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Abstract. We survey recent work on normal functions, includ-
ing limits and singularities of admissible normal functions, the
Gri�ths-Green approach to the Hodge conjecture, algebraicity of
the zero-locus of a normal function, Néron models, and Mumford-
Tate groups. Some of the material and many of the examples, esp.
in §§5− 6, are original.

In a talk on the theory of motives, A. A. Beilinson remarked that ac-
cording to his time-line of results, advances in the (relatively young)
�eld were apparently a logarithmic function of t; hence, one could ex-
pect to wait 100 years for the next signi�cant milestone. Here we al-
low ourselves to be more optimistic: following on a drawn-out history
which begins with Poincaré, Lefschetz, and Hodge, the theory of Nor-
mal Functions reached maturity in the programs of Bloch, Gri�ths,
Zucker, and others. But the recent blizzard of results and ideas, in-
spired by works of M. Saito on admissible normal functions, and Green
and Gri�ths on the Hodge Conjecture, has been impressive indeed. In
addition to further papers of theirs, signi�cant progress has been made
in work of P. Brosnan, F. Charles, H. Clemens, H. Fang, J. Lewis, R.
Thomas, Z. Nie, C. Schnell, C. Voisin, A. Young, and the authors �
much of this in the last 4 years. This seems like a good time to try to
summarize the state of the art and speculate about the future, barring
(say) 100 more results between the time of writing and the publication
of this volume.

In the classical algebraic geometry of curves, Abel's theorem and Ja-
cobi inversion articulate the relationship (involving rational integrals)
between con�gurations of points with integer multiplicities, or zero-
cycles, and an abelian variety known as the Jacobian of the curve:
the latter algebraically parametrizes the cycles of degree 0 modulo the
subgroup arising as divisors of meromorphic functions. Given a fam-
ily X of algebraic curves over a complete base curve S, with smooth
�bers over S∗ (S minus a �nite point set Σ over which �bers have dou-
ble point singularities), Poincaré [P1, P2] de�ned normal functions as
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holomorphic sections of the corresponding family of Jacobians over S
which behave �normally� (or �logarithmically�) in some sense near the
boundary. His main result, which says essentially that they parame-
trize 1-dimensional cycles on X , was then used by Lefschetz (in the
context where X is a pencil of hyperplane sections of a projective alge-
braic surface) to prove his famous (1, 1) theorem for algebraic surfaces
[L]. This later became the basis for the Hodge conjecture, which says
that certain topological-analytic invariants of an algebraic variety must
come from algebraic subvarieties:

Conjecture 1. For a smooth projective complex algebraic variety X,
with Hgm(X)Q the classes in H2m

sing(X
an
C ,Q) of type (m,m), and CHm(X)

the �Chow group� of codimension-m algebraic cycles modulo rational
equivalence, the fundamental class map CHm(X)⊗Q → Hgm(X)Q is
surjective.

Together with a desire to learn more about the structure of Chow
groups (the Bloch-Beilinson conjectures reviewed in §5), this can be
seen as the primary motivation behind all the work described (as well
as the new results) in this paper. In particular, in §1 (after mathe-
matically �eshing out the Poincare-Lefschetz story) we describe the at-
tempts to directly generalize Lefschetz's success to higher-codimension
cycles which led to Gri�ths's Abel-Jacobi map (from the codimension
m cycle group of a variety X to its mth �intermediate� Jacobian), hor-
izontality and variations of mixed Hodge structure, and S. Zucker's
�Theorem on Normal Functions�. As is well-known, the breakdown
(beyond codimension 1) of the relationship between cycles and (inter-
mediate) Jacobians, and the failure of the Jacobians to be algebraic,
meant that the same game played in 1 parameter would not work out-
side very special cases.

It has taken nearly three decades to develop the technical underpin-
nings for a study of normal functions over a higher dimensional base S:
Kashiwara's work on admissible variations of mixed Hodge structure
[K], M. Saito's introduction of mixed Hodge modules [S4], multivari-
able nilpotent and SL2 orbit theorems ([KNU1],[Pe2]), and so on. And
then in 2006, Gri�ths and Green had a fundamental idea tying the
Hodge conjecture to the presence of nontorsion singularities � non-
trivial invariants in local intersection cohomology � for multiparame-
ter normal functions arising from Hodge classes on algebraic varieties
[GG]. We describe their main result and the follow-up work [BFNP]
in §3. Prior to that the reader will need some familiarity with the
boundary behavior of �admissible� normal functions arising from higher
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codimension algebraic cycles. The two principal invariants of this be-
havior are called limits and singularities, and we have tried in §2 to
give the reader a geometric feel for these through several examples and
an explanation of the precise sense in which the limit of Abel-Jacobi
invariants (for a family of cycles) is again some kind of Abel-Jacobi
invariant. In general throughout §§1-2 (and §4.5-6) normal functions
are �of geometric origin� (arise from cycles), whereas in the remainder
the formal Hodge-theoretic point of view dominates (though Conjec-
ture (1) is always in the background). We should emphasize that the
�rst two sections are intended for a broad audience, while the last four
are of a more specialized nature; one might say that the di�culty level
increases exponentially.

The transcendental (non-algebraic) nature of intermediate Jacobians
means that even for a normal function of geometric origin, algebraicity
of its vanishing locus (as a subset of the base S), let alone its sensitivity
to the �eld of de�nition of the cycle, is not a foreordained conclusion.
Following a review of Schmid's nilpotent and SL2 orbit theorems (which
lie at the heart of the limit mixed Hodge structures introduced in §2),
in §4 we explain how generalizations of those theorems to mixed Hodge
structures (and multiple parameters) have allowed complex algebraicity
to be proved for the zero-loci of �abstract� admissible normal functions
[BP1, BP2, BP3, S5]. We then address the �eld of de�nition in the
geometric case, in particular the recent result of Charles [Ch] under a
hypothesis on the VHS underlying the zero-locus, the situation when
the family of cycles is algebraically equivalent to zero, and what all
this means for �ltrations on Chow groups. Another reason one would
want the zero-locus to be algebraic is that the Gri�ths-Green normal
function attached to a nontrivial Hodge class can then be shown, by
an observation of C. Schnell, to have a singularity in the intersection
of the zero-locus with the boundary Σ ⊂ S (though this intersection
could very well be empty).

Now, a priori, admissible normal functions (ANF's) are only horizon-
tal and holomorphic sections of a Jacobian bundle over S\Σ which are
highly constrained along the boundary. Another route (besides orbit
theorems) that leads to algebraicity of their zero-loci is the construc-
tion of a �Néron model� � a partial compacti�cation of the Jacobian
bundle satisfying a Hausdor� property (though not a complex analytic
space in general) and graphing admissible normal functions over all of
S. Néron models are taken up in §5; as they are better understood
they may become useful in de�ning global invariants of (one or more)
normal functions. However, unless the underlying variation of Hodge
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structure (VHS) is a nilpotent orbit the group of components of the
Néron model (i.e., the possible singularities of ANF's at that point)
over a codimension≥ 2 boundary point remains mysterious. Recent
examples of M. Saito [S6] and the second author [Pe3] show that there
are analytic obstructions which prevent ANF's from surjecting onto (or
even mapping nontrivially to) the putative singularity group for ANF's
(rational (0, 0) classes in the local intersection cohomology). At �rst
glance this appears to throw the existence of singularities for Gri�ths-
Green normal functions (and hence the Hodge conjecture) into serious
doubt, but in §5.5 we show that this concern is probably ill-founded.

The last section is devoted to a discussion of Mumford-Tate groups of
mixed Hodge structures (introduced by Y. André [An]) and variations
thereof, in particular those attached to admissible normal functions.
The motivation for writing this section was again to attempt to �force
singularities to exist� via conditions on the normal function (e.g., in-
volving the zero-locus) which maximize the monodromy of the under-
lying local system inside the M-T group; we were able to markedly
improve André's maximality result (but not to produce singularities).
Since the general notion of (non)singularity of a VMHS at a boundary
point is de�ned here (in §6.3), which generalizes the notion of singu-
larity of a normal function, we should point out that there is another
sense in which the word �singularity� is used in this paper. The "singu-
larities� of a period mapping associated to a VHS or VMHS are points
where the connection has poles or the local system has monodromy
(i.e. Σ in the above notation), and at which one must compute a limit
mixed Hodge structure (LMHS). These contain the �singularities of the
VMHS�, nearly always as a proper subset; indeed, pure VHS never have
singularities (in the sense of §6.3), though their corresponding period
mappings do.

This paper has its roots in the �rst author's talk at a conference in
honor of Phillip Gri�ths's 70th birthday at the IAS, and the second
author's talk at MSRI during the conference on the topology of strati-
�ed spaces to which this volume is dedicated. The relationship between
normal functions and strati�cations occurs in the context of mixed
Hodge modules and the Decomposition Theorem [BBD], and is most
explicitly on display in the construction of the multivariable Néron
model in §5 as a topological group whose restrictions to the strata of
a Whitney strati�cation are complex Lie groups. We want to thank
the conference organizers and Robert Bryant for doing an excellent job
at putting together and hosting a successful interdisciplinary meeting
blending (amongst other topics) singularities and topology of complex
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varieties, L2 and intersection cohomology, and mixed Hodge theory,
all of which play a role below. We are indebted to Patrick Brosnan,
Phillip Gri�ths, and James Lewis for helpful conversations and shar-
ing their ideas. We also want to thank heartily both referees as well as
Chris Peters, whose comments and suggestions have made this a better
paper.

One observation on notation is in order, mainly for experts: in order
to clarify the distinction in some places between monodromy weight
�ltrations arising in LMHS and weight �ltrations postulated as part of
the data of an admissible variation of mixed Hodge structure (AVMHS),
the former are always denotedM• (and the latterW•) in this paper. In
particular, for a degeneration of (pure) weight n HS with monodromy
logarithm N , the weight �ltration on the LMHS is written M(N)•
(and centered at n). While perhaps nontraditional, this is consistent
with the notation M(N,W )• for relative weight monodromy �ltrations
for (admissible) degenerations of MHS. That is, when W is �trivial�
(Wn = H, Wn−1 = {0}) it is simply omitted.

Finally, we would like to draw attention to the interesting recent article
[Gr4] of Gri�ths which covers ground related to our §§2− 5, but in a
complementary fashion that may also be useful to the reader.

Note. The second author was supported by NSF grant DMS-0703956.
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1. Prehistory and Classical Results

The present chapter is not meant to be heroic, but merely aims to
introduce a few concepts which shall be used throughout the paper.
We felt it would be convenient (whatever one's background) to have an
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up-to-date, �algebraic� summary of certain basic material on normal
functions and their invariants in one place. For background or further
(and better, but much lengthier) discussion of this material the reader
may consult the excellent books [Le1] by Lewis and [Vo2] by Voisin,
as well as the lectures of Green and Voisin from the �Torino volume�
[GMV] and the papers [Gr1], [Gr2], [Gr3] of Gri�ths.

Even experts may want to glance this section over since we have in-
cluded some bits of recent provenance: the relationship between log-
in�nitesimal and topological invariants, which uses work of M. Saito;
the result on inhomogeneous Picard-Fuchs equations, which incorpo-
rates a theorem of Müller-Stach and del Angel; the important example
of Morrison and Walcher related to open mirror symmetry; and the
material on K-motivation of normal functions (cf. §§1.3, 1.7), which
will be used in §§ 2 and 4.

Before we begin, a word on the currents that play a rôle in the bullet-
train proof of Abel's Theorem in §1.1. These are di�erential forms with
distribution coe�cients, and may be integrated against C∞ forms, with
exterior derivative d de�ned by �integration by parts�. They form a
complex computing C-cohomology (of the complex manifold on which
they lie) and include C∞chains and log-smooth forms. For example, for
a C∞ chain Γ, the delta current δΓ has the de�ning property

´
δΓ∧ω =´

Γ
ω for any C∞ form ω. (For more details, see Chap. 3 of [GH].)

1.1. Abel's Theorem. Our (historically incorrect) story begins with
a divisor D of degree zero on a smooth projective algebraic curve X/C;
the associated analytic variety Xan is a Riemann surface. (Except
when explicitly mentioned, we continue to work over C.) Writing D =∑

�nite
nipi ∈ Z1(X)hom (ni ∈ Z such that

∑
ni = 0, pi ∈ X(C)),

by Riemann's Existence Theorem one has a meromorphic 1-form ω̂
with Respi(ω̂) = ni (∀i). Denoting by {ω1, . . . , ωg} a basis for Ω1(X),
consider the map

(1.1) Z1(X)hom //

ÃJ

))
Ω1(X)∨´
H1(X,Z)(·)

ev{ωi}
∼=
// Cg
Λ2g =: J1(X)

D � //
´

Γ
� //

(´
Γ
ω1, . . . ,

´
Γ
ωg
)

where Γ ∈ C1(Xan) is any chain with ∂Γ = D
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+3

−1 −2

D

Γ

and J1(X) is the Jacobian of X. The 1-current κ := ω̂−2πiδΓ is closed;

moreover, if ÃJ(D) = 0 then Γ may be chosen so that all
´

Γ
ωi = 0

=⇒
´
X
κ∧ωi = 0. We can therefore smooth κ in its cohomology class

to ω = κ− dη (ω ∈ Ω1(X); η ∈ D0(X) =0-currents), and

(1.2) f := exp

{ˆ
(ω̂ − ω)

}
(1.3) = e2πi

´
δΓeη

is single-valued (though possibly discontinuous) by (1.3) and meromor-

phic (though possibly multivalued) by (1.2). Locally at pi, e
´ ni

z
dz =

Czni has the right degree; and so the divisor of f is precisely D.
Conversely, if for f ∈ C(X)∗, D = (f) = f−1(0) − f−1(∞), then
t 7→

´
f−1(

−→
0.t)

(·) induces a holomorphic map P1 → J1(X). Such a map

is necessarily constant (say, to avoid pulling back a nontrivial holomor-
phic 1-form), and by evaluating at t = 0 one �nds that this constant is
zero. So we have proved part (i) of

Theorem 2. (i) [Abel] Writing Z1(X)rat for the divisors of functions

f ∈ C(X)∗, ÃJ descends to an injective homomorphism of abelian
groups

CH1(X)hom :=
Z1(X)hom
Z1(X)rat

AJ−→ J1(X).

(ii) [Jacobi Inversion] AJ is surjective; in particular, �xing q1, . . . , qg ∈
X(C) the morphism SymgX → J1(X) induced by p1 + · · · + pg 7→´
∂−1(

∑
pi−qi)(·) is birational.

Here ∂−1D means any 1-chain bounding on D. Implicit in (ii) is that
J1(X) is an (abelian) algebraic variety; this is a consequence of ample-
ness of the theta line bundle (on J1(X)) induced by the polarization

Q : H1(X,Z)×H1(X,Z)→ Z
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(with obvious extensions to Q, R, C) de�ned equivalently by cup prod-
uct, intersection of cycles, or integration (ω, η) 7→

´
X
ω ∧ η. The am-

pleness boils down to the second Riemann bilinear relation, which says
that iQ(·, ·̄) is positive de�nite on Ω1(X).

1.2. Normal functions. We now wish to vary the Abel-Jacobi map
in families. Until §2, all our normal functions shall be over a curve S.
Let X be a smooth projective surface, and π̄ : X → S a (projective)
morphism which is

(a) smooth o� a �nite set Σ = {s1, . . . , se} ⊂ S, and

(b) locally of the form (x1, x2) 7→ x1x2 at singularities (of π̄).

Write Xs := π̄−1(s) (s ∈ S) for the �bres. The singular �bres Xsi

(i = 1, . . . , e) then have only nodal (ordinary double point) singularities

π

and writing X ∗ for their complement we have π : X ∗ → S∗ := S\Σ.
Fixing a general s0 ∈ S∗, the local monodromies Tsi ∈
Aut (H1(Xs0 ,Z) =: HZ,s0) of the local system HZ := R1π∗ZX ∗ are then
computed by the Picard-Lefschetz formula

(1.4) (Tsi − I)γ =
∑
j

(γ · δj)δj.

Here {δj} are the Poincaré duals of the (quite possibly non-distinct)
vanishing cycle classes ∈ ker {H1(Xs0 ,Z)→ H1(Xsi ,Z)} associated to
each node on Xsi ; we note (Tsi−I)2 = 0. For a family of elliptic curves,
(1.4) is just the familiar Dehn twist:
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T

α

β

Τ(α)=α

Τ(β)=β+α β

β+α

∆

Ε Εs 00

0
s 0

(For the reader new to such pictures, the two crossing segments in the
previous �local real� picture become the two touching �thimbles�, i.e. a
small neighborhood of the singularity in E0, in this diagram.)

Now, in our setting, the bundle of Jacobians J :=
⋃
s∈S∗ J

1(Xs) is a
complex (algebraic) manifold. It admits a partial compacti�cation to
a �ber space of complex abelian Lie groups, by de�ning J1(Xsi) :=

H0(ωXsi
)

im{H1(Xsi ,Z)} (ωxs = dualizing sheaf) and Je := ∪s∈SJ1(Xs). (How this

is topologized will be discussed in a more general context in §5.) The
same notation will denote their sheaves of sections,

(1.5) 0→ HZ → F∨ → J → 0 (on S∗)

(1.6) 0→ HZ,e → (Fe)∨ → Je → 0 (on S)

with F := π∗ωX/S, Fe := π̄∗ωX/S, HZ = R1π∗Z, HZ,e = R1π̄∗Z.

De�nition 3. A normal function (NF) is a holomorphic section (over
S∗) of J . An extended (or Poincaré) normal function (ENF) is a
holomorphic section (over S) of Je. A NF is extendable if it lies in
im{H0(S,Je)→ H0(S∗,J )}.

Next consider the long-exact cohomology sequence (sections over S∗)

(1.7) 0→ H0(HZ)→ H0(F∨)→ H0(J )→ H1(HZ)→ H1(F∨);

the topological invariant of a normal function ν ∈ H0(J ) is its im-
age [ν] ∈ H1(S∗,HZ). It is easy to see that the restriction of [ν]
to H1(∆∗i ,HZ) (∆i a punctured disk about si) computes the local
monodromy (Tsi − I)ν̃ (where ν̃ is a multivalued local lift of ν to
F∨), modulo the monodromy of topological cycles. We say that ν
is locally liftable if all these restrictions vanish, i.e. if (Tsi − I)ν̃ ∈
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im{(Tsi − I)HZ,s0}. Together with the assumption that as a (multival-
ued, singular) �section� of F∨e , ν̃e has at worst logarithmic divergence
at si (the �logarithmic growth� in the title), this is equivalent to ex-
tendability.

1.3. Normal functions of geometric origin. Let Z ∈ Z1(X )prim be
a divisor properly intersecting �bres of π̄ and avoiding its singularities,
and which is primitive in the sense that each Zs := Z ·Xs (s ∈ S∗) is of
degree 0. (In fact, the intersection conditions can be done away with, by
moving the divisor in a rational equivalence.) Then s 7→ AJ(Zs) de�nes
a section νZ of J , and it can be shown that a multiple NνZ = νNZ of
νZ is always extendable. One says that νZ itself is admissible.

Now assume π̄ has a section σ : S → X (also avoiding singularities)
and consider the analogue of (1.7) for Je

0→ H0(F∨e )

H0(HZ,e)
→ H0(Je)→ ker

{
H1(HZ,e)→ H1(F∨e )

}
→ 0.

With a bit of work, this becomes

(1.8) 0→ J1(X/S)fix // ENF
[·]
// Hg

1(X )prim

Z〈[Xs0 ]〉 → 0 ,

where the Jacobian of the �xed part J1(X/S)fix ↪→ J1(Xs) (∀s ∈
S) gives a constant subbundle of Je and the primitive Hodge classes
Hg1(X )prim are the Q-orthogonal complement of a general �bre Xs0 of
π̄ in Hg1(X ) := H2(X ,Z) ∩H1,1(X ,C).

Proposition 4. Let ν be an ENF.

(i) If [ν] = 0 then ν is a constant section of Jfix :=
⋃
s∈S J

1(X/S)fix ⊂
Je;

(ii) If (ν =)νZ is of geometric origin, then [νZ] = [Z] ([Z] = fundamental
class);

(iii) [Poincaré Existence Theorem] Every ENF is of geometric origin.

We note that (i) follows from considering sections {ω1, . . . , ωg}(s) of
F∨e whose restrictions to general Xs are linearly independent (such
do exist), evaluating a lift ν̃ ∈ H0(F∨e ) against them, and applying
Liouville's Theorem. The resulting constancy of the abelian integrals,
by a result in Hodge Theory (cf. end of §1.6), implies the membership of
ν(s) ∈ Jfix. To see (iii), apply �Jacobi inversion with parameters� and
qi(s) = σ(s) (∀i) over S∗ (really, over the generic point of S), and then
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take Zariski closure.1 Finally, when ν is geometric, the monodromies
of a lift ν̃ (to F∨e ) around each loop in S (which determine [ν]) are just
the corresponding monodromies of a bounding 1-chain Γs (∂Γs = Zs)

T∆ 0
s 0

which identify with the Leray (1, 1) component of [Z] in H2(X ); this
gives the gist of (ii).

A normal function is said to be motivated over K (K ⊂ C a sub�eld) if
it is of geometric origin as above, and if the coe�cients of the de�ning
equations of Z, X , π̄, and S belong to K.

1.4. Lefschetz (1,1) Theorem. Now take X ⊂ PN to be a smooth
projective surface of degree d, and {Xs := X ·Hs}s∈P1 a Lefschetz pencil
of hyperplane sections: the singular �bres have exactly one (nodal)
singularity. Let β : X � X denote the blow-up at the base locus
B :=

⋂
s∈P1 Xs of the pencil, and π̄ : X → P1 =: S the resulting

�bration. We are now in the situation considered above, with σ(S)
replaced by d sections E1 q · · · q Ed = β−1(B), and �bres of genus
g =

(
d−1

2

)
; and with the added bonus that there is no torsion in any

H1(∆∗i ,HZ), so that admissible =⇒ extendable. Hence, given Z ∈
Z1(X)prim (deg(Z ·Xs0) = 0): β∗Z is primitive, vZ := νβ∗Z is an ENF,

and [vZ ] = β∗[Z] under β∗ : Hg1(X)prim ↪→ Hg1(X )prim

Z〈[Xs0 ]〉 .

If on the other hand we start with a Hodge class ξ ∈ Hg1(X)prim, β
∗ξ

is (by (1.8) + Poincaré existence) the class of a geometric ENF νZ;
and [Z] ≡ [νZ] ≡ β∗ξ mod Z 〈[Xs0 ]〉 =⇒ ξ ≡ β∗β

∗ξ ≡ [β∗Z =: Z] in
Hg1(X)

Z〈[Xs0 ]〉 =⇒ ξ = [Z ′] for some Z ′ ∈ Z1(X)(prim). This is the gist of

Lefschetz's original proof [L] of

Theorem 5. Let X be a (smooth projective algebraic) surface. The

fundamental class map CH1(X)
[·]→ Hg1(X) is (integrally) surjective.

1Here the qi(s) are as in Theorem 2(ii) (but varying with respect to a parameter).
If at a generic point ν(η) is a special divisor then additional argument is needed.
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This continues to hold in higher dimension, as can be seen from an
inductive treatment with ENF's or (more easily) from the �modern�
treatment of Theorem 5 using the exponential exact sheaf sequence

0→ ZX −→ OX
e2πi(·)−→ O∗X → 0.

One simply puts the induced long-exact sequence in the form

0→ H1(X,O)

H1(X,Z)
→ H1(X,O∗)→ ker

{
H2(X,Z)→ H2(X,O)

}
→ 0,

and interprets it as

(1.9) 0 // J1(X) //

{
holomorphic
line bundles

}
���
�
�

// Hg1(X) // 0

CH1(X)

88qqqqqqqqqqqqqq

where the dotted arrow takes the divisor of a meromorphic section of
a given bundle. Existence of the section is a standard but nontrivial
result.

We note that for X → P1 a Lefschetz pencil ofX, in (1.8) J1(X/P1)fix =

J1(X) := H1(X,C)
F 1H1(X,C)+H1(X,Z)

, which is zero if X is a complete intersec-

tion; in that case ENF is �nitely generated and Hg1(X )prim
β∗

↪→ ENF .

Example 6. For X a cubic surface ⊂ P3, divisors with support on the
27 lines already surject onto Hg1(X) = H2(X,Z) ∼= Z7. Di�erences of
these lines generate all primitive classes, hence all of im(β∗)(∼= Z6) in
ENF(∼= Z8). Note that Je is essentially an elliptic surface and ENF
comprises the (holomorphic) sections passing through the C∗'s over
points of Σ. There are no torsion sections.

1.5. Gri�ths's AJ map. A Z-Hodge structure (HS) of weight m
comprises a �nitely generated abelian group HZ together with a de-
scending �ltration F • onHC := HZ⊗ZC satisfying F pHC⊕Fm−p+1HC =
HC, the Hodge �ltration; we denote the lot by H. Examples include the
mth (singular/Betti + de Rham) cohomology groups of smooth projec-
tive varieties /C, with F pHm

dR(X,C) being that part of the de Rham
cohomology represented by C∞ forms on Xan with at least p holomor-
phic di�erentials wedged together in each monomial term. (These are
forms of Hodge type (p,m − p) + (p + 1,m − p − 1) + · · · ; note that
Hp,m−p

C := F pHC ∩ Fm−pHC.) To accommodate Hm of non-smooth
or incomplete varieties, the notion of a (Z-)mixed Hodge structure
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(MHS) V is required: in addition to F • on VC, introduce a decreas-
ing weight �ltration W• on VQ such that the

(
GrWi VQ,

(
GrWi (VC, F

•)
))

are weight i Q-HS. Mixed Hodge structures have Hodge and Jacobian
groups Hgp(V ) := ker{VZ ⊕ F pW2pVC → VC} (for for VZ torsion-free

becomes VZ ∩ F pW2pVC) and J
p(V ) := W2pVC

F pW2pVC+W2pVQ∩VZ
, with special

cases Hgm(X) := Hgm(H2mX)) and Jm(X) := Jm(H2m−1(X)). Jaco-
bians of HS yield complex tori, and subtori correspond bijectively to
sub-HS.

A polarization of a HS H is a morphism Q of HS (de�ned over Z;
complexi�cation respects F •) from H × H to the trivial HS Z(−m)
of weight 2m (and type (m,m)), such that viewed as a pairing Q is
nondegenerate and satis�es a positivity constraint generalizing that
in §1.1 (the second Hodge-Riemann bilinear relation). A consequence
of this de�nition is that under Q, F p is the annihilator of Fm−p+1

(the �rst Hodge-Riemann bilinear relation in abstract form). If X is a
smooth projective variety of dimension d, [Ω] the class of a hyperplane

section, write (for k ≤ d, say) Hm(X,Q)prim := ker{Hm(X,Q)
∪Ωd−k+1

−→
H2d−m+2(X,Q)}. This Hodge structure is then polarized by Q(ξ, η) :=

(−1)(
m
2 ) ´

X
ξ∧η∧Ωd−k, [Ω] the class of a hyperplane section (obviously

since this is a Q-HS, the polarization is only de�ned /Q).

Let X be a smooth projective (2m − 1)-fold; we shall consider some
equivalence relations on algebraic cycles of codimension m on X. Writ-
ing Zm(X) for the free abelian group on irreducible (complex-)codimension
p subvarieties of X, two cycles Z1, Z2 ∈ Zm(X) are homologically
equivalent if their di�erence bounds a C∞ chain Γ ∈ Ctop

2m−1(Xan;Z)
(of real dimension 2m− 1). Algebraic equivalence is generated by (the
projection toX of) di�erences of the formW ·(X×{p1})−W ·(X×{p2})
where C is an algebraic curve, W ∈ Zm(X ×C), and p1, p2 ∈ C(C) (or
C(K) if we are working over a sub�eld K ⊂ C). Rational equivalence
is obtained by taking C to be rational (i.e. C ∼= P1), and for m = 1 is
generated by divisors of meromorphic functions. We write Zm(X)rat for

cycles ≡rat 0, etc; note that CHm(X) := Zm(X)
Zm(X)rat

⊃ CHm(X)hom :=
Zm(X)hom
Zm(X)rat

⊃ CHm(X)alg :=
Zm(X)alg
Zm(X)rat

are proper inclusions in general.

