cone{ clr-. (X, Q(p)) --+ I. (X,'piy, )-) } t- 1r,;, 
{l)

conelcza-.(v', Q(p - i)) * l(vi. 'Di)lt-l}
The resulting

E\.-i @l - H2n-(i+i) lcr"Ci(x, e(p)))
Z lf Hzn-ri+i)-r(4x, A/e(p - r))

xeXi

is the (modified) spectral sequence from Section 5.i; recall the di: E! -^ 1p\ '
Ei'-'-t*' (p) are called Re^s' . Let t4l

,Ei'-i(p) .- gi-i lGrirZp(x, -.)) = l[ cHr-r1nx, i - i)'.

then commutativity of the square 
'ex'

H. (GriNZp(x,-.)) - , H*+r (Fk+rZe(x,-.))
rll- lnl/, i,"l^+

n. (cr'*c{*'(r, Qk))) -a H"+r (rf' c!+' 1x' Q1o)))

establishes the map ,E + E induced by rl; in particular this enjoys the property

that
. / .\

ResioAJf;i=(lTAJtr;i'"-tlo'di (6'1)
r - /

as maps from'Eln@) -', Ei'-"-'+'(Pl.
If iurthermoie 7 : p(> dt then under y: t<{ tC(X tt: CH'(4x.n t. AJi.i is

identified with R'and'dl with rame' So we generalize Tame(:: Tamer) by setting

Tamer :: 'di o y. The ker(Tameii then give a filtration on Kf (C(X)) and we

define

x! tx t:: [-lkerffameir.

This consists of those {f} € Ky(A(X)) whose [good representative's] graph /1 e

Z"(X.n) may be completed to a higher Chow (3r-) cycle by the addition of

components with support (over X) of codimension ) 1'

Now (6.1) becomes the ultimate generaiization of Proposition 5'3:
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PROPOSITION 6.1.

(i) The following diagram commutes:

r#(a(x)) lker(rarne' t, rartre' . f[ cH"-'1c1'y.n -11 f g^1oS

i ", 
'€r' / r<'

/?, lll AJ;-'"

E;' I
H"-1(ri.t,C/Q(n)) I ker{Rcs'-'t '.. . I tt"-2'tnx.ClQ(n -;1; / [_Jimlnes-eJ;.

c€x, / t<i

In terms of currents. Re., tR;l : (1 I e2r i)i -r ) RL, tnt up to coboundaries on

fti) Since O ker(Re.r ) : im{ F1" - I (X, C / QfuDl, the M ilno r regulato r has a' ho lo -
morphic" restriction

k Ky 6) ---+ im{Hn-r(x, C/Q(n )) -- H"-t (rtx, C/e(n))}

= Hn-l (x,c/Q(n))/im(cy).

Remark. Here Gy: l\vcxHi-t (X,C/Q(r)) --+ Hn-t(X,C/Q(n)) is the

Gysin homomorphism (V C X divisors); we are obviously concerned with situ-
ations where it is not surjective, e.g. d - n - 1 and Kx 20.

6.3, SoME QUESTIONS

(1') How deep is the.fihration on Ky (C.(X))?

CONJECTURE 6.2 [Beilinson-Sou16]. CHq(C(x),m) 0 .for m)2q.
(Knownforq:0, 1.)

(See [24].) Assuming n)2 one has this easy.

COROLLARY 6.3. K y 6) : ker(Tamei ) if 2i + 1 )- n (or i )- d). Known for
n :2.3.4; in particular ker(Tame) : K! (X) for n :2.3.

(2) D o e s AJ|r.' - t exhibir' i -lo g arithmic' behaviorT
Let us speciaiize to the case r : 21, where this is obviously tied to Goncharov's
conjecture that Chow polylogarithms are expressibie in terms of classical poly-
logarithms. One easily writes an element W e Zi 1pt.,2i - ll for which R7y
is an iJogarithm value: namely,

/
wi@) - (t--!-,1 -''-',...,1-u2,\ lri-l wi-? 

