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Abstract. We survey recent developments in Hodge theory which
are closely tied to families of CY varieties, including Mumford-Tate
groups and boundary components, as well as limits of normal func-
tions and generalized Abel-Jacobi maps. While many of the tech-
niques are representation-theoretic rather than motivic, emphasis
is placed throughout on the (known and conjectural) arithmetic
properties accruing to geometric variations.

1. Introduction

The last 40 years have seen the development of rich theories of Hodge
theory at the boundary and symmetries of Hodge structures which have
been strongly motivated by the study of non-classical, higher weight
variations of Hodge structures such as those arising from families of
Calabi-Yau 3-folds. Efforts to complete the moduli of families of toric
hypersurfaces (e.g. via the secondary toric variety), and the centrality
of the large complex structure limit in mirror symmetry, call for a com-
pactification of period maps in higher weight such as that provded by
Kato and Usui in [KU]. In the Greene-Plesser mirror constructions, the
use of subfamilies of CY 3-folds with special symmetry suggests a sys-
tematic investigation of special loci in the target of the period map, and
this is what Mumford-Tate subdomains provide [GGK2]. These more
general perspectives on specific phenomena can have value, as seen in
the generic global Torelli result of Usui [Us], or the Friedman-Laza
classification of special families of “Calabi-Yau type” Hodge structures
parametrized by Hermitian symmetric M-T domains [FL].
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Another major source of motivation for these developments is, of
course, the Hodge conjecture. The invariant tensors of the M-T group
of a “motivic” Hodge structure are exactly the classes that should come
from algebraic cycles, if the conjecture holds. This was used by Hazama
and Murty to establish the HC for a large subclass of abelian vari-
eties [Ha, Mu], by Deligne to prove the (weaker) absoluteness of Hodge
classes for all of them [De], and more recently by Arapura and Kumar
to prove the Beilinson-Hodge conjecture in several cases [AK]. On the
other hand, Lefschetz’s original proof of his (1,1) theorem [Le], as well
as the proof of the HC in special cases such as the cubic fourfold [Zu],
relies on “filling in the singular fibers” of a 1-parameter Jacobian bun-
dle, so as to extend normal functions to the “boundary”. The more
modern plan of attack on the HC suggested by Green and Griffiths
[GG] employs singularities of normal functions in several variables. In
this context, it seems natural to try to combine these asymptotic con-
siderations with M-T groups: for instance, the influence of symmetries
of the underlying VHS on normal functions seems largely unexplored.

Beyond the symmetries and asymptotics of Hodge structures, a third
major theme of these notes is the arithmetic of periods, of which Euler’s
work on relations between multiple zeta values may be regarded as an
early example. Now the period map is highly transcendental, but in
“classical” cases (abelian varieties, K3 surfaces, and the like) strongly
tied to modular forms. What about the “nonclassical” higher weight
case? Whether we are concerned with maximal-dimensional images
of period maps, extension classes of geometric limiting mixed Hodge
structures, or limits of normal functions, Griffiths transversality exerts
a rigidifying effect on periods, causing them to occur in countably many
families which then have “arithmetic meaning”. This is visible in the
ubiquitous ζ(3) in the periods at the large complex structure limit in
mirror symmetry. Another thread of the story has to do with vanishing
of periods and the related appearance of new Hodge classes over so-
called “generalized Noether-Lefschetz (or Hodge) loci”, which include
zero-loci of normal functions and preimages of M-T subdomains under
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the period map. For variations of Hodge structure (or normal func-
tions) arising from algebraic geometry over a field k, these loci should
be defined over k̄, an expectation which is closely related to the HC as
well as the conjectures of Beilinson and Bloch.

These notes are arranged in three sections: symmetries, arithmetic,
and asymptotics. In the first, we introduce Mumford-Tate groups and
domains and explain how they refine the period mapping. Then we
look at what M-T groups are possible, and the construction of Hodge
structures with given M-T group from representation theory [GGK2],
followed by a result of Robles [Ro] on the maximal dimension of the
image of a period map. The second section, on arithmetic, fleshes out
the previous paragraph, including a result of Voisin on the field of defi-
nition of Hodge loci [Vo], and touches on CM points and transcendence
of periods. In the final section, we explain how symmetries and asymp-
totics interact in the context of limit mixed Hodge structures, and how
to extend normal functions arising from a family of cycles, and discuss
arithmetic features of the limit in each case.

Acknowledgments: The author acknowledges partial support under the
aegis of NSF Grant DMS-1068974. It is his pleasure to thank C. Robles
and the referee for their constructive comments on the manuscript.

2. Symmetries: Mumford-Tate groups and domains

The study of domains for Hodge structures with additional “sym-
metries” goes back to Picard’s work on the moduli of curves of the
form

C := {y3 = x(x− 1)(x− α)(x− β)} ⊂ P2.

Writing V := H1(C,Q) with Hodge structure ϕ (see §2.1), the cubic
automorphism y 7→ ζ3y induces an embedding

F := Q(ζ3) µ
↪→ End(V, ϕ).
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The decomposition VF = V+ ⊕ V− into µ(F)-eigenspaces is therefore
compatible with the Hodge decomposition, with ranks

V+ V−

(1,0) 2 1
(0,1) 1 2

.

Define an F-Hermitian form on V+ by

〈·, ·〉 :=
√
−3(·, ·̄),

where (·, ·) is cup-product. The generalized period domain (in this case,
a Hermitian symmetric domain) parametrizing such Hodge structures
is the 2-ball

D = U〈•,•〉(2, 1).ϕ (∼= U(2, 1)/U(2)× U(1)) ∼= B2.

Such domains are familiar in the theory of Shimura varieties, but they
generalize quite naturally to higher weight and level (and the non-
Hermitian setting), and this is the story we shall now flesh out.

2.1. Mumford-Tate groups. Begin with a Q-vector space V (of fi-
nite dimension), and write Vk := V ⊗Qk. For us, a HS (Hodge structure)
of weight n ∈ Z on V will be simply a homomorphism

ϕ : S1 → SL(VR)

with ϕ(−1) = (−1)nidV . Since ϕ is real,

V p,n−p
ϕ := {z2p−n-eigenspace of ϕ(z)} ⊂ VC

and V n−p,p
ϕ are conjugate. Write F p

ϕ := ⊕r≥pV r,n−r
ϕ .

Given a nondegenerate bilinear formQ : V ×V → Q, [anti]symmetric
according to the parity of n, we say that ϕ is polarized by Q iff the two
Hodge-Riemann relations hold:

(HRI) ϕ(S1) ⊂ Aut(V,Q) [or Q(F p, F p′) = 0 for p+ p′ > n];
(HRII) Q(v, ϕ(i)v̄) > 0 ∀v ∈ VC\{0}.

The tensor spaces T k,`(V ) := V ⊗k ⊗ V̌ ⊗` inherit an action by ϕ; and
the Hodge tensors Hgk,`(V ) := T k,`(V ) ∩ (T k,`(V )C)ϕ (e.g. Q ∈ Hg0,2)



ALGEBRAIC AND ARITHMETIC PROPERTIES OF PERIOD MAPS 5

are the tensors which, if (V,Q, ϕ) is motivic and the Hodge conjecture
holds, are classes of algebraic cycles.

Now let ϕ be any polarizable HS on V .

Definition 2.1. The MT (Mumford-Tate) group of ϕ is

Gϕ := the smallest Q-algebraic subgroup of SL(V )
with group of R-points containing ϕ(S1).

Theorem 2.2. (Deligne) Gϕ is: (i) the subgroup of SL(V ) fixing
⊕k,`Hgk,`(V ) pointwise; and (ii) reductive1 if ϕ is polarizable.