Now let W ⊂ X × C be an irreducible subvariety of codimension m,
with πX ,πC the projections from a desingularization ofW toX resp. C.
If we put Zi := πX∗π

∗
C{pi}, then Z1 ≡alg Z2 =⇒ Z1 ≡hom Z2, which

can be seen explicitly by setting Γ := πX∗π
∗
C(−→q.p) (so that Z1 − Z2 =

∂Γ).
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qp

W

X

C

+

+

−

−

Z
π

π
C

X

Let ω be a d-closed form of Hodge type (j, 2m − j − 1) on X, for j
at least m. Consider

´
Γ
ω =

´ q
p
κ, where κ := πC∗π

∗
Xω is a d-closed

1-current of type (j −m+ 1,m− j) as integration along the (m− 1)-
dimensional �bres of πC eats up (m−1,m−1). So κ = 0 unless j = m,
and by a standard regularity theorem in that case κ is holomorphic.
In particular, if C is rational, we have

´
Γ
ω = 0. This is essentially the

reasoning behind the following result:

Proposition 7. The Abel-Jacobi map

(1.10) CHm(X)hom
AJ // (F

mH2m−1(X,C))
∨

´
H2m−1(X,Z)(·)

∼= Jm(X)

induced by Z = ∂Γ 7→
´

Γ
(·), is well-de�ned and restricts to

(1.11) CHm(X)alg
AJalg // F

mH2m−1
hdg (X,C)´

H2m−1(X,Z)(·)
∼= Jm(H2m−1

hdg (X)) =: Jmh (X)

where H2m−1
hdg (X) is the largest sub-HS of H2m−1(X) contained (after

⊗C) in Hm−1,m(X,C) ⊕ Hm,m−1(X,C). While Jm(X) is in general
only a complex torus, Jmh (X) is an abelian variety and de�ned (along
with the point AJalg(Z)) over the �eld of de�nition of X.

Remark 8. (i) To see that Jmh (X) is an abelian variety, one uses the
Kodaira embedding theorem: by the Hodge-Riemann bilinear relations,
the polarization of H2m−1(X) induces a Kï¾÷hler metric h(u, v) =
−iQ(u, v̄) on Jmh (X) with rational Kï¾÷hler class.

(ii) The mapping (1.10) is neither surjective nor injective in general,
and (1.11) is not injective in general; however, (1.11) is conjectured to
be surjective, and regardless of this Jmalg(X) := im(AJalg) ⊆ Jmh (X) is
in fact a sub-abelian-variety.

(iii) A point in Jm(X) is naturally the invariant of an extension of MHS

0→ (H =)H2m−1(X,Z(m))→ E → Z(0)→ 0
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(where the �twist� Z(m) reduces weight by 2m, to (−1)). The invariant
is evaluated by taking two lifts νF ∈ F 0W0EC, νZ ∈ W0EZ of 1 ∈ Z(0),
so that νF − νZ ∈ W0HC is well-de�ned modulo the span of F 0W0HC
and W0HZ hence is in J0(H) ∼= Jm(X). The resulting isomorphism
Jm(X) ∼= Ext1MHS(Z(0), H2m−1(X,Z(m))) is part of an extension-class
approach to AJ maps (and their generalizations) due to Carlson [Ca].

(iv) The Abel-Jacobi map appears in [Gr3].

1.6. Horizontality. Generalizing the setting of §1.2, let X be a smooth
projective 2m-fold �bred over a curve S with singular �bres {Xsi} each
of either

(i) NCD(=normal crossing divisor) type: locally (x1, . . . , x2m)
π7−→∏k

j=1 xj; or

(ii) ODP(=ordinary double point) type: locally (x) 7−→
∑2m

j=1 x
2
j .

An immediate consequence is that all Tsi ∈ Aut (H2m−1(Xs0 ,Z)) are
unipotent : (Tsi − I)n = 0 for n ≥ 2m in case (i) or n ≥ 2 in case
(ii). (If all �bers are of NCD type, then we say the family {Xs} of
(2m− 1)-folds is semistable.)

The Jacobian bundle of interest is J :=
⋃
s∈S∗ J

m(Xs) (⊃ Jalg). Writ-
ing{
F (m) := R2m−1π∗Ω

•≥m
X ∗/S∗

}
⊂
{
H := R2m−1π∗Ω

•
X ∗/S∗

}
⊃
{
HZ := R2m−1π∗ZX ∗

}
,

and noting F∨ ∼= H
F via Q : H2m−1×H2m−1 → OS∗ , the sequences (1.5)

and (1.7), as well as the de�nitions of NF and topological invariant [·],
all carry over. A normal function of geometric origin, likewise, comes
from Z ∈ Zm(X )prim with Zs0 := Z ·Xs0 ≡hom 0 (on Xs0), but now has
an additional feature known as horizontality, which we now explain.

Working locally over an analytic ball (s0 ∈)U ⊂ S∗, let ω̃ ∈Γ(XU , Fm+1Ω2m−1
X∞ )

be a �lift� of ω(s) ∈ Γ(U,Fm+1), and Γs ∈ Ctop
2m−1(Xs;Z) be a continu-

ous family of chains with ∂Γs = Zs. Let P
ε be a path from s0 to s0 + ε;

then Γ̂ε :=
⋃
s∈P ε Γs has boundary Γs0+ε − Γs0 +

⋃
s∈P ε Zs, and

(1.12)

(
∂
∂s

´
Γs
ω(s)

)
s=s0

= limε→0
1
ε

´
Γs0+ε−Γs0

ω̃ =

limε→0
1
ε

(´
∂Γ̂ε

ω̃ −
´ s0+ε

s0

´
Zs
ω(s)

)
=´

Γs0

〈
d̃/dt, dω̃

〉
−
´
Zs0

ω(s0)

where π∗d̃/dt = d/dt (with d̃/dt tangent to Γ̂ε, Ẑε).
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The Gauss-Manin connection ∇ : H → H ⊗ Ω1
S∗ di�erentiates the

periods of cohomology classes (against topological cycles) in families,
satis�es Gri�ths transversality∇(Fm) ⊂ Fm−1⊗Ω1

S∗ , and is computed

by ∇ω = [
〈
d̃/dt, dω̃

〉
]⊗dt. Moreover, the pullback of any form of type

Fm to Zs0 (which is of dimension m− 1) is zero, so that
´
Zs0

ω(s0) = 0

and
´

Γs0
∇ω is well-de�ned. If Γ̃ ∈ Γ(U,H) is any lift of AJ(Γs) ∈

Γ(U,J ), we therefore have

Q
(
∇d/dtΓ̃, ω

)
=

d

ds
Q(Γ̃, ω)−Q(Γ̃,∇ω)

=
d

ds

ˆ
Γs

ω −
ˆ

Γs

∇ω

which is zero by (1.12) and the remarks just made. We have shown
that ∇d/dtΓ̃ kills Fm+1, and so ∇d/dtΓ̃ is a local section of Fm−1.

De�nition 9. A NF ν ∈ H0(S∗,J ) is horizontal if for any local lift
ν̃ ∈ Γ(U,H), ∇ν̃ ∈ Γ(U,Fm−1 ⊗ Ω1

U). Equivalently, if we set Hhor :=

ker
(
H ∇→ H

Fm−1 ⊗ Ω1
S∗

)
⊃ Fm =: F , (F∨)hor := Hhor

F , and Jhor :=
(F∨)hor

HZ
, then NFhor := H0(S,Jhor).

Much as an AJ image was encoded in a MHS in Remark 8(ii), we
may encode horizontal normal functions in terms of variations of MHS.
A VMHS V/S∗ consists of a Z-local system V with an increasing �l-
tration of VQ := VZ ⊗Z Q by sub- local systems WiVQ, a decreas-
ing �ltration of V(O) := VQ ⊗Q OS∗ by holomorphic vector bundles
F j(= F jV), and a connection∇ : V → V⊗Ω1

S∗ such that (i)∇(V) = 0,
(ii) the �bres (Vs,W•, Vs, F

•
s ) yield Z-MHS, and (iii) [transversality]

∇(F j) ⊂ F j−1 ⊗ Ω1
S∗ . (Of course, a VHS is just a VMHS with one

nontrivial GrWi VQ, and ((HZ,H,F•),∇) in the geometric setting above
gives one.) A horizontal normal function corresponds to an extension

(1.13) 0→

wt. -1

VHS︷ ︸︸ ︷
H(m)→ E → Z(0)S∗ → 0

�varying� the setup of Remark 8(iii), with the transversality of the lift
of νF (s) (together with �atness of νZ(s)) re�ecting horizontality.

Remark 10. Allowing the left-hand term of (1.13) to have weight less
than −1 yields �higher� normal functions related to families of gener-
alized (�higher�) algebraic cycles. These have been studied in [DM1],
[DM2], and [DK], and will be considered in later sections.
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An important result on VHS over a smooth quasi-projective base is that
the global sections H0(S∗,V) (resp. H0(S∗,VR), H0(S∗,VC)) span the
Q-local system (resp. its ⊗R, ⊗C) of a (necessarily constant) sub-
VMHS ⊂ V , called the �xed part Vfix (with constant Jacobian bundle
Jfix).

1.7. In�nitesimal invariant. Given ν ∈ NFhor, the �∇ν̃� for various
local liftings patch together after going modulo ∇Fm ⊂ Fm−1 ⊗ Ω1

S∗ .
If ∇ν̃ = ∇f for f ∈ Γ(U,Fm), then the alternate lift ν̃ − f is �at,
i.e. equals

∑
i ciγi where {γi} ⊂ Γ(U,VZ) is a basis and the ci are

complex constants. Since the composition (s ∈ S∗) H2m−1(Xs,R) ↪→
H2m−1(Xs,C) � H2m−1(Xs,C)

Fm
is an isomorphism, we may take the ci ∈

R, and then they are unique in R/Z. This implies that [ν] lies in the
torsion group ker (H1(HZ)→ H1(HR)), so that a multiple Nν lifts to
H0(S∗,HR) ⊂ Hfix. This motivates the de�nition of an in�nitesimal
invariant

(1.14) δν ∈ H1
(
S∗,Fm ∇→ Fm−1 ⊗ Ω1

S∗

)
ifS∗

a�ne
H0
(
S, F

m−1⊗Ω1

Fm

)
as the image of ν ∈ H0

(
S∗, HhorF

)
under the connecting homomorphism

induced by

(1.15) 0→ Cone
(
Fm ∇→ Fm−1 ⊗ Ω1

)
[−1]→ Cone

(
H ∇→H⊗ Ω1

)
[−1]→ Hhor

F → 0.

Proposition 11. If δν = 0, then up to torsion, [ν] = 0 and ν is a
(constant) section of Jfix.

An interesting application to the di�erential equations satis�ed by nor-
mal functions is essentially due to Manin [Ma]. For simplicity let
S = P1, and suppose H is generated by ω ∈ H0(S∗,F2m−1) as a D-
module, with monic Picard-Fuchs operator F (∇δs:=s

d
ds

) ∈ C(P1)∗[∇δs ]

killing ω. Then its periods satisfy the homogeneous P-F equation
F (δs)

´
γi
ω = 0, and one can look at the multivalued holomorphic func-

tion Q(ν̃, ω) (where Q is the polarization, and ν̃ is a multivalued lift
of ν to Hhor/F), which in the geometric case is just

´
Γs
ω(s). The

resulting equation

(1.16) (2πi)mF (δs)Q(ν̃, ω) =: G(s)

is called the inhomogeneous Picard-Fuchs equation of ν.

Proposition 12. (i) [DM1] G ∈ C(P1)∗ is a rational function holomor-
phic on S∗; in the K-motivated setting (taking also ω ∈ H0(P1, π̄∗ωX/P1),
and hence F , over K), G ∈ K(P1)∗.
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(ii) [Ma, Gr1] G ≡ 0 ⇐⇒ δν = 0.

Example 13. [MW] The solutions to

(2πi)2

{
δ4
z − 5z

4∏
`=1

(5δz + `)

}
(·) = −15

4

√
z

are the membrane integrals
´

Γs
ω(s) for a family of 1-cycles on the

mirror quintic family of Calabi-Yau 3-folds. (The family of cycles is
actually only well-de�ned on the double-cover of this family, as re�ected
by the

√
z.) What makes this example particularly interesting is the

�mirror dual� interpretation of the solutions as generating functions of
open Gromov-Witten invariants of a �xed Fermat quintic 3-fold.

The horizontality relation ∇ν̃ ∈ Fm−1⊗Ω1 is itself a di�erential equa-
tion, and the constraints it puts on ν over higher-dimensional bases
will be studied in §5.4− 5.

Returning to the setting described in §1.6, there are canonical exten-
sions He,F•e of H,F• across the si as holomorphic vector bundles resp.
subbundles (reviewed in §2 below); e.g. if all �bres are of NCD type
then Fpe ∼= R2m−1π̄∗Ω

•≥p
X/S(log(X\X ∗)). Writing2 HZ,e := R2m−1π̄∗ZX

and He,hor := ker
{
He

∇→ He
Fm−1
e
⊗ Ω1

S(log Σ)
}
, we have short exact se-

quences

(1.17) 0→ HZ,e →
He(,hor)

Fme
→ Je(,hor) → 0

and set ENF(hor) := H0(S,Je(,hor)).

Theorem 14. (i) Z ∈ Zm(X )prim =⇒ NνZ ∈ ENFhor for some
N ∈ N; and

(ii) ν ∈ ENFhor with [ν] torsion =⇒ δν = 0.

Remark 15. (ii) is essentially a consequence of the proof of Cor. 2 in

[S2]. For ν ∈ ENFhor, δν lies in the subspaceH1
(
S,Fm ∇→ Fm−1

e ⊗ Ω1
S(log Σ)

)
,

the restriction of H1
(
S∗,Fm ∇→ Fm−1 ⊗ Ω1

S∗

)
→ H1(S∗,HC) to which

is injective.

2Warning: while He has no jumps in rank, the stalk of HZ,e at si ∈ Σ is of
strictly smaller rank than at s ∈ S∗.
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1.8. The Hodge Conjecture? Putting together Theorem 14(ii) and
Proposition 12, we see that a horizontal ENF with trivial topological
invariant lies in H0(S,Jfix) =: Jm(X/S)fix (constant sections). In
fact, the long-exact sequence associated to (17) yields

0→ Jm(X/S)fix → ENFhor
[·]→ Hgm(X )prim

im {Hgm−1(Xs0)}
→ 0,

with [νZ] = [Z] (if νZ ∈ ENF) as before. If X π̄→ P1 = S is a Lefschetz
pencil on a 2m-fold X, this becomes
(1.18)

Jm(X)
� � // ENFhor

[·]

(∗)
// // Hgm(X)prim ⊕ ker

{
Hgm−1(B)
→ Hgm(X)

}

CHm(X )prim

ν(·)

OO

ker([·])

AJ

OO

� � // CHm(X)prim

v(·)

cc

[·]

(∗∗)
//

β∗

OO

Hgm(X)prim
?�

(id.,0)

OO

where surjectivity of (*) is due to Zucker (cf. Theorems 31-32 in §3
below; his result followed on work of Gri�ths and Bloch establishing
the surjectivity for su�ciently ample Lefschetz pencils). What we are
after (⊗Q) is surjectivity of the fundamental class map (**). This
would clearly follow from surjectivity of ν(·), i.e. a Poincaré existence
theorem, as in §1.4. By Remark 8(ii) this cannot work in most cases;
however we do have

Theorem 16. The Hodge Conjecture HC(m,m) is true for X if Jm(Xs0) =
Jm(Xs0)alg for a general member of the pencil.

Example 17. [Zu1] As J2 = J2
alg is true for cubic threefolds by the

work of Gri�ths and Clemens [GC], HC(2, 2) holds for cubic fourfolds
in P5.

The Lefschetz paradigm, of taking a 1-parameter family of slices of
a primitive Hodge class to get a normal function and constructing a
cycle by Jacobi inversion, appears to have led us (for the most part) to
a dead end in higher codimension. A beautiful new idea of Gri�ths and
Green, to be described in §3, replaces the Lefschetz pencil by a complete
linear system (of higher degree sections of X) so that dim(S)� 1, and
proposes to recover algebraic cycles dual to the given Hodge class from
features of the (admissible) normal function in codimension ≥ 2 on S.
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1.9. Deligne cycle-class. This replaces the fundamental andAJ classes
by one object. Writing Z(m) := (2πi)mZ, de�ne the Deligne cohomol-
ogy of X (smooth projective of any dimension) by H∗D(Xan,Z(m)) :=

H∗
(
Cone

{
C•top(X

an;Z(m))⊕ FmD•(Xan)→ D•(Xan)
}

[−1]
)
,

and cD : CHm(X) → H2m
D (X,Z(m)) by Z 7→ (2πi)m(Ztop, δZ , 0). One

easily derives the exact sequence

0→ Jm(X)→ H2m
D (X,Z(m))→ Hgm(X)→ 0,

which invites comparison to the top row of (1.18).

2. Limits and Singularities of Normal Functions

Focusing on the geometric case, we now wish to give the reader a basic
intuition for many of the objects � singularities, Néron models, limits
of NF's and VHS � which will be treated from a more formal Hodge-
theoretic perspective in later sections.3 The �rst part of this section
(§§2.2 − 8) considers a cohomologically trivial cycle on a 1-parameter
semistably degenerating family of odd-dimensional smooth projective
varieties. Such a family has two invariants �at� the central singular
�bre:

• the limit of the Abel-Jacobi images of the intersections of the
cycle with the smooth �bres, and
• the Abel-Jacobi image of the intersection of the cycle with the
singular �bre.

We de�ne what these mean and explain the precise sense in which they
agree, which involves limit mixed Hodge strutures and the Clemens-
Schmid sequence, and links limits of AJ maps to the Bloch-Beilinson
regulator on higher K-theory.

In the second part, we consider what happens if the cycle is only as-
sumed to be homologically trivial �brewise. In this case, just as the
fundamental class of a cycle on a variety must be zero to de�ne its AJ
class, the family of cycles has a singularity class which must be zero
in order to de�ne the limit AJ invariant. Singularities are �rst intro-
duced for normal functions arising from families of cycles, and then in
the abstract setting of admissible normal functions (and higher nor-
mal functions). At the end we say a few words about the relation of
singularities to the Hodge conjecture, their rôle in multivariable Néron

3Owing to our desire to limit preliminaries and/or notational complications here,
there are a few unavoidable inconsistencies of notation between this and later
sections.
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models, and the analytic obstructions to singularities discovered by M.
Saito, topics which §§ 3, 5.1-2, and 5.3-5 (respectively) will elaborate
extensively upon.

We shall begin by recasting cD from §1.9 in a more formal vein, which
works ⊗Q. The reader should note that henceforth in this paper, we
have to introduce appropriate Hodge twists (largely suppressed in §1)
into VHS, Jacobians, and related objects.

2.1. AJ map. As we saw in §1, this is the basic Hodge-theoretic invari-
ant attached to a cohomologically trivial algebraic cycle on a smooth
projective algebraic variety X/C; say dim(X) = 2m − 1. In the dia-
gram below, if clX,Q(Z) = 0 then Z = ∂Γ for Γ (say) a rational C∞

(2m−1)-chain onXan, and
´

Γ
∈ (FmH2m−1(X,C))∨ induces AJX,Q(Z).

(2.1)

Hom
MHS

(
Q(0), H2m(X,Q(m))

)
(H2m(X))

(m,m)
Q

CHm(X)

clX
55jjjjjjjjjjjjjjjjj

// Ext1
DbMHS

(Q(0),K•[2m](m))

OO

ker(clX)
?�

OO

AJX // Ext1
MHS

(
Q(0), H2m−1(X,Q(m))

)
OO

Jm(X)Q ∼=
(FmH2m−1

C )
∨

H2m−1
Q(m)

The middle term in the vertical short-exact sequence, which is isomor-
phic to Deligne cohomology and Beilinson's absolute Hodge cohomol-
ogy H2m

H (Xan,Q(m)), can be regarded as the ultimate strange fruit
of Carlson's work on extensions of mixed Hodge structures. Here K•
is a canonical complex of MHS quasi-isomorphic (non-canonically) to
⊕iH i(X)[−i], constructed from two general con�gurations of hyper-
plane sections {Hi}2m−1

i=0 , {H̃j}2m−1
j=0 of X. More precisely, looking (for

|I|, |J | > 0) at the corresponding �cellular� cohomology groups

CI,J

H,H̃
(X) := H2m−1(X\ ∪i∈I Hi,∪j∈JHj\ · · · ;Q),

one sets

K` := ⊕I,J : |I|−|J |=`−2m+1C
I,J

H,H̃
(X),

cf. [RS]. (Ignoring the description of Jm(X) and AJ , and the compar-
isons to cD, HD, all of this works for smooth quasi-projective X as well;
the vertical short-exact sequence is true even without smoothness.)

The reason for writing AJ in this way is to make plain the analogy to
(2.9) below. We now pass back to Z-coe�cients.
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2.2. AJ in degenerating families. To let AJX(Z) vary with respect
to a parameter, consider a semistable degeneration (SSD) over an an-
alytic disk

(2.2) X ∗ � � //

π

��

X
π̄

��

X0

��

? _

ı0
oo ∪iYi

∆∗ �
�  // ∆ {0}? _oo

where X0 is a reduced NCD with smooth irreducible components Yi,
X is smooth of dimension 2m, π̄ is proper and holomorphic, and π is
smooth. An algebraic cycle Z ∈ Zm(X ) properly intersecting �bers
gives rise to a family

Zs := Z ·Xs ∈ Zm(Xs) , s ∈ ∆.

Assume 0 = [Z] ∈ H2m(X ) [ =⇒ 0 = [Zs] ∈ H2m(Xs)]; then is there a
sense in which

(2.3) lim
s→0

AJXs(Zs) = AJX0(Z0)?

(Of course, we have yet to say what either side means.)

2.3. Classical example. Consider a degeneration of elliptic curves Es
which pinches 3 loops in the same homology class to points, yielding
for E0 three P1's joined at 0 and∞ (called a �Néron 3-gon� or �Kodaira
type I3� singular �ber).

pinch loops

to points

z

z

z

2

1

3

E Es 0 coordinates:

Denote the total space by E π̄→ ∆. One has a family of holomorphic 1-
forms ωs ∈ Ω1(Es) limiting to {dlog(zj)}3

j=1 on E0; this can be thought
of as a holomorphic section of R0π̄∗Ω

1
E/∆(logE0).

There are two distinct possibilities for limiting behavior when Zs =
ps − qs is a di�erence of points. (These do not include the case where
one or both of p0, q0 lies in the intersection of two of the P1's, since in
that case Z is not considered to properly intersect X0.)

Case (I):
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ps
p
0

q
0

s
q

Here p0 and q0 lie in the same P1 (the j = 1 component, say): in which

case AJEs(Zs) =
´ ps
qs
ωs ∈ C/Z

〈´
αs
ωs,
´
βs
ωs

〉
limits to

´ q0
p0

dlog(z1) =

log
(
z1(p0)
z1(q0)

)
∈ C/2πiZ.

Case (II):

βα
ps

sq

p

q0

0

??

In this case, p0 and q0 lie in di�erent P1 components, in which case 0 6=
[Z0] ∈ H2(X0) [ =⇒ [Z] 6= 0] and we say that AJ(Z0) is �obstructed�.

2.4. Meaning of the LHS of (2.3). If we assume only that 0 =
[Z∗] ∈ H2m(X ∗), then
(2.4) AJXs(Zs) ∈ Jm(Xs)

is de�ned for each s ∈ ∆∗. We can make this into a horizontal, holo-
morphic section of a bundle of intermediate Jacobians, which is what
we shall mean henceforth by a normal function (on ∆∗ in this case).

Recall the ingredients of a variation of Hodge structure (VHS) over ∆∗

H = ((H,HO,F•),∇) , ∇Fp ⊂ Fp−1⊗Ω1
S , 0→ H→ HO

Fm
→ J → 0

where H = R2m−1π∗Z(m) is a local system, HO = H ⊗Z O∆∗ is [the
sheaf of sections of] a holomorphic vector bundle with holomorphic
subbundles F•, and these yield HS's Hs �berwise (notation: Hs =
(Hs, Hs(,C), F

•
s )). Henceforth we shall abbreviate HO to H.

Then (2.4) yields a section of the intermediate Jacobian bundle

νZ ∈ Γ(∆∗,J ).
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Any holomorphic vector bundle over ∆∗ is trivial, each trivialization
inducing an extension to ∆. The extensions we want are the �canonical�
or �privileged� ones (denoted (·)e); as in §1.7, we de�ne an extended
Jacobian bundle Je by

(2.5) 0→ ∗H→
He

Fme
→ Je → 0.

Theorem 18. [EZ] There exists a holomorphic ν̄Z ∈ Γ(∆,Je) extend-
ing νZ.

De�ne lims→0AJXS(Zs) := ν̄Z(0) in (Je)0, the �ber over 0 of the Jaco-
bian bundle. To be precise: since H1(∆, ∗H) = {0}, we can lift the ν̄Z
to a section of the middle term of (2.5), i.e. of a vector bundle, evaluate
at 0, then quotient by (∗H)0.

2.5. Meaning of the RHS of (2.3). Higher Chow groups

CHp(X,n) :=

{
"admissible, closed" codimension p

algebraic cycles on X × An

}
"higher" rational equivalence

were introduced by Bloch to compute algebraic Kn-groups of X, and
come with �regulator maps� regp,n to generalized intermediate Jaco-
bians

Jp,n(X) :=
H2p−n−1(X,C)

F pH2p−n−1(X,C) +H2p−n−1(X,Z(p))
.

(Explicit formulas for regp,n have been worked out by the �rst author
with J. Lewis and S. Müller-Stach in [KLM].) The singular �ber X0

has motivic cohomology groups H∗M(X0,Z(·)) built out of higher Chow
groups on the substrata

Y [`] := q|I|=`+1YI := q|I|=`+1(∩i∈IYi)

(which yield a semi-simplicial resolution of X0). Inclusion induces

ı∗0 : CHm(X )hom → H2m
M (X0,Z(m))hom

and we de�ne Z0 := ı∗0Z. The AJ map

AJX0 : H2m
M (X0,Z(m))hom → Jm(X0) :=

H2m−1(X0,C){
FmH2m−1(X0,C)+
H2m−1(X0,Z(m))

}
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is built out of regulator maps on substrata, in the sense that the semi-
simplicial structure of X0 induces �weight� �ltrationsM• on both sides4

and

GrM−`H
2m
M (X0,Z(m))hom

GrM−`AJ−→ GrM−`J
m(X0)

boils down to

{subquotient of CHm(Y [`], `)} regm,`−→ {subquotient of Jm,`(Y [`])}.

2.6. Meaning of equality in (2.3). Specializing (2.5) to 0, we have

(ν̄Z(0) ∈) Jmlim(Xs) := (Je)0 =
(He)0

(Fme )0 + (∗H)0

,

where (∗H)0 are the monodromy invariant cycles (and we are thinking
of the �ber (He)0 over 0 as the limit MHS of H, see next subsection).
H. Clemens [Cl1] constructed a retraction map r : X � X0 inducing

(2.6) H2m−1(X0,Z)

µ

��2
22222222222222222222222222222222222

r∗ // H2m−1(X ,Z)

��
Γ(∆∗,H)

��
Γ(∆, ∗H)

��
(∗H)0� _

��

H2m−1
lim (Xs,Z)

(where µ is a morphism of MHS) which in turn induces

J(µ) : Jm(X0)→ Jmlim(Xs).

Theorem 19. [GGK] lims→0AJXs(Zs) = J(µ) (AJX0(Z0)) .

4For the advanced reader, we note that if M• is Deligne's weight �ltration on
H2m−1(X0,Z(m)), then M−`J

m(X0) := Ext1
MHS

(Z(0),M−`−1H
2m−1(X0,Z(m))).

The de�nition of the M• �ltration on motivic cohomology is much more involved,
and we must refer the reader to [GGK, sec. III.A].
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2.7. Graphing normal functions. On ∆∗, let T : H → H be the
counterclockwise monodromy transformation, which is unipotent since
the degeneration is semistable. Hence the monodromy logarithm

N := log(T ) =
2m−1∑
k=1

(−1)k−1

k
(T − I)k

is de�ned, and we can use it to �untwist� the local system ⊗Q:

HQ 7→ H̃Q := exp

(
− log s

2πi
N

)
HQ ↪→ He.