, 
,'

I - ur. wt, w2,..., u)i-t) g Ot'-'
has Rvv'i1or : Iw,otRzi-r : Lii(a)' dut you cannot brrild higher Chout
cltcLes out of theWi@) without alternating them, and alternating destroys the
computation.

MATT KERR
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Our feoling is that the 'r-iogarithms' involved should be not the Lii. but C/Q(i)-
valued ,iifts' of the real-valued f,i, defined only on small subsets of

ZiA\t0, 1, oo)). We work this out for i : 2 in the following example'

EXAMPLE 6.4. n :4, X : 3-fold, {f} e ker(Tame). Recall that in Example 5'4

we atrempred to relate n"rttnll € {U,.x2 A.IQQ)Ilin(dr) to 6z(C("v)) and the

diiogarithm. We accomplisb this now (in a weaker sense) by relating 82 and L2 to

,tfl13 tin the next proposition) on at ieast certain rypes of higher Chow cycles'

Fo, g e C(y)\{0. 1} let p(s) : Alt3(1 - slz'I - 3,:) € Z2(Clvl.3t.

PROPOSITION 6.5 ([18, Section 3.1.2]).

(i) Given any element 5 : I mj{gjl2 e ker(st) c Bz(C(y)), lm.ip?i) e

Z2(CO).3) can be completed to a higher Chow ctcle Zq by adding decom'

posable elements e zt(c,(y),21 n z,I(c(l), 1).

(ii) Moreover,the'real'pro.ieuionof AI|',!(Z) isthe constanrS(R;.) :lm.1Lz
(gj(p)), P e Y a general Point.

6.4. BLocH's coNSTRUcrloN

There is a nice geometric perspective on the holomorphic Milnor regulator, which

exhibits it as the correct generalization to higher n (> d) of Bloch's construction (in

Chapter 8 of [2], forn : 2.d :1). Given acompactRiemann surface t, andf e

@2'i,lC(S).\ lnot necessarily good) such that {f} e ker(Tame) g Ky(C(t))' he

shows how to complete yr to a certain kind of relative cycle 11 in (t xO'' ' € x 03'1

by adding curves (in [2; over points of t. Then he constmcts a bounding chain,

and integrates ftrtDs A Q2 ov€r this bounding chain to get a map ker(Tame) --+

H r G, C I Z,(2)) bY dualitY.

He allows certain comer intersections (satisfying some integrability conditions)

for his relative cycles; to get rid of the / conditions we disallow corners by taking

Zn ( X xJ" . X x 0!' ) to be the subset of C (X, n) consisting of \ Zl Z' (X x Onn) :
0). We then choose a good reprcsentative f of {f} € KY(X) (not ker(Tame), of

course), complete 71 to a higher Chow cycle 11 € Z"(X,n) (Onfr : 0)' and

altemate to a relative cycle' Alt,fl e Z^(X x !', X x 0!')q. Finally we apply

the homotopy I from Section 3'3 [formula (3.1)] over all of X, to get a [limit
ofl bounding chain[s] and integrate fi*ay A f,2, over the result. we lose torsion

information from the alternation, though; it is better*. (and equivalent) to take

AJ(ff). ln either case we musr go modulo AJ of ambiguities in codim. ) 1, arising

from the completion /r + fri so the target is fl'-r(X' C/Q(n))/im(Gy)'

*That Alt, f1 has the same higher Chow class as f1 (mod torsion) follows from [21 ]

"one couldalso use normalizarion of chain complexes ([10. section III.2]) to produce (from

A REGULATOR FORMULA FOR MILNOR K-GROUPS

PART 3. BEHAVIOR OF IRf] IN FAMILIES

7. Rigidity

7.1. THE STATEMENT

We now investigate the behavior of the Miinor regulator on smooth (r - I )-dimen-
sional complete intersections in IF'+' of multidegree (Do, . . . , D,)[r 2 0]; to avoid
redundancy take all D, 22.The family of all such is denoted

x + S := lpao (V+'. O(Dil@... e O(D,))\A,

where A is the discriminant locus and z-l1s; :: Xr.We are interested in the
situation where

{f.,} e ker(Tamq c Ky rc.6))
is an anaiytic family over an open ball U C 5; in particular, we assume {f"}
comes from the fiberwise restriction of {F} e ker(Tame) I Ky @@)\ where

Zar. op.
S5'5 C Sisafinitecover andX: lU xs5. (Weareimpiicitly identifying
1,1 with a component of p-t !1).)