Moreover, the sub-HS W ⊂ T k,` are exactly the (Q-)subspaces sta-
bilized by Gϕ.

Example 2.3. Let E be an elliptic curve

α

β

and write [ω] = [α]∗ + τ [β]∗ in H1(E), where ω ∈ Ω1(X). In H1(E)⊗2,
[α]∗∧[β]∗ = c·[ω]∧[ω̄] is a Hodge tensor. There exists an “extra” tensor
in Hg1,1 iff µ := [Q(τ) : Q] = 2 (CM case), reflecting the existence of
the endomorphism given by multiplcation by τ . (Exercise: construct
this Hodge tensor for τ =

√
−1.) So the M-T group is SL2 if µ > 2

and UQ(τ) (1-torus) if µ = 2.

Remark 2.4. A HS is effective if V p,q
ϕ = {0} whenever p < 0 or q < 0.

For us the level max{p − q | dim V p,n−p
ϕ 6= 0 6= dim V q,n−q

ϕ } of a HS
will matter more than the weight, since we shall make extensive use of
non-effective HS below.

2.2. Mumford-Tate domains. Given V,Q, n, let h := (hp,n−p)p∈Z
satisfy hp,n−p = hn−p,p and ∑hp,n−p = dim V . The period domain

Dh :=

ϕ
∣∣∣∣∣∣ (V,Q, ϕ) is a polarized HS of weight n,

with dim V p,n−p
ϕ = hp,n−p


1that is, its finite-dimensional representations are reducible.
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is a real analytic open subset in its compact dual

Ďh :=

F •
∣∣∣∣∣∣ F

• is a flag on V satisfying (HRI)
and dim(F p/F p+1) = hp,n−p

 ,
a complex projective variety. Writing G = Aut(V,Q), g.ϕ := g·ϕ·g−1 ∈
Dh defines an action of G(R) on Dh.

Proposition 2.5. (i) Dh
∼= G(R).ϕ ∼= G(R)/Hϕ, where the isotropy

group Hϕ is compact.
(ii) Ďh

∼= G(C).F •ϕ ∼= G(C)/PF •ϕ , where PF •ϕ is parabolic.

Proof. Exercise in bilinear forms using (HRII). �

Example 2.6. (i) For n = 2m+ 1 odd,

Dh
∼= Spn(R)/

∏
p≤m

U(hp,n−p).

(ii) For n = 2m even, writing hodd := ∑
p odd h

p,n−p resp. heven :=∑
p odd h

p,n−p we have

Dh
∼= SO(hodd, heven)/

SO(hm,m)×
∏
p<m

U(hp,n−p)

 .
(iii) Dh is a Hermitian symmetric domain (HSD) if and only if Hϕ

is maximally compact. This can happen when G(R) = SO(2, n) or
Spn(R), and the basic examples are h = (a, a) and (1, b, 1) (the others
have “gaps” in the Hodge numbers).

The M-T domains are the subsets D ⊂ Dh obtained by choosing
ϕ ∈ Dh and taking the orbit

D := Gϕ(R).ϕ ∼= Gϕ(R)/Hϕ

∩
Ď := Gϕ(C).F •ϕ ∼= Gϕ(C)/PF •ϕ .

This produces homogeneous spaces of much greater variety, including
for example Hermitian symmetric domains of type An, E6 and E7 and
ones parametrizing (gap-free) Hodge structures of level > 2 [FL]. Note
that Ď is still a projective variety, and is in fact defined over Q̄.
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Example 2.7. For easy examples in the spirit of the Picard 2-ball
(type A2), one can start with a HS ϕ ∈ Dh compatible with a cubic
automorphism of V (and VF = V+⊕V− as above). When h = (1, 2n, 1)
[resp. (n + 1, n + 1)] and h+ = (0, n, 1) [resp. (n, 1)] this yields em-
beddings of the n-ball D ∼= Bn ∼= U(1, n)/{U(n) × U(1)} into type
III [resp. IV] Hermitian-symmetric period domains.2 There are rich
relationships between (quotients of) hyperplane complements in such
ball-subdomains and moduli of various objects in algebraic geometry:
e.g. framed cubic surfaces [ACT1], cubic threefolds [ACT2], and non-
hyperelliptic genus 4 curves [Ko]. We will give a much more general
construction of Mumford-Tate domains (not from geometry) in §2.4.

2.3. M-T group of a variation. Let V = (V,V ,F•) be a holomor-
phic famiy of pure HS3 over S, ∇ : V → V ⊗ Ω1

S the flat connection
with ∇(V) = 0, S̃ π→ S the universal cover, Ṽ := π∗V . Fixing a point
s0 = π(s̃0) ∈ S, set V := V|s0 and note that Ṽ = V ⊗ ZS̃ . (More
generally, we will denote a fiber by subscript s.) Given t ∈ Tm,n(V ) a
Hodge (p, p)-tensor at s̃0,

S̃(t) :=
{
s̃ ∈ S̃ | t ∈ F p

s̃

}
⊂ S̃

is an analytic subvariety, and so also is S(t) := π
(
S̃(t)

)
⊂ S. We

assume s0 has been chosen so as to belong to

S− := S\ ∪t:S(t) 6=S S(t),

so that any t′ Hodge at s0 is Hodge ∀s ∈ S.

Theorem 2.8. (Deligne) Let Gs denote the M-T group of Vs. Then
Gs is locally constant (= G) off a countable union of proper analytic
subvarieties, and ≤ G everywhere.

Now assume that V is a polarized VHS (variation of HS), i.e. that
∇F• ⊂ F•−1⊗Ω1

S . Let Φh : S → Γ\Dh be the associated period map.
2Of course, one can play the same game with h = (1, n, n, 1) and h+ = (1, n, 0, 0)
to embed Bn in a non-Hermitian period domain.
3Here V is a Q-local system, V := V⊗OS the [sheaf of sections of the] holomorphic
vector bundle, and F• a filtration by [sheaves of sections of] holomorphic subbun-
dles.
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By Theorem 2.8, the Hgm,n(Vs) are invariant under ∇-flat continuation
over S−. Since Q > 0 on Hodge tensors, monodromy ρ : π1(S, s0) →
Aut(V,Q) acts through an SON(Z) on each Hgm,n(Vs0), which is to
say by a finite group. This proves the first part of

Theorem 2.9. (Deligne/André) (a) The geometric monodromy group
Π :=

(
ρ(π1(S))Zar

)◦
is a subgroup of G.

(b) Π E Gder := [G,G], with equality if V has a CM point (i.e., some
Vs has abelian M-T group).

Proof. (of Π E G) By the Theorem of the Fixed Part [Sc], (Tm,nV)Π

underlies a sub-HS of Tm,nV . Therefore, it is stabilized by G, and
so every gΠg−1 (g ∈ G(Q)) fixes it. But a subgroup of GL(V ) is
determined by its fixed tensors, and so then every conjugate gΠg−1 ≤
Π. �

Remark 2.10. (i) Theorem 2.9(a) implies that Φh factors through Φ :
S → Γ\D = Γ\G(R)/H. By a recent result [GRT], Γ\D is algebraic iff
D fibers holomorphically (or antiholomorphically) over a HSD. One rea-
son why the factoring result is important is that in higher weight/level,
D may be a HSD when the “ambient” Dh is not.

(ii) Theorem 2.9(b) tells us that Π is semisimple, since Gder is.