In fact, this yields a basis for, and de�nes, the privileged extension
He. Moreover, since N acts on H̃Q, it acts on He, and therefore on
(He)0 = H2m−1

lim (Xs), inducing a �weight monodromy �ltration� M•.
Writing H = H2m−1

lim (Xs,Q(m)), this is the unique �ltration {0} ⊂
M−2m ⊂ · · · ⊂ M2m−2 = H satisfying N(Mk) ⊂ Mk−2 and Nk :

GrM−1+kH
∼=→ GrM−1−kH for all k. In general it is centered about the

weight of the original variation (cf. the convention in the Introduction).

Example 20. In the �Dehn twist� example of §1.2, N = T − I (with

N(α) = 0, N(β) = α) so that α̃ = α, β̃ = β− log s
2πi

α are monodromy free
and yield an O∆-basis of He. We have M−3 = {0}, M−2 = M−1 = 〈α〉,
M0 = H.

Remark 21. Rationally, ker(N) = ker(T − I) even when N 6= T − I.

By [Cl1], µ maps H2m−1(X0) onto ker(N) ⊂ H2m−1
lim (Xs) and is com-

patible with the two M•'s; together with Theorem 19 this implies

Theorem 22. lims→0AJXs(Zs) ∈ Jm (ker(N)) (⊂ Jmlim(Xs)). [Here
we really mean ker(T − I) so that Jm is de�ned integrally.]

We remark that

• this was not visible classically for curves (J1(ker(N)) = J1
lim(Xs))

• replacing (Je)0 by J
m(ker(N)) yields J ′e , which is a �slit-analytic5

Hausdor� topological space� (Je is non-Hausdor� because in the
quotient topology there are nonzero points in (Je)0 that look
like limits of points in the zero-section of Je, hence cannot be
separated from 0 ∈ (Je)0.

6) This is the correct extended Ja-
cobian bundle for graphing �unobstructed� (in the sense of the

5that is, each point has a neighborhood of the form: open ball about 0 in Ca+b

intersected with ((Ca\{0})× Cb) ∪ ({0} × Cc), where c ≤ b.
6see the example before Theorem II.B.9 in [GGK].
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classical example) or �singularity-free� normal functions. Call
this the �pre-Néron-model�.

2.8. Non-classical example. Take a degeneration of Fermat quintic
3-folds

X =
semi-stable
reduction

of

{
s

4∑
j=1

z5
j =

4∏
k=0

zk

}
⊂ P4 ×∆,

so that X0 is the union of 5 P3's blown up along curves ∼= C = {x5 +
y5 + z5 = 0}. Its motivic cohomology group H4

M(X0,Q(2))hom has
GrM0

∼=10 copies of Pic0(C), GrM−1
∼=40 copies of C∗, GrW−2 = {0}, and

GrM−3
∼= Kind

3 (C). One has a commuting diagram

(2.7) H4
M(X0,Q(2))hom

AJX0 // J2(X0)Q J2(ker(N))Q

Kind
3 (C)

reg2,3

//
?�

OO

C/(2πi)2Q = //
?�

OO

R

and explicit computations with higher Chow precycles in [GGK, sec.
4] lead to the result:

Theorem 23. There exists a family of 1-cycles Z ∈ CH2(X )hom,Q
such that Z0 ∈ M−3H

4
M and =(AJX0(Z0)) = D2(

√
−3) (where D2 is

the Bloch-Wigner function).

Hence, lims→0AJXs(Zs) 6= 0 and so the general Zs in this family is
not rationally equivalent to zero. The main idea is that the family
of cycles limits to a (nontrivial) higher cycle in a substratum of the
singular �ber.

2.9. Singularities in 1 parameter. If only [Zs] = 0 (s ∈ ∆∗), and
[Z∗] = 0 fails, then

lim
s→0

AJ is obstructed

and we say ν̄Z(s) has a singularity (at s = 0), measured by the �nite
group

G ∼=
Im(TQ − I) ∩HZ

Im(TZ − I)
=

 Z/3Z in the classical example

(Z/5Z)3 in the non-classical ex.
.

(The (Z/5Z)3 is generated by di�erences of lines limiting to distinct
components of X0.) The Néron model is then obtained by replacing
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J(ker(N)) (in the pre-Néron-model) by its product with G (this will
graph all admissible normal functions [de�ned below]).

The next example demonstrates the ��nite-group� (or torsion) nature
of singularities in the 1-parameter case. In §2.10 we will see how this
feature disappears when there are many parameters.

Example 24. Let ξ ∈ C be general and �xed. Then

Cs = {x2 + y2 + s(x2y2 + ξ) = 0}

de�nes a family of elliptic curves (in P1 × P1) over ∆∗ degenerating to
a Néron 2-gon at s = 0. The cycle

Zs :=

(
i

√
1 + ξs

1 + s
, 1

)
−

(
−i
√

1 + ξs

1 + s
, 1

)
is nontorsion, with points limiting to distinct components.

∆

Ε Εs 00

s 0

Neron

2−gon

α

Ζ
Ζ

s
0

T

Τ(ν)=ν+α

ν

Hence, AJCs(Zs) =: ν(s) limits to the non-identity component(∼= C∗) of
the Néron model. The presence of the non-identity component removes
the obstruction (observed in §2.3 case (II)) to graphing ANF's with
singularities.

• ⊗Q, we can �correct� this: write α, β for a basis for H1(Cs)
and N for the monodromy log about 0, which sends α 7→ 0
and β 7→ 2α. Since N(ν) = α = N(1

2
β), ν − 1

2
β will pass

through the identity component(∼= C/Q(1) after tensoring with
Q, however).
• Alternately, to avoid ⊗Q, one can add a 2-torsion cycle like

Ts := (iξ
1
4 , ξ

1
4 )− (−iξ

1
4 ,−ξ

1
4 ).
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2.10. Singularities in 2 parameters.

Example 25. Now we will e�ectively allow ξ (from the last example)
to vary: consider the smooth family

Cs,t := {x2 + y2 + sx2y2 + t = 0}

over (∆∗)2. The degenerations t → 0 and s → 0 pinch physically
distinct cycles in the same homology class to zero, so that C0,0 is an
I2; we have obviously that N1 = N2 (both send β 7→ α 7→ 0). Take

Zs,t :=

(
i

√
1 + t

1 + s
, 1

)
−

(
−i
√

1 + t

1 + s
, 1

)
for our family of cycles, which splits between the two components of
the I2 at (0, 0).

T(s,t)

(0,0)(0,t)

(s,0)

ν

2 :ν−>ν

T1:ν−>ν+α

Things go much more �wrong� here � here are 3 ways to see this:

• try to correct monodromy (as we did in Ex. 24 with −1
2
β):

N1(ν) = α, N1(β) = α, N2(ν) = 0, N2(β) = α =⇒ impossible

• in Ts (from Ex. 1), ξ
1
4 becomes (here)

(
t
s

) 1
4 � so its obvious

extension isn't well-de�ned. In fact, there is NO 2-torsion fam-
ily of cycles with �ber over (0, 0) a di�erence of two points in
the two distinct components of C0,0 (i.e., which limits to have
the same cohomology class in H2(C0,0) as Z0,0).
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• take the �motivic limit� of AJ at t = 0: under the uniformiza-
tion of Cs,0 by

P1 3 z 7−→
(

2z

1− sz2
,

2iz

1 + sz2

)
,[

i

s
(1 +

√
1 + s)

]
−
[
i

s
(1−

√
1 + s)

]
7−→ Zs,0.

Moreover, the isomorphism C∗ ∼= K1(C) ∼= M−1H
2
M(Cs,0,Z(1)) (3

Zs,0) sends

1 +
√

1 + s

1−
√

1 + s
∈ C∗

to Zs,0, and at s = 0 (considering it as a precycle in Z1(∆, 1))
this obviously has a residue.

The upshot is that nontorsion singularities appear in codimension 2
and up.

2.11. Admissible normal functions. We now pass to the abstract
setting of a complex analytic manifold S̄ (for example a polydisk or
smooth projective variety) with Zariski open subset S, writing D =
S̄ \ S for the complement. Throughout, we shall assume that π0(S) is
�nite and π1(S) is �nitely generated. Let V = (V,V(O),F•,W•) be a
variation of MHS over S.

Admissibility is a condition which guarantees (at each x ∈ D) a well-
de�ned limit MHS for V up to the action F• 7→ exp(λ log T )F• (λ ∈ C)
of local unipotent monodromies T ∈ ρ(π1(Ux ∩ S)). If D is a divisor
with local normal crossings at x, and V is admissible, then a choice of
coordinates s1, . . . , sm on an analytic neighborhood U = ∆k of x (with
{s1 · · · sm = 0} = D) produces the LMHS (ψsV)x. Here we shall only
indicate what admissibility, and this LMHS, is in two cases: variations
of pure HS, and generalized normal functions (cf. De�nition 26.

As a consequence of Schmid's nilpotent- and SL2-orbit theorems, pure
variation is always admissible. If V = H is a pure variation in one
parameter, we have (at least in the unipotent case) already de�ned
�Hlim� and now simply replace that notation by �(ψsH)x�. In the mul-
tiple parameter (or non-unipotent) setting, simply pull the variation
back to an analytic curve ∆∗ → (∆∗)m × ∆k−m ⊂ S whose closure
passes through x, and take the LMHS of that. The resulting (ψsH)x
is independent of the choice of curve (up to the action of local mon-
odromy mentioned earlier). In particular, letting {Ni} denote the lo-
cal monodromy logarithms, the weight �ltration M• on (ψsH)x is just
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the weight monodromy �ltration attached to their sum N :=
∑
aiNi

(where the {ai} are arbitrary positive integers).

Now let r ∈ N.

De�nition 26. A (higher) normal function over S is a VMHS of the
form V in (the short-exact sequence)

(2.8) 0→ H −→ V −→ ZS(0)→ 0

where H is a [pure] VHS of weight (−r) and the [trivial, constant]
variation ZS(0) has trivial monodromy. (The terminology �higher� only
applies when r > 1.) This is equivalent to a holomorphic, horizontal
section of the generalized Jacobian bundle J(H) := H

F0H+HZ
.

Example 27. Given a smooth proper family X π→ S, with x0 ∈ S. A
higher algebraic cycle Z ∈ CHp(X , r− 1)prim := ker{CHp(X , r− 1)→
CHp(Xx0 , r − 1) → Hgp,r−1(Xx0)} yields a section of J(R2p−rπ∗C ⊗
OS) =: J p,r−1; this is what we shall mean by a (higher) normal function
of geometric origin.7 (The notion of motivation over K likewise has an
obvious extension from the classical 1-parameter case in §1.)
We now give the de�nition of admissibility for VMHS of the form in
Defn. 26 (but simplifying to D = {s1 · · · sk = 0}), starting with the
local unipotent case. For this we need Deligne's de�nition [De1] of the
Ip,q(H) of a MHS H, for which the reader may refer to Theorem 68 (in
§4) below. To simplify notation, we shall abbreviate Ip,q(H) to H(p,q),

so that e.g. H
(p,p)
Q = Ip,p(H) ∩ HQ, and drop the subscript x for the

LMHS notation.

De�nition 28. Let S = (∆∗)k, V ∈ NF r(S,H)Q (i.e., as in De�nition
26, ⊗Q), and x = (0).

(I) [unipotent case] Assume the monodromies Ti of H are unipotent,
so that the logarithms Ni and associated monodromy weight �ltra-

tions M
(i)
• are de�ned. (Note that the {Ni} resp. {Ti} automat-

ically commute since any local system must be a representation of
π1((∆∗)k), an abelian group.) We may �untwist� the local system ⊗Q
via Ṽ := exp

(
−1

2π
√
−1

∑
i log(si)Ni

)
V(Q), and set Ve := Ṽ⊗O∆k for the

Deligne extension. Then V is (S̄-)admissible i�

(a) H is polarizable

(b) ∃ lift νQ ∈ (Ṽ)0 of 1 ∈ Q(0) such that NiνQ ∈M (i)
−2(ψsH)Q (∀i)

7Note that Hgp,r−1(Xx0
)Q := H2p−r+1(Xx0

,Q(p)) ∩ F pH2p−r+1(Xx0
,C) is ac-

tually zero for r > 1, so that the �prim� comes for free for some multiple of Z.
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(c) ∃ lift νF (s) ∈ Γ(S,Ve) of 1 ∈ QS(0) such that νF |S ∈ Γ(S,F0).

(II) In general there exists a minimal �nite cover ζ : (∆∗)k → (∆∗)k

(sending s 7→ sµ) such that the T µii are unipotent. V is admissible i�
ζ∗V satis�es (a),(b),(c).

The main result [K, SZ] is then that V ∈ NF r(S,H)ad
S̄

has well-de�ned

ψsV , given as follows. On the underlying rational structure (Ṽ)0 we put
the weight �ltration Mi = MiψsH+Q 〈νQ〉 for i ≥ 0 and Mi = MiψsH
for i < 0; while on its complexi�cation (∼= (Ve)0) we put the Hodge
�ltration F j = F jψsHC + C 〈νF (0)〉 for j ≤ 0 and F j = F jψsH for

j > 0. (Here we are using the inclusion H̃ ⊂ Ṽ, and the content of the
statement is that this actually does de�ne a MHS.)

We can draw some further conclusions from (a)-(c). With some work,
from (I)(c) it follows that

(c') νF (0) gives a lift of 1 ∈ Q(0) satisfying NiνF (0) ∈ (ψsH)(−1,−1);

and one can also show that the NiνQ ∈M−2(ψsH)Q (∀i). Furthermore,
if r = 1 then each NiνQ [resp. NiνF (0)] belongs to the image under
Ni : ψsH → ψsH(−1) of a rational [resp. type-(0, 0)] element. (To see

this, use the properties of Ni to deduce that im(Ni) ⊇ M
(i)
−r−1; then

note that for r = 1 we have, from (b) and (c), NiνF (0), NiνQ ∈M (i)
−2.)

(III) The de�nition of admissibility over an arbitrary smooth base S
together with good compacti�cation S̄ is then local, i.e. reduces to
the (∆∗)k setting. Another piece of motivation for the de�nition of
admissibility is this, for which we refer the reader to [BZ, Thm. 7.3]:

Theorem 29. Any (higher) normal function of geometric origin is
admissible.

2.12. Limits and singularities of ANF's. Now the idea of the �limit
of a normal function� should be to interpret ψsV as an extension ofQ(0)
by ψsH. The obstruction to being able to do this is the singularity, as
we now explain. All MHS in this section are Q-MHS.

According to [BFNP, Cor. 2.9]NF r(S,H)ad
S̄
⊗Q ∼= Ext1

VMHS(S)ad
S̄

(Q(0),H),

and one has an equivalence of categories VMHS(S)ad
S̄
' MHM(S)ps

S̄
.

We want to push (in a sense canonically extend) our ANF V into S̄
and restrict the result to x. Of course, writing  : S ↪→ S̄, ∗ is
not right exact; so to preserve our extension, we take the derived
functor R∗ and land in the derived category DbMHM(S̄). Pulling
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back to DbMHM({x}) ∼= DbMHS by ı∗x, we have de�ned an invariant
(ı∗xR∗)

Hdg:

(2.9) Hom
MHS

(Q(0), H1K•)

NF r(S,H)

singx
33hhhhhhhhhhhhhhhhhhhhhh

(ı∗xR∗)
Hdg

// Ext1

DbMHS
(Q(0),K• := ı∗xRj∗H)

OO

ker(singx)
?�

OO

limx // Ext1
MHS

(Q(0), H0K•)

OO

where the diagram makes a clear analogy to (2.1).

For S = (∆∗)k and HZ unipotent

K• '
{
ψsH

⊕Ni−→ ⊕iψsH(−1) −→ ⊕i<jψsH(−2) −→ · · ·
}
,

and

singx : NF r((∆∗)k,H)ad∆k → (H1K•)(0,0)
Q (∼= coker(N)(−1) for k=1)

is induced by V 7→ {NiνQ} ≡ {NiνF (0)}. The limits, which are com-
puted by

limx : ker(singx)→ J(∩i ker(Ni)),

more directly generalize the 1-parameter picture. The target J(∩ ker(Ni))
is exactly what to put in over 0 to get the multivariable pre-Néron-
model.

We have introduced the general case r ≥ 1 because of interesting appli-
cations of higher normal functions to irrationality proofs, local mirror
symmetry [DK]. In case r = 1 � i.e. we are dealing with classical
normal functions � we can replace R∗ in the above by perverse in-
termediate extension !∗ (which by a lemma in [BFNP] preserves the
extension in this case, cf. Thm. 46 below). Correspondingly, K• is
replaced by the local intersection cohomology complex

K•red '
{
ψsH

⊕Ni−→ ⊕iIm(Ni)(−1) −→ ⊕i<jIm(NiNj)(−2)→ · · ·
}

;

while the target for limx is unchanged, that for singx is reduced to 0
if k = 1 and

(2.10)

(
ker(N1) ∩ im(N2)

N2(kerN1)

)(−1,−1)

Q

if k = 2.
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2.13. Applications of singularities. We hint at some good things
to come:

(i) Replacing the singx-target (e.g., (2.10)) by actual images of ANF's,
and using their di�erences to glue pre-Néron components together yields
a generalized Neron model (over ∆r, or S̄ more generally) graphing
ANF's. Again over x one gets an extension of a discrete (but not nec-
essarily �nite) singularity group by the torus J(∩ ker(Ni)). A. Young
[Yo] did this for abelian varieties, then [BPS] for general VHS. This
will be described more precisely in §5.2.
(ii) (Gri�ths and Green [GG]) The Hodge Conjecture (HC) on a 2p-
dimensional smooth projective variety X is equivalent to the following
statement for each primitive Hodge (p, p) class ζ and very ample line
bundle L → X: there exists k � 0 such that the natural normal
function8 νζ over |Lk| \ X̂ (the complement of the dual variety in the

linear system) has a nontorsion singularity at some point of X̂. So,
in a sense, the analogue of HC for (∆∗)k is surjectivity of singx onto

(H1K•red)
(0,0)
Q , and this fails:

(iii) (M. Saito [S6], Pearlstein [Pe3]) Let H0/∆
∗ be a VHS of weight

3 rank 4 with nontrivial Yukawa coupling. Twisting it into weight
−1, assume the LMHS is of type II1: N

2 = 0, rk(GrM−2) = 1. Take
for H/(∆∗)2 the pullback of H0 by (s, t) 7→ st. Then (2.10) 6= {0} =
sing0{NF 1((∆∗)2,H)ad∆2}. The obstruction to the existence of normal
functions with nontrivial singularity is analytic; and comes from a dif-
ferential equation produced by the horizontality condition (see §5.4−5).

(iv) One can explain the meaning of the residue of the limit K1 class in
Example 25 above: writing 1 : (∆∗)2 ↪→ ∆∗×∆, 2 : ∆∗×∆ ↪→ ∆2, fac-
tor (ı∗xRj!∗)

Hdg by (ı∗xR
2
∗)

Hdg ◦ (ı∗∆∗
1
!∗)

Hdg (where the ı∗Rj2
∗ corresponds

to the residue). That is, limit a normal function (or family of cycles)
to a higher normal function (or family of higher Chow cycles) over a
codimension-1 boundary component; the latter can then have (unlike
normal functions) a singularity in codimension 1 � i.e. in codimension
2 with respect to the original normal function.

This technique gives a quick proof of the existence of singularities for
the Ceresa cycle by limiting it to an Eisenstein symbol (see [Co] and the
Introduction to [DK]). Additionally, one gets a geometric explanation
of why one does not expect the singularities in (ii) to be supported in

high-codimension substrata of X̂ (supporting very degenerate hyper-
surfaces of X): along these substrata one may reach (in the sense of

8cf. §§3.2− 3, especially (3.5).
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(iv)) higher Chow cycles with rigid AJ invariants, hence no residues.
For this reason codimension 2 tends to be a better place to look for
singularities than in much higher codimension. These �shallow� sub-
strata correspond to hypersurfaces with ordinary double points, and
it was the original sense of [GG] that such points should trace out an
algebraic cycle �dual� to the original Hodge class, giving an e�ective
proof of the HC.

3. Normal Functions and the Hodge Conjecture

In this section, we discuss the connection between normal functions
and the Hodge conjecture, picking up where §1 left o�. We begin with
a review of some properties of the Abel�Jacobi map. Unless otherwise
noted, all varieties are de�ned over C.

3.1. Zucker's Theorem on Normal Functions. Let X be a smooth
projective variety of dimension dX . Recall that J

p
h(X) is the intermedi-

ate Jacobian associated to the maximal rationally de�ned Hodge sub-
structure H of H2p−1(X) such that HC ⊂ Hp,p−1(X)⊕Hp−1,p(X), and
that (by a result of Lieberman [Li])

(3.1)
Jp(X)alg = im {AJX : CHp(X)alg → Jp(X)}

is a sub- abelian variety of Jp(X)h.

Notation 30. If f : X → Y is a projective morphism then f sm denotes
the restriction of f to the largest Zariski open subset of Y over which f
is smooth. Also, unless otherwise noted, in this section, the underlying
latticeHZ of every variation of Hodge structure is assumed to be torsion
free, and hence for a geometric family f : X → Y , we are really
considering HZ = (Rkf sm∗ Z)/{torsion}.

As reviewed in §1, Lefschetz proved that every integral (1, 1) class on a
smooth projective surface is algebraic by studying Poincarï¾÷ normal
functions associated to such cycles. We shall begin here by revisiting
Gri�ths's program (also recalled in §1) to prove the Hodge conjecture
for higher codimension classes by extending Lefschetz's methods: By
induction on dimension, the Hodge conjecture can be reduced to the
case of middle dimensional Hodge classes on even dimensional varieties
[Le1, Lec. 14]. Suppose therefore that X ⊆ Pk is a smooth projective
variety of dimension 2m. Following [Zu2, Sec. 4], let us pick a Lefschetz
pencil of hyperplane sections of X, i.e. a family of hyperplanes Ht ⊆ Pk
of the form t0w0 + t1w1 = 0 parametrized by t = [t0, t1] ∈ P1 relative to
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a suitable choice of homogeneous coordinates w = [w0, . . . , wk] on Pk
such that:

• For all but �nitely many points t ∈ P1, the corresponding hy-
perplane section of Xt = X ∩Ht is smooth;
• The base locus B = X ∩ {w ∈ Pk | w0 = w1 = 0} is smooth;
• Each singular hyperplane section of X has exactly one singular
point, which is an ordinary double point.

Given such a Lefschetz pencil, let

Y = { (x, t) ∈ X × P1 | x ∈ Ht }
and π : Y → P1 denote projection onto the second factor. Let U
denote the set of points t ∈ P1 such that Xt is smooth and H be
the variation of Hodge structure over U with integral structure HZ =
R2m−1πsm∗ Z(m). Furthermore, by Schmid's nilpotent orbit theorem
[Sc], the Hodge bundles F• have a canonical extension to a system of
holomorphic bundles F•e over P1. Accordingly, we have a short exact
sequence of sheaves

(3.2) 0→ j∗HZ → He/Fme → Jm
e → 0

where j : U → P1 is the inclusion map. As before, let us call an
element ν ∈ H0(P1,Jm

e ) a Poincarï¾÷ normal function. Then, we
have the following two results [Zu2, Thms. 4.57, 4.17], the second of
which is known as �the Theorem on Normal Functions�:

Theorem 31. Every Poincarï¾÷ normal function satis�es Gri�ths
horizontality.

Theorem 32. Every primitive integral Hodge class on X is the coho-
mology class of a Poincarï¾÷ normal function.

The next step in the proof of the Hodge conjecture via this approach
is to show that for t ∈ U , the Abel�Jacobi map

AJ : CHm(Xt)hom → Jm(Xt)

is surjective. However, for m > 1 this is rarely true (even granting the
conjectural equality of Jm(X)alg and J

m
h (X)) since Jm(Xt) 6= Jmh (Xt)

unless H2m−1(Xt,C) = Hm,m−1(Xt) ⊕Hm−1,m(Xt). In plenty of cases
of interest Jmh (X) is in fact trivial; Theorem 33 and Example 35 below
give two di�erent instances of this.

Theorem 33. [Le1, Ex. 14.18] If X ⊆ Pk is a smooth projective variety
of dimension 2m such that H2m−1(X) = 0 and {Xt} is a Lefschetz
pencil of hyperplane sections of X such that Fm+1H2m−1(Xt) 6= 0 for
every smooth hyperplane section, then for generic t ∈ U , Jmh (Xt) = 0.
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Theorem 34. If Jph(X) = 0, then the image of CHm(W )hom in Jp(X)
under the Abel�Jacobi map is countable.

Proof. (Sketch) As a consequence of (3.1), if Jph(X) = 0 the Abel�
Jacobi map vanishes on CHp(X)alg. Therefore, the cardinality of the
image of the Abel-Jacobi map on CHp(X)hom is bounded by the cardi-
nality of the Gri�ths group CHp(X)hom/CH

p(X)alg, which is known
to be countable. �

Example 35. Speci�c hypersurfaces with Jph(X) = 0 were constructed
by Shioda [Sh]: Let Zn

m denote the hypersurface in Pn+1 de�ned by the
equation

n+1∑
i=0

xix
m−1
i+1 = 0 (xn+2 = x0)

Suppose that n = 2p− 1 > 1, m ≥ 2 + 3/(p− 1) and

d0 = {(m− 1)n+1 + (−1)n+1}/m

is prime. Then Jph(Zn
m) = 0.

3.2. Singularities of admissible normal functions. In [GG], Grif-
�ths and Green proposed an alternative program for proving the Hodge
conjecture by studying the singularities of normal functions over higher
dimensional parameter spaces. Following [BFNP], let S a complex
manifold and H = (HZ,F•HO) be a variation of polarizable Hodge
structure of weight −1 over S. Then, we have the short exact sequence

0→ HZ → H/F0 → J(H)→ 0

of sheaves and hence an associated long exact sequence in cohomology.
In particular, the cohomology class cl(ν) of a normal function ν ∈
H0(S, J(H)) is just the image of ν under the connecting homomorphism

∂ : H0(S, J(H))→ H1(S,HZ).

Suppose now that S is a Zariski open subset of a smooth projective
variety S̄. Then, the singularity of ν at p ∈ S̄ is the quantity

σZ,p(ν) = lim−→
p∈U

cl(ν|U∩S) ∈ lim−→
p∈U

H1(U ∩ S,HZ) = (R1j∗HZ)p

where the limit is taken over all analytic open neighborhoods U of p,
and j : S → S̄ is the inclusion map. The image of σZ,p(ν) in cohomology
with rational coe�cients will be denoted singp(νζ).

Remark 36. If p ∈ S then σZ,p(ν) = 0.
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Theorem 37. [S1] Let ν be an admissible normal function on a Zariski
open subset of a curve S̄. Then, σZ,p(ν) is of �nite order for each point
p ∈ S̄.

Proof. By [S1], an admissible normal function ν : S → J(H) is equiv-
alent to an extension

(3.3) 0→ H→ V → Z(0)→ 0

in the category of admissible variations of mixed Hodge structure. By
the monodromy theorem for variations of pure Hodge structure, the
local monodromy of V about any point p ∈ S̄ − S is always quasi-
unipotent. Without loss of generality, let us assume that it is unipotent
and that T = eN is the local monodromy of V at p acting on some �xed
reference �ber with integral structure VZ. Then, due to the length of
the weight �ltrationW , the existence of the relative weight �ltration of
W and N is equivalent to the existence of an N -invariant splitting ofW
[SZ, Prop. 2.16]. In particular, let eZ ∈ VZ project to 1 ∈ GrW0 ∼= Z(0).
Then, by admissibility, there exists an element hQ ∈ HQ = W−1 ∩ VQ
such that

N(eZ + hQ) = 0

and hence (T − I)(eZ + hQ) = 0.9 Any two such choices of eZ di�er by
an element hZ ∈ W−1 ∩ VZ. Therefore, an admissible normal function
ν determines a class

[ν] = [(T − I)eZ] ∈ (T − I)(HQ)

(T − I)(HZ)

Tracing through the de�nitions, one �nds that the left hand side of this
equation can be identi�ed with σZ,p(ν) whereas the right hand side is
exactly the torsion subgroup of (R1j∗HZ)p. �

De�nition 38. [BFNP] An admissible normal function ν de�ned on a
Zariski open subset of S̄ is singular on S̄ if there exists a point p ∈ S̄
such that singp(ν) 6= 0.