Forconvenience write 7 : Vr C X,V, : Vr, : V ftX,, Xy : n-tU and
Vu : t r1 .ty. shrinking Z,/ if necessary so that Xu\Vu and (X.,\V") x l./ are
diffeomorphic for any s e U. This ensures rank{II'-I1X.,\l',, A)} is consrant so
that it makes sense to apply the Gauss-Manin connection to a section* of H{11r,
onU.Let0 eUbe apoint.

Corresponding to {F} and {f, } there are regulator currents Rp e | ('D'it ) gener-

ating by fi berwise pullback r!, Rp : Rr" € | (' Dk: \,so that [R1" ] e f (U, 11k-"|'.v,@

A/Q(n)). By differentiating the periods of R1 (modulo Q(n)) on (r - l)-cycies
C, c x,\y" to obtain V[R1"] e lA.9L s ft];i%). we will prove the following
theorem.

THEOREM 7.1 [Rigidity]. In the situation just described with lf ,] e ker(Tame) c
Ky(C.(X,)), V[RL] is zero unless X, are elliptic curves; that is, unless n : 2
(dimX. : 1) anddeg(Kx")[: D Dt - @ t r ]- l)l : 0, [fu,] isfiat.

Remark. In the case of elliptic curves Collino [6] has constructed a family
{f.} e ker(Tame), whose infinitesimal invariant V[R1"] he shows to be nonzero
by means of theta nulls.

7.2. rue pnoop

The first step is to lift [Rr"] to tRl.l ef (U,11\,1,v), in such a way thar they come

from fiberwise pullback of some Rrelt&1.'D';'r. Now while Qr":0 (n >
--Guuola ,ne Rf;* I notation ro prevent confusion between ll!-l ano fti-rlu, i: Ri; I C ror

.t * i and *\Y - i, resp.l.

r99
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d:n - 1), {F} e ker(Tame) does not imply Qp = 0 [compare Lemma 2'2]' This

is because lB is quasi-projective; in fact we have (in taking '5 C S) 
^purposeiy

omitted from ,f fibers (which would have been 'vertical' components of V) along

which Tame{F} may not be 0. On the other hand, {F} e ker(Tame) does imply

dl(2rl:0 las iu4roof of 2.2], and so Qp gives a class [Qr]a e H"(&1\VLa'C)
with ,10[QF]r/ = [Qro] :0; by acyclicity of l,l and rigidity of //fr*, [Qp]a:0'
Since (Jn Xu\Vd dlRFl: Qp - (2:ri)ndi"., [Ir] =0 in H*(Xu.Vu U Xau)' Ser

Ri := Rp I (Zni)n 37-ryn, where A-1fr is a relative bounding chain'

Let {tr} be a coordinate system on U with t'(0):0 (vi);and let e; e l,/ denote

the point with tt(€i) -.'dit.Paths [0, e;] are taken to lie in the disks /'/i ::U){ti :
OIV j + t). If {C" € C,-1(X,\%)},.ar is a continuous family of topological cycles'

then

(Va/a,, [,rr"] ).= o(Co) .= (#, l r^r, ),:u

: ri,,]( / ^;- / o;)
e+u \ JC(. J Co /

= :'s: 1r,r,,,, 
o'^i'=l's: 

]r,"*,,n'= |,,"'\fril''a')
(since d[Rl J = Qr on Xu), and we conciude that

vlRr.l : Iar, o tL.o6({Nt. ar)l e f (u, o: @ fti:\lr1).