2.4. Which groups are Mumford-Tate? Suppose given a HS ϕ :
S1 → G on V , polarized by Q, with M-T group G ≤ Aut(V,Q) and
domain D = G(R).ϕ ∼= G(R)/H. Writing Ad : G � Gad ≤ Aut(g, B)
for the adjoint homomorphism, ϕ induces a HS of weight 0 on the Q-
vector spaces g = TeG and gad = TeG

ad, and replacing G, V, ϕ,Q by
Gad, gad,Ad ◦ϕ,−B leaves the connected M-T domain D◦ = G(R)◦/H
unchanged [KP1, KP2]. This motivates the slightly cheaper question

Which Q-simple adjoint algebraic groups are M-T groups?

Theorem 2.11. [GGK2] G is a M-T group ⇐⇒ G(R) has a compact
maximal torus.
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Proof. (=⇒) Let T (R) be a maximal torus containing ϕ(S1), and write
Hϕ = {g ∈ G(R) | gϕg−1 = ϕ}. Then

Hϕ ⊂ Aut(g, B) ∩ ×jAut(gj,−j) ⊂ SO(g0,0)×
(
×j>0U(gj,−j)

)
is compact, and contains T (R).

(⇐=) Let gR = k⊕ p be a Cartan decomposition with k ⊃ tR, where
t is the Lie algebra of a maximal torus. Let ∆ = ∆c ∪∆n be the roots
of (gC, tC) (with c = compact, n = noncompact) and R the lattice they
generate. We have

(2.1) gC = t⊕

⊕
α∈∆c

gα

⊕
 ⊕
β∈∆n

gβ

 ;

note that −B(Xα, Xα) > 0, while −B(Xβ, Xβ) < 0.
Now the Cartan involution defined by θ|k = idk, θ|p = −idp is a Lie-

algebra homomorphism; so there exists Ψ : R → 2Z/4Z with Ψ(α) ≡
(4)

0
and Ψ(β) ≡

(4)
2. But since G is adjoint, R equals the weight lattice Λ,

which (like any lattice) is free. So there is a lift Ψ̃ : Λ → 2Z of
Ψ. Moreover, the co-character group X∗(T (C)) maps isomorphically
to Hom(Λ, 2Z) by ϕ 7→ `ϕ := dϕ

dz
(1). So there exists a co-character

ϕ : S1 → T (R) with `ϕ ≡
(4)

Ψ.

From Ad(ϕ(z))Xα = z〈`ϕ,α〉Xα, we have:
• (Ad◦ϕ)(i) = θ =⇒ −B ( · , (Ad ◦ ϕ)(i) ·̄ ) > 0 on gC =⇒ (g,−B,Ad◦
ϕ) is a polarized HS of weight 0; and
• gC = ⊕jgj,−j with

gj,−j =


⊕

δ∈∆: 〈`ϕ,δ〉=2j gδ, j 6= 0
t⊕⊕δ∈∆: 〈`ϕ,δ〉=0 gδ, j = 0.

Let M ≤ G be (a) the smallest Q-algebraic subgroup such that Ad ◦
(gϕg−1) factors through M(R) ∀g ∈ G(R); equivalently, M is (b) the
M-T group of the family Ad◦(gϕg−1) of HS. By Theorem 2.8, (b) =⇒
M is the M-T group of Ad ◦ (g0ϕg

−1
0 ) for every g0 in the complement

of a countable union of proper analytic subvarieties. On the other
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hand, (a) =⇒ M E G, and then G Q-simple =⇒ M = G. So
G = GAd◦(g0ϕg

−1
0 ). �

Remark 2.12. (i) As a first consequence of Theorem 2.11, there is no M-
T group G with G(R) = SLn(R) for n ≥ 3, since this has no compact
maximal torus; but U(p, q) does show up. In fact, real forms of all
of the Cartan types do show up, including the exceptional ones (see
Example 2.13 for R-split G2).

(ii) Theorem 2.11 remains true for semi-simple adjoint groups. The
general case has recently been settled by Patrikis [Pa], who worked
out the precise group-theoretic conditions on a connected reductive Q-
algebraic group which are necessary and sufficient for it to be the M-T
group of some polarized HS.

The value of the above proof is that it leads to the following construc-
tion. Given a Q-simple adjoint group G with T ≤ G(R) a sufficiently
general compact maximal torus, let π : R → Z be any homomorphism
with π(∆c) ∈ 2Z, π(∆n) ∈ 2Z + 1. Then

(2.2) gj,−j :=


⊕
δ∈∆:π(δ)=j gδ, j 6= 0

t⊕⊕δ∈∆:π(δ)=0 gδ, j = 0,

produces a weight 0 HS (Ad◦)ϕ on g, polarized by −B, with M-T
group G ⊂

Ad
Aut(g, B). The M-T domain D = G(R).ϕ has dimension∑

j<0 |π−1(j) ∩∆|, and the horizontal distribution W ⊂ TD has rank
|π−1(−1) ∩∆|.

So to determine the possible Hodge numbers (on g), we need to
classify the projections π. A priori this list is infinite, but becomes finite
(and short) if we impose the requirement that F−1

ϕ g bracket-generate g.
There is a precise sense in which this merely eliminates redundancies
[Ro, Prop. 3.10], so that there is really no loss of generality.

This kind of construction may or may not “lift” to other representa-
tions V of G, but if Λ = R as is the case for G2, this isn’t an issue.

Example 2.13. Let G(R) be the R-split form of G2 (a subgroup of
SO(3, 4)) with 7-dimensional irrep V . There are three projections
π : R → Z satisfying the parity and bracket conditions, and their
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restrictions to ∆ look as follows:

1

t

−2 −1 0 1 2

−3

−2

−1

0

1

2

3

0
−1

−2
−3

−4

−5

2

3

5
4

The construction lifts to V , yielding 3 types of Hodge structures with
M-T group G2. The Hodge numbers h on V are given by restricting π
to the 7 weights of V (0 together with the short roots); one reads off
from the picture (2, 3, 2), (1, 2, 1, 2, 1), and (1, 1, 1, 1, 1, 1, 1). One also
reads off that the corresponding M-T domains D have dimensions 5, 5,
and 6 while W has ranks 4, 2, and 2, respectively.

2.5. What are the maximal dimensional VHS?. Let a M-T do-
main D = G(R)/Hϕ be given, with compact dual Ď = G(C)/PF •ϕ . The
tangent bundle TĎ = G(C)×P (gC/F 0gC) contains the horizontal dis-
tribution W = G(C) ×P (F−1gC/F

0gC); at the point ϕ ∈ D we have
TϕD = ⊕j<0g

j,−j
ϕ ⊇ g−1,1

ϕ =Wϕ.

For any period map Φ : S → Γ\D arising from a VHS with M-T
group G, Griffiths transversality implies that the local liftings of Φ(S)
to D are integral manifolds of W . So the dimension of Φ(S) is con-
strained by the maximal dimension of such integral manifolds, which
on the surface is a hard problem in the theory of exterior differential
systems. However, recent work of Robles has uncovered a different
approach.

Fix ϕ ∈ D, write gj,−j := gj,−jϕ , F • := F •ϕ, and P := PF • . Let T (R)
be a maximal torus containing ϕ(S1), and ∆ be the roots of (gC, tC).
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Choose a positive root system of the form

∆+ = ∆(F 1gC) ∪∆+(g0,0),

and write W := W (gC, tC) and W0 := W (g0,0
ϕ , tC) for the Weyl group.

Let W P denote the set of minimal length representatives of the right-
coset space W0\W , or equivalently

W P :=
{
w ∈ W |w∆+ ⊃ ∆+(g0,0)

}
.

For any w ∈ W P ,
∆w := ∆− ∩ w∆+

is closed in ∆.
Writing B ≤ G(C) for the Borel subgroup with ∆(B) = ∆+, the

compact dual decomposes into Schubert cells

Ď = q
w∈WP

Cw := q
w∈WP

Bw−1.F •

of dimension `(w) := dim(Cw) = |∆w| = |w|, where |∆w| is the number
of elements in ∆w and |w| is the length of w. The Schubert variety
Xw := wCw has tangent space

TF •Xw = ⊕α∈∆wgα =: nw

a sub-Lie algebra of g, since ∆(nw) = ∆w is closed.