Let S be a complex manifold and f : X → S be a family of smooth
projective varieties over S. Let H be the variation of pure Hodge struc-
ture of weight −1 over S with integral structure HZ = R2p−1f∗Z(p).
Then, an element w ∈ Jp(X) (= J0(H2p−1(X,Z(p)))) de�nes a normal
function νw : S → J(H) by the rule

(3.4) νw(s) = i∗s(w)

9Alternatively, one can just derive this from Defn. (28)(I).
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where is denote inclusion of the �ber Xs = f−1(s) into X. More
generally, let H2p

D (X,Z(p)) denote the Deligne cohomology of X, and
recall that we have a short exact sequence

0→ Jp(X)→ H2p
D (X,Z(p))→ Hp,p(X,Z(p))→ 0

Call a Hodge class

ζ ∈ Hp,p(X,Z(p)) := Hp,p(X,C) ∩H2p(X,Z(p))

primitive with respect to f if i∗s(ζ) = 0 for all s ∈ S, and letHp,p
prim(X,Z(p))

denote the group of all such primitive Hodge classes. Then, by the func-
toriality of Deligne cohomology, a choice of lifting ζ̃ ∈ H2p

D (X,Z(p)) of
a primitive Hodge class ζ determines a map νζ̃ : S → J(H). A short
calculation (cf. [CMP, Ch. 10]) shows that νζ̃ is a (horizontal) normal
function over S. Furthermore, in the algebraic setting (i.e. X,S, f are
algebraic), νζ̃ is an admissible normal function [S1]. Let ANF(S,H) de-
note the group of admissible normal functions with underlying variation
of Hodge structure H. By abuse of notation, let Jp(X) ⊂ ANF(S,H)
denote the image of the intermediate Jacobian Jp(X) in ANF(S,H)

under the map w 7→ νw. Then, since any two lifts ζ̃ of ζ to Deligne
cohomology di�er by an element of the intermediate Jacobian Jp(X),
it follows that we have a well-de�ned map

(3.5) AJ : Hp,p
prim(X,Z(p))→ ANF(S,H)/Jp(X).

Remark 39. We are able to drop the notation NF (S,H)ad
S̄

used in §2,
because in the global algebraic case it can be shown that admissibility
is independent of the choice of compacti�cation S̄.

3.3. The Main Theorem. Returning to the program of Gri�ths and
Green, let X be a smooth projective variety of dimension 2m and
L→ X be a very ample line bundle. Let P̄ = |L| and

(3.6) X =
{

(x, s) ∈ X × P̄ | s(x) = 0
}

be the incidence variety associated to the pair (X,L). Let π : X → P̄

denote projection on the second factor, and let X̂ ⊂ P̄ denote the dual
variety of X (i.e. the points s ∈ P̄ such that Xs = π−1(s) is singular).

LetH be the variation of Hodge structure of weight −1 over P = P̄−X̂
attached to the local system R2m−1πsm∗ Z(m).

For a pair (X,L) as above, an integral Hodge class ζ of type (m,m)
on X is primitive with respect to πsm if and only if it is primitive in
the usual sense of being annihilated by cup product with c1(L). Let
Hm,m

prim(X,Z(m)) denote the group of all such primitive Hodge classes,
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and note that Hm,m
prim(X,Z(m)) is unchanged upon replacing L by L⊗d

for d > 0. Given ζ ∈ Hm,m
prim(X,Z(m)) let

νζ = AJ(ζ) ∈ ANF(P,H)/Jm(X)

be the associated normal function (3.5).

Lemma 40. If νw : P → J(H) is the normal function (3.4) associated

to an element w ∈ Jm(X) then singp(νw) = 0 at every point p ∈ X̂.

Accordingly, for any point p ∈ X̂ we have a well de�ned map

singp : ANF(P,H)/Jm(X)→ (R1j∗HQ)p

which sends the element [ν] ∈ ANF(P,H)/Jm(X) to singp(ν). In keep-

ing with our prior de�nition, we say that νζ is singular on P̄ if there

exists a point p ∈ X̂ such that singp(ν) 6= 0.

Conjecture 41. [GG][BFNP] Let L be a very ample line bundle on a
smooth projective variety X of dimension 2m. Then, for every non-
torsion class ζ in Hm,m

prim(X,Z(m)) there exists an integer d > 0 such

that AJ(ζ) is singular on P̄ = |L⊗d|.

Theorem 42. [GG][BFNP][dCM] Conjecture (41) holds (for every
even dimensional smooth projective variety) if and only if the Hodge
conjecture is true.

To outline the proof of Theorem 42, observe that for any point p ∈ X̂,
we have the diagram

(3.7) Hm,m
prim(X,Z(m))

AJ //

αp

��

ANF(P,H)/Jm(X)

singp
��

H2m(Xp,Q(m))
βp

??
// (R1j∗HQ)p

where αp : Hm,m
prim(X,Z(m))→ H2m(Xp,Q(m)) is the restriction map.

Suppose that there exists a map

(3.8) βp : H2m(Xp,Q(m))→ (R1j∗HQ)p

which makes the diagram (3.7) commute, and that after replacing L
by L⊗d for some d > 0 the restriction of βp to the image of αp is

injective. Then, existence of a point p ∈ X̂ such that singp(νζ) 6= 0
implies that the Hodge class ζ restricts non-trivially to Xp. Now recall
that by Poincarï¾÷ duality and the Hodge-Riemann bilinear relations,
the Hodge conjecture for a smooth projective variety Y is equivalent
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to the statement that for every rational (q, q) class on Y there exists
an algebraic cycle W of dimension 2q on Y such that γ ∪ [W ] 6= 0.

Let f : X̃p → Xp be a resolution of singularities of Xp and g = i ◦
f where i : Xp → X is the inclusion map. By a weight argument

g∗(ζ) 6= 0, and so there exists a class ξ ∈ Hgm−1(X̃p) with ξ ∪ ζ 6=
0. Embedding X̃p in some projective space, and inducing on even
dimension, we can assume that the Hodge conjecture holds for a general

hyperplane section Y I
↪→ X̃p. This yields an algebraic cycle W on Y

with [W ] = I∗(ξ). Varying Y in a pencil, and using weak Lefschetz,
W traces out10 a cycle W =

∑
j ajWj on X̃p with [W ] = ξ, so that

g∗(ζ) ∪ [W ] 6= 0; in particular, ζ ∪ g∗[Wj] 6= 0 for some j.

Conversely, by the work of Thomas [Th], if the Hodge conjecture is
true then the Hodge class ζ must restrict non-trivially to some singular
hyperplane section of X (again for some L⊗d for d su�ciently large).
Now one uses the injectivity of βp on im(αp) to conclude that νζ has a
singularity.

Example 43. Let X ⊂ P3 be a smooth projective surface. For every
ζ ∈ H1,1

prim(X,Z(1)), there is a reducible hypersurface section Xp ⊂ X
and component curve W of Xp such that deg(ζ|W ) 6= 0. (Note that
deg(ζ|Xp) is necessarily 0.) As the reader should check, this follows
easily from Lefschetz (1,1). Moreover (writing d for the degree of Xp),

p is a point in a codimension ≥ 2 substratum S ′ of X̂ ⊂ PH0(O(d))
(since �bers over codim. 1 substrata are irreducible), and singq(νζ) 6= 0
∀q ∈ S ′.

Remark 44. There is a central geometric issue lurking in Conj. 41: if
the HC holds, and L = OX(1) (for some projective embedding of X),
is there some minimum d0 � uniform in some sense � for which d ≥ d0

implies that νζ is singular? In [GG] it is established that, at best, such
a d0 could only be uniform in moduli of the pair (X, ζ). (For example,
in the case dim(X) = 2, d0 is of the form C × |ζ · ζ|, for C a constant.
Since the self-intersection numbers of integral classes becoming Hodge
in various Noether-Lefschetz loci increase without bound, there is cer-
tainly not any d0 uniform in moduli of X.) Whether there is some
such �lower bound� of this form remains an open question in higher
dimension.

10more precisely, one uses here a spread or Hilbert scheme argument, cf. for
example the beginning of Chap. 14 of [Le1].
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3.4. Normal functions and intersection cohomology. The con-
struction of the map βp depends on the decomposition theorem of
Beilinson-Bernstein-Deligne [BBD] and Morihiko Saito's theory of mixed
Hodge modules [S4]. As �rst step in this direction, recall [CKS2] that
that if H is a variation of pure Hodge structure of weight k de�ned on
the complement S = S̄ −D of a normal crossing divisor on a smooth
projective variety S̄ then

H`
(2)(S,HR) ∼= IH `(S̄,HR)

where the left hand side is L2-cohomology and the right hand side is in-
tersection cohomology. Furthermore, via this isomorphism IH `(S̄,HC)
inherits a canonical Hodge structure of weight k + `.

Remark 45. If Y is a complex algebraic variety then MHM(Y ) is the
category of mixed Hodge modules on Y . The category MHM(Y ) comes
equipped with a functor

rat : MHM(Y )→ Perv(Y )

to the category of perverse sheaves on Y . If Y is smooth and V is a
variation of mixed Hodge structure on Y then V [dY ] is a mixed Hodge
module on Y , and rat(V [dY ]) ∼= V[dY ] is just the underlying local
system V shifted into degree −dY .

If Y ◦ is a Zariski open subset of Y and P is a perverse sheaf on Y ◦

then

IH `(Y,P) = H`−dY (Y, j!∗P [dY ])

where j!∗ is the middle extension functor [BBD] associated to the in-
clusion map j : Y ◦ → Y . Likewise, for any point y ∈ Y , the local
intersection cohomology of P at y is de�ned to be

IH `(Y,P)y = Hk−dY ({y}, i∗j!∗P [dY ])

where i : {y} → Y is the inclusion map. If P underlies a MHM, the
theory of MHM puts natural MHS on these groups, which in particular
is how the pure HS on IH `(S̄,HC) comes about.

Theorem 46. [BFNP, Thm. 2.11] Let S̄ be a smooth projective variety
and H be a variation of pure Hodge structure of weight −1 on a Zariski
open subset S ⊂ S̄. Then, the group homomorphism

cl : ANF(S,H)→ H1(S,HQ)

factors through IH 1(S̄,HQ).
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Proof. (Sketch) Let ν ∈ ANF(S,H) be represented by an extension

0→ H→ V → Z(0)→ 0

in the category of admissible variations of mixed Hodge structure on
S. Let j : S → S̄ be the inclusion map. Then, because V has only
two non-trivial weight graded quotients which are adjacent, it follows
by [BFNP, Lemma 2.18] that

0→ j!∗H[dS]→ j!∗V [dS]→ Q(0)[dS]→ 0

is exact in MHM(S̄). �

Remark 47. In this particular context, j!∗V [dS] can be described as the
unique prolongation of V [dS] to S̄ with no non-trivial sub or quotient
object supported on the essential image of the functor i : MHM(Z)→
MHM(S̄) where Z = S̄ − S and i : Z → S̄ is the inclusion map.

In the local case of an admissible normal function on a product of
punctured polydisks (∆∗)r with unipotent monodromy, the fact that
sing0(ν) (where 0 is the origin of ∆r ⊇ (∆∗)r) factors through the local
intersection cohomology groups can be seen as follows: Such a normal
function ν gives a short exact sequence of local systems

0→ HQ → VQ → Q(0)→ 0

over (∆∗)r. Fix a reference �ber VQ of VQ and let Nj ∈ Hom(VQ, VQ)
denote the monodromy logarithm of VQ about the jth punctured disk.
Then [CKS2], we get a complex of �nite dimensional vector spaces

Bp(VQ) =
⊕

i1<i2<···<ip

Ni1Ni2 · · ·Nip(VQ)

with di�erential d which acts on the summands of Bp(VQ) by the rule

Ni1 · · · N̂i` · · ·Nip+1(VQ)
(−1)`−1Ni`→ Ni1 · · ·Ni` · · ·Nip+1(VQ)

(and taking the sum over all insertions). Let B∗(HQ) and B∗(Q(0))
denote the analogous complexes attached to the local systems HQ and
Q(0). By [GGM], the cohomology of the complex B∗(HQ) computes the
local intersection cohomology of HQ. In particular, since the complexes
B∗(Q(0)) and B∗(HQ) sit inside the standard Koszul complexes which
compute the ordinary cohomology of Q(0) and HQ, in order show that
sing0 factors through IH 1(HQ) it is su�cient to show that ∂cl(ν) ∈
H1((∆∗)r,HQ) is representable by an element of B1(HQ). Indeed, let
v be an element of VQ which maps to 1 ∈ Q(0). Then,

∂ cl(ν) = ∂1 = [(N1(v), · · · , Nr(v))]
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By admissibility and the short length of the weight �ltration, for each
j there exists an element hj ∈ HQ such that Nj(hj) = Nj(v), which is
exactly the condition that

(N1(v), . . . , Nr(v)) ∈ B1(VQ).

Theorem 48. [BFNP, Thm. 2.11] Under the hypothesis of Theorem
(46), for any point p ∈ S̄ the group homomorphism singp : ANF(S,H)→
(R1j∗HQ)p factors through the local intersection cohomology group IH 1(HQ)p.

To continue, we need to pass from Deligne cohomology to absolute
Hodge cohomology. Recall that MHM(Spec(C)) is the category MHS
of graded-polarizable Q mixed Hodge structures. Let Q(p) denote the
Tate object of type (−p,−p) in MHS and QY (p) = a∗YQ(p) where
aY : Y → Spec(C) is the structure morphism. Let QY = QY (0).

De�nition 49. Let M be an object of MHM(Y ). Then,

Hn
AH(Y,M) = HomDbMHM(QY ,M [n])

is the absolute Hodge cohomology of M .

The functor rat : MHM(Y )→ Perv(Y ) induces a �cycle class map�

rat : Hn
AH(Y,M)→ Hn(Y, rat(M))

from the absolute Hodge cohomology of M to the hypercohomology of
rat(M). In the case where Y is smooth and projective, H2p

AH(Y,QY (p))

is the Deligne cohomology group H2p
D (Y,Q(p)) and rat is the cycle class

map on Deligne cohomology.

De�nition 50. Let S̄ be a smooth projective variety and V be an
admissible variation of mixed Hodge structure on a Zariski open subset
S of S̄. Then,

IH n
AH(S̄,V) = HomDbMHM(S̄)(QS̄[dS − n], j!∗V [dS])

IH n
AH(S̄,V)s = HomDbMHS(Q[dS − n], i∗j!∗V [dS])

where j : S → S̄ and i : {s} → S̄ are inclusion maps.

The following lemma links absolute Hodge cohomology and admissible
normal functions:

Lemma 51. [BFNP, Prop. 3.3] Let H be a variation of pure Hodge
structure of weight −1 de�ned on a Zariski open subset S of a smooth
projective variety S̄. Then, IH 1

AH(S̄,H) ∼= ANF(S,H)⊗Q.
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3.5. Completion of diagram (3.7). Let f : X → Y be a projective
morphism between smooth algebraic varieties. Then, by the work of
Morihiko Saito [S4], there is a direct sum decomposition

(3.9) f∗QX [dX ] =
⊕
i

H i (f∗QX [dX ]) [−i]

in MHM(Y ). Furthermore, each summand H i(f∗QX [dX ]) is pure of
weight dX + i and admits a decomposition according to codimension of
support:

(3.10) H i (f∗QX [dX ]) [−i] = ⊕jEij[−i],

i.e. Eij[−i] is a sum of Hodge modules supported on codimension j sub-
varieties of Y . Accordingly, we have a system of projection operators
(inserting arbitrary twists)

⊕Πij : Hn
AH(X,Q(`)[dX ])

∼=→ ⊕ij Hn−i
AH (Y,Eij(`))

⊕Πij : Hn
AH(Xp,Q(`)[dX ])

∼=→ ⊕ij Hn−i
AH (Y, ι∗Eij(`))

⊕Πij : Hn(X, rat(Q(`)[dX ]))
∼=→ ⊕ij Hn−i(Y, rat(Eij(`)))

⊕Πij : Hn(Xp, rat(Q(`)[dX ]))
∼=→ ⊕ij Hn−i(Y, ι∗rat(Eij(`)))

where p ∈ Y and ι : {p} → Y is the inclusion map.

Lemma 52. [BFNP, Eqn. 4.12] Let Hq = Rqf sm∗ QX and recall that
we have a decomposition

H2k−1 = H2k−1
van ⊕H2k−1

fix

where H2k−1
fix is constant and H2k−1

van has no global sections. For any
point p ∈ Y , we have a commutative diagram

(3.11) H2k
AH(X,Q(k))

i∗

��

Π
// ANF(Y sm,H2k−1

van (k))

i∗

��

H2k(Xp,Q(k))
Π

// IH 1(H2k−1(k))p

where Y sm is the largest Zariski open set over which f is smooth and
Π is induced by Πr0 for r = 2k − 1− dX + dY .

We now return to setting of Conjecture 41: X is a smooth projective
variety of dimension 2m, L is a very ample line bundle on X and X is
the associated incidence variety (3.6), with projections π : X → P̄ and
pr : X → X. Then, we have the following �Perverse weak Lefschetz
theorem�:



46 KERR AND PEARLSTEIN

Theorem 53. [BFNP, Thm. 5.1] Let X be the incidence variety asso-
ciated to the pair (X,L) and π∗QX = ⊕ij Eij in accord with (3.9) and
(3.10). Then,

• Eij = 0 unless i · j = 0.
• Ei0 = H i(X,QX [2m− 1])⊗QP̄ [dP̄ ]. for i < 0.

Note that by hard Lefschetz, Eij ∼= E−i,j(−i) [S4].
To continue, recall that given a Lefschetz pencil Λ ⊂ P̄ of hyper-
plane sections of X, we have an associated system of vanishing cycles
{δp}p∈Λ∩X̂ ⊂ H2m−1(Xt,Q) on the cohomology of the smooth hyper-
plane sections Xt of X with respect to Λ. As one would expect, the
vanishing cycles of Λ are non-vanishing if for some (hence all) p ∈ Λ∩X̂,
δp 6= 0 (in H2m−1(Xt,Q)). Furthermore, this property depends only on
L and not the particular choice of Lefschetz pencil Λ. This property
can always be arranged by replacing L by L⊗d for some d > 0.

Theorem 54. If all vanishing cycles are non-vanishing then E01 = 0.
Otherwise, E01 is supported on a dense open subset of X̂.

Using the Theorems 53 and 54, we now prove that the following diagram
commutes:

(3.12) H2m
D (X,Z(m))prim

AJ
//

pr∗

��

ANF(P,H)/Jm(X)

⊗Q
��

H2m
AH(X ,Q(m))

Π
// ANF(P,Hvan)⊗Q.

where H2m
D (X,Z(m))prim is the subgroup of H2m

D (X,Z(m)) whose el-
ements project to primitive Hodge classes in H2m(X,Z(m)), and Π is
induced by Π00 together with projection onto Hvan. Indeed, by the
decomposition theorem

H2m
AH(X ,Q(m)) = H

1−dP̄
AH (X ,Q(m)[2m+ dP̄ − 1])

=
⊕

H
1−dP̄
AH (P̄ , Eij(m)[−i]).

Let ζ̃ ∈ H2m
D (X,Z(m)) be a primitive Deligne class and ω = ⊕ij ωij de-

note the component of ω = pr∗(ζ̃) with respect to Eij(m)[−i] in accord
with the previous equation. Then, in order to prove the commutativity
of (3.12) it is su�cient to show that (ω)q = (ω00)q for all q ∈ P . By
Theorem 53, we know that ωij = 0 unless ij = 0. Furthermore, by
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[BFNP, Lemma 5.5], (ω0j)q = 0 for j > 1. Likewise, by Theorem 54,

(ω01)q = 0 for q ∈ P since E01 is supported on X̂.

Thus, in order to prove the commutativity of (3.12), it is su�cient to
show that (ωi0)q = 0 for i > 0. However, as a consequence of the second
part of Theorem 53, Ei0(m) = K[dP̄ ] where K is a constant variation
of Hodge structure on P̄ ; and hence

H1−dP̄ (X , Ei0(m)[−i]) = Ext
1−dP̄
DbMHM(P̄ )

(QP̄ , K[dP̄ − i])

= Ext1−i
DbMHM(P̄ )

(QP̄ , K).

Therefore, (ωi0)q = 0 for i > 1 while (ω10)q corresponds to an element
ofHom(Q(0), Kq) whereK is the constant variation of Hodge structure
with �ber H2m(Xq,Q(m)) over q ∈ P . It therefore follows from the fact

that ζ̃ is primitive that (ω10)q = 0. Splicing diagram (3.12) together
with (3.11) (and replacing f : X → Y by π : X → P̄ , etc.) now gives
the diagram (3.7).

Remark 55. The e�ect of passage from H to Hvan in the above con-
structions is to annihilate Jm(X) ⊆ H2m

D (X,Z(m))prim. Therefore, in
(3.12) we can replace H2m

D (X,Z(m))prim by Hm,m
prim(X,Z(m)).

Finally, if all the vanishing cycles are non-vanishing, E01 = 0. Using
this fact, we then get the injectivity of βp on the image of αp.

Returning to the beginning of this section, we now see that although
extending normal functions along Lefschetz pencils is insu�cient to
prove the Hodge conjecture for higher codimension cycles, the Hodge
conjecture is equivalent to a statement about the behavior of normal
functions on the complement of the dual variety of X inside |L| for
L � 0. We remark that an interpretation of the GHC along similar
lines has been done recently by the authors in [KP].

4. Zeroes of Normal Functions

4.1. Algebraicity of the zero locus. Some of the deepest evidence
to date in support of the Hodge conjecture is the following result of
Cattani, Deligne and Kaplan on the algebraicity of the Hodge locus:

Theorem 56. [CDK] Let H be a variation of pure Hodge structure
of weight 0 over a smooth complex algebraic variety S. Let αso be an
integral Hodge class of type (0, 0) on the �ber of H at so. Let U be a
simply connected open subset of S containing so and α be the section
of HZ over U de�ned by parallel translation of αso. Let T be the locus
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of points in U such that α(s) is of type (0, 0) on the �ber of H over
s. Then, the analytic germ of T at p is the restriction of a complex
algebraic subvariety of S.

More precisely, as explained in the introduction of [CDK], in the case
where H arises from the cohomology of a family of smooth projective
varieties f : X → S, the algebraicity of the germ of T follows from
the Hodge conjecture. A natural analogue of this result for normal
functions is:

Theorem 57. Let S be a smooth complex algebraic variety, and ν :
S → J(H) be an admissible normal function, where H is a variation
of pure Hodge structure of weight −1. Then, the zero locus

Z(ν) = { s ∈ S | ν(s) = 0 }
is a complex algebraic subvariety of S.

This theorem was still a conjecture when the present article was sub-
mitted, and has just been proved by the second author in work with P.
Brosnan [BP3]. It is of particular relevance to the Hodge conjecture,
due to the following relationship between the algebraicity of Z(ν) and
the existence of singularities of normal functions. Say dim(X) = 2m,
and let (X,L, ζ) be a triple consisting of a smooth complex projective
variety X, a very ample line bundle L on X and a primitive integral
Hodge class ζ of type (m,m). Let νζ (assumed nonzero) be the as-

sociated normal function on the complement of the dual variety X̂
constructed in §3, and Z be its zero locus. Then, assuming that Z is
algebraic and positive dimensional, the second author conjectured that
ν should have singularities along the intersection of the closure of Z
with X̂.

Theorem 58. [Sl1] Let (X,L, ζ) be a triple as above, and assume that

L is su�ciently ample that, given any point p ∈ X̂, the restriction of
βp to the image of αp in diagram (3.7) is injective. Suppose that Z
contains an algebraic curve. Then, νζ has a non-torsion singularity at

some point of the intersection of the closure of this curve with X̂.

Proof. (Sketch) Let C be the normalization of the closure of the curve
in Z. Let X → P̄ be the universal family of hyperplane sections of X
over P̄ = |L| and W be the pullback of X to C. Let π : W → C be
the projection map, and U be set of points c ∈ C such that π−1(c) is
smooth, and WU = π−1(U). Then, via the Leray spectral sequence for
π, it follows that restriction of ζ to WU is zero because U ⊆ Z and ζ is
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primitive. On the other hand, since W � X is �nite, ζ must restrict
(pull back) non-trivially to W , and hence ζ must restrict non-trivially
to the �ber π−1(c) for some point c ∈ C in the complement of U . �

Unfortunately, crude estimates for the expected dimension of the zero
locus Z arising in this context appear to be negative. For instance,
take X to be an abelian surface in the following:

Theorem 59. Let X be a surface and L = OX(D) be an ample
line bundle on X. Then, for n su�ciently large, the expected dimen-
sion of the zero locus of the normal function νζ attached to the triple
(X,L⊗n, ζ) as above is

h2,0 − h1,0 − n(D.K)− 1

where K is the canonical divisor of X.

Proof. (Sketch) Since Gri�ths's horizontality is trivial in this setting,
computing the expected dimension boils down to computing the di-
mension of |L| and genus of a smooth hyperplane section of X with
respect to L. �

Remark 60. In Theorem 59, we construct νζ from a choice of lift
to Deligne cohomology (or an algebraic cycle) to get an element of
ANF (P,H). But this is disingenuous, since we are starting with a
Hodge class. It is more consistent to work with νζ ∈ ANF (P,H)/J1(X)
(as in equation (3.5)), and then the dimension estimate improves by
dim(J1(X)) = h1,0 to h2,0 − n(D.K) − 1. Notice that this salvages at
least the abelian surface case (though it is still a crude estimate). For
surfaces of general type, one is still in trouble without more informa-
tion, like the constant C in Remark (44).

We will not attempt to describe the proof of Theorem 57 in general,
but we will explain the following special case:

Theorem 61. [BP2] Let S be a smooth complex algebraic variety which
admits a projective completion S̄ such that D = S̄ − S is a smooth
divisor. Let H be a variation of pure Hodge structure of weight −1 on
S and ν : S → J(H) be an admissible normal function. Then, the zero
locus Z of ν is an complex algebraic subvariety of S.

Remark 62. This result was obtained contemporaneously by Morihiko
Saito in [S5].

In analogy with the proof of Theorem 56 on the algebraicity of the
Hodge locus, which depends heavily on the several variable SL2-orbit
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theorem for nilpotent orbits of pure Hodge structure [CKS1], the proof
of Theorem 57 depends upon the corresponding result for nilpotent
orbits of mixed Hodge structure. For simplicity of exposition, we will
now review the 1-variable SL2-orbit theorem in the pure case (which is
due to Schmid [Sc]) and a version of the SL2-orbit theorem in the mixed
case [Pe2] su�cient to prove Theorem 61. For the proof of Theorem
57, we need the full strength of the several variable SL2-orbit theorem
of Kato, Nakayama and Usui [KNU1].

4.2. The classical nilpotent and SL2 orbit theorems. To outline
the proof of Theorem 61, we now recall the theory of degenerations
of Hodge structure: Let H be a variation of pure Hodge structure
of weight k over a simply connected complex manifold S. Then, via
parallel translation back to a �xed reference �ber H = Hso we obtain
a period map

(4.1) ϕ : S → D
where D is Gri�ths's classifying space of pure Hodge structures on H
with �xed Hodge numbers {hp,k−p} which are polarized by the bilinear
form Q of H. The set D is a complex manifold upon which the Lie
group

GR = AutR(Q)

acts transitively by biholomorphisms, and hence D ∼= GR/G
Fo
R where

GFo
R is the isotropy group of Fo ∈ D. The compact dual of D is the

complex manifold
Ď ∼= GC/G

Fo
C

where Fo is any point in D. (In general, F = F • denotes a Hodge
�ltration.) If S is not simply connected, then the period map (4.1) is
replaced by

(4.2) ϕ : S → Γ\D
where Γ is the monodromy group of H → S acting on the reference
�ber H.

For variations of Hodge structure of geometric origin, S will typically
be a Zariski open subset of a smooth projective variety S̄. By Hiron-
aka's resolution of singularities theorem, we can assume D = S̄ − S
to be a divisor with normal crossings. The period map (4.2) will then
have singularities at the points of D about which H has non-trivial
local monodromy. A precise local description of the singularities of the
period map of a variation of Hodge structure was obtained by Schmid
[Sc]: Let ϕ : (∆∗)r → Γ\D be the period map of variation of pure po-
larized Hodge structure over the product of punctured disks. First, one
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knows that ϕ is locally liftable with quasi-unipotent monodromy. After
passage to a �nite cover, we therefore obtain a commutative diagram

(4.3) U r

F
//

��

D

��
(∆∗)r ϕ

// Γ\D

where U r is the r-fold product of upper half-planes and U r → (∆∗)r is
the covering map

sj = e2πizj , j = 1, . . . , r

with respect to the standard Euclidean coordinates (z1, . . . , zr) on U
r ⊂

Cr and (s1, . . . , sr) on (∆∗)r ⊂ Cr.