We show this lifts to a section v,ef (l,l.A}e f'-tTl\-l), by checking that

Lk,\ililt,oF) € z!(Fn-|pn-t1 at s=0. Take.anv o6e f (oi"-i,*) ' floezt
(rto?x;*), and let d e r1ai"j,*), B er(iFtaifiy-) be local lifts Then

+ [ oo n dt({Ni.er)l := / *o 
^ ra7}i. o.l : tiry.l / oa ,n n.

I x,, ' Jxo e -u € JAiu..it

:rim( [ andlorl+[ o,,^or,,- [oono,o):o;:o\J:1u.,, Jx,, Jxo '/

since d[Or] : 0, while

I pon({N,.art:liml I e^oF:o
J xn ('0 e J x1o*;clu,

since XL4, can onlY suPPort n dl's
So if Kx. < 0, then f'-t11\,r - 0 + u, trivial + its image V[R1,] is also

trivial (the desired result1. Henceforth assume I D 1)- n * r + l(Kx ) 0) '
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Now since f'-t11\.1 aHI:.:,,, Vu"e l(Z,/,o] e ft|-io,); moreover,

V o VlRr.l :0 e l(t/, a3 @ ftl,;iv: ). so u. is actually a section of

Oa O ker{ft'}-', * Hili,,") = f,t3 I ker{H}1,'', ! U\,' lrcJ.

where

rc, :: im{r1il. '(x". C) + H'-1(x,, C)}.

If infactthisK":im{I/,-r(nD,+') --+ H'-t(X,)},.thend ,71T,:0,-fti..f,,isan
isomorphism and Vu,:9.

Since K" is generated over Q, one can choose a local basis of (flatl) rational sec-

tions {oz} e l(l/. R;;rQ) for l(tl, K,). Since K." c ftllT\ . the {oz} are in fact

sections of ker{f)H\I 5 o'. o G'\7ff1},Taking the quotient by imtHf,,i, --+

?l'i,;') gives sections (4) of the middle term in the short exact sequence

g * ker{f2H"s..'uu,I ol g Ft?lTtu^,\

- 
yg117r.Hli;.,"",I o! e rClZi.-r"",1

-.-> kerlG{7?1i.:'"",1' o} s c+fi:',n,} ----- 0.

LEMMA 7.2. vlk\ : G{r'H\",1,^, --+ of o Gr!-r?l};,r"", is iniectite for 1 ( /r ( n -
1, provided L D i 2 n ! r * 1l+ G+T{'r:t + Ol.

So the last term is zero and the {oj) pull up to the first term. Now one simply
increases all the f and Grs superscripts by 1, writes this out again with {oz} in the

middle and repeats the bootstrapping procedure. This continues, using injectivity
of V/r,. Vfr,, etc. unril the {d|} wind up in fL71[,,f. n R;.tQ (for n even) or

J:Q1+1)/211n-..tva. a R;- t 
Q (for n odd), which are both zero. So there was only one o1

(astheywereabasis) anditwas inf (t/,iml?lfi), --* 11\.tl).Wehaveestablished
Vu, :0.

Therefore u" is a section of

ker{er, @ n-'.171T1,,^,,u=" n3 aGri'zu'r-"t^,}

*lnfact,tr:=Kr/imlHn-l(pn+r)) canalsobeshownzerobymeansof amonodromyargu-
ment over 5 (since we are working over L/ we have opted for the local argument given above). Here

is the idea: one can show that t6 c ft!-l 
", 

is an invariant r l (^i)-module. and clearly R() * Hfi.luu,

if deg(Kyo) > 0. Since the action of zt (S) on71fi.tuu, is irreducible. ,f, = 0.

L,0,,= L, ^i, 
: | 

",v;,to; 
mod z(n) a
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LEMMA '7 3. v?,1) is iniective for

Lr,rn*r*1, n=2, Lr,>"*r*1, n)-3.