Definition 2.14. We say that Xw is a Schubert VHS if it is horizontal,
that is, if nw ⊂ g−1,1.

In this case, nw is abelian since [g−1,1, g−1,1] ⊂ g−2,2.
Put

W P
I (`) :=

{
w ∈ W P | `(w) = `, ∆w ⊂ ∆(g−1,1)

}
.

Definition 2.15. An IVHS (infinitesimal VHS) through ϕ is an abelian
subspace a ⊂ g−1,1.

Write
Σ` ⊂ Grass(`, g−1,1) ⊂ P(∧`g−1,1)
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for the variety of `-dimensional IVHS through ϕ, G0,0 for the subgroup
of GR with Lie algebra g0,0 ∩ gR (and real points G0,0(R) = Hϕ), and

I` :=
∑

w∈WP
I (`)

spanC
{
G0,0(C). ∧` nw

}
⊂ ∧`g−1,1.

Theorem 2.16. [Ro] Σ` = Grass(`, g−1,1) ∩ PI`.

The idea of Robles’s proof is to analyze H∗(⊕j<0g
j,−j) as a g0,0-

module using a theorem of Kostant on the decomposition of Lie algebra
cohomology.

Theorem 2.16 leads at once to a very practical result, which puts
an upper bound on the dimensions of integral manifolds of W hence
images of period maps Φ.

Corollary 2.17. The maximum possible dimension for an IVHS in D
is the maximal dimension of Schubert VHS in Ď, which is given by
max

{
` |W P

I (`) 6= ∅
}
.

Example 2.18. To see how easy this is to use, consider the G2 M-T
domain D of dimension 5 (with W of rank 4) parametrizing HS on
the 7-dimensional representation of type (2, 3, 2). We choose a positive
root system and find one element in each of W P

I (1) and W P
I (2), with

the second displayed below:

−1,1

t +

+

+

+

+

+

w∆
+n

w

g
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The remaining W P
I (`) (` > 2) are empty, and the maximal possible

dimension for an integral manifold of W is 2.

Example 2.19. 4 Consider the period domain D(2,3,2) containing the
D of Example 2.18 as a subdomain. We have G(R) ∼= SO(3, 4) and
Ď ∼= G(C)/P2, where ∆+ is generated by simple roots σ1, σ2, σ3 and
∆(P2) by ±σ1, σ2,±σ3. We have W P

I (`) = ∅ for ` > 3, and W P
I (3) =

{w2w3w1, w2w3w2}, where wi is the reflection in σi. Hence there are two
Schubert VHS of dimension three, and dropping the “G2-constraint”
has increased the maximal dimension of an IVHS. This recovers a result
of Carlson [Car, Rmk. 5.5(b)] (namely, that this maximal dimension
is 3).

3. Arithmetic of periods

At the heart of current thought on the Hodge conjecture, two inter-
twined programs have emerged. On the one hand, by recent work of
Green, Griffiths, and others [GG, BFNP], it can now be stated in terms
of the existence of singularities for certain several-variable admissible
normal functions obtained from Hodge classes. While this criterion
pertains a priori to degenerations of normal functions, a recent result
of Schnell [Sl2] reveals the importance of estimates on the dimension of
their zero-loci, which have recently been proven algebraic [BP], gener-
alizing a fundamental result on the locus of Hodge classes [CDK]. For
an introduction to this circle of ideas, the reader may consult [KP3].

Another approach, championed by Voisin [Vo], is to break the Hodge
conjecture into two pieces: first, to show that the locus of Hodge classes
in a VHS arising from algebraic geometry over Q is defined over a
number field; then second, to prove the Hodge conjecture for varieties
defined over Q̄. Key to this approach is showing that a given family
of Hodge classes is absolute, extending Deligne’s theorem for abelian
varieties [De]. The analogous question in the mixed case, regarding the
field of definition of the zero-locus of a normal function, is tied to the
4We thank C. Robles for providing this example.
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Bloch-Beilinson conjectures. It is this line of thought upon which we
shall now briefly expand, touching as well on complex multiplication
and transcendence theory.

3.1. Spreads of period maps. Let D = G(R)/H be a M-T domain.
The infinitesimal period relation (IPR) I ⊂ Ω•(D) is the differential
ideal generated by the 1-forms ann(W) ⊂ Ω1(D) and their differentials.
Essentially by definition, I pulls back to 0 under any local lifting of
any VHS Φ : S → Γ\D. We consider two cases, which may roughly be
thought of as “classical” and “non-classical”.

Case 1: I = 0. Then D is a HSD, and Γ\D is a quasi-projective
algebraic variety (for any arithmetic subgroup Γ ≤ G(Q)) by the Baily-
Borel theorem. More precisely, Γ\D has a projective embedding by
automorphic functions, and parametrizes a VHS which is known to
be motivic (i.e. come from algebraic geometry) unless G is E6 or E7.
In the motivic case, these automorphic functions provide the highly
transcendental passage from

(3.1)
periods/
Hodge

structures

automorphic functions
//

coefficients of
defining equations

of algebraic varieties
with these HS

period map

hh

giving an inverse of the period map.

Example 3.1. The most basic example is that of elliptic curves, where
Γ\D = SL2(Z)\H and (3.1) is

τ 7−→ g4(τ), g6(τ).

Other basic examples occur in the work of Holzapfel and Shiga on
Picard curves [Ho, Sh] (where Γ\D is the 2-ball) and Clingher and
Doran for lattice polarized K3 surfaces [CD] (where D is a type IV
symmetric domain).
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Case 2: I 6= 0. Let π : X → S be a smooth, proper morphism of
complex algebraic manifolds, and s0 ∈ S. Then V := Rnπ∗Z underlies
a VHS V , whose associated period map we may lift to the universal
cover

Sun → D

↓ ↓
Φ : S → Γ\D.

If ϕ0 ∈ D and s0 have the same image in Γ\D, then the image of Sun

gives an integral manifold of I through ϕ0.
Now π is actually defined over some field K which is finitely gener-

ated over Q̄. There exists an affine variety S/Q̄ and a very general5

point p ∈ S(C) such that the evaluation map gives an isomorphism
evp : Q̄(S)

∼=→ K. Pulling back the defining equations under evp and
clearing denominators yields the Q̄-spread

X̃ π̃ //

��

S̃

��
S

/Q̄

of π. The period map Φ̃ : S̃ → Γ\D resulting from π̃ yields an integral
manifold of I through ϕ0, containing the original one, but still proper
in D since I 6= 0. Since there are only countably many families of alge-
braic varieties defined (as is π̃) over Q̄, we conclude that only countably
many integral manifolds of the IPR can come from algebraic geometry.
In particular, there can be nothing like (3.1) (although Movasati has
some interesting work [Mv] on what one does have). This also leads to
the open

Problem 3.2. This argument shows that the locus of motivic HS in D
has measure 0. For any D, produce an explicit HS in the complement.

5That is, p is a point of maximal transcendence degree; equivalently, it lies in the
complement of the complex points of countably many Q̄-subvarieties.
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3.2. Absoluteness of Hodge classes. Take X to be a smooth pro-
jective variety over k ⊂ C, and write

Hgm(X) := FmH2m(Xan
C ,C) ∩H2m(Xan

C ,Q(m)).