Let Tj = eNj denote the monodromy of H about sj = 0. Then,

ψ(z1, . . . , zr) = e−
∑
j zjNj .F (z1, . . . , zr)

is a holomorphic map from U r into Ď which is invariant under the
transformation zj 7→ zj + 1 for each j, and hence drops to a map
(∆∗)r → Ď which we continue to denote by ψ.

De�nition 63. Let D be a classifying space of pure Hodge structure
with associated Lie group GR. Let gR be the Lie algebra of GR. Then,
a holomorphic, horizontal map θ : Cr → Ď is a nilpotent orbit if

(a) there is a constant α > 0 such that θ(z1, . . . , zr) ∈ D if Im(zj) > α
∀ j; and

(b) there exist commuting nilpotent endomorphisms N1, . . . , Nr ∈ gR
and a point F ∈ Ď such that θ(z1, . . . , zr) = e

∑
j zjNj .F .

Theorem 64. (Nilpotent Orbit Theorem, [Sc]) Let ϕ : (∆∗)r → Γ\D
be the period map of a variation of pure Hodge structure of weight k
with unipotent monodromy. Let dD be a GR-invariant distance on D.
Then,

(a) F∞ = lims→0 ψ(s) exists, i.e. ψ(s) extends to a map ∆r → Ď;

(b) θ(z1, . . . , zr) = e
∑
j zjNj .F∞ is a nilpotent orbit; and

(c) there exist constants C, α and β1, . . . , βr such that if Im(zj) > α
∀ j then θ(z1, . . . , zr) ∈ D and

dD(θ(z1, . . . , zr), F (z1, . . . , zr)) < C
∑
j

Im(zj)
βje−2πIm(zj).
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Remark 65. Another way of stating part (a) of the Nilpotent Orbit
Theorem is the Hodge bundles Fp of HO extend to a system of holo-
morphic subbundles of the canonical extension of HO. Indeed, recall
from §2.7 that one way of constructing a model of the canonical ex-
tension in the unipotent monodromy case is to take a �at, multivalued
frame {σ1, . . . , σm} of HZ and twist it to form a single valued holomor-

phic frame {σ̃1, . . . , σ̃m} over (∆∗)r where σ̃j = e−
1

2πi

∑
j log(sj)Njσj, and

then declaring this twisted frame to de�ne the canonical extension.

Let N be a nilpotent endomorphism of a �nite dimensional vector space
over a �eld k. Then, N can be put into Jordan canonical form, and
hence (by considering a Jordan block) it follows that there is a unique,
increasing �ltration W(N) of V , such that

(a) N(W(N)j) ⊆ W(N)j−2 and

(b) N j : Gr
W(N)
j → Gr

W(N)
−j is an isomorphism

for each index j. If ` is an integer then (W(N)[`])j = W(N)j+`.

Theorem 66. Let ϕ : ∆∗ → Γ\D be the period map of a variation
of pure Hodge structure of weight k with unipotent monodromy T =
eN . Then, the limit Hodge �ltration F∞ of ϕ pairs with the weight
monodromy �ltration M(N) := W(N)[−k] to de�ne a mixed Hodge
structure relative to which N is a (−1,−1)-morphism.

Remark 67. The limit Hodge �ltration F∞ depends upon the choice of
local coordinate s, or more precisely on the value of (ds)0. Therefore,
unless one has a preferred coordinate system (e.g. if the �eld of de�ni-
tion matters), in order to extract geometric information from the limit
mixed Hodge structure H∞ = (F∞,M(N)) one usually has to pass to
the mixed Hodge structure induced by H∞ on the kernel or cokernel of
N . In particular, if X → ∆ is a semistable degeneration the the local
invariant cycle theorem asserts that we have an exact sequence

Hk(X0)→ H∞
N→ H∞

where the map Hk(X0)→ H∞ is obtained by �rst including the refer-
ence �ber Xso into X and then retracting X onto X0.

The proof of Theorem 66 depends upon Schmid's SL2-orbit theorem.
Informally, this result asserts that any 1-parameter nilpotent orbit is
asymptotic to a nilpotent orbit arising from a representation of SL2(R).
In order to properly state Schmid's results we need to discuss splittings
of mixed Hodge structures.
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Theorem 68. (Deligne, [De1]) Let (F,W ) be a mixed Hodge structure
on V . Then, there exists a unique, functorial bigrading

VC =
⊕
p,q

Ip,q

such that

(a) F p =
⊕

a≥p I
a,b;

(b) Wk =
⊕

a+b≤k I
a,b;

(c) Ip,q = Iq,p mod
⊕

r<q,s<p I
r,s.

In particular, if (F,W ) is a mixed Hodge structure on V then (F,W )
induces a mixed Hodge structure on gl(V ) ∼= V ⊗ V ∗ with bigrading

gl(VC) =
⊕
r,s

gl(V )r,s

where gl(V )r,s is the subspace of gl(V ) which maps Ip,q to Ip+r,q+s for
all (p, q). In the case where (F,W ) is graded-polarized, we have an
analogous decomposition gC =

⊕
r,s g

r,s of the Lie algebra of GC(=

Aut(VC, Q)). For future use, we de�ne

(4.4) Λ−1,−1
(F,W ) =

⊕
r,s<0

gl(V )r,s

and note that by properties (a)-(c) of Theorem 68

(4.5) λ ∈ Λ−1,−1
(F,W ) =⇒ Ip,q

(eλ.F,W )
= eλ.Ip,q(F,W ).

A mixed Hodge structure (F,W ) is split over R if Īp,q = Iq,p for (p, q).
In general, a mixed Hodge structure (F,W ) is not split over R. How-
ever, by a theorem of Deligne [CKS1], there is a functorial splitting
operation

(F,W ) 7→ (F̂δ,W ) = (e−iδ.F,W )

which assigns to any mixed Hodge structure (F,W ) a split mixed Hodge

structure (F̂δ,W ), such that

(a) δ = δ̄,

(b) δ ∈ Λ−1,−1
(F,W ), and

(c) δ commutes with all (r, r)-morphisms of (F,W ).

Remark 69. Λ−1,−1
(F,W ) = Λ−1,−1

(F̂δ,W )
.
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A nilpotent orbit θ̂(z) = ezN .F is an SL2-orbit if there exists a group
homomorphism ρ : SL2(R)→ GR such that

θ̂(g.
√
−1) = ρ(g).θ̂(

√
−1)

for all g ∈ SL2(R). The representation ρ is equivalent to the data of
an sl2-triple (N,H,N+) of elements in GR such that

[H,N ] = −2N, [N+, N ] = H, [H,N+] = 2N+

We also note that, for nilpotent orbits of pure Hodge structure, the
statement that ezN .F is an SL2-orbit is equivalent to the statement
that the limit mixed Hodge structure (F,M(N)) is split over R [CKS1].

Theorem 70. (SL2-Orbit Theorem, [Sc]) Let θ(z) = ezN .F be a nilpo-
tent orbit of pure Hodge structure. Then, there exists a unique SL2-
orbit θ̂(z) = ezN .F̂ and a distinguished real-analytic function

g(y) : (a,∞)→ GR

(for some a ∈ R) such that:

(a) θ(iy) = g(y).θ̂(iy) for y > a; and

(b) both g(y) and g−1(y) have convergent series expansions about ∞ of
the form

g(y) = 1 +
∑
k>0

gjy
−k, g−1(y) = 1 +

∑
k>0

fky
−k

with gk, fk ∈ ker(adN)k+1.

Furthermore, the coe�cients gk and fk can be expressed in terms of
universal Lie polynomials in the Hodge components of δ with respect to
(F̂ ,M(N)) and adN+.

Remark 71. The precise meaning of the statement that g(y) is a dis-
tinguished real-analytic function, is that g(y) arises in a speci�c way
from the solution of a system of di�erential equations attached to θ.

Remark 72. If θ is a nilpotent orbit of pure Hodge structures of weight
k and θ̂ = ezN .F̂ is the associated SL2-orbit then (F̂ ,M(N)) is split

over R. The map (F,M(N)) 7→ (F̂ ,M(N)) is called the sl2-splitting of

(F,M(N)). Furthermore, F̂ = e−ξ.F where ξ is given by universal Lie
polynomials in the Hodge components of δ. In this way, one obtains an
sl2-splitting (F,W ) 7→ (F̂ ,W ) for any mixed Hodge structure (F,W ).
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4.3. Nilpotent and SL2 orbit theorems in the mixed case. In
analogy to the theory of period domains for pure HS, one can form a
classifying space of graded-polarized mixed Hodge structure M with
�xed Hodge numbers. Its points are the decreasing �ltrations F of the
reference �ber V which pair with the weight �ltration W to de�ne a
graded-polarized mixed Hodge structure (with the given Hodge num-
bers). Given a variation of mixed Hodge structure V of this type over
a complex manifold S, one obtains a period map

φ : S → Γ\M.

M is a complex manifold upon which the Lie group G, consisting of
elements of GL(VC) which preserve W and act by real isometries on
GrW , acts transitively. Next, let GC denote the Lie group consisting of
elements of GL(VC) which preserve W and act by complex isometries
on GrW . Then, in analogy with the pure case, the �compact dual� M̌
ofM is the complex manifold

M̌ ∼= GC/G
Fo
C

for any base point Fo ∈ M. The subgroup GR = G ∩ GL(VR) acts
transitively on the real-analytic submanifold MR consisting of points
F ∈M such that (F,W ) is split over R.
Example 73. Let M be the classifying space of mixed Hodge struc-
tures with Hodge numbers h1,1 = h0,0 = 1. Then,M∼= C.

The proof of Schmid's nilpotent orbit theorem depends critically upon
the fact that the classifying space D has negative holomorphic sectional
curvature along horizontal directions [GS]. Thus, although one can
formally carry out all of the constructions leading up to the statement
of the nilpotent orbit theorem in the mixed case, in light of the previous
example it follows that one can not have negative holomorphic sectional
curvature in the mixed case, and hence there is no reason to expect an
analog of Schmid's Nilpotent Orbit Theorem in the mixed case. Indeed,
for this classifying space M, the period map ϕ(s) = exp(s) gives an
example of a period map with trivial monodromy which has an essential
singularity at ∞. Some additional condition is clearly required, and
this is where admissibility comes in.

In the geometric case of a degeneration of pure Hodge structure, Steen-
brink [St] gave an alternative construction of the limit Hodge �ltration
that can be extended to variations of mixed Hodge structure of geomet-
ric origin [SZ]. More generally, given an admissible variation of mixed
Hodge structure V over a smooth complex algebraic variety S ⊆ S̄ such
that D = S̄−S is a normal crossing divisor, and any point p ∈ D about



56 KERR AND PEARLSTEIN

which V has unipotent local monodromy, one has an associated nilpo-
tent orbit (e

∑
j zjNj .F∞,W ) with limit mixed Hodge structure (F∞,M)

where M is the relative weight �ltration of N =
∑

j Nj and W .11 Fur-
thermore, one has the following �group theoretic� version of the nilpo-
tent orbit theorem: As in the pure case, a variation of mixed Hodge
structure V → (∆∗)r with unipotent monodromy gives a holomorphic
map

ψ : (∆∗)r → M̌
z 7−→ e−

∑
zjNjF (z) ,

and this extends to ∆r if V is admissible. Let

q∞ =
⊕
r<0

gr,s

where gC = Lie(GC) = ⊕r,s gr,s relative to the limit mixed Hodge struc-
ture (F∞,M). Then q∞ is a nilpotent Lie subalgebra of gC which is a
vector space complement to the isotropy algebra gF∞C of F∞. Conse-
quently, there exists an open neighborhood U of zero in gC such that

U → M̌

u 7→ eu.F∞

is a biholomorphism, and hence after shrinking ∆r as necessary we can
write

ψ(s) = eΓ(s).F∞

relative to a unique q∞-valued holomorphic function Γ on ∆r which
vanishes at 0. Recalling the construction of ψ from the lifted period
map F , it follows that

F (z1, . . . , zr) = e
∑
j zjNjeΓ(s).F∞.

This is called the local normal form of V at p and will be used in the
calculations of §5.4-5.
There is also a version of Schmid's SL2-orbit theorem for admissible
nilpotent orbits. In the case of 1-variable and weight �ltrations of short
length, the is due to the second author in [Pe2]. More generally, Kato,
Nakayama and Usui proved a several variable SL2-orbit theorem with
arbitrary weight �ltration in [KNU1]. Despite the greater generality of
[KNU1], in this paper we are going to stick with the version of the SL2-
orbit theorem from [Pe2] as it is su�cient for our needs and has the

11Recall [SZ] that in general the relative weight �ltration M = M(N,W ) is
the unique �ltration (if it exists) such that N(Mk) ⊂ Mk−2 and M induces the
monodromy weight �ltration of N on each GrWi (centered about i).
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advantage that for normal functions, mutatis mutandis, it is identical
to Schmid's result.

4.4. Outline of proof of Theorem (61). Let us now specialize to
the case of an admissible normal function ν : S → J(H) over a curve
and outline the proof [BP1] of Theorem 61. Before proceeding, we do
need to address one aspect of the SL2-orbit theorem in the mixed case.
Let θ̂ = (ezN .F,W ) be an admissible nilpotent orbit with limit mixed

Hodge structure (F,M) which is split over R. Then, θ̂ induces an
SL2-orbit on each GrWk , and hence a corresponding sl2-representation
ρk.

De�nition 74. Let W be an increasing �ltration, indexed by Z, of
a �nite dimensional vector space V . A grading of W is a direct sum
decomposition Wk = Vk ⊕Wk−1 for each index k.

In particular, a mixed Hodge structure (F,W ) on V gives a grading of
W by the rule Vk = ⊕p+q=k Ip,q. Furthermore, if the ground �eld has
characteristic zero, a grading of W is the same thing as a semisimple
endomorphism Y of V which acts as multiplication by k on Vk. If
(F,W ) is a mixed Hodge structure we let Y(F,W ) denote the grading of
W which acts on Ip,q as multiplication by p+ q, the Deligne grading of
(F,W ).

Returning to the admissible nilpotent orbit θ̂ considered above, we
now have a system of representations ρk on Gr

W
k . To construct an sl2-

representation on the reference �ber V , we need to pick a grading Y of
W . Clearly for each Hodge �ag F (z) in the orbit we have the Deligne
grading Y(F (z),W ); but we are after something more canonical. Now we
also have the Deligne grading Y(F̂ ,M) ofM associated to the sl2-splitting

of the LMHS. In the unpublished letter [De3], Deligne observed that:

Theorem 75. There exists a unique grading Y of W which commutes
with Y(F̂ ,M) and has the property that if (N0, H,N

+
0 ) denote the liftings

of the sl2-triples attached to the graded representations ρk via Y then
[N −N0, N

+
0 ] = 0.

With this choice of sl2-triple, and θ̂ an admissible nilpotent orbit in
1-variable of the type arising from an admissible normal function, the
main theorem of [Pe2] asserts that one has a direct analog of Schmid's

SL2-orbit theorem as stated above for θ̂.

Remark 76. More generally, given an admissible nilpotent orbit (ezNF,W )
with relative weight �ltrationM = M(N,W ), Deligne shows that there
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exists a grading Y = Y (N, Y(F,M)) with similar properties (cf. [BP1]
for details and further references).

Remark 77. In the case of a normal function, if we decompose N ac-
cording to adY we have N = N0 + N−1 where N−1 must be either
zero or a highest weight vector of weight −1 for the representation of
sl2(R) de�ned by (N0, H,N

+
0 ). Accordingly, since there are no vectors

of highest weight −1, we have N = N0 and hence [Y,N ] = 0.

The next thing that we need to recall is that if ν : S → J(H) is an
admissible normal function which is represented by an extension

0→ H → V → Z(0)→ 0

in the category of admissible variations of mixed Hodge structure on
S then the zero locus Z of ν is exactly the set of points where the
corresponding Deligne grading Y(F ,W) is integral. In the case where
S ⊂ S̄ is a curve, in order to prove the algebraicity of Z, all we need
to do is show that Z cannot contain a sequence of points s(m) which
accumulate to a puncture p ∈ S̄ − S unless ν is identically zero. The
�rst step towards the proof of Theorem 61 is the following result [BP1]:

Theorem 78. Let ϕ : ∆∗ → Γ\M denote the period map of an admis-
sible normal function ν : ∆∗ → J(H) with unipotent monodromy, and
Y be the grading ofW attached to the nilpotent orbit θ of ϕ by Deligne's
construction (Theorem 75). Let F : U →M denote the lifting of ϕ to
the upper half-plane. Then, for Re(z) restricted to an interval of �nite
length, we have

lim
Im(z)→∞

Y(F (z),W ) = Y

Proof. (Sketch) Using [De3], one can prove this result in the case where
ϕ is a nilpotent orbit with limit mixed Hodge structure which is split
over R. Let z = x+ iy. In general, one writes

F (z) = ezNeΓ(s).F∞ = exNeiyNeΓ(s)e−iyNeiyN .F∞

where exN is real, eiyN .F∞ can be approximated by an SL2-orbit and
eiyNeΓ(s)e−iyN decays to 1 very rapidly. �

In particular, if there exists a sequence s(m) which converges to p along
which Y(F ,W) is integral it then follows from the previous theorem that
Y is integral. An explicit computation then shows that the equation
of the zero locus near p is given by the equation

Ad(eΓ(s))Y = Y
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which is clearly holomorphic on a neighborhood of p in S̄.

That concludes the proof for S a curve. In the case where S has a
compacti�cation S̄ such that S̄ − S is a smooth divisor, one can prove
Theorem 61 by the same techniques by studying the dependence of the
above constructions on holomorphic parameters, i.e. at a point in D
we get a nilpotent orbit

θ(z; s2, . . . , sr) = ezN .F∞(s2, . . . , sr)

where F∞(s2, . . . , sr) depend holomorphically on the parameters (s2, . . . , sr).

4.5. Zero loci and �ltrations on Chow groups. Returning now to
the algebraicity of the Hodge locus discussed at the beginning of this
section, the Hodge Conjecture would further imply that if f : X → S
can be de�ned over an algebraically closed sub�eld of C then so can
the germ of T . In [Vo1], C. Voisin gave su�cient conditions for T to be
de�ned over Q̄ if f : X → S is de�ned over Q. Very recently F. Charles
[Ch] carried out an analogous investigation of the �eld of de�nition of
the zero locus Z of a normal function motivated over F. We reprise
this last notion (from §§1-2):

De�nition 79. Let S be a smooth quasiprojective variety de�ned over
a sub�eld F0 ⊂ C, and let F ⊂ C be a �nitely generated extension of F0.
An admissible normal function ν ∈ ANF(S,H) is motivated over F if
there exists a smooth quasi-projective variety X , a smooth projective
morphism f : X → S, and an algebraic cycle Z ∈ Zm(X )prim, all
de�ned over F, such that H is a subVHS of (R2m−1f∗Z) ⊗ OS and
ν = νZ.

Remark 80. Here Zm(X )prim denotes algebraic cycles with homologi-
cally trivial restriction to �bres. One traditionally also assumes Z is
�at over S, but this can always be achieved by restricting to U ⊂ S
su�ciently small (Zariski open); and then by [S1] (i) νZU is S̄ admissi-
ble. Next, for any s0 ∈ S one can move Z by a rational equivalence to
intersect Xs0 (hence the {Xs} for s in an analytic neighborhood of s0)
properly, and then use the remarks at the beginning of [Ki] or [GGK,
sec. III.B] to see that (ii) νZ is de�ned and holomorphic over all of S.
Putting (i) and (ii) together with [BFNP, Lemma 7.1], we see that νZ
is itself admissible.

Recall that the level of a VHSH is (for a generic �breHs) the maximum
di�erence |p1 − p2| for Hp1,q1 and Hp2,q2 both nonzero. A fundamental
open question about motivic normal functions is then:
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Conjecture 81. (i) [ZL(D,E)] For every F ⊂ C �nitely generated
over Q̄, S/F smooth quasi-projective of dimension D, and H → S VHS
of weight (−1) and level ≤ 2E− 1, the following holds: ν motivated /F
=⇒ Z(ν) is an at most countable union of subvarieties of S de�ned
over (possibly di�erent) �nite extensions of F.

(ii) [Z̃L(D,E)] Under the same hypotheses, Z(ν) is an algebraic sub-
variety of S de�ned over an algebraic extension of F.

Clearly Theorem 57 and Conjecture ZL(D,E) together imply Z̃L(D,E),
but it is much more natural to phrase some statements (especially Prop.
86 below) in terms of ZL(D,E). If true even for D = 1 (but general
E), Conj. 81(i) would resolve a longstanding question on the structure
of Chow groups of complex projective varieties. To wit, the issue is
whether the second Bloch-Beilinson �ltrand and the kernel of the AJ
map must agree; we now wish to describe this connection. We shall

write
(∼)

ZL(D, 1)alg for the case when ν is motivated by a family of cycles
algebraically equivalent to zero.

Let X be smooth projective and m ∈ N. Denoting �⊗Q� by a sub-
script Q, we have the two �classical� invariants clX,Q : CHm(X)Q →
Hgm(X)Q and AJX,Q : ker(clX,Q) → Jm(X)Q. It is perfectly natu-
ral both to ask for further Hodge-theoretic invariants for cycle-classes
in ker(AJX,Q), and inquire as to what sort of �ltration might arise
from their successive kernels. The idea of a (conjectural) system of de-
creasing �ltrations on the rational Chow groups of all smooth projec-
tive varieties /C, compatible with the intersection product, morphisms
induced by correspondences, and the algebraic Künneth components
of the diagonal ∆X , was introduced by A. Beilinson in [Be], and in-
dependently by S. Bloch. (One needs to assume something like the
Hard Lefschetz Conjecture so that these Künneth components exist;
the compatibility roughly says that GriCHm(X)Q is �controlled by
H2m−i(X)�.) Such a �ltration F •BB is unique if it exists and is uni-
versally known as a Bloch-Beilinson �ltration (BBF); there is a wide
variety of constructions which yield a BBF under the assumption of
various more-or-less standard conjectures. The one which is key for
the �ltration (due to Lewis [Le2]) we shall consider is the arithmetic
Bloch-Beilinson Conjecture (BBC):

Conjecture 82. Let X/Q̄ be a quasi-projective variety; then the absolute-
Hodge cycle-class map

(4.6) cH : CHm(X )Q → H2m
H (X an

C ,Q(m))
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is injective. (Here CHm(X )[6= CHm(XC)] denotes ≡rat-classes of cy-
cles /Q̄.)

Now for X/C, cH on CHm(X)Q is far from injective (the kernel usu-
ally not even being parametrizable by an algebraic variety); but any
given cycle Z ∈ Zm(X) (a priori de�ned /C) is in fact de�ned over a
sub�eld K ⊂ C �nitely generated /Q̄, say of transcendence degree t.
Considering X,Z over K, the Q̄-spread then provides

• a smooth projective variety S̄/Q̄ of dimension t, with Q̄(S̄)
∼=→

K and s0 : Spec(K)→ S̄ the corresponding generic point;
• a smooth projective variety X̄ and projective morphism π̄ :
X̄ → S̄, both de�ned /Q̄, such that X = Xs0 := X×s0Spec(K);
and
• an algebraic cycle Z̄ ∈ Zm(X(Q̄)) with Z = Z̄×s0 Spec(K).

Writing π̄sm =: π : X → S (and Z := Z̄ ∩ X ), we denote by U ⊂ S
any a�ne Zariski open subvariety de�ned /Q̄, and put XU := π−1(U),
ZU := Z̄ ∩ XU ; note that s0 factors through all such U .

The point is that exchanging the �eld of de�nition for additional ge-
ometry allows cH to �see� more; in fact, since we are over Q̄, it should
now (by BBC) see everything. Now cH(ZU) packages cycle-class and
Abel-Jacobi invariants together, and the idea behind Lewis's �ltration
(and �ltrations of M. Saito and Green/Gri�ths) is to split the whole
package up into Leray graded pieces with respect to π. Miraculously,
the 0th such piece turns out to agree with the fundametal class of Z,
and the next piece is the normal function generated by ZU . The pieces
folllowing that de�ne the so-called higher cycle-class and AJ maps.

More precisely, we have
(4.7)

CHm(X(K))Q

spread∼=
��

Ψ:=

��

im{CHm(X̄ )Q → lim−→
U

CHm(XU)Q}

cH
��

H2m
H : im

{
H2m
D (X̄ an

C ,Q(m))→ lim−→
U

H2m
H ((XU)anC ,Q(m))

}
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with cH (hence Ψ) conjecturally injective. Lewis [Le2] de�nes a Leray
�ltration L•H2m

H with graded pieces

(4.8) 0

��

J0

lim−→
U

W−1Hi−1(U,R2m−iπ∗Q(m))


im

lim−→
U

Hg0(GrW0 Hi(U,R2m−iπ∗Q(m)))


β

��

GriLH
2m
H

α��

Hg0

(
lim−→
U

W0H
i(U,R2m−iπ∗Q(m))

)

��
0

and sets LiCHm(XK)Q := Ψ−1(LiH2m
H ). For Z ∈ LiCHm(XK)Q,

we put cliX(Z) := α(GriLΨ(Z)); if this vanishes then GriLΨ(Z) =:
β(aji−1

X (Z)), and vanishing of cli(Z) and aji−1(Z) implies member-
ship in Li+1. One easily �nds that cl0X(Z) identi�es with clX,Q(Z) ∈
Hg0(X)Q.

Remark 83. The arguments of Hg0 and J0 in (4.8) have canonical and
functorial MHS by [Ar]. One should think of the top term as Gri−1

L
of the lowest-weight part of Jm(XU) and the bottom as GriL of the
lowest-weight part of Hgm(XU) (both in the limit over U).

Now to get a candidate BBF, Lewis takes

LiCHm(XC)Q := lim−→
K⊂C
f.g./Q̄

LiCHm(XK)Q.

Some consequences of the de�nition of a BBF mentioned above, specif-
ically the compatibility with the Künneth components of ∆X , include

(a) F 0
BBCH

m(X)Q = CHm(X)Q, F 1
BBCH

m(X)Q = CHm
hom(X)Q,

F 2
BBCH

m(X)Q ⊆ker(AJX,Q), and

(b) Fm+1
BB CHm(X) = {0};



NORMAL FUNCTIONS 63

these are sometimes stated as additional requirements for a BBF.

Theorem 84. [Le2] L• is intersection- and correspondence-compatible,
and satis�es (a). Assuming BBC, L• satis�es (b); and additionally
assuming HLC, L• is a BBF.

The limits in (4.8) inside J0 and Hg0 stabilize for su�ciently small
U ; replacing S by such a U , we may consider the normal function
νZ ∈ ANF(S,H2m−1

X/S ) attached to the Q̄-spread of Z.

Proposition 85. (i) For i = 1, (3) becomes

0→ Jmfix(X/S)Q → Gr1
LH

2m
H →

(
H1(S,R2m−1π∗Q)

)(0,0) → 0.

(ii) For Z ∈ CHm
hom(XK)Q, cl

1
X(Z) = [νZ]Q; if this vanishes, aj

0
X(Z) =

AJX(Z)Q ∈ Jmfix(X/S)Q ⊂ Jm(X)Q [ =⇒ L2 ⊂ kerAJQ].

So for Z ∈ CHm
hom(XK) with Q̄-spread Z over S, the information con-

tained in Gr1
LΨ(Z) is (up to torsion) precisely νZ. Working over C,

Z ·Xs0 = Z is the �ber of the spread at a very general point s0 ∈ S(C):
trdeg(Q̄(s0)/Q̄) is maximal, i.e. equal to the dimension of S. Since
AJ is a transcendental (rather than algebraic) invariant, there is no
outright guarantee that vanishing of AJX(Z) ∈ Jm(X) � or equiva-
lently, of the normal function at a very general point � implies the
identical vanishing of νZ or even [νZ]. To display explicitly the depth
of the question:

Proposition 86. (i) ZL(1, E) (∀E ∈ N) ⇐⇒ L2CHm(X)Q =
ker(AJX,Q) (∀ sm. proj. X/C).

(ii) ZL(1, 1)alg ⇐⇒ L2CHm(X)Q ∩ CHm
alg(X)Q = ker(AJX,Q) ∩

CHm
alg(X)Q (∀ sm. proj. X/C).

Roughly speaking, these statements say that �sensitivity of the zero
locus (of a cycle-generated normal function) to �eld of de�nition� is
equivalent to �spreads of homologically- and AJ-trivial cycles give triv-
ial normal functions�. In (ii), the cycles in both statements are assumed
algebraically equivalent to zero.