So unless n:2 and deg(Kv,):0, u,:0 [-r V[Rr.] : 0l This completes

the proof in the case Kx, ) 0,

7.3. _.cHEat-cEBRAIC LEMMAS

we give a brief indication of how the two aigebraic lemmas (due to Nagel) are

p.ou"d. See [18] for more details. Notation is as follows: we write ,So'' for the eie-

ments in C[zo, . . ., in+ri r0, . . ., x"] of bihomogeneous bidegree (a, D), where e;

and x; are taken to have, respectiveiy, bidegrees (0, 1) and ( 1, -D;).If Fi (z) e SDt

are the homogeneous polynomials cutting out X6 C IP'+', tlen set F = F(x, z) ::
x0F6(z) * . . .+ x,F ,(z) e Sl'0; the corresponding bigraded Jacobi rings are defined

by

AF AF AF\
0:n+.'0r0.'"'Axr)

Finally put D :: 1D 1.

ProoJ of Lemma 7.2. The dual 9] & G+"kT1\-,,te, -> G{;k-tHT,lo, or V/0, is
..1

isomorphic (at s : 0) to sr'071F,) I nf-t'o \ nL'o , surjectivity of which follows

from [25] Lemma 3.4. tr

Proof of lzmma 7.3. This Iemma generalizes [7]. The dual 6l I GrloH\,'r, -
93 s c+fti;:. of Vi,-rr is isomorphic (at s : 0) to nz5t'07

^ ^ lr,-_r
(F) g Rl-2'D**r'tt o71F) S {l-''', surjectivity of which follows. from [25]

Lemma 3.5 and vanishing of RP''. D

8. Vanishing

8.1. TARGET oF THE HoLoMoRPHtc REGULATOR

We now return to the family .t 3 5 of smooth complete intersections, and take Xe

to be a very general member of this family. Given {fe} e ker(Tame) c Kf (C(Xo))'

'wirh his p, n : the present n, n + r (resp.). For both temmas one needs to check that Nagel's

restricdon (his r ( n - 3) to dim(X) > 2 is not essential.
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thefe exrsts an exrenslon to {F} e ker(Tame) CKyrc.(x)) as in Section ?, and

lS )lU > 0 sufficiently small that X,\Vva : (Xo\Vo) x /'/' (This is proved

iy a itandard 'spread'argument, see [18]') Section'7.2then shows V[RL]:0'
where f" are the restrictions of F to X,.g; but this is not enough to accomplish the

monodromy argument that will give the vanishing tieorem beiow'

Instead we will start from the (for n ) 4) stronger assumption that {fs} e

Ky (Xil, and recall from Section 6.2that

[R1,,] e im{F/'-'(xo, c/Q(r))
--+ H'-t (t1xn.C/Qtn))) ='. Hn-t \rtxr.C/Qrn)).

An immediate consequence of the argument involving K, and Lemma 7'2, is the

following statement about the target group of the hoiomorphic regulator:

PROPOSITION 8. 1. For X o a very general (smootbl complete intersection C Pn +''

with Kyo)0,

Hn-t (nxn,c/e(n)) t,.. Iimy6x#+ffih
= H(;L (Xo,A/Q(n))tl 01.

Remark.

(i) The statement here is in the second isomorphisrn'
(ii) The limit is over all (arbitrary unions of) divisors.
(iii) By definition HJ'";t(Xo) :: coker{FI"-i(lF'+') -- H'-1(X0)).
(iv) Proposition is clearly false for L D I . n *r * I ; e.g. a general quadric surface

c F3 is birational to lPr x IFI , and removing the divisors {0} x F' and Fr x {0}
eliminates //2 completely.

Since Xs is a smooth complete intersection in lF'+',

im{I1,,-r(4x0, Q) * F1,-r(Xo, Q)} c ker{I1,-'(Xo' Q) + Hn-'l (P"', Q)}'

COROLLARY 8.2. This inclusion is actual\, an equali4'; that is. an)1 topological

cycle in the rh-s. ma1' be 'moved' b1t aQ-coboundarx' @n Xs) to avoid an arbitrary

configuration. of divisors.