If we identify de Rham cohomology with algebraic differential forms

FmH2m
(dR)(Xan

C ,C) ∼= H2m
Zar(Xk̄,Ω•≥mXk̄

)⊗k̄ C,

then putting σ ∈ Aut(C) to work on the right hand side (including the
coefficients of the defining equations of X) induces an action

σ∗ : FmH2m(Xan
C ,C)→ Fm((σX)anC ,C).

Definition 3.3. The absolute Hodge classes of X are given by

AHgm(X) := {ξ ∈ Hgm(X) |σ∗(ξ) ∈ Hgm(X) (∀σ ∈ Aut(C))} .

In general, we have known inclusions and conjectural equalities

cl(Zm(X)) ⊂
HC

AHgm(X) ⊂
AHC

Hgm(X)

Theorem 3.4. [De] The absolute Hodge conjecture (AHC) holds if X
is an abelian variety.

This result was a crucial ingredient in Deligne’s proof of the existence
of canonical models for Shimura varieties of Hodge type.

Next we look at some elementary consequences of AHC. Let π : X →
S be a smooth proper morphism of varieties defined over k (f.g. over
Q̄), giving rise via V := Rnπ∗Z to a period map Φ : S → Γ\D; and let
DM ⊂ D be a M-T subdomain, ΓM its stabilizer in Γ.

Proposition 3.5. If AHC holds, then any irreducible component D of
π−1(ΓM\DM) is defined over k̄.

Proof. Note that D is algebraic by [CDK]. Consider the (irreducible)
k̄-spread P ⊂ S of an arbitrary p ∈ D(C). This is the Zariski closure of
the set of points q ∈ S(C) such that Xq = σXp for some σ ∈ Aut(C/k̄).
These {σ} produce a continuous family of isomorphisms Hn

dR(Xp)
∼=→
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Hn
dR(Xq), inducing (by AHC) isomorphisms defined over Q of spaces of

Hodge tensors. Therefore, the Hodge tensor spaces are constant (with
respect to the Q-Betti structure), and P ⊂ D . We conclude that the
k̄-spread of D is D . �

Corollary 3.6. If AHC holds and Φ factors through ΓM\DM , then so
does the spread Φ̃.

Proof. Apply Prop. 3.5 to π̃, with k̄ = Q̄ (see §3.1). �

Taking n = 2m, some evidence for the conclusion of Proposition 3.5
is given by the following result:

Theorem 3.7. [Vo] Suppose T ⊂ S is an irreducible subvariety, de-
fined over C, such that:

(i) T is a component of the Hodge locus of some α ∈ (Fm ∩ VQ)t0;
and

(ii) π1(T , t0) fixes (under ∇-flat continuation in VC) only the line
generated by α.
Then T is defined over k̄.

Proof. (Sketch) Except in the trivial case, the hypotheses force dim(T ) >
0. According to (ii), we may extend α to a ∇-flat family over T . Given
σ ∈ Aut(C/k̄), σα is a ∇-flat family over σT by algebraicity of ∇.
Moreover, the fixed part of VC over σT must be of rank 1, since other-
wise (applying σ−1 and algebraicity of ∇) its fixed part over T could
not satisfy (ii). So σα = λβ, where λ ∈ C and β is Q-Betti; but then
β is Hodge, since σα ∈ Fm.

As in the proof of Prop. 3.5, varying σ yields a continuum of conju-
gates σT on which the line C〈σα〉 remains rational; hence it is constant.
Since the polarization is algebraic, Q(α, α) = Q(σα, σα) = λ2Q(β, β)
=⇒ λ2 ∈ Q, and again by continuity λ = 1. Therefore σα remains
Hodge, and α extends to a Hodge class on the k̄-spread of T , which
must then (by (i)) be T itself. �
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3.3. Zero loci of normal functions. We turn next to a mixed-Hodge
analogue of the Hodge locus. Let H be a pure Z-HS of weight −1, and

0→ H → V → Z(0)→ 0

an extension. The vanishing of its class in Ext1MHS(Z(0), H) is equiva-
lent to the existence of a splitting Z(0)→ V , and thus to the presence
of an integral Hodge (0, 0) class in V .

Take π : X → S as in §3.2, with fibers {Xs}; and let J → S be the
intermediate Jacobian bundle of V := R2p−1π∗Z. Consider an algebraic
cycle z ∈ Zp(X ) (defined over k) meeting the fibers properly, with
Zs := z ·Xs ≡hom 0, and let νz : S → J be the normal function defined
by νz(s) = AJXS(Zs). By [BP], the zero-locus T (νz) is algebraic.

Proposition 3.8. [Ch] Assume the local system VC has no nonzero
global sections over T (νz). Then T (νz) is defined over k̄.

Proof. (Sketch) Let T0 ⊂ T (νz) be an irreducible component, and put
z0 := z|T0 . Given σ ∈ Aut(C/k), we have σz0 = z|σT0 .

The infinitesimal invariant of a normal function is algebraic: so its
vanishing for νz0(= 0) implies its vanishing for ν(σz0). Thus ν(σz0) lives
in the fixed part of J |σT0 .

By the algebraicity of ∇ and the nonexistence of global sections of
VC|T0 , the fixed part of VC|σT0 hence of J |σT0 is trivial. So ν(σz0) = 0
and σT0 belongs to T (νz).

Since T (νz) is algebraic, it has only finitely many components. Hence
T0 has only finitely any conjugates, and is defined over a finite extension
of k. �

When k ⊂ Q̄, the field of definition of T (νz) is related to a basic
question regarding filtrations on Chow groups. If X and Z ∈ Zm(X)
are defined over a field K (finitely generated /Q̄), then spreading out
yields ρ : X → S and z ∈ Zm(X ) defined over Q̄. This leads to a cycle
map Ψ, given by the composition

CHm(X/K)
∼=→ im{CHm(X̄/Q̄)→ lim−→

U ⊂ S/Q̄
Zar. op.

CHm(XU)}



20 MATT KERR

(3.2) → im{H2m
D (X̄ an

C ,Q(m))→ lim−→
U

H2m
H ((XU)anC ,Q(m))}.

Now there exists a Leray filtration L• on (3.2), and we define6 a fil-
tration F i

BB on CHm(X/K) by Ψ−1(Li). Then each graded piece
GriFBBCH

m(X/K) is captured by a Hodge theoretic invariant in GriL
of (3.2). For i = 0 this is the fundamental class [Z], and for i = 1 it is
equivalent to the normal function νz.

Therefore, for the class of Z to be in F 2
BB is equivalent to having νz

identically zero. Clearly this implies AJ(Z) = 0, since AJ(Z) = νz(s0).

Proposition 3.9. [KP3] The converse (i.e. F 2
BBCH

m ⊇ ker(AJ))
holds in general if, and only if, T (νz) is defined over Q̄ whenever z is.

The proof is in the spirit of those above: spreading out a point in
the zero locus should remain in the zero locus!

3.4. CM points. These are, roughly speaking, Hodge structures (i.e.,
points in a M-T domain D) with “lots of endomorphisms”.

Definition 3.10. A HS (V, ϕ) is CM if its M-T group Mϕ is abelian
(i.e. an algebraic torus).

The CM Hodge structures ϕ ∈ D are precisely the 0-dimensional
M-T subdomains, and they are analytically dense in D.