Proof. We �rst remark that for any variety S with �eld of de�nition F
of minimal transcendence degree, no proper F̄-subvariety of S contains
(in its complex points) a very general point of S.

(i) (=⇒) : Let Z be the Q̄-spread of Z with AJ(Z)Q = 0, and suppose
Gr1
LΨ(Z) = Gr1

LcH(Z) does not vanish. Taking a 1-dimensional very
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general multiple hyperplane section S0 ⊂ S through s0 (S0 is �min-

imally� de�ned over k
trdeg. 1

⊆ K), the restriction Gr1
LcH(Z0) 6= 0 by

weak Lefschetz. Since each Z(νNZ0) ⊆ S0 is a union of subvarieties
de�ned /k̄ and contains s0 for some N ∈ N, one of these is all of S0

( =⇒ Gr1
LΨ(Z) = 0), a contradiction. So Z ∈ L2.

(⇐=) : Let X0 → S0, Z0 ∈ Zm(X0)prim, dim(S0) = 1, all be de�ned /k
and suppose Z(νZ0) contains a point s0 not de�ned /k̄. Spreading this
out over Q̄ to Z,X , S ⊃ S0 3 s0, we have: s0 ∈ S is very general, Z
is the Q̄-spread of Z = Z0 · Xs0 , and AJ(Z)Q = 0. So Z ∈ L2 =⇒
νZ is torsion =⇒ νZ0 is torsion. But then νZ0 is zero since it is zero
somewhere (at s0). So Z(νZ0) is either S0 or a (necessarily countable)
union of k̄-points of S0.

(ii) The spread Z of Z(s0) ≡alg 0 has every �ber Zs ≡alg 0, hence νZ
is a section of J(H), H ⊂ (R2m−1π∗Q(m)) ⊗ OS subVHS of level one
(which can be taken to satisfy Hs = (H2m−1(Xs))h for a.e. s ∈ S).
The rest is as in (i). �

Remark 87. A related candidate BBF which occurs in work of the �rst
author with J. Lewis [KL, sec. 4], is de�ned via successive kernels of
generalized normal functions (associated to the Q̄-spread Z of a cycle).
These take values on very general (i− 1)-dimensional subvarieties of S
(rather than at points), and have the above cli(Z) as their topological
invariants.

4.6. Field of de�nition of the zero locus. We shall begin by show-
ing that the equivalent conditions of Prop. 86(ii) are satis�ed; the idea
of the argument is due in part to S. Saito [Sa]. The �rst paragraph in
the following in fact gives more:

Theorem 88. Z̃L(D, 1)alg holds for all D ∈ N. That is, the zero locus
of any normal function motivated by a family of cycles /F algebraically
equivalent to zero, is de�ned over an algebraic extension of F.

Consequently, cycles algebraically- and Abel-Jacobi-equivalent to zero
on a smooth projective variety /C, lie in the 2nd Lewis �ltrand.

Proof. Consider Z ∈ Zm(X )prim, f : X → S de�ned /K (K f.g./Q̄),
with Zs ≡alg 0 ∀s ∈ S; and let s0 ∈ Z(νZ). (Note: s0 is just a complex
point of S.) We need to show:

(4.9) ∃N ∈ N such that for any σ ∈ Gal(C/K), σ(s0) ∈ Z(νNZ).
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Here is why (4.9) will su�ce: the analytic closure of the set of all con-
jugate points is simply the point's K-spread S0(⊂ S), a (possibly re-
ducible) algebraic subvariety de�ned /K. Clearly, on the s0-connected
component of S0, νZ itself then vanishes; and this component is de�ned
over an algebraic extension of K. Trivially, Z(νZ) is the union of such
connected spreads of its points s0; and since K is �nitely generated /Q̄,
there are only countably many subvarieties of S0 de�ned /K or alge-
braic extensions thereof. This proves ZL(D, 1)alg, hence (by Theorem

57) Z̃L(D, 1)alg.

To show (4.9), write X = Xs0 , Z = Zs0 , and L(/K) for their �eld of
de�nition. There exist /L

• a smooth projective curve C and points 0, q ∈ C(L);

• an algebraic cycle W ∈ Zm(C ×X) such that Z = W∗(q − 0); and

• another cycle Γ ∈ Z1(J(C)× C) de�ning Jacobi inversion.

Writing Θ := W ◦ Γ ∈ Zm(J(C)×X), the induced map

[Θ]∗ : J(C)→ Jm(X)alg (⊆ Jm(X)h)

is necessarily a morphism of abelian varieties /L; hence the iden-
tity connected component of ker([Θ]∗) is a subabelian variety of J(C)
de�ned over an algebraic extension L′ ⊃ L. De�ne θ := Θ|B ∈
Zm(B × X), and observe that [θ]∗ : B → Jm(X)alg is zero by con-
struction, so that cl(θ) ∈ L2H2m(B ×X).

Now, since AJX(Z) = 0, a multiple b := N.AJC(q − 0) belongs to
B, and then N.Z = θ∗b. This �algebraizes� the AJ-triviality of N.Z:
conjugating the 6-tuple (s0, Z,X,B, θ, b) to (σ(s0), Zσ[= Zσ(s0)], X

σ[=
Xσ(s0)], B

σ, θσ, bσ), we still haveN.Zσ = θσ∗ b
σ and cl(θσ) ∈ L2H2m(Bσ×

Xσ) by motivicity of the Leray �ltration [Ar], and this impliesN.AJ(Zσ) =
[θσ]∗b

σ = 0 as desired. �

We now turn to the result of [Ch] indicated at the outset of §4.5.
While interesting, it sheds no light on ZL(1, E) or �ltrations, since the
hypothesis that the VHS H have no global sections is untenable over a
point.

Theorem 89. [Ch, Thm. 3] Let Z be the zero locus of a k-motivated
normal function ν : S → J(H). Assume that Z is algebraic and HC
has no non-zero global sections over Z. Then Z is de�ned over a �nite
extension of k.
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Proof. Charles's proof of this result uses the `-adic Abel�Jacobi map.
Alternatively, we can proceed as follows (using, with F = k, the no-
tation of Defn. 79): take Z0 ⊂ Z(ν) to be an irreducible component
(without loss of generality assumed smooth), and ZZ0 the restriction of
Z to Z0. Let [ZZ0 ] and [ZZ0 ]dR denote the Betti and de Rham funda-
mental classes of ZZ0 , and L the Leray �ltration. Then, Gr1

L[ZZ0 ] is the
topological invariant of [ZZ0 ] inH1(Z0, R

2m−1f∗Z), whereas Gr1
L[ZZ0 ]dR

is the in�nitesimal invariant of νZ over Z0. In particular, since Z0 is
contained in the zero locus of νZ,

(4.10) GrjL[ZZ0 ]dR = 0, j = 0, 1.

Furthermore, by the algebraicity of the Gauss-Manin connection, (4.10)
is invariant under conjugation:

GrjL[ZZσ0 ]dR = (GrjL[ZZ0 ]dR)σ

and hence GrjL[ZZσ0 ]dR = 0 for j = 0, 1. Therefore, GrjL[ZZσ0 ] = 0 for
j = 0, 1, and hence AJ(Zs) takes values in the �xed part of J(H) for
s ∈ Zσ0 . By assumption, HC has no �xed part over Z0, and hence no
�xed part over Zσ0 (since conjugation maps ∇-�at sections to ∇-�at
sections by virtue of the algebraicity of the Gauss-Manin connection).
As such, conjugation must take us to another component of Z, and
hence (since Z is algebraic over C =⇒ Z has only �nitely many
components), Z0 must be de�ned over a �nite extension of k. �

We conclude with a more direct analogue of Voisin's result [Vo1, Thm.
0.5(2)] on the algebraicity of the Hodge locus. If V is a variation of
mixed Hodge structure over a complex manifold and

α ∈ (Fp ∩W2p ∩ VQ)so

for some so ∈ S, then the Hodge locus T of α is the set of points in S
where some parallel translate of α belongs to Fp.

Remark 90. If (F,W ) is a mixed Hodge structure on V and v ∈ F p ∩
W2p ∩ VQ then v is of type (p, p) with respect to Deligne's bigrading of
(F,W ).

Theorem 91. Let S be a smooth complex algebraic variety de�ned over
a sub�eld k of C, and V be an admissible variation of mixed Hodge
structure of geometric origin over S. Suppose that T is an irreducible
subvariety of S over C such that:

(a) T is an irreducible component of the Hodge locus of some

α ∈ (Fp ∩W2p ∩ VQ)to ;
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(b) π1(T, to) �xes only the line generated by α.

Then, T is de�ned over k̄.

Proof. If V ∼= Q(p) for some p then T = S. Otherwise, T cannot be an
isolated point without violating (b). Assume therefore that dimT > 0.
Over T , we can extend α to a �at family of de Rham classes. By
the algebraicity of the Gauss�Manin connection, the conjugate ασ is
�at over T σ. Furthermore, if T σ supports any additional �at families
of de Rham classes, conjugation by σ−1 gives a contradiction to (b).
Therefore, ασ = λβ where β is a π1(T σ)-invariant Betti class on T σ

which is unique up to scaling. Moreover,

Q(α, α) = Q(ασ, ασ) = λ2Q(β, β)

and hence there are countably many Hodge classes that one can con-
jugate α to via Gal(C/k). Accordingly, T must be de�ned over k̄. �

5. The Néron Model and Obstructions to Singularities

The unifying theme of the previous sections is the study of algebraic
cycles via degenerations using the Abel�Jacobi map. In particular, in
the case of a semistable degeneration π : X → ∆ and a cohomologically
trivial cycle Z which properly intersects the �bers, we have

lim
s→0

AJXs(Zs) = AJX0(Z0)

as explained in detail in §2. In general however, the existence of the
limit Abel�Jacobi map is obstructed by the existence of the singularities
of the associated normal function. Nonetheless, using the description
of the asymptotic behavior provided by the nilpotent and SL2-orbit
theorems, we can de�ne the limits of admissible normal functions along
curves and prove the algebraicity of the zero locus.

5.1. Néron models in 1 parameter. In this section we consider the
problem of geometrizing these constructions (ANF's and their singular-
ities, limits and zeroes) by constructing a Nï¾÷ron model which graphs
admissible normal functions. The quest to construct such objects has
a long history which traces back to the work of Nï¾÷ron on minimal
models for abelian varieties AK de�ned over the �eld of fractions K of
a discrete valuation ring R. In [Na], Nakamura proved the existence of
an analytic Nï¾÷ron model for a family of abelian varieties A → ∆∗

arising from a variation of Hodge structure H → ∆∗ of level 1 with
unipotent monodromy. With various restrictions, this work was then
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extended to normal functions arising from higher codimension cycles
in the work of Clemens [Cl2], El Zein and Zucker [EZ], and Saito [S1].

Remark 92. Unless otherwise noted, throughout this section we assume
that the local monodromy of the variation of Hodge structure H under
consideration is unipotent, and the local system HZ is torsion free.

A common feature in all of these analytic constructions of Nï¾÷ron
models for variations of Hodge structure over ∆∗ is that the �ber over
0 ∈ ∆ is a complex Lie group which has only �nitely many components.
Furthermore, the component into which a given normal function ν
extends is determined by the value of σZ,0(ν). Using the methods of
the previous section, one way to see this is as follows: Let

0→ H→ V → Z(0)→ 0

represent an admissible normal function ν : ∆∗ → J(H) and F : U →
M denote the lifting of the period map of V to the upper half-plane,
with monodromy T = eN . Then, using the SL2-orbit theorem of the
previous section, it follows (cf. Theorem (4.15) of [Pe2]) that

YHodge = lim
Im(z)→∞

e−zN .Y(F (z),W )

exists, and is equal to the grading Y (N, Y(F∞,M)) constructed in the
previous section; moreover, recall that Y (N, Y(F∞,M)) ∈ ker(adN) due
to the short length of the weight �ltration. Suppose further that there
exists an integral grading YBetti ∈ ker(adN) of the weight �ltration W .
Let j : ∆∗ → ∆ and i : {0} → ∆ denote the inclusion maps. Then,
YHodge − YBetti de�nes an element in

(5.1) J(H0) = Ext1MHS(Z(0), H0(i∗Rj∗H))

by simply applying YHodge − YBetti to any lift of 1 ∈ Z(0) = GrW0 .
Reviewing �2 and �3, we see that the obstruction to the existence of
such a grading YBetti is exactly the class σZ,0(ν).

Remark 93. More generally, if H is a variation of Hodge structure of
weight −1 over a smooth complex algebraic variety S and S̄ is a good
compacti�cation of S, given a point s ∈ S̄ we de�ne

(5.2) J(Hs) = Ext1MHS(Z, Hs)

where Hs = H0(i∗sRj∗H) and j : S → S̄, is : {s} → S̄ are the inclusion
maps. In case S̄\S is a NCD in a neighborhood of S, with {Ni} the
logarithms of the unipotent parts of the local monodromies, then Hs

∼=
∩j ker(Nj).
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In general, except in the classical case of degenerations of Hodge struc-
ture of level 1, the dimension of J(H0) is usually strictly less than the
dimension of the �bers of J(H) over ∆∗. Therefore, any generalized
Nï¾÷ron model J∆(H) of J(H) which graphs admissible normal func-
tions cannot be a complex analytic space. Rather, in the terminology
of Kato and Usui [KU][GGK], we obtain a �slit analytic �ber space�.
In the case where the base is a curve, the above observations can be
combined into the following result:

Theorem 94. Let H be a variation of pure Hodge structure of weight
−1 over a smooth algebraic curve S with projective completion S̄. Let
j : S → S̄ denote the inclusion map. Then, there exists a Nï¾÷ron
model for J(H), i.e. a topological group JS̄(H) over S̄ such that:

(i) JS̄(H) restricts to J(H) over S;

(ii) There is a 1-1 correspondence between the set of admissible normal
functions ν : S → J(H) and the set of continuous sections ν̄ : S̄ →
JS̄(H) which restrict to holomorphic, horizontal sections of J(H) over
S;

Furthermore,

(iii) There is a short exact sequence of topological groups

0→ JS̄(H)0 → JS̄(H)→ G→ 0

where Gs is the torsion subgroup of (R1
j∗HZ)s for any s ∈ S̄;

(iv) JS̄(H)0 is a slit analytic �ber space, with �ber J(Hs) over s ∈ S̄;
(v) If ν : S → J(H) is an admissible normal function with extension ν̄
then the image of ν̄ in Gs at the point s ∈ S̄ − S is equal to σZ,s(ν).
Furthermore, if σZ,s(ν) = 0 then the value of ν̄ at s is given by the class
of YHodge − YBetti as in (5.1). Equivalently, in the geometric setting, if
σZ,s(ν) = 0 then the value of ν̄ at s is given by the limit Abel�Jacobi
map.

Regarding the topology of the Nï¾÷ron model, let us consider more
generally the case of smooth complex variety S with good compacti�-
cation S̄, and recall from �2 that we have also have the Zucker extension
JZ
S̄

(H) obtained by starting from the short exact sequence of sheaves

0→ HZ → HO/F 0 → J(H)→ 0

and replacing HZ by j∗HZ and HO/F 0 by its canonical extension. Fol-
lowing [S5], let us suppose that D = S̄ − S is a smooth divisor and
JZ
S̄

(H)Inv
D be the subset of JZ

S̄
(H) de�ned by the local monodromy in-

variants.
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Theorem 95. [S5] The Zucker extension JZ
S̄

(H) has the structure of
a complex Lie group over S̄, and it is a Hausdor� topological space on
a neighborhood of JZ

S̄
(H)Inv

D .

Specializing this result to the case where S is a curve, we then recover
the result of the �rst author together with Gri�ths and Green that
JS̄(H)0 is Hausdor�, since in this case we can identify JS̄(H)0 with
JZ
S̄

(H)Inv
D .

Remark 96. Using this Hausdor� property, Saito was able to prove [S5]
the algebraicity of the zero locus of an admissible normal function in
this setting (i.e., D smooth).

5.2. Néron models in many parameters. To extend this construc-
tion further, we have to come to terms with the fact that unless S has
a compacti�cation S̄ such that D = S̄ − S is a smooth divisor, the
normal functions that we consider may have non-torsion singularities
along the boundary divisor. This will be re�ected in the fact that the
�bers Gs of G need no longer be �nite groups. The �rst test case is
when H is a Hodge structure of level 1. In this case, a Nï¾÷ron model
for J(H) was constructed in the thesis of Andrew Young [Yo]. More
generally, in joint work with Patrick Brosnan and Morihiko Saito, the
second author proved the following result:

Theorem 97. [BPS] Let S be a smooth complex algebraic variety and
H be a variation of Hodge structure of weight −1 over S. Let j : S → S̄
be a good compacti�cation of S̄ and {Sα} be a Whitney strati�cation of
S̄ such that:

(a) S is one of the strata of S̄;

(b) Rkj∗HZ are locally constant on each stratum.

Then, there exists a generalized Nï¾÷ron model for J(H), i.e. a topo-
logical group JS̄(H) over S̄ which extends J(H) such that:

(i) The restriction of JS̄(H) to S is J(H);

(ii) Any admissible normal function ν : S → J(H) has a unique exten-
sion to a continuous section ν̄ of JS̄(H);

Furthermore,

(iii) There is a short exact sequence of topological groups

0→ JS̄(H)0 → JS̄(H)→ G→ 0

over S̄ such that Gs is a discrete subgroup of (R1j∗HZ)s for any point
s ∈ S̄;
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(iv) The restriction of JS̄(H)0 to any stratum Sα is a complex Lie group
over Sα with �ber J(Hs) over s ∈ S̄.
(v) If ν : S → J(H) is an admissible normal function with extension
ν̄ then the image of ν̄(s) in Gs is equal to σZ,s(ν) for all s ∈ S̄. If
σZ,s(ν) = 0 for all s ∈ S̄ then ν̄ restricts to a holomorphic section of
JS̄(H)0 over each strata.

Remark 98. More generally, this is true under the following hypothesis:

(1) S is a complex manifold and j : S → S̄ is a partial compacti�cation
of S as an analytic space;

(2) H is a variation of Hodge structure on S of negative weight, which
need not have unipotent monodromy.

To construct the identity component JS̄(H)0, let ν : S → J(H) be an
admissible normal function which is represented by an extension

(5.3) 0→ H→ V → Z(0)→ 0

and j : S → S̄ denote the inclusion map. Also, given s ∈ S̄ let
is : {s} → S̄ denote the inclusion map. Then, the short exact sequence
(5.3) induces an exact sequence of mixed Hodge structures

(5.4) 0→ Hs → H0(i∗sRj∗V)→ Z(0)→ H1(i∗sRj∗H)

where the arrow Z(0) → H1(i∗sRj∗H) is given by 1 7→ σZ,s(ν). Ac-
cordingly, if σZ,s(ν) = 0 then (5.4) determines a point ν̄(s) ∈ J(Hs).
Therefore, as a set, we de�ne

JS̄(H)0 =
∐
s∈S̄

J(Hs)

and topologize by identifying it with a subspace of the Zucker extension
JZ
S̄

(H).

Now, by condition (b) of Theorem (97) and the theory of mixed Hodge
modules[S4], it follows that if iα : Sα → S̄ are the inclusion maps then
Hk(i∗αRj∗H) are admissible variations of mixed Hodge structure over
each stratum Sα. In particular, the restriction of JS̄(H)0 to Sα is a
complex Lie group.

Suppose now that ν : S → J(H) is an admissible normal function
with extension ν̄ : S̄ → JS̄(H) such that σZ,s(ν) = 0 for each s ∈ S̄.
Then, in order to prove that ν̄ is a continuous section of JS̄(H)0 which
restricts to a holomorphic section over each stratum, is is su�cient to
prove that ν̄ coincides with the section of the Zucker extension (cf. [S1,
Prop. 2.3]). For this, it is in turn su�cient to consider the curve case
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by restriction to the diagonal curve ∆ → ∆r by t 7→ (t, . . . , t); see
[BPS, sec. 1.4].

It remains now to construct JS̄(H) via the following gluing procedure:
Let U be an open subset of S̄ and ν : U → J(H) be an admissible
normal function with cohomological invariant

σZ,U(ν) = ∂(1) ∈ H1(U,HZ)

de�ned by the map ∂ : H0(U,Z(0))→ H1(U,HZ) induced by the short
exact sequence (5.3) over U . Then, we declare JU(HU∩S)ν to be the
component of JS̄(H) over U , and equip JU(HU∩S)ν with a canonical
morphism

JU(HU∩S)ν → JU(HU∩S)0

which sends ν to the zero section. If µ is another admissible normal
function over U with σZ,U(ν) = σZ,U(µ) then there is a canonical iso-
morphism

JU(HU∩S)ν ∼= JU(HU∩S)µ

which corresponds to the section ν − µ of JU(HU∩S)0 over U .

Addendum to 5.2. Since the submission of this article, there have
been several important developments in the theory of Néron models
for admissible normal functions on which we would like to report here.
To this end, let us suppose that H is a variation of Hodge structure of
level 1 over a smooth curve S ⊂ S̄. Let AS denote the corresponding
abelian scheme with Néron modelAS̄ over S̄. Then, we have a canonical
morphism

AS̄ → JS̄(H)

which is an isomorphism over S. However, unless H has unipotent
local monodromy about each point s ∈ S̄−S, this morphism is not an
isomorphism [BPS]. Recently however, building upon his work on local
duality and mixed Hodge modules [Sl2], Christian Schnell has found an
alternative construction of the identity component of a Néron model
which contains the construction of [BPS] in the case of unipotent local
monodromy and agrees [SS] with the classical Néron model for VHS
of level 1 in the case of non-unipotent monodromy. In the paragraphs
below, we reproduce a summary of this construction which has been
generously provided by Schnell for inclusion in this article.

The genesis of the new construction is in unpublished work of Clemens
on normal functions associated to primitive Hodge classes. When Y is a
smooth hyperplane section of a smooth projective variety X of dimen-
sion 2n, and HZ = H2n−1(Y,Z)van its vanishing cohomology modulo
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torsion, the intermediate Jacobian J(Y ) can be embedded into a big-
ger object, K(Y ) in Clemens's notation, de�ned as

K(Y ) =

(
H0
(
X,Ω2n

X (nY )
)∨

H2n−1(Y,Z)van
.

The point is that the vanishing cohomology of Y is generated by
residues of meromorphic 2n-forms on X, with the Hodge �ltration
determined by the order of the pole (provided that OX(Y ) is su�-
ciently ample). Clemens introduced K(Y ) with the hope of obtaining
a weak, topological form of Jacobi inversion for its points, and because
of the observation that the numerator in its de�nition makes sense even
when Y becomes singular. In his Ph.D. thesis [Sl3], Schnell proved that
residues and the pole order �ltration actually give a �ltered holonomic
D-module on the projective space parametrizing hyperplane sections
of X; and that this D-module underlies the polarized Hodge module
corresponding to the vanishing cohomology by Saito's theory. At least
in the geometric case, therefore, there is a close connection between the
question of extending intermediate Jacobians, and �ltered D-modules
(with the residue calculus providing the link).

The basic idea behind Schnell's construction is to generalize from the
geometric setting above to arbitrary bundles of intermediate Jacobians.
As before, let H be a variation of polarized Hodge structure of weight
−1 on a complex manifold S, andM its extension to a polarized Hodge
module on S̄. Let (M, F ) be its underlying �ltered left D-module: M
is a regular holonomic D-module, and F = F•M a good �ltration by
coherent subsheaves. In particular, F0M is a coherent sheaf on S̄ that
naturally extends the Hodge bundle F 0HO. Now consider the analytic
space over S̄, given by

T = T (F0M) = SpecS̄
(
SymOS̄(F0M)

)
,

whose sheaf of sections is (F0M)∨. (Over S, it is nothing but the vector
bundle corresponding to (F 0HO)∨.) It naturally contains a copy TZ of
the étalé space of the sheaf j∗HZ; indeed, every point of that space
corresponds to a local section of HZ, and it can be shown that every
such section de�nes a map of D-modulesM→OS̄ via the polarization.

Schnell proves that TZ ⊆ T is a closed analytic subset, discrete on
�bers of T → S̄. This makes the �berwise quotient space J̄ = T/TZ
into an analytic space, naturally extending the bundle of intermediate
Jacobians for H. He also shows that admissible normal functions with
no singularities extend uniquely to holomorphic sections of J̄ → S̄. To
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motivate the extension process, note that the intermediate Jacobian of
a polarized Hodge structure of weight −1 has two models,

HC

F 0HC +HZ
' (F 0HC)∨

HZ
,

with the isomorphism coming from the polarization. An extension of
mixed Hodge structure of the form

(5.5) 0→ H → V → Z(0)→ 0

gives a point in the second model in the following manner. Let H∗ =
Hom

(
H,Z(0)

)
be the dual Hodge structure, isomorphic to H(−1) via

the polarization. After dualizing, we have

0→ Z(0)→ V ∗ → H∗ → 0,

and thus an isomorphism F 1V ∗C ' F 1H∗C ' F 0HC. Therefore, any
v ∈ VZ lifting 1 ∈ Z gives a linear map F 0HC → C, well-de�ned up
to elements of HZ; this is the point in the second model of J(H) that
corresponds to the extension in (5.5).

It so happens that this second construction is the one that extends to
all of S̄. Given a normal function ν on S, let

0→ HZ → VZ → ZS → 0

be the corresponding extension of local systems. By applying j∗, it
gives an exact sequence

0→ j∗HZ → j∗VZ → ZS̄ → R1j∗HZ,

and when ν has no singularities, an extension of sheaves

0→ j∗HZ → j∗VZ → ZS̄ → 0.

Using duality for �ltered D-modules, one obtains local sections of
(F0M)∨ from local sections of j∗VZ, just as above, and thus a well-
de�ned holomorphic section of J̄ → S̄ that extends ν.

As in the one-variable case, where the observation is due to Green-
Gri�ths-Kerr, horizontality constrains such extended normal functions
to a certain subset of J̄ ; Schnell proves that this subset is precisely
the identity component of the Néron model constructed by Brosnan-
Pearlstein-Saito. With the induced topology, the latter is therefore a
Hausdor� space, as expected. This provides an additional proof for the
algebraicity of the zero locus of an admissible normal function, similar
in spirit to the one-variable result in Saito's paper, in the case when
the normal function has no singularities.
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The other advance, is the recent construction [KNU2] of log interme-
diate Jacobians by Kato, Nakayama and Usui. Although a proper
exposition of this topic would take us deep into logarthmic Hodge the-
ory [KU], the basic idea is as follows: Let H → ∆∗ be a variation of
Hodge structure of weight −1 with unipotent monodromy. Then, we
have a commutative diagram

(5.6) J(H)
ϕ̃ //

��

Γ̃ \M

GrW−1

��
∆∗

ϕ // Γ \ D

where ϕ̃ and ϕ are the respective period maps. In [KU], Kato and
Usui explained how to translate the bottom row of this diagram into
logarithmic Hodge theory. More generally, building on the ideas of [KU]
and the several variable SL2-orbit theorem [KNU1], Kato, Nakayama
and Usui are able to construct a theory of logarthmic mixed Hodge
structures which they can then apply to the top row of the previous
diagram. In this way, they obtain a log intermediate Jacobian which
serves the role of a Néron model and allows them to give an alternate
proof of Theorem 57 [KNU3].

5.3. Singularities of normal functions overlying nilpotent or-
bits. We now consider the group of components Gs of JS̄(H) at s ∈ S̄.
For simplicity, we �rst consider the case where H is a nilpotent orbit
Hnilp over (∆∗)r. To this end, we recall that in the case of a variation
of Hodge structure H over (∆∗)r with unipotent monodromy, the inter-
section cohomology of HQ is computed by the cohomology of a complex
(B•(N1, . . . , Nr), d) (cf. §3.4). Furthermore, the short exact sequence
of sheaves

0→ HQ → VQ → Q(0)→ 0

associated to an admissible normal function ν : (∆∗)r → J(H) with
unipotent monodromy gives a connecting homomorphism

∂ : IH 0(Q(0))→ IH 1(HQ)

such that
∂(1) = [(N1(eQo ), . . . , Nr(e

Q
o )] = sing0(ν)

where eQo is an element in the reference �ber VQ of VQ over so ∈ (∆∗)r

which maps to 1 ∈ Q(0). After passage to complex coe�cients, the
admissibility of V allows us to to pick an alternate lift eo ∈ VC to be of
type (0, 0) with respect to the limit MHS of V . It also forces hj = Nj(eo)
to equal Nj(fj) for some element fj ∈ HC of type (0, 0) with respect to
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the limit MHS of H. Moreover, eQ0 − e0 =: h maps to 0 ∈ GrW0 hence
lies in HC, so that (N1(eQ0 ), . . . , Nr(e

Q
0 )) ≡ (N1(e0), . . . , Nr(e0)) modulo

d(B0) = im(⊕rj=1Nj) (i.e. up to (N1(h), . . . , Nr(h))).