It is on a basis (for the r.h.s.) consisting of 'moved' cycles that one computes

periods e C/Q(re) of R1o, in order to determine the class [RioJ. Now we prove these

periods are essentially always zero.

8.2. THE VANISHING ARGUMENT

Let fs e &'Z\C(X).] be a good representative of {fo} e K( (Xd c Kf @{.XD'
so that t[ is the codimension-0 component of a (0r-closed) higher Chow cycle

Rl, ::.' l(8,
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I o e Zn (Xo,n). Writing / --r S = PHo (P' +' . O ( Dil O "' O O (D,)) for the full

family (including singular fibers), there exists a finite branched cover .Y --+ 5 
= 

0

and a'spread' i e Z' t ft .n ) restricting to fq at 0. Now supp = (06 i) . n' -' {codim.

-1 subset of .1), so one may choose a Zariski-open subfamily X --> i (wittr smooth

fibers) oh which the restriction I e Z" (X , n) of I is a higher Chow cycle.

Writing yj for components of codimension I ) 1 (on X"), I- produces by fiber-
wise restriction a family of higher Chow cycles

/, , \
I-, : y1i - I yJ ( LJ ruoo", ryl) :: v, 

)E' \- /

giving rise to currents R1. : Rr. * It > r Rr,; [by the formula in Section 6.1]. Since

Qn, :0 by type considerations, d[Rr.] = -(2nr)'37r,; and so Ri. : Rr" +
(Ztti)" 36-t7r, is d-closed.

We can put these Ri-. into families locally, over any sufficiently small ball

t/cS. On.? one has d[O1]:Qaui:0 and r].Q;:Qr,:0; so Qi has trivial

class on fttl, and one can write an Ri with ,;, Ri : Ri, ft s e t/), dtRil : A1
Moreover Qi has (by further type considerations) no codim. ) 1 'components',
and so Q; - Qp.

Lifting f" to f, has saved us from the headache of working away from %. There

are actually two lifts going on here: since {f,i € K#(X") c Kf (C(X")) the ciass

[R1"] e im{Fl',-' (X", c/Q(n)) -+ Il',-1 (Xr\%, a/Q('r))i; [Rf,] € H',-r (X,, C/
Q(n)) gives a global lift over 5. of which [Ri-.] € H'-'(X,. C) is a local lift. e.g.

overU. However, it may be analytically continued to a 'multivalued section' over

all of 5, and one can look at its monodromy in H'-t (X,, Q(n)).
Before doing this we show locally that tR{-"1 is flat, i.e. VRi. :0. Since locally

dtRiJ: QF we have

vRi.. = Ior,r ({M,,arl
e ker{a} a 7-t11T1 -* sz3I c+*2H\-3^),

which is zero except for n =2, K;o trivial (by Lemma 7.3).
Describing monodromy by the map

p : n(5,0) -+ Aut{H'-'(xo, C)},

we note the difference of classes

pra)[R1-o) - IRi,] e H'-r(xo. Q(n)) (8.1)

since they both go to the same [Rr0]€Fl'-r(Xo,C/Q(n)).Now recall that if a
goes around a divisor in.i15 ou", which X, acquires a node ([Rp.] need not be

defined there), we may speak of the vanishing cycle 6 e H,,-r(Xo, Q) associated
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to cY, whose 'flat transport' to the nodal X, is homologous to zero. It is a fact
that such 6 span ker lHn:r(Xo,Q)t t1,,-r(F'*',Q)); let {6;} be a basis (with
associated loops o;) and {6;} a dual basis' for I/ji, r(Xo, Q). which one easily lifts
to H;';'(xo, Q).