Here is a construction of CM HS. Let L be a CM field – that is, a
totally imaginary extension of a totally real field – and choose a formal
partition of its complex embeddings into (p, q) types

Hom(L,C) = {θ1, . . . , θg; θ̄1, . . . , θ̄g} = qp+q=nΠp,q

subject to the condition that Πp,q = Πq,p. (If n = 1 and only (1, 0)
and (0, 1) are allowed, this is called a “CM type”.) Viewing L as a
Q-vector space of dimension 2g, we put V := L and let ` ∈ L act by

6While there is nothing conjectural about our construction of F •BB , the existence
of a “Bloch-Beilinson filtration” is conjectural. Our F •BB only qualifies as one if
∩iF

i
BB = {0}; this depends on the injectivity of Ψ, which is sometimes called the

“arithmetic Bloch-Beilinson conjecture”.
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multiplication. The complexification decomposes into eigenspaces

VC ∼= L⊗Q C =
⊕

θ∈Hom(L,C)
Eθ(VC)

on which ` acts as multiplication by θ(`), and we define the HS V(L,Π)

by
V p,q
ϕ :=

⊕
θ∈Πp,q

Eθ(VC).

Theorem 3.11. (i) [GGK2] Any HS of this form is polarizable, and
any polarizable CM HS decomposes as a direct sum of these (and copies
of Q(−n

2 ), if n is even).
(ii) [Ab] Any polarized CM HS is motivic.

The idea of (ii) is that V(L,Π) is a sub-HS of Hn(A) for a CM abelian
variety A, which is constructed from the set Θ(Π) of CM types refined
by Π via

A := ×Θ∈Θ(Π)A
×mΘ
(L,Θ),

where A(L,Θ) = J(V(L,Θ)). Note that the Hodge conjecture is not known
in general for “degenerate” CM abelian varieties A(L,Θ), i.e. those whose
M-T group has dimension < g; these include the so-called Weil abelian
fourfolds.

On the other hand, according to Theorem 3.4, the AHC is known
for all abelian varieties, and CM ones play a special role in Deligne’s
proof. In rough outline:

(1) Start with a family A → S of abelian varieties over a connected
Shimura variety of Hodge type.

(2) The CM points are dense in S. By algebraicity of ∇, the AHC
for generic As reduces to the AHC for CM abelian varieties.

(3) Focusing on a CM A (with HS ϕ on H1(A)), define an “absolute
M-T group” Gabs

ϕ ≥ Gϕ whose fixed tensors are the AH tensors.
If there are AH tensors cutting out Gϕ, this will force Gabs

ϕ =
Gϕ.

(4) Weil Hodge classes (the ones for which HC isn’t known) are
absolute.
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One can imagine an extension of this beyond the abelian variety setting,
where the Shimura variety S parametrizes a VHS of higher weight
arising from a family X π→ S via Rnπ∗QX . (In particular, the motivic
cases amongst the CY variations studied in [FL] would be candidates.)
It is of course still true that the s ∈ S with Hn(Xs) CM are dense. If
Abdulali’s inclusion of Hn(Xs) in Hn of a CM abelian variety were (for
each such s) induced by an AH class in H2n(Xs × A), then the AHC
would hold for the T k,`(Hn) of every fiber.

While density of CM points in a M-T domain is a done deal, their
distribution in a VHS is another story. Dropping the Shimura va-
riety assumption, Γ\D may be non-algebraic, but the period map
Φ : S → Γ\D associated to Rnπ∗Q has quasi-projective image [So].
If π is defined over Q̄, then in the spirit of André-Oort one can state
the following:

Conjecture 3.12. The Zariski closure of the set of CM HS in Φ(S)
is a union of Shimura varieties.

Example 3.13. For the mirror quintic VHS Φ : P1\{0, 1,∞} →
Γ\D(1,1,1,1) and others like it (cf. [DM]), Conjecture 3.12 would im-
ply that there are finitely many CM points. This is an open problem.

3.5. Transcendence of periods. Let E be an elliptic curve defined
over Q̄, with period ratio τ ∈ H. Then by a theorem of Schneider (see
below), we have that [Q(τ) : Q] is either 2 (and H1(E) is CM) or ∞
(and the M-T group of H1(E) is SL2). Put differently: if the Hodge
structure H1(E) is not contained in a proper subdomain of H = D,
then it gives a period point whose spread is all of D.

To formulate the expected generalization of this result, again let
π : X → S be defined over Q̄, Φ : S → Γ\D be an associated period
map, and write ρ : D � Γ\D.

Conjecture 3.14. (Grothendieck, André [An2]) Given p ∈ S(Q̄) and
ϕ ∈ D satisfying ρ(ϕ) = Φ(p), ϕ is very general in DGϕ = Gϕ(R).ϕ,
i.e. it is a point of maximal transcendence degree in the projective
variety ĎGϕ.
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Remark 3.15. (i) The transcendental periods occurring should have
arithmetic meaning, due to countability of the image. For example,
the conifold mirror quintic has (after resolving singularities) H3 of type
(1, 0, 0, 1), with period ratio the quotient of two Q(eπi10 , {Γ(k5 )}4

k=1)-
linear combinations of 4F3 special values.

(ii) A (more precise) mixed-Hodge theoretic analogue of this asser-
tion is given by Beilinson’s conjectures relating extension classes arising
from generalized algebraic cycles to special values of L-functions.

The evidence for Conjecture 3.14 is given by Schneider’s result and
a generalization due to Tretkoff, Shiga and Wolfart:

Theorem 3.16. (Schneider [Sc]) Given an elliptic curve E/Q̄ with
period ratio τ ∈ Q̄, E has CM (equivalently, [Q(τ) : Q] = 2).

So when an elliptic curve is defined over a number field, the period
ratio cannot be (for example) a cubic irrationality.

Theorem 3.17. [Co, SW] Given a family A → S = Γ\D of abelian
varieties over a Shimura variety of PEL type,7 defined over Q̄. If
ρ(ϕ) =: s ∈ S(Q̄) (⇐⇒ As/Q̄) and ϕ ∈ Ď(Q̄), then As has CM.

Tretkoff has generalized this to some families of Calabi-Yau varieties
over Shimura varieties.

What is behind all this (at least, the more general Theorem 3.17) is
the mysterious Analytic Subgroup Theorem of Wüstholz. A corollary
of his powerful result is:

Theorem 3.18. [Wu] Let G be a connected Q̄-algebraic group, h ⊂ gC

a proper subspace, defined over Q̄, with 0 6= v ∈ h ∩ ker(exp). Then
there exists a closed connected algebraic subgroup G0 ≤ G, defined over
Q̄, such that v ∈ g0,C ⊂ h.

To see how this is used, we shall show that it implies Theorem 3.16.
Given E/Q̄, and ω ∈ H0(E,Ω1

E/Q̄) with period lattice Λ := Z〈π1, π0〉,

7This is just (an arithmetic quotient of) a M-T domain for HS of level one cut out
by 2-tensors.
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assume τ := π1
π0
∈ Q̄. By the short-exact sequence

0→ Λ2 → C2 → E2 =: G→ 0,

we have v := (π0, π1) ∈ ker(exp). Put h := C〈v〉 ⊂ gC. By Wüstholz,
there exists a closed subgroup G0 ⊂ E × E, defined over Q̄, such that
v ∈ g0,C ⊂ C〈v〉. But then g0,C = C〈v〉, so that exp(h) is closed. Thus
multiplication by τ gives a correspondence, and E has CM.

4. Asymptotics: limits of VHS and normal functions

There are two complementary aspects to the study of degenerat-
ing variations of Hodge structure. For those arising from an algebro-
geometric degeneration, Steenbrink’s approach to the limiting mixed
Hodge structure (LMHS) uses logarithmic structures and the nearby
cycle functor to construct a cohomological mixed Hodge complex on
the singular fiber. (See the masterful presentation in Chapter 11 of
[PS].) However, the LMHS exists for an arbitrary degenerating VHS,
and representation-theoretic techniques have long been central to the
work of Cattani, Kaplan, Pearlstein, Schmid and others from this per-
spective.