Corollary 99. sing0(ν) is a rational class of type (0, 0) in IH 1(HQ).

Proof. (Sketch) This follows from the previous paragraph together with
the explicit description of the mixed Hodge structure on the cohomol-
ogy of B•(N1, . . . , Nr) given in [CKS2]. �

Conversely, we have the following result:

Lemma 100. Let Hnilp = e
∑
j zjNj .F∞ be a nilpotent orbit of weight

−1 over ∆∗r with rational structure HQ. Then, any class β of type
(0, 0) in IH 1(HQ) is representable by a Q-normal function ν which is
an extension of Q(0) by Hnilp such that sing0(ν) = β.

Proof. By the above remarks, β corresponds to a collection of elements
hj ∈ Nj(HC) such that

(a) h1, . . . , hr are of type (−1,−1) with respect to the limit mixed
Hodge structure of Hnilp;

(b) d(h1, . . . , hr) = 0, i.e. Nj(hk)−Nk(hj) = 0;

(c) There exists h ∈ HC such that Nj(h) + hj ∈ HQ for each j, i.e.
the class of (h1, . . . , hr) in IH 1(HC) belongs to the image IH 1(HQ) →
IH 1(HC).

We now de�ne the desired nilpotent orbit by formally setting VC =
Ceo⊕HC where eo is of type (0, 0) with respect to the limit mixed Hodge
structure and letting VQ = Q(eo + h) ⊕ HQ. We de�ne Nj(eo) = hj.
Then, following Kashiwara [Ka]:

(a) The resulting nilpotent orbit Vnilp is pre-admissible;

(b) The relative weight �ltration of

W−2 = 0, W−1 = HQ, W0 = VQ

with respect to each Nj exists.

Consequently Vnilp is admissible, and the associated normal function ν
has singularity β at 0.

�
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5.4. Obstructions to the existence of normal functions with
prescribed singularity class. Thus, in the case of a nilpotent or-
bit, we have a complete description of the group of components of the
Neron model ⊗Q. In analogy with nilpotent orbits, one might expect
that given a variation of Hodge structure H of weight −1 over (∆∗)r

with unipotent monodromy, the group of components of the Neron
model ⊗Q to equal the classes of type (0, 0) in IH 1(HQ). However,
Saito [S6] has managed to construct examples of variations of Hodge
structure over (∆∗)r which do not admit any admissible normal func-
tions with non-torsion singularities. We now want to describe Saito's
class of examples. We begin with a discussion of the deformations of an
admissible nilpotent orbit into an admissible variation of mixed Hodge
structure over (∆∗)r.

Let ϕ : (∆∗)r → Γ\D be the period map of a variation of pure Hodge
structure with unipotent monodromy. Then, after lifting the period
map of H to the product of upper half-planes U r, the work of Cattani,
Kaplan and Schmid on degenerations of Hodge structure gives us a
local normal form of the period map

F (z1, . . . , zr) = e
∑
j zjNjeΓ(s).F∞.

Here, (s1, . . . , sr) are the coordinates on ∆r, (z1, . . . , zr) are the coor-
dinates on U r relative to which the covering map U r → (∆∗)r is given
by sj = e2πizj ;

Γ : ∆r → gC

is a holomorphic function which vanishes at the origin and takes values
in the subalgebra

q =
⊕
p<0

gp,q;

and ⊕p,q gp,q denotes the bigrading of the MHS induced on gC (cf. §4.2)
by the limit MHS (F∞,W (N1 + · · ·Nr)[1]) of H. The subalgebra q is
graded nilpotent

q = ⊕a<0 qa, qa = ⊕b ga,b

with N1, . . . , Nr ∈ q−1. Therefore,

e
∑
j zjNjeΓ(s) = eX(z1,...,zr)

where X takes values in q, and hence the horizontality of the period
map becomes

e−X∂eX = ∂X−1
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where X = X−1 + X−2 + · · · relative to the grading of q. Equality of
mixed partial derivatives then forces

∂X−1 ∧ ∂X−1 = 0

Equivalently,

(5.7)

[
Nj + 2πisj

∂Γ−1

∂sj
, Nk + 2πisk

∂Γ−1

∂sk

]
= 0

Remark 101. The function Γ and the local normal form of the period
map appear in [CK].

In his letter to Morrison [De4], Deligne showed that for VHS over (∆∗)r

with maximal unipotent boundary points, one could reconstruct the
VHS from data equivalent to the nilpotent orbit and the function Γ−1.
More generally, one can reconstruct the function Γ starting from ∂X−1

using the equation
∂eX = eX∂X−1

subject to the integrability condition ∂X−1 ∧ ∂X−1 = 0. This is shown
by Cattani and Javier Fernandez in [CF].

The above analysis applies to VMHS over (∆∗)r as well: As discussed
in the previous section, a VMHS is given by a period map from the
parameter space into the quotient of an appropriate classifying space
of graded-polarized mixed Hodge structure M. As in the pure case,
we have a Lie group G which acts on M by biholomorphisms and a
complex Lie group GC which acts on the �compact dual� M̌.

As in the pure case (and also discussed in §4), an admissible VMHS
with nilpotent orbit (e

∑
j zjNj .F∞,W ) will have a local normal form

F (z1, . . . , zr) = e
∑
j zjNjeΓ(s).F∞

where Γ : ∆r → gC takes values in the subalgebra

q =
⊕
p<0

gp,q

Conversely (given an admissible nilpotent orbit), subject to the inte-
grability condition (5.7) above, any function Γ−1 determines a corre-
sponding admissible VMHS (cf. [Pe1, Thm. 6.16]).

Returning to Saito's examples (which for simplicity we only consider
in the two dimensional case), let H be a variation of Hodge structure
of weight −1 over ∆∗ with local normal form F (z) = ezNeΓ(s).F∞. Let
π : ∆2 → ∆ by π(s1, s2) = s1s2. Then for π∗(H), we have

Γ−1(s1, s2) = Γ−1(s1s2)
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In order to construct a normal function, we need to extend Γ−1(s1, s2)
and N1 = N2 = N on the reference �ber HC of H to include a new
class u0 of type (0, 0) which projects to 1 in Z(0). Let

N1(u0) = h1, N2(u0) = h2, Γ−1(s1, s2)u0 = α(s1, s2)

Note that (h1, h2) determines the cohomology class of the normal func-
tion so constructed, and that h2− h1 depends only on the cohomology
class, and not the particular choice of representative (h1, h2).

In order to construct a normal function in this way, we need to check
horizontality. This amounts to checking the equation

N

(
s2
∂α

∂s2

− s1
∂α

∂s1

)
+ s1s2Γ′−1(s1s2)(h2 − h1)

+2πis1s2Γ′−1(s1s2)

(
s2
∂α

∂s2

− s1
∂α

∂s1

)
= 0

Computation shows that the coe�cient of (s1s2)m of the left hand side
is

(5.8)
1

(m− 1)!
Γ

(m)
−1 (0)(h2 − h1)

Therefore, a necessary condition for the cohomology class represented
by (h1, h2) to arise from an admissible normal function is for h2 − h1

to belong to the kernel of Γ−1(t). This condition is also su�cient since
under this hypothesis, one can simply set α = 0.

Example 102. Let X ρ→ ∆ be a family of Calabi-Yau 3-folds (smooth
over ∆∗, smooth total space) with Hodge numbers h3,0 = h2,1 = h1,2 =
h0,3 = 1 and central singular �ber having an ODP. Setting H :=
H3
X ∗/∆∗(2), the LMHS has as its nonzero Ip,q's I−2,1, I−1,−1, I0,0, and

I1,−2. Assume that the Yukawa coupling (∇δs)
3 ∈ HomO∆

(H3,0
e ,H0,3

e )
is nonzero (δs = s d

ds
), and thus the restriction of Γ−1(s) to

HomO∆
(I−1,−1, I−2,1), does not vanish identically. Then for any puta-

tive singularity class 0 6= h2 − h1 ∈ (I−1.−1)Q ∼= ker(N)
(−1,−1)
Q (∼=(2.10)

in this case, which is just one dimensional) for admissible normal func-
tions overlying π∗H, non-vanishing of Γ−1(s)(h2−h1) on ∆ =⇒ (5.8)
cannot be zero for every m.

5.5. Implications for the Gri�ths-Green conjecture. Returning
now to the work of Gri�ths and Green on the Hodge conjecture via
singularities of normal functions, it follows using the work of Richard
Thomas that for a su�ciently high power of L, the Hodge conjecture
implies that one can force νζ to have a singularity at a point p ∈ X̂
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such that π−1(p) has only ODP singularities. In general, on a neigh-

borhood of such a point X̂ need not be a normal crossing divisor.
However, the image of the monodromy representation is nevertheless
abelian. Using a result of Steenbrink and Nemethi [NS], it then follows
from the properties of the monodromy cone of a nilpotent orbit of pure
Hodge structure that singp(νζ) persists under blowup. Therefore, it is
su�cient to study ODP degenerations in the normal crossing case (cf.
[BFNP, sec. 7]). What we will �nd below is that the �in�nitely many�
conditions above (vanishing of (5.8) for all m) are replaced by surjec-
tivity of a single logarithmic Kodaira-Spencer map at each boundary
component. Consequently, as suggested in the introduction, it appears
that M. Saito's examples are not a complete show-stopper for existence
of singularities for Gri�ths-Green normal functions.

The resulting limit mixed Hodge structure is of the form

I0,0

· · · I−2,1 I−1,0 I0,−1 I1,−2 · · ·
I−1,−1

and N2 = 0 for every element of the monodromy cone C. The weight
�ltration is given by

M−2(N) =
∑
j

Nj(HC), M−1(N) = ∩j ker(Nj), M0(N) = HC

For simplicity of notation, let us restrict to a two parameter version
of such a degeneration, and consider the obstruction to constructing
an admissible normal function with cohomology class represented by
(h1, h2) as above. As in Saito's example, we need to add a class uo of
type (0, 0) such that Nj(uo) = hj and construct α = Γ−1(uo). Then,
the integrability condition ∂X−1 ∧ ∂X−1 = 0 becomes

(5.9)
−(2πis2)∂Γ−1

∂s2
(h1) + (2πis1)∂Γ−1

∂s1
(h2)

+ (2πis1)(2πis2)
(
∂Γ−1

∂s1
∂α
∂s2
− ∂Γ−1

∂s2
∂α
∂s1

)
= 0

since α = Γ−1(uo) takes values in M−1(N).

Write α =
∑

j,k s
j
1s
k
2αjk and Γ−1 =

∑
p,q s

p
1s
q
2γpq on HC. Then, for

ab 6= 0, the coe�cient of sa1s
b
2 on the left hand side of equation ((5.9))

is

−2πibγab(h2) + 2πiaγab(h1) + (2πi)2
∑

p+j=a,q+k=b

(pk − qj)γpq(αjk)
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De�ne

ζab = 2πibγab(h2)−2πiaγab(h1)−(2πi)2
∑

p+j=a,q+k=b,pq 6=0

(pk−qj)γpq(αjk)

Then, equation (5.9) is equivalent to

(2πi)2bγ10(α(a−1)b)− (2πi)2aγ01(αa(b−1)) = ζab

where αjk occurs in ζab only in total degree j+k < a+b−1. Therefore,
provided that

γ10, γ01 : F−1
∞ /F 0

∞ → F−2
∞ /F−1

∞

are surjective, we can always solve (non-uniquely!) for the coe�cients
αjk, and hence formally (i.e. modulo checking convergence of the re-
sulting series) construct the required admissible normal function with
given cohomology class.

Remark 103. (i) Of course, it is not necessary to have only ODP singu-
larities for the above analysis to apply. It is su�cient merely that the
limit mixed Hodge structure have the stated form. In particular, this
is always true for degenerations of level 1. Furthermore, in this case
Gr−2

F∞
= 0, and hence (⊗Q) the group of components of the Nï¾÷ron

model surjects onto the Tate-classes of type (0, 0) in IH 1(HQ).

(ii) In Saito's examples from §5.4, even if Γ′−1(0) 6= 0, we will have
γ01 = 0 = γ10, since the condition of being a pullback via (s1, s2) 7→ s1s2

means Γ−1(s1, s2) =
∑

p,q s
p
1s
q
2γpq =

∑
r s

r
1s
r
2γrr.

Example 104. In the case of a degeneration of Calabi�Yau threefolds
with limit mixed Hodge structure on the middle cohomology (shifted
to weight −1)

I0,0

I−2,1 I−1,0 I0,−1 I1,−2

I−1,−1

the surjectivity of the partial derivatives of Γ−1 are related to the
Yukawa coupling as follows: Let

F (z) = e
∑
j zjNjeΓ(s).F∞

be the local normal form of the period map as above. Then, a global
non-vanishing holomorphic section of the canonical extension of F1 (i.e.
of F3 before we shift to weight −1) is of the form

Ω = e
∑
j zjNjeΓ(s)σ∞(s)
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where σ∞ : ∆r → I1,−2 is holomorphic and non-vanishing. Then, the
Yukawa coupling of Ω is given by

Q(Ω, DjDkD` Ω), Da =
∂

∂za
.

In keeping with the above notation, let eX = e
∑
j zjNjeΓ(s) and Aj =

Dj X−1. Then, using the 1st Hodge�Riemann bilinear relation and the
fact that eX is an automorphism of Q, it follows that

Q(Ω, DjDkD` Ω) = Q(σ∞(s), AjAkA` σ∞(s))

Moreover (cf. [CK],[Pe1]), the horizontality of the period map implies
that [

Γ−1|sk=0 , Nk

]
= 0

Using this relation, it then follows that

lim
s→0

Q(Ω, DjDkD` Ω)

(2πisj)(2πisk)(2πis`)
= Q(σ∞(0), GjGkG`σ∞(0))

for j 6= k, where Ga = ∂Γ−1

∂sa
(0). In particular, if for each index j there

exist indices k and ` with k 6= ` such that the left-hand side of the
previous equation is non-zero then Gj : (F−1

∞ /F 0
∞) → (F−2

∞ /F−1
∞ ) is

surjective.

6. Global Considerations: Monodromy of Normal

Functions

Returning to a normal function V ∈ NF 1(S,H)ad
S̄
over a complete base,

we want to speculate a bit about how one might �force� singularities
to exist. The (inconclusive) line of reasoning we shall pursue rests on
two basic principles:

(i) maximality of the geometric (global) monodromy group of V may
be deduced from hypotheses on the torsion locus of V ; and

(ii) singularities of V can be interpreted in terms of the local mon-
odromy of V being su�ciently large.

While it is unclear what hypotheses (if any) would allow one to pass
from global to local monodromy-largeness, the proof of the �rst prin-
ciple is itself of interest as a �rst application of algebraic groups (the
algebraic variety analogue of Lie groups, originally introduced by Pi-
card) to normal functions.
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6.1. Background. Mumford-Tate groups of Hodge structures were in-
troduced by Mumford [Mu] for pure HS and by André [An] in the mixed
setting. Their power and breadth of applicability is not well-known,
so we will �rst attempt a brief summary. They were �rst brought to
bear on H1(A) for A an abelian variety, which has led to spectacular
results:

• Deligne's theorem [De2] thatQ-Bettiness of a class in F pH2p
dR(Ak)

(k = k̄) is independent of the embedding of k into C (�Hodge
=⇒ absolute Hodge�);
• the proofs by Hazama [Ha] and Murty [Mr] of the HC for A
�nondegenerate� (MT of H1(A) is maximal in a sense to be
de�ned below); and
• the density of special (Shimura) subvarieties in Shimura vari-
eties and the partial resolution of the André-Oort Conjecture
by Klingler-Yafaev [KY].

More recently, MT groups have been studied for higher weight HS's; one
can still use them to de�ne special Q̄-subvarieties of (non-Hermitian-
symmetric) period domains D, which classify polarized HS's with �xed
Hodge numbers (and polarization). In particular, the 0-dimensional
subdomains � still dense in D � correspond to HS with CM (complex
multiplication); that is, with abelian MT group. One understands
these HS well: their irreducible subHS may be constructed directly
from primitive CM types (and have endomorphism algebra equal to the
underlying CM �eld), which leads to a complete classi�cation; and their
Weil and Gri�ths intermediate Jacobians are CM abelian varieties [Bo].
Some further applications of MT groups include:

• Polarizable CM-HS are motivic [Ab]; when they come from a
CY variety, the latter often has good modularity properties;
• Given H∗ of a smooth projective variety, the level of the MT Lie
algebra furnishes an obstruction to the variety being dominated
by a product of curves [Sc];
• Transcendence degree of the space of periods of a VHS (over a
base S), viewed as a �eld extension of C(S) [An];

and speci�cally in the mixed case:

• the recent proof [AK] of a key case of the Beilinson-Hodge Con-
jecture for semiabelian varieties and products of smooth curves.

The latter paper, together with [An] and [De2], are the best references
for the de�nitions and properties we now summarize.
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To this end, recall that an algebraic group G over a �eld k is an alge-
braic variety /k together with k-morphisms of varieties 1G : Spec(k)→
G, �multiplication� µG : G×G→ G, and �inversion� ıG : G→ G satis-
fying obvious compatibility conditions. The latter ensure that for any
extension K/k, the K-points G(K) form a group.

De�nition 105. (i) A (k-)closed algebraic subgroup M ≤ G is one
whose underlying variety is (k-)Zariski closed.

(ii) Given a subgroupM ≤ G(K), the k-closure ofM is the smallest
k-closed algebraic subgroup M of G with K-points M(K) ≥M.

IfM := M(K) for an algebraic k-subgroupM ≤ G, then the k-closure
of M is just the k-Zariski closure of M (i.e. the algebraic variety
closure).

But in general, this is not true: instead, M may be obtained as the
k-Zariski (algebraic variety) closure of the group generated by the k-
spread ofM.

We refer the reader to [Sp] (esp. Chap. 6) for the de�nitions of reduc-
tive, semisimple, unipotent, etc. in this context (which are less crucial
for the sequel). We will write DG := [G,G] (E G) for the derived
group.

6.2. Mumford-Tate and Hodge groups. Let V be a (graded-polarizable)
mixed Hodge structure with dual V ∨ and tensor spaces Tm,nV :=
V ⊗m ⊗ (V ∨)⊗n (n,m ∈ Z≥0). These carry natural MHS, and any
g ∈ GL(V ) acts naturally on Tm,nV .

De�nition 106. (i) A Hodge (p, p)-tensor is any τ ∈ (Tm,nV )
(p,p)
Q .

(ii) The MT group MV (resp. Hodge group12 M◦
V ) of V is the (largest)

Q-algebraic subgroup of GL(V ) �xing13 the Hodge (0, 0)-tensors ∀m,n
(resp. Hodge (p, p)-tensors ∀m,n, p). MV respects the weight �ltration
W• on V .

(iii) The weight �ltration on V induces one on MT/Hodge:

W−iM
(◦)
V :=

{
g ∈M (◦)

V

∣∣∣ (g − id.)W•V ⊂ W•−iV
}
EM

(◦)
V .

One has: W0M
(◦)
V = M

(◦)
V ; W−1M

(◦)
V is unipotent; and GrW0 M

(◦)
V
∼=

M
(◦)
V split (V

split := ⊕`∈ZGrW` V ), cf. [An].
12In an unfortunate coincidence of terminology, these are completely di�erent

objects from (though not unrelated to) the �nitely generated abelian groups Hgm(H)
discussed in §1.

13��xing� means �xing pointwise; the term for ��xing as a set� is �stabilizing�
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ClearlyM◦
V EMV ; and unless V is pure of weight 0, we haveMV /M

◦
V
∼=

Gm. If V has polarizationQ ∈ HomMHS (V ⊗ V,Q(−k)) for k ∈ Z\{0},
then M◦

V is of �nite index in MV ∩ GL(V,Q) (where g ∈ GL(V,Q)
means Q(gv, gw) = Q(v, w)), and if in addition V (= H) is pure (or at
least split) then both are reductive. One has in general thatW−1MV ⊆
DMV ⊆M◦

V ⊆MV .

De�nition 107. (i) If MV is abelian (⇐⇒ MV (C) ∼= (C∗)×a), V is
called a CM-MHS. (A subMHS of a CM-MHS is obviously CM.)

(ii) The endomorphisms EndMHS(V ) can be interpreted as the Q-points
of the algebra (End(V ))MV =: EV . One always has MV ⊂ GL(V,EV )
(=centralizer of EV ); if this is an equality, then V is said to be nonde-
generate.

Neither notion implies the other; however: any CM or nondegenerate
MHS is (Q-)split, i.e. V (= V split) is a direct sum of pure HS in di�erent
weights.

Remark 108. (a) We point out why CM-MHS are split. If MV is
abelian, then MV ⊂ EV and so MV (Q) consists of morphisms of MHS.
But then any g ∈ W−1MV (Q), hence g − id., is a morphism of MHS
with (g − id.)W• ⊂ W•−1; so g = id., and MV = MV split , which implies
V = V split.

(b) For an arbitrary MHS V , the subquotient tensor representations of
MV killing DMV (i.e., factoring through the abelianization) are CM-
MHS. By (a), they are split, so that W−1MV acts trivially; this gives
the inclusion W−1MV ⊆ DMV .

Now we turn to the representation-theoretic point of view on MHS.
De�ne the algebraic Q-subgroups U ⊂ S ⊂ GL2 via their complex
points
(6.1)

S(C) :

{(
α β
−β α

)∣∣∣∣ α, β ∈ C
(α, β) 6= (0, 0)

}
∼=

eigenvalues
// C∗ × C∗

(
z, 1

z

)

U(C) :
?�

OO

{(
α β
−β α

)∣∣∣∣α, β ∈ C; α2 + β2 = 1

}
∼= // C∗

?�

OO

z
_

OO

where the top map sends

(
α β
−β α

)
7→ (α + iβ, α − iβ) =: (z, w).

(Points in S(C) will be represented by the �eigenvalues� (z, w).) Let

ϕ : S(C)→ GL(VC)
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be given by

ϕ(z, w)|Ip,q(H) := multiplication by zpwq (∀p, q).
Note that this map is in general only de�ned /C, though in the pure
case it is de�ned /R (and as S(R) ⊂ S(C) consists of tuples (z, z̄), one
tends not to see precisely the above approach in the literature). The
following useful result14 allows one to compute MT groups in some
cases.

Proposition 109. MV is the Q-closure of ϕ(S(C)) in GL(V ).

Remark 110. In the pure (V = H) case, this condition can be replaced
by MH(R) ⊃ ϕ(S(R)), and M◦

H de�ned similarly as the Q-closure of
ϕ(U(R)); unfortunately, for V a non-Q-split MHS the Q-closure of
ϕ(U(C)) is smaller than M◦

H .

Now let H be a pure polarizable HS with Hodge numbers hp,q, and
take D (with compact dual Ď) to be the classifying space for such. We
may view Ď as a quasi-projective variety /Q in a suitable �ag vari-
ety. Consider the subgroup M◦

H,ϕ ⊂ M◦
H with real points M◦

H,ϕ(R) :=

(M◦
H(R))ϕ(S(R)). If we view M◦

H as acting on a Hodge �ag of HC with
respect to a (�xed) basis of HQ,thenM

◦
H,ϕ is the stabilizer of the Hodge

�ag. This leads to a Noether-Lefschetz-type substratum in D:

Proposition 111. The MT domain

DH :=
M◦

H(R)

M◦
H,ϕ(R)

(
⊂ M◦

H(C)

M◦
H,ϕ(C)

=: ĎH

)
classi�es HS with Hodge group contained in MH , or equivalently with
Hodge-tensor set containing that of H. The action of M◦

H upon H em-
beds ĎH ↪→ Ď as a quasi-projective subvariety, de�ned over an alge-
braic extension of Q. The GL(HQ, Q)-translates of ĎH give isomorphic
subdomains (with conjugate MT groups) dense in Ď.

A similar de�nition works for certain kinds of MHS. The trouble with
applying this in the variational setting (which is our main concern
here), is that the �tautological VHS� (or VMHS) over such domains
(outside of a few classical cases in low weight or level) violate Gri�ths
transversality hence are not actually VHS. Still, it can happen that MT
domains in non-Hermitian symmetric period domains are themselves
Hermitian symmetric. For instance, taking Sym3 of HS's embeds the

14Proof of this, and of Prop. 111 below, will appear in a work of the �rst author
with P. Gri�ths and M. Green.
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classifying space (∼= H) of (polarized) weight 1 HS with Hodge numbers
(1,1) into that for weight 3 HS with Hodge numbers (1,1,1,1).

6.3. MT groups in the variational setting. Let S be a smooth
quasi-projective variety with good compacti�cation S̄, and V ∈ VMHS(S)ad

S̄
;

assume V is graded-polarized, which means we have Q ∈
⊕iHomVMHS(S)

(
(GrWi V)⊗2,Q(−i)

)
satisfying the usual positivity con-

ditions. The Hodge �ag embeds the universal cover Ŝ(� S) in a �ag
variety; let the image-point of ŝ0(7→ s0) be of maximal transcendence
degree. (One might say s0 ∈ S(C) is a �very general point in the sense
of Hodge�; we are not saying s0 is of maximal transcendence degree.)
Parallel translation along the local system V gives rise to the mon-
odromy representation ρ : π1(S, s0) → GL(Vs0,Q,W•, Q). Moreover,
taking as basis for Vs,Q the parallel translate of one for Vs0,Q, MVs is
constant on paths (from s0) avoiding a countable union T of proper
analytic subvarieties of S, where in fact S◦ := S\T is pathwise con-
nected. (At points t ∈ T , MVt ⊂ MVs ; and even the MT group of the
LMHS ψsV at x ∈ S̄\S naturally includes in MVs .)

De�nition 112. (i) M
(◦)
Vs0

=: M
(◦)
V is called the MT (Hodge) group of

V . One has EndMHS(Vs0) ∼= EndVMHS(S)(V), cf. [PS2].

(ii) The identity connected component ΠV of theQ-closure of ρ(π1(S, s0))
is the geometric monodromy group of V ; it is invariant under �nite cov-
ers S̃ � S (and semisimple in the split case).

Proposition 113. (André) ΠV E DMV .

Proof. (Sketch) By a theorem of Chevalley, any closed Q-algebraic sub-
group ofGL(Vs0) is the stabilizer, for some multitensor t ∈ ⊕iTmi,ni(Vs0,Q)
of Q 〈t〉. For MV , we can arrange this tV to be itself �xed and lie in

⊕i (Tmi,ni(Vs0))
(0,0)
Q . By genericity of s0, Q 〈tV〉 extends to a subVMHS

with (again by ∃ of Q) �nite monodromy group, and so tV is �xed by
ΠV . This proves ΠV ⊂ MV (in fact, ⊂ M◦

V since monodromy preserves
Q). Normality of this inclusion then follows from the �Theorem of the
Fixed Part�: the largest constant sublocal system of any Tm,n(V) (stu�
�xed by ΠV) is a subVMHS, hence subMHS at s0 and stable underMV .

Now let Mab
V := MV

DMV
, Πab
V := ΠV

ΠV∩DMV
⊂ Mab

V (which is a connected

component of the Q-closure of some πab ⊂ Mab,◦
V (Z)), and (taking a

more exotic route than André) V ab be the (CM)MHS corresponding
to a faithful representation of Mab

V . For each irreducible H ⊂ V ab,

the image Mab
V has integer points ∼= O∗L for some CM �eld L, and
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Mab,◦
V (Q) ⊂ L consists of elements of norm 1 under any embedding.

The latter generate L (a well-known fact for CM �elds) but, by a
theorem of Kronecker, have �nite intersection with O∗L: the roots of

unity. It easily follows from this that Πab
V , hence Πab

V , is trivial. �

De�nition 114. Let x ∈ S̄ with neighborhood (∆∗)k×∆n−k in S and
local (commuting) monodromy logarithms {Ni};15 de�ne the weight

monodromy �ltration Mx
• := M(N,W )• where N :=

∑k
i=1Ni. In the

following we assume a choice of path from s0 to x:

(a) Write πxV for the local monodromy group in GL(Vs0,Z,W•, Q) gener-
ated by the Ti = (Ti)sse

Ni , and ρx for the corresponding representation.