Since [Ri.] is flat, the Picard-Lefschetz formula (see [15] or [22]) appiies to
comDute

p(cr;)[Ri.o1 - tni,] : *( / Rr.) .3t

Combined with (8.1) this gives immediateh'

/ 
ni. e qtnl Vd e ker{F1,,-r(Xo,Q) * H,,-r0P'*',Q)),

which is to say

lRr"l e im{Fl'-r(lP"+" C/Q(n)) -> H"-t(Xo. C/Q(n))};

and so (except for elliptic curves)

lRrol : o e r1"-r(Xe\Yo, C/Q(n)),

sincethecomposition Hh-t(Pn+t) --> Hn-t(X") -+ ,a'-t(X.\%) iszero.

8.3. STATEMENT AND INTERPRETATIoNS

We formally state what we have proved.

THEOREM 8.3 [Vanishing]. Ler X6qpt'+' be a ver\ general smooth complete
intersection of muhidegree (Do, . . ., D,), wlrcre if n : 2 then I D 1 I n * r * 1.

Then the image of the holomorphic Milnor regulator

R: Ky 6) * H'-t(nx.C/Q(n)).

$ zero.

Remark. This does not rule out interesting irnages for the holomorphic reg-
ulator on very general members of a proper subfamily of X --> 5. However in
the codimension 2 case (r: 1) we have the following refinement. If instead of
a very general member of the famiiy over )PIIO(lP+r , (9(D) @ O(D)), one fixes
a degree-D1 smooth hypersurface I cP'+l and considers a very general'Xs in
the family IPI/0(y, 0(D)),the vanishing result holds for D2 sufficiently (possibly
very) large. While less spectacular this is in fact harder to prove (see [18] for the
argument, which extends techniques from [13]).

-That 
is, /, 6; =A;;.
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The vanishing theorem has an interesting interpreution in terms of Goncharov's

[:Beilinson's] real regulator r : CH'(Xo, n) '-+ H$(Xo.lR(t?)) = H'-l(Xo,lR).
Clearly for n even it is just zero, since F/n-l(lP'+r):0 (and so ll'-r(Xo)-
Hl;t $il = Hn-t (nxo\).Forn odd letl : l0 *D,>, yi e Zn(X,n) be a higher

Chow cycie (codima{supp"yil:i), and write lzp::suppy(f ,>,y'). To state

the result, denote the intersection of f c X x !' c lP'+' x !n with P(n+r)/2+t xf'n
by |. [H]0,-l)/2; and nore that na([H]\ft-r)/z .17 E 7tn+tt1z(C, n). Also write [H]
for the homology class of a hyperplane section of X, and ?fi for the real /r-current

on [" defined in [11] (as modified slightiy in [18]).
Then r(f) is computed by a real (r - I )-current ip on X6 whose periods are

(i) fHrif =[nn1111,"-ttrz.n,Pi:a vaiue of Goncharov's Chow (tn - 1)lD-
l6glrithm libirjecturally computable in terms of L6a11p),

(ii) ,L ir = 0 for all'b avoiding Vr C X
(which, togetherwith [Ir'], span Hn-t(Xo, Q) by Proposition 8.1).

This result is consistent with the Beilinson conjecture (see for instance [26]), which

predicts the nontriviality of [the covolume ofl the image of r for X defined over

a number field (and therefore not very general)' If X is a complete intersection

defined over Q. one should except a nontorsion image for the holomorphic Milnor

regulator (provided Ky)-0 so that the target group is nonzero).

For X/Q a version of the Bloch-Beilinson conjecture also predicts injectivity
(modulo torsion) of the composition ,Kf (Q(x)) "+ Ky (C(x)) -+
H'-'(nx, C/Q(n)).