In this section we shall not attempt to do justice to either of these
stories; we shall only briefly recall the more general definition, and in
the geometric case state the relation to the cohomology of the singular
fiber. Rather, our aim is to illustrate the influence of the symmetries
of §2 upon LMHS via the technology of boundary components [KP1]
(which indeed gets into some mild representation theory). We also
briefly describe an “analogue of Steenbrink” for limits of geometric
normal functions [GGK3], and hint at the interaction of limits (of both
VHS and normal functions) with arithmetic.

4.1. Limits of period maps.

4.1.1. Existence of the LMHS. Let V = (V ,VZ, Q,F•) be a polarized
Z-VHS of weight n over the punctured unit disk ∆∗, with M-T group
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G and associated period map

Φ : ∆∗ → Γ\D = Γ\G(R)/H.

Denoting a fiber VZ,s0 by VZ,8 assume the monodromy operator T ∈
G(Z) ≤ Aut(VZ, Q) is unipotent and define

N := log(T ) =
∑
k≥1

(−1)k−1

k
(T − I)k ∈ gQ ⊂ End(V,Q).

Now choose a local holomorphic parameter s ∈ O(∆), vanishing at the
origin to first order. The “untwisting”

(4.1) Ṽ := e−
log(s)
2πi NV

of V is clearly a trivial local system (over ∆∗) which extends (as Ṽe)
to ∆, and we set Ve := Ṽe ⊗ O∆ and Vlim := Ṽe|0. Moreover, there is
a unique filtration W (N)• (which we shall denote W•) on V such that
N(W•) ⊂ W•−2 and N ` : GrWn+` → GrWn−` is an isomorphism (∀`).

We have the following respective consequences of Schmid’s Nilpotent
and SL2 orbit theorems:

Theorem 4.1. [Sc] (i) The {F i} extend to holomorphic sub-bundles
F ie ⊂ Ve.
(ii) Writing F i

lim := F ie|0 ⊂ Vlim,C, (Vlim,W•, F •lim) is a mixed Hodge
structure, called the LMHS.

4.1.2. Deligne bigradings. For any MHS (V,W•, F •) we have the fol-
lowing result, due to Deligne:

Theorem 4.2. [CKS, Thm. 2.13] There exists a unique bigrading Ip,q

of VC such that

F •VC =
⊕
p, q

p ≥ •

Ip,q , W•VC =
⊕
p, q

p + q ≤ •

Ip,q ,

and Ip,q ≡ Iq,p mod
⊕

a < p

b < q

Ia,b.

8Note: dropping the Z will mean Q-coefficients.
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In the case of a LMHS, N : ⊕Ip,q → ⊕Ip−1,q−1 may be completed to
an sl2,C-representation,9 which then decomposes Vlim,C into isotypical
components, compatibly with the bigrading. We can visualize all this
by using dots to depict the dimensions of the {Ip,q} and arrows for the
action of N .

Example 4.3. Consider the 2-parameter VHS over (∆∗)2 obtained
from relative H1 of a family {Cs,t} of degenerating genus-2 curves over
∆2:

N

N1

2

with M-T group Sp4. The respective Ip,q-pictures for the LMHS of the
1-parameter slices t 7→ (1, 1), (t, 1), (1, t), (t, t) are:

2

N

N
N +N

1

2
1

(Here for example the upper right LMHS has I0,0, I1,0, I0,1, I1,1 each of
rank 1, with N1 : I1,1 ∼=→ I0,0. Two dots at the same (p, q) spot means
Ip,q has rank 2; we think of the dots as elements of a basis.) The lower
right LMHS can also be viewed as the limit of the 2-parameter VHS.

9This can be done over R precisely when the LMHS is R-split, i.e. Ip,q = Iq,p

exactly.
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Remark 4.4. In what follows, Example 4.3 will be continued as a run-
ning example. A good exercise is to work out the analogous results for
(the transcendental H2 of) K3 surfaces of Picard ranks 17, 18, and 19
corresponding to semistable degenerations of Kulikov type II and III.

4.1.3. Nilpotent orbits. In the situation of §4.1.1, the nilpotent orbit
attached to V is the polarized variation

(4.2) Vnilp := (V ,V, Q, e−
log(s)
2πi NF •lim)

defined over ∆∗ after possibly shrinking the radius. One might think
of this as the “most trivial PVHS having the same LMHS as V”. That
this still yields a period map Φnilp : ∆∗ → Γ\D is guaranteed by:

Proposition 4.5. The M-T group of Vnilp is contained in that of V.

Proof. (Sketch) By §2.3, monodromy acts on the Hodge tensors of a
polarized VHS through a finite group. Since T is unipotent, it must
therefore fix the Hodge tensors in each V⊗k ⊗ V̌⊗`. Since the process
of “computing the LMHS followed by taking the nilpotent orbit” is
compatible with linear-algebraic operations on VHS (including tensors,
duals, and inclusions) and does nothing to a constant variation, the
Hodge tensors remain Hodge in the LMHS and in Vnilp. �

The LMHS depends upon the choice of local coordinate s: if F •lim
is written with respect to a basis of Vlim, rescaling s 7→ e2πiαs trans-
forms the latter by e−αN , in effect replacing the former by eαNF •lim.
(More generally, in several variables the effect of a reparametrization
is to send F •lim 7→ e

∑
αiNiF •lim.) The nilpotent orbit lacks this well-

definedness issue, in two senses: first, the effects of the rescaling in
(4.1) and (4.2) cancel out. Second, and more importantly, we will re-
define the nilpotent orbit below as the full set of flags eCNF •lim, i.e. in
essence as the “LMHS modulo reparametrization”.

Example 4.6. For the 2-parameter LMHS in Ex. 4.3, the extension
class of Q(−1)⊕2 by Q(0)⊕2 has (in this setting, because of the polar-
ization) three degrees of freedom, two of which are killed by eα1N1+α2N2 .
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What remains is the cross-ratio of the 4 points (in the preimage of the
singular locus) in a resolution P1 � P1

a≡b, c≡d = C0,0 (cf. [Ca]).

4.1.4. Clemens-Schmid sequence. Suppose V arises from the relative
cohomology of a semi-stable degeneration (SSD)

X → ∆
∪ ∪

∪Yi = X0 → {0},

where X is smooth and X0 is a reduced strict normal crossings divisor
(with {Yi} smooth). Then we have a long-exact sequence

Hm(X0)→ Hm
lim(Xs) N→ Hm

lim(Xs)(−1)→ Hm(X0)(−m− 1)→ · · ·

of MHS in which the first arrow is often an injection. Hm(X0) is
computed in a standard way using double complexes: e.g., for the
underlying Q-Betti structure one considers Cj(Y [i]), where Y [i] :=
q|K|=i+1Yk1 ∩ · · · ∩ Yki and Cj denotes real analytic “cochains with
pullback” (i.e. meeting components of Y [i+1] properly).

Example 4.7. In the four LMHS of Example 4.3, ker(N) (= H1 of a
singular fiber) takes the respective forms:

In particular, H1(C0,0) ∼= Q(0)⊕2 completely misses the extension class
associated to the cross ratio described in Example 4.6.

4.1.5. Adjoint reduction. We remind the reader of a fact mentioned in
§2.4. Without changing D, we may replace:

• the M-T group G by M := Gad;
• the underlying Q-vector space (and M-T representation) V by
m := Lie(M) (= subquotient of End(V ) ∼= V ⊗ V̌ );
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• Hodge structures ϕ : S1 → G(R) (“on V ”) by Ad ◦ ϕ : S1 →
M(R) (“on m”, of weight 0).

The Ip,q decomposition of the LMHS is compatible with linear algebra
operations on representations of the M-T group, and so carries over to
m along with N (in the form ad(N)).