(b) We say that V is nonsingular at x if Vs0
∼= ⊕jGrWj Vs0 as ρx-modules.

In this case, the condition that ψsV ∼= ⊕jψsGrWj V is independent of the
choice of local coordinates (s1, . . . , sn) at x, and V is called semi-split
(nonsingular) at x when this is satis�ed.

(c) The GrM
x

i ψsV are always independent of s. We say that V is
totally degenerate (TD) at x if these GrMi are (pure) Tate and strongly
degenerate (SD) at x if they are CM-HS. Note that the SD condition
is interesting already for the non-boundary points (x ∈ S, k = 0).

We can now generalize results of André [An] and Musta�n [Ms].

Theorem 115. If V is semi-split TD (resp. SD) at a point x ∈ S̄,
then ΠV = M◦

V (resp. DM◦
V ).

Remark 116. Note that semi-split SD at x ∈ S simply means that Vx
is a CM-MHS (this case is done in [An]). Also, if ΠV = M◦

V then in
fact ΠV = DM◦

V = M◦
V .

Proof. Passing to a �nite cover to identify ΠV and ρ(π1), if we can

show that any invariant tensor t ∈ (Tm,nVs0,Q)ΠV is also �xed by M◦
V

(resp. DM◦
V), we are done by Chevalley. Now the span ofM◦

Vt is (since
ΠV E M◦

V) �xed by ρ(π1), and (using the Theorem of the Fixed Part)
extends to a constant subVMHS U ⊂ Tm,nV =: T . Now the hypotheses
on V carry over to T and taking LMHS at x, U = ψsU = ⊕iψsGrWi U =
⊕iGrWi U , we see that U splits (as VMHS). As T is TD (resp. SD) at
x, U is split Hodge-Tate (resp. CM-MHS).

15Though this has been suppressed so far throughout this paper, one has {Ni}
and LMHS even in the general case where the local monodromies Ti are only quasi-
unipotent, by writing Ti =: (Ti)ss(Ti)u uniquely as a product of semisimple and
unipotent parts (Jordan decomposition) and setting Ni := log((Ti)u).
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If U is H-T then it consists of Hodge tensors; so M◦
V acts trivially on

U hence on t.

If U is CM then M◦
V |U = M◦

U is abelian; and so the action of M◦
V on U

factors through M◦
V/DM

◦
V , so that DM◦

V �xes t. �

A reason why one would want this �maximality� result ΠV = M◦
V is

to satisfy the hypothesis of the following interpretation of Theorem
(91) (which was a partial generalization of results of [Vo1] and [Ch]).
Recall that a VMHS V/S is k-motivated if there is a family X → S of
quasiprojective varieties de�ned /k with Vs = the canonical (Deligne)
MHS on Hr(Xs) for each s ∈ S.

Proposition 117. Suppose V is motivated over k with trivial �xed
part, and let T0 ⊂ S be a connected component of the locus where M◦

Vs
�xes some vector (in Vs). If T0 is algebraic (over C), M◦

VT0
has only

one �xed line, and ΠVT0
= M◦

VT0
, then T0 is de�ned over k̄.

Of course, to be able to use this one also needs a result on algebraicity
of T0, i.e. a generalization of the theorems of [CDK] and [BP3] to
arbitrary VMHS. One now has this by work of Brosnan, Schnell, and
the second author:

Theorem 118. Given any integral, graded-polarized V ∈ VMHS(S)ad
S̄
,

the components of the Hodge locus of any α ∈ Vs yield complex algebraic
subvariaties of S.

6.4. MT groups of (higher) normal functions. We now specialize
to the case where V ∈ NF r(S,H)ad

S̄
, with H → S the underlying

VHS of weight −r. M◦
V is then an extension of M◦

H
∼= M◦

Vsplit(=H⊕QS(0))

by (in fact, semi-direct product with) an additive (unipotent) group
U := W−rM

◦
V
∼= G×µa , with µ ≤ rankH. Since M◦

V respects weights,

there is a natural map M◦
V

η
� M◦

H and one might ask when this is an
isomorphism.

Proposition 119. µ = 0 ⇐⇒ V is torsion.

Proof. First we note that V torsion ⇐⇒ after a �nite cover S̃ � S,

{0} 6= HomVMHS(S̃)(QS(0),V) = EndVMHS(S̃)(V) ∩ ann(H) =

EndMHS(Vs0) ∩ ann(Hs0) = (HomQ ((Vs0/Hs0), Vs0))M
◦
V .

The last expression can be interpreted as vectors w ∈ Hs0,Q satisfying

(id. −M)w = u ∀
(

1 0
u M

)
∈ M◦

V . This is possible only if there is
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one u for each M , i.e. if M◦
V

η→ M◦
H is an isomorphism. Conversely,

assuming this, write u = η−1(M) [noting η̃−1(M1M2)
(∗)
= η̃−1(M1) +

M1η̃
−1(M2)] and set w := η̃−1(0). Taking M2 = 0, M1 = M in (∗), we

get (id.−M)w = (id.−M)η−1(0)
(∗)
= η̃−1(M) (= u) ∀M ∈M◦

H. �

We can now address the problem which lies at the heart of this section:
what can one say about the monodromy of the normal function above
and beyond that of the underlying VHS � for example, about the

kernel of the natural map ΠV
Θ
� ΠH? One can make some headway

simply by translating De�nition 114 and Theorem 115 into the language
of normal functions; all vanishing conditions are ⊗Q.

Proposition 120. Let V be an admissible higher normal function over
S, and let x ∈ S̄ with local coordinate system s.

(i) V is non-singular (as AVMHS) at x ⇐⇒ singx(V) = 0. Assuming
this, V is semi-simple at x ⇐⇒ limx(V) = 0. (In case x ∈ S,
singx(V) = 0 is automatic and limx(V) = 0 ⇐⇒ x ∈torsion locus of
V.)

(ii) V is TD (resp. SD) at x ⇐⇒ the underlying VHS H is. (For
x ∈ S, this just means that Hx is CM.)

(iii) If singx(V), limx(V) vanish and ψsH is graded CM, then ΠV =
DMV . (For x ∈ S, we are just hypothesizing that the torsion locus of
V contains a CM point of H.)

(iv) Let x ∈ S̄\S. If singx(V), limx(V) vanish and ψsH is Hodge-Tate,
then ΠV = M◦

V .

(v) Under the hypotheses of (iii) and (iv), dim(ker(Θ)) = µ. (In general
one has ≤.)

Proof. self-evident except for (v), which follows from observing (in both
cases (iii) and (iv)) via the diagram

(6.2) G×µa ∼= W−1M
(◦)
V = ker(η) ⊆ DMV ΠV

� � //

Θ
����

M
(◦)
V

η
����

ΠH
� � // M

(◦)
H ,

that ker(η) = ker(Θ). �
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Example 121. The Morrison-Walcher normal function from §1.7 (Ex.
13) lives �over� the VHSH arising from R3π∗Z(2) for a family of �mirror
quintic� CY 3-folds, and vanishes at z = ∞. (One should take a
suitable, e.g. order 2 or 10 pullback so that V is well-de�ned.) The
underlying HS H at this point is of CM type (the �ber is the usual
(Z/5Z)3 quotient of {

∑4
i=0 Z

5
i = 0} ⊂ P4), withMH(Q) ∼= Q(ζ5). So V

would satisfy the conditions of Prop. 120(iii). It should be interesting
to work out the consequences of the resulting equality ΠV = DMV .

There is a di�erent aspect to the relationship between local and global
behavior of V . Assuming for simplicity that the local monodromies at
x are unipotent, let κx := ker(πxV � πxH) denote the local monodromy
kernel, and µx the dimensions of its Q-closure κx. This is an additive
(torsion-free) subgroup of ker(Θ), and so dim(ker(Θ)) ≥ µx (∀x ∈
S̄\S). Writing {Ni} for the local monodromy logarithms at x, we have
the

Proposition 122. (i) µx > 0 =⇒ singx(V) 6= 0 (nontorsion singu-
larity)

(ii) The converse holds assuming r = 1 and rank(Ni) = 1 (∀i).

Proof. Let g ∈ πxV , and de�ne m ∈ Q⊕k by log(g) =:
∑k

i=1miNi. Writ-
ing ḡ, N̄i for g|H, Ni|H , consider the (commuting) diagram of morphisms
of MHS

(6.3) ψsH
⊕N̄i

wwoooooooooooo � r

$$JJJJJJJJJ

log(ḡ)

rr

⊕iψsH(−1)

χ ''NNNNNNNNNNN
ψsV

⊕Nioo

log(g)zzuuuuuuuuu

ψsH(−1)

where χ(w1, . . . , wk) =
∑k

i=1miwi, log(g) =
∑k

i=1miN̄i. We have that
0 6= singx(V) ⇐⇒ (⊕Ni)νQ /∈ im(⊕N̄i) where νQ (cf. De�nition
2(b)) generates ψsV/ψsH.

(i) If g ∈ κx\{1} then 0 = log(ḡ) =⇒ 0 = χ(im(⊕N̄i)) while 0 6= log g
=⇒ 0 6= (log(g))νQ = χ((⊕Ni)νQ). So χ �detects� a singularity.

(ii) If r = 1 we may replace ⊕ki=1ψsH(−1) in the diagram by the sub-
space ⊕ki=1(Ni(ψsH)). Since each summand is of dimension 1, and (by
assumption) (⊕Ni)νQ /∈ im(⊕N̄i), we can choose m = {mi} in order
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that χkill im(⊕N̄i) but not (⊕Ni)νQ. Using the diagram, log(ḡ) = 0 6=
log(g) =⇒ g ∈ κx\{1}. �

Remark 123. (a) The existence of a singularity always implies that V
is nontorsion, hence µ > 0.

(b) In the [GG] situation, we have r = 1 and rank 1 local monodromy
logarithms; hence (by Prop. 122(ii)) the existence of a singularity =⇒
dim(ker(Θ)) > 0 (consistent with (a)).

(c) By Prop. 122(i), in the normal function case (r = 1), µx = 0 along
codim. 1 boundary components.

(d) In the �maximal geometric monodromy� situation of Prop. 120(v),
µ ≥ µx ∀x ∈ S̄\S.

Obviously, for the purpose of forcing singularities to exist, the inequal-
ity in (d) points in the wrong direction. One wonders if some sort of
cone or spread on a VMHS might be used to translate global into local
monodromy kernel, but this seems unlikely to be helpful.

We conclude with an amusing application of di�erential Galois theory
related to a result of André [An]:

Proposition 124. Consider a normal function V of geometric origin
together with an OS-basis {ωi} of holomorphic sections of F0H. (That
is, Vs is the extension of MHS corresponding to AJ(Zs) ∈ Jp(Xs) for
some �at family of cycles on a family of smooth projective varieties over
S.) Let K denote the extension of C(S) by the (multivalued) periods of
the {ωi}; and L denote the further extension of K via the (multivalued)
Poincaré normal functions given by pairing the ωi with an integral lift
of 1 ∈ QS(0) (i.e. the membrane integrals

´
Γs
ωi(s) where ∂Γs = Zs).

Then trdeg(L/K) = dim(ker(Θ)).

The proof rests on a result of N. Katz [Ka, Cor. 2.3.1.1] relating tran-
scendence degrees and dimensions of di�erential Galois groups, together
with the fact that the {

´
Γs
ωi} (for each i) satisfy a homogeneous linear

ODE with regular singular points [Gr1]. (This fact implies equality of
di�erential Galois and geometric monodromy groups, since monodromy
invariant solutions of such an ODE belong to C(S) which is the �xed
�eld of the Galois group.) In the event that H has no �xed part (so
that L can introduce no new constants and one has a �Picard-Vessiot
�eld extension�) and the normal function is motivated over k = k̄, one
can probably replace C by k in the statement.



NORMAL FUNCTIONS 93

References

[Ab] S. Abdulali, Hodge Structures of CM type, J. Ramanujan Math. Soc. 20
(2005), no. 2, 155-162.

[An] Y. Andre, Mumford-Tate groups of mixed Hodge structures and the theorem
of the �xed part, Compositio Math. 82 (1992), no. 1, 1-24.

[Ar] D. Arapura, The Leray spectral sequence is motivic, Invent. Math. 160 (2005),
no. 3, 567-589.

[AK] D. Arapura and M. Kumar, Beilinson-Hodge cycles on semiabelian varieties,
Math. Res. Lett. 16 (2009), no. 4, 557-562.

[BBD] A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, in �Analysis
and topology of singular spaces, I (Luminy, 1981)�, pp. 5-171, Astérisque 100,
Soc. Math. France, Paris, 1982.

[Be] A. A. Beilinson, Height pairing between algebraic cycles, in �K-theory, arith-
metic, and geometry (Moscow, 1984-6)�, pp. 1-25, LNM 1289, Springer,
Berlin, 1987.

[Bl] S. Bloch, Algebraic cycles and higher K-theory, Adv. Math. 61 (1986), no. 3,
267-304.

[Bo] C. Borcea, Calabi-Yau threefolds and complex multiplication, in �Essays on
mirror manifolds�, 489-502, Intl. Press, Hong Kong, 1992.

[BP1] P. Brosnan and G. Pearlstein, The zero-locus of an admissible normal func-
tion, Ann. Math. 170 (2009), 883-897.

[BP2] ���, Zero loci of normal functions with torsion singularities, Duke Math.
J. 150 (2009), no. 1, 77-100.

[BP3] ���, On the algebraicity of the zero-locus of an admissible normal func-
tion, arXiv:0910.0628v1.

[BFNP] P. Brosnan, H. Fang, Z. Nie, and G. Pearlstein, Singularities of admissible
normal functions, Inventiones Math. 117 (2009), 599-629.

[BPS] P. Brosnan, G. Pearlstein and M. Saito, A generalization of the Néron models
of Gri�ths, Green and Kerr, arXiv:0809.5185, preprint.

[BPSc] P. Brosnan, G. Pearstein and C. Schnell, The locus of Hodge classes in an
admissible variation of mixed Hodge structure, C. R. Acad. Sci. Paris, Ser. I
348 (2010), 657-660.

[BZ] J.-L. Brylinski and S. Zucker, An overview of recent advances in Hodge the-
ory, in �Several Complex Variables, VI,� 39-142, Encyclopedia Math. Sci. 69,
Springer, Berlin, 1990.

[Ca] J. Carlson, Extensions of mixed Hodge structures, in �Journées de Géome-
trie Algébrique d'Angers (Juillet 1979)�, pp. 107-127, Sijtho� & Noordho�,
Alphen aan def Rijn�Germantown, Md., 1980.

[CDK] E. Cattani, P. Deligne, and A Kaplan, On the locus of Hodge classes, JAMS
8 (1995), 483-506.

[CF] E. Cattani and J. Fernandez, Asymptotic Hodge theory and quantum products,
math.AG/001113, in �Advances in algebraic geometry motivated my physics
(Lowell, MA)�, pp. 115-136, Contemp. Math. 276, AMS, Providence, RI,
2001.

[CK] E. Cattani and A. Kaplan, Degenerating variations of Hodge structure, in
�Actes du Colloque de Théorie de Hodge (Luminy)�, Asterisque 179-180
(1989), 9, 67-96.



94 KERR AND PEARLSTEIN

[CKS1] E. Cattani, A. Kaplan, and W. Schmid, Degeneration of Hodge structures,
Ann. of Math. 123 (1986), 457-535.

[CKS2] ���, L2 and intersection cohomologies for a polarizable variation of
Hodge structure, Invent. Math. 87 (1987), 217-252.

[CMP] J. Carlson, S. Müller-Stach, and C. Peters, �Period mappings and period do-
mains�, Cambridge Stud. Adv. Math. 85, Cambridge University Press, Cam-
bridge, 2003.

[Ch] F. Charles, On the zero locus of normal functions and the étale Abel-Jacobi
map, IMRN vol. 2010, no. 12, 2283-2304.

[Cl1] H. Clemens, Degeneration of Kähler manifolds, Duke Math. J. 44 (1977),
212-290.

[Cl2] ���, The Néron model for families of internediate Jacobians acquiring
�algebraic� singularitues, Publ. IHES 58 (1983), 5-18.

[Co] A. Collino, Gri�ths's in�nitesimal invariant and higher K-theory on hyper-
elliptic Jacobians, J. Alg. Geom. 6 (1997), no.3, 393-415.

[dCM] M. A. de Cataldo and L. Migliorini, On singularities of primitive cohomology
classes, Proc. Amer. Math. Soc. 137 (2009), 3593-3600.

[DM1] P. del Angel and S. Müller-Stach, Di�erential equations associated to fami-
lies of algebraic cycles, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 2075-
2085.

[DM2] ���, Picard-Fuchs equations, integrable systems, and higher algebraic K-
theory, in �Calabi-Yau Varieties and Mirror Symmetry (Yui and Lewis, Eds.)�,
pp. 43-56, AMS, 2003.

[De1] P. Deligne, Théorie de Hodge II, III , Inst. Hautes Etudes Sci. Publ. Math.
40 (1971), 5-57; 44 (1974), 5-77.

[De2] P. Deligne, Hodge cycles on abelian varieties (notes by J. Milne), in �Hodge
cycles, motives, and Shimura varieties�, LNM 900, Springer, New York, 1982.

[De3] ���, letter to Cattani and Kaplan (unpublished).
[De4] ���, Local behavior of Hodge structures at in�nity, AMS/IP Stud. Adv.

Math. 1 (1997), AMS.
[DK] C. Doran and M. Kerr, Algebraic K-theory of toric hypersurfaces,

arXiv:0809.5279, preprint.
[EZ] F. El Zein and S. Zucker, Extendability of normal functions associated to

algebraic cycles, in �Topics in transcendental algebraic geometry�, Ann. Math.
Stud. 106, Princeton Univ. Press, Princeton, NJ, 1984.

[GGM] A. Galligo, M. Granger, P. Maisonobe, D-modules at faisceaux pervers dont
le support singulier est un croisement normal, Ann. Inst. Fourier 35 (1985),
no. 1, 1-48.

[GMV] M. Green, J. Murre, and C. Voisin, �Algebraic Cycles and Hodge Theory
(Albano and Bardelli, Eds.)�, LNM 1594, Springer-Verlag, 1994.

[Gr1] P. Gri�ths, A theorem concerning the di�erential equations satis�ed by nor-
mal functions attached to algebraic cycles, Amer. J. Math. 101 (1979), no. 1,
94-131.

[Gr2] ���, Poincaré and algebraic geometry, Bull. AMS 6 (1982), no. 2, 147-159.
[Gr3] ���, On the periods of certain rational integrals II, Ann. of Math 90

(1969), no. 2,496-541.
[Gr4] ���, Singularities of admissible normal functions, to appear in �Cycles,

Motives, and Shimura Varieties (TIFR, Bombay, 2008)�.



NORMAL FUNCTIONS 95

[GC] P. Gri�ths and H. Clemens, The intermediate Jacobian of the cubic threefold,
Ann. of Math. (2) 95 (1972), 281-356.

[GG] P. Gri�ths and M. Green, Algebraic cycles and singularities of normal func-
tions, in �Algebraic cycles and motives�, pp. 206-263, LMS Lect. Not. Ser.
343, Cambridge Univ. Press, Cambridge, 2007.

[GGK] P. Gri�ths, M. Green and M. Kerr, Néron models andlimits of Abel-Jacobi
mappings, Compositio Math. 146 (2010), 288-366.

[GH] P. Gri�ths and J. Harris, �Principles of algebraic geometry�, Wiley-
Interscience, New York, 1978.

[GS] P. Gri�ths and W. Schmid, Locally homogeneous complex manifolds, Acta
Math. 123 (1969), 253-302.

[Ha] F. Hazama, Hodge cycles on certain abelian varieties and powers of special
surfaces, J. Fac. Sci. Univ. Tokyo, Sect. 1a, 31 (1984), 487-520

[K] M. Kashiwara, A study of variation of mixed Hodge structure, Publ. Res.
Inst. Math. Sci. 22 (1986), no. 5, 991-1024.

[KNU1] K. Kato, C. Nakayama and S. Usui, SL(2)-orbit theorem for degeneration
of mixed Hodge structure, J. Algebraic Geom. 17 (2008), 401-479.

[KNU2] ���, Log intermediate Jacobians, Proc. Japan Acad. Ser. A Math. Sci.
Volume 86, Number 4 (2010), 73-78.

[KNU3] ���, private communication.
[KU] K. Kato and S. Usui, �Classifying spaces of degenerating polarized Hodge

structures�, Ann. Math. Stud. 169, 2009.
[Ka] N. Katz, �Exponential sums and di�erential equations�, Ann. of Math. Study

124, Princeton University Press, Princeton, NJ, 1990.
[Ki] J. King, Log complexes of currents and functorial properties of the Abel-Jacobi

map, Duke Math. J. 50 (1983), no. 1, 1-53.
[KL] M. Kerr and J. Lewis, The Abel-Jacobi map for higher Chow groups, II,

Invent. Math 170 (2007), no. 2, 355-420.
[KLM] M. Kerr, J. Lewis and S. Muller-Stach, The Abel-Jacobi map for higher

Chow groups, Compositio Math. 142 (2006), no. 2, 374-396.
[KP] M. Kerr and G. Pearlstein, Normal functions and the GHC, preprint, avail-

able at http://www.math.wustl.edu/~matkerr/KPGHC.pdf.
[KY] B. Klingler and A. Yafaev, The André-Oort Conjecture, preprint, avaliable

at http://www.math.jussieu.fr/~klingler/papiers/KY12.pdf
[L] S. Lefschetz, �l'Analysis situs et la géometrié algébrique�, Gauthier-Villars,

Paris, 1924.
[Le1] J. Lewis, �A survey of the Hodge Conjecture (2nd ed.)�, CRM Monograph

Ser. 10, AMS, Providence, RI, 1999.
[Le2] ���, A �ltration on the Chow groups of a complex projective variety, Com-

positio Math. 128 (2001), no. 3, 299-322.
[Li] D. Lieberman, On the module of intermediate Jacobians, Amer. J. Math. 91

(1969), 671-682.
[Ma] Y. I. Manin, Rational points on algebraic curves over function �elds, Izv.

Akad. Nauk SSSR Ser. Mat. 27 (1963), 1395-1440.
[Mo] D. Morrison, The Clemens-Schmid exact sequence and applications, in �Top-

ics in transcendental algebraic geometry�, pp. 101-119, Ann. Math. Studies,
Princeton Univ. Press, Princeton, NJ, 1984.



96 KERR AND PEARLSTEIN

[MW] D. Morrison and J. Walcher, D-branes and normal functions, Adv. Theor.
Math. Phys. 13 (2009), no. 2, 553-598.

[Mu] D. Mumford, Families of abelian varieties, in �Algebraic groups and discon-
tinuous subgroups (Boulder, CO, 1965)�, pp. 347-351, AMS, Providence, RI,
1966.

[Mr] V. K. Murty, Exceptional Hodge classes on certain abelian varieties, Math.
Ann. 268 (1984), 197-206.

[Ms] G. A. Musta�n, Families of algebraic varieties and invariant cycles, Izv.
Akad. Mauk. SSSR Ser. Mat. 49 (1985), no. 5, pp. 948-978.

[Na] I. Nakamura, Relative compacti�cation of the Néron model and its application,
in �Complex analysis and algebraic geometry�, pp. 207-225, Iwanami Shoten,
Tokyo, 1977.

[NS] A. Némethi and J. Steenbrink, Extending Hodge bundles for abelian varia-
tions, Annals of Math. 142 (1996), 1-18.

[Pe1] G. Pearlstein,Variations of mixed Hodge structure, Higgs �elds and quantum
cohomology, Manuscripta Math. 102 (2000), 269-310.

[Pe2] ���, SL2-orbits and degenerations of mixed Hodge structure, J. Di�eren-
tial Geom. 74 (2006), no. 1, 1-67.

[Pe3] ���, Hodge conjecture and the period map at in�nity, preprint.
[PS1] C. Peters and J. Steenbrink, �Mixed Hodge structures�, Ergebnisse der Math-

ematik ser. 3 vol. 52, Springer, Berlin, 2008.
[PS2] ���, Monodromy of variations of Hodge structure, Acta Appl. Math. 75

(2003), no. 1-3, 183-194.
[P1] H. Poincaré, Sur les courbes tracées sur les surfaces algébriques, Ann. Sci. de

l'École Norm. Sup. 27 (1910), 55-108.
[P2] ���, Sur les courbes tracées sur une surface algébrique, Sitz. der Berliner

Math. Gesellschaft 10 (1911), 28-55.
[RS] A. Rosenschon and M. Saito, Cycle map for strictly decomposable cycles,

Amer. J. Math. 125 (2003), 773-790.
[S1] M. Saito, Admissible normal functions, J. Alg. Geom. 5 (1996), no. 2, 235-

276.
[S2] ���, Direct image of logarithmic complexes and in�nitesimal invariants

of cycles, in �Algebraic cycles and motives, vol. 2�, pp. 304-318, LMS Lect.
Not. Ser. 344, Cambridge Univ. Press, Cambridge, 2007.

[S3] ���, Cohomology classes of admissible normal functions, arXiv:0904.1593,
preprint.

[S4] ���, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2,
221-333.

[S5] ���, Hausdor� property of the Zucker extension at the monodromy invari-
ant subspace, arXiv:0803.2771, preprint.

[S6] ���, Variations of Hodge structures having no cohomologically nontrivial
admissible normal functions, preprint.

[S7] ���, On the theory of mixed Hodge modules, AMS Translations (Series 2)
160 (1994), 47-61. Translated from S	ugaku.

[S8] ���, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988),
no. 6, 849-995.

[SS] M. Saito and C. Schnell, A variant of Néron models over curves, to appear
in Manuscripta Math.



NORMAL FUNCTIONS 97

[Sa] S. Saito, Motives and �ltrations on Chow groups, Invent. Math 125 (1996),
149-196.

[Sc] W. Schmid, Variation of Hodge structure: the singularities of the period map-
ping, Invent. Math. 22 (1973), 211-319.

[Sl1] C. Schnell, Two observations about normal functions, Clay Math. Proc. 9
(2010), 75-79.

[Sl2] ���, Local duality and polarized Hodge modules, arXiv:0904.3480, to ap-
pear in Publ. Math. Res. Inst. Sci.

[Sl3] ���, �The boundary behavior of cohomology classes and singularities of
normal functions,� Ph.D. Thesis, Ohio State University, 2008. Available at
OhioLink ETD.

[Sl4] ���, An alternative construction of the Néron model, preprint, 2009.
[Sn] C. Schoen, Varieties dominated by product varieties, Internat. J. Math. 7

(1996), no. 4, 541-571.
[Sh] T. Shioda, A note on a theorem of Gri�ths on the Abel-Jacobi map, Invent.

Math. 82 (1985), no. 3, 461-465.
[Sp] T. A. Springer, �Linear Algebraic Groups (2nd Ed. reprint)�, Birkhäuser,

Boston, 2009.
[St] J. Steenbrink, Limits of Hodge structures, Inventiones Math. 31 (1976), 229-

257.
[SZ] J. Steenbrink and S. Zucker, Variation of mixed Hodge structure I, Invent.

Math 80 (1985), no. 3, 489-542.
[Th] R. Thomas, Nodes and the Hodge conjecture, J. Algebraic Geom. 14 (2005),

no. 1, 177-185.
[Vo1] C. Voisin, Hodge loci and absolute Hodge classes, Compos. Math. 143 (2007),

no. 4, 945-958.
[Vo2] ���, �Hodge theory and complex algebraic geometry I,II (L. Schneps,

Trans.)�, Cambridge Stud. Adv. Math. 76, 77, Cambridge Univ. Press, Cam-
bridge, 2007.

[Yo] A. Young, �Complex analytic Néron models for abelian varieties over higher
dimensional parameter spaces�, Princeton Univ. Ph.D. thesis.

[Zu1] S. Zucker, The Hodge conjecture for cubic fourfolds, Compositio Math. 34
(1977), no. 2, 199-209.

[Zu2] ���, Generalized intermediate Jacobians and the theorem on normal func-
tions, Inventiones Math. 33 (1976), no. 2, 185-222.


	1. Prehistory and Classical Results
	2. Limits and Singularities of Normal Functions
	3. Normal Functions and the Hodge Conjecture
	4. Zeroes of Normal Functions
	5. The Néron Model and Obstructions to Singularities
	6. Global Considerations: Monodromy of Normal Functions
	References