PART 4. RELATIVE MILNOR REGULATORS

For an (n - l)-dimensional smooth algebraic variety X with proper subvariety I,
one may defined Milnor groups

k{ @G,D):=
z,{c/I, Y )} I (@^ -t v,{c(x)-})

num ft {Steinberg relations C @ V'lC(X)-l\

where C(X, f ) c C(X)- is the multipiicative subgroup consisting of functions =
along f. The association f r+ R1 gives a well-defined map

n: k{ @fx, r)) + limv.1a,rlHom{F/,-t1x\v' v n X\vr v')'A'/Q@))'

where V C (X, f) means Vintersects Iproperly.
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For f : L{".f, @ e" eV,IC(P'. {0, *})} a Z[C(PI)-]. assuming for simplicity

l(.1.)lnils.)l :aYa,we sav {fi e ker(Tame) if fI"(,f"( P)'nk) /g,(p)e?(ru))u - 7

for all p € yr - Ud l(./")l u l(g") | I C*. The regulator image of such an eiement

is determined entirely by the value. Ic &eClQQ), where C is any generator of
Hr (F', {0, oo}; Z) avoiding V1."We 

shall compute this value for the eiement {f} e ker(Tame) g Ky(C(Pr.
{0, oo})) define by f : J'2 @ g2, where

^ l-ilw , l-tu
i : :----:-- afiu E : ;---.- l+rlw l+1,

Let % be the path along IR- from {0} to {oo}, perturbed by e-i' to avoid {l } e l(s) l.
(There will be no need to take e --+ 0.)

We want to evaluate

I o,: [ ,orf'dlogg:- f zn'itogs
r l, r f, v.CtT,t

but do not want to deal with the branch log /' or lthe point] y, o T p. (Here T p
is the preimage of IR.- under /:. which is the unit circle: log g blows up very close

to the intersection.) Take the Z(l)-valued 0-current A'2, :: 2log./ - log .f? with

O lLni) dtA'?rI : 37," - 267,, and observe that on lPl

dtAr, . iog g'?l : 4(log / dlog g - Znilogg. 6rr) - Rt

modulo theZ(2)-valued 1-current Zni(2Li.3r, - L'f .6r"r). Since y, nT1:/))
and iog g :0 there, it follows that modulo Z(2)

log / dlog g.

Up to this point our branches of log have strictly had arg e (-n, n).lt makes no
difference for the computation of the right hand side. if we now perturb T7 and T,
(and the accompanying branches of log) slightly so they avoid.. {0,}, {oo}, nd y,.
We shall also use the siightly altered branch of log z corresponding to T": -y..
Here is the resulting 'perturbed' picture:

*Note: it is o.k. to replace Q(2) by Z(2) here.
*'Whileremaining paths (resp.) from {-i} to [i] and {-1} to {1}

1,,*:o 1,,

9. The Simplest Nontrivial Regulator Computation

To give a simple demonstration of a Milnor regulator computation we work on a

degenerate elliptic curve - or what is the same, the relative variety (lPr. {0. oo}).
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and four times this is the final result: 16i.G, where G is the Catalan constant (a

famous transcendental number).

The interested reader may consult [18, Sec-tion 3.2] for more general relative

regulator computations on (lPl, {0, oo}) and (F/, triangle).

A REGULATOR FORMULA FOR MILNOR T.CROUPS
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MATT KERR

Now

o =,f, r[ - + logr log/dlogs + log<logslr,]

?

: f ltog /dlogglr. - iogldlogglr, * log:dioggl7, +
JFI

* loggdlogzlr, - logziog.f lsl *1ogaloggl1l; *
* 2zilog 7.lrrnr, - 2nilog gl111r,)

: f tog/dlogs+ [ rogsdlog;-f tosziog.f *flog<logs'
Jy, JTt (Br (f)

since the two intersections are empty. Multiplying by 4, the last two terms ue V.(Z)

Now iogg :log(1 - r) - log(1 * z) exactly (i.e., not mod Z(1))' and so

. f ,or/dlogg:- / rogrr-z)dlos:+ / rogrl *e)dlog:.
Jv. Jr, Jl'

Since the dilogarithm has no monodromy about 0, this

log( 1 - 11 dlog r -- Z$i(l) - Li(-i))

.i 6 ..r. * (_1)tl_)-t-lr ):4if_k2 k k2 I 'trQk+1t2'

-2 1

/@

2( t
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