Example 4.8. The LMHS’s on V in our running example induce the
following LMHS’s on m = sp4:

The arrows denote the action of adN .

4.1.6. Boundary components. To systematically compactify the images
of period maps, it turns out that what is needed are partial compactifi-
cations of Γ\D by spaces B̄(σ) which “classify LMHS modulo rescaling
and change of basis”. The description of these boundary components
in [KP1] also answers the question: what algebraic constraints on the
LMHS (for instance, on which extensions can be nontrivial) result from
the VHS having a given M-T group? Below we shall focus on the com-
ponents B̄(N) needed for 1-parameter degenerations.

Given N ∈ mQ nilpotent,

B̃(N) :=

F • ∈ Ď
∣∣∣∣∣∣ Ad(eτN)F • ∈ D for =(τ)� 0

and NF • ⊂ F •−1


comprises the possible limiting Hodge flags for a period map Φ : ∆∗ →
Γ\D with monodromy logarithm N , and hence the possible LMHS (via
F • 7→ (V,W (N)•, F •)). Passing (modulo rescalings) to nilpotent orbits
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yields the left quotient B(N) := eCN\B̃(N); and taking ΓN ≤ Γ to be
the largest subgroup stabilizing the line generated by N , we have:

Definition 4.9. The boundary component associated to N is B̄(N) :=
ΓN\B(N).

Let ZN denote the centralizer of N in M . In the bigrading diagrams
(cf. §4.1.2), we may visualize its Lie algebra zN = ker(adN) ≤ m as
the bottoms of all the sl2-strings. The grading of the weight filtration
given by ⊕p+q=mIp,q induces a Levi decomposition ZN = GNMN , where
gN := Lie(GN) is pure of weight 0 and mN := Lie(MN) ⊂ W−1m, and
GN(R)MN(C) acts transitively on B(N).

In fact, the structure of B̄(N) can be read off from the Ip,q/N -
diagrams. In [KP1], it is shown that there is a tower of fibrations

B(N)� · · ·� B(N)(k)
π(k)
� B(N)(k−1) � · · ·

π(1)
� D(N),

where the primitive M-T domain D(N) ∼= GN(R)/HN parametrizes the
HS on the (primitive parts of the) associated graded ⊕GrWi m. More-
over, the tangent space to a fiber of π(k) is

GrW−kzN,C

F 0GrW−kzN,C
(or GrW−2zN,C

F 0GrW−2zN,C+CN

for k = 2) and to D(N) is GrW0 zN,C
F 0GrW0 zN,C

= gN,C
F 0(··· ) . The tower passes to the

quotient by ΓN , whereupon the fibers become (for k > 1, generalized)
intermediate Jacobians, assuming Γ is neat.

We now look at a few special cases, with G = Sp4, U(2, 1), and G2

( =⇒ M = PSp4, SU(2, 1)ad, resp. G2).

Example 4.10. We conclude our running example. From the Ip,q

diagrams on sp4 in Ex. 4.8, we read off that for N = N1 or N2,
B̄(N) � ΓN\D(N) has fibers GrW−1mC

F 0(··· )+(··· )Z
, which are elliptic curves.

Moreover, GN
∼= SL2 and D(N) ∼= H, so B̄(N) is essentially an elliptic

modular surface.
If N = N1 + N2, then B̄(N) = W−2mC

CN+(··· )Z
∼= (C∗)×2. One may define

boundary components for nilpotent cones such as σ = R≥0〈N1, N2〉; in
this case, B̄(σ) = W−2mC

CN1+CN2
∼= C∗ records the cross ratio of Ex. 4.6.

In the next three examples, the dots (= basis vectors) representing
gN,C [resp. mN,C/CN ] are boxed [resp. circled]. For a description of
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what the N1,N2,N3 actually are in each case, the reader may consult
§8 of [KP1].

Example 4.11. We begin with a period domain case: dim V = 4,
weight 3, h = (1, 1, 1, 1), D ∼= Sp4(R)/U(1)×2.

curve

B(N )

D

B(N )

B(N )
2

3

B

V m

C

elliptic

modular

surface

CM

elliptic

1

We remark that B̄(N3) is specifically a CM elliptic curve because the
diagram implies that GN3 (which contains the M-T group of each pure
HS GrWk m) is a 1-torus.
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Example 4.12. Carayol’s M-T domain: dim V = 6, weight 3, h =
(1, 2, 2, 1); D ∼= U(2, 1)/U(1)×3 parametrizing HS with endomorphisms
by Q(

√
−d), and induced decomposition VQ(

√
−d) = V+⊕V− with h+ =

(1, 1, 1, 0).

CB(N )

CM

elliptic

curve

CM

elliptic

curve

D

B(N )

B(N )
2

3

B

V m

conjugation

1
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Example 4.13. An exceptional M-T domain: dim V = 7, weight 2,
h = (2, 3, 2), D ∼= G2(R)/U(2) parametrizing HS with a distinguished
Hodge 3-tensor.

*

B(N )

D

B(N )

B(N )
2

3

B

V m

family of
compact
complex
2−tori over
a modular
curve

(C  )−fibration

over a 

modular

curve

C  x (C  )
2

2

**

1
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4.1.7. Arithmetic of limiting periods. Here we just give a quick idea and
refer the reader to [GGK1] for philosophy and [DKP] for computations.

Let k be a number field, and suppose that V arises from a semistable
degeneration over k: this means that X → ∆ belongs to a larger family
over P1, defined over k, and with the {YI} defined over k.

Conjecture 4.14. The LMHS is the Hodge realization of a (mixed)
motive defined over k. In particular, extension classes belonging to
Ext1MHS(Q(−n),Q(0)) ∼= C/Q are essentially Borel regulators of ele-
ments of K2n−1(k). If k = Q, these classes are all therefore rational
multiples of ζ(n)

(2πi)n .

Example 4.15. [CDGP, GGK1] Let Xs denote the minimal smooth
toric compactification of the hypersurface defined by

1− ξ
( 4∑
i=1

xi +
4∏
i=1

x−1
i

)
= 0

in (C∗)4, where s = ξ5. The mirror quintic VHS is given by H3(Xs),
and has LMHS at s = 0 in B(N1) of Example 4.11. (This degeneration
can be given the structure of an SSD/Q.) Writing I3,3 = Ce3, and
γ3, γ2, γ1, γ0 for a Q-symplectic basis, we have e3 = γ3 − 200ζ(3)

(2πi)3 γ0. The
extension class (given by the coefficient of γ0) obviously satisfies the
conjecture.

Example 4.16. [DR, KP1] If we consider the G2-domain where h =
(1, 1, 1, 1, 1, 1, 1) (instead of the (2, 3, 2) of Example 4.13), then the
Hodge-Tate boundary component takes the form C∗ ∼= Ext1(Q(−5),Q(0)).
Katz’s middle convolution algorithm is used in [DR] to produce a fam-
ily of motives (defined over Q) producing a VHS of this type, with
LMHS at s = 0 in the H-T boundary. So we expect the extension class
to be a rational multiple of ζ(5)

(2πi)5 .
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4.2. Limits of normal functions. Start with an SSD
X ∗ ↪→ X ←↩ X0 = ∪iYi
↓ π ↓ π̄
∆∗ 

↪→ ∆ ←↩ {0}

as in §4.1.4 (π smooth, π̄ proper holomorphic), with dimX = 2m.
Consider an algebraic cycle z ∈ Zm(X) properly intersecting fibers, so
that for each s ∈ ∆ (including 0)

Zs := z ·Xs ∈ Zm(Xs)

is defined. Assuming that 0 = [z] ∈ H2m(X ), we have 0 = [Zs] ∈
H2m(Xs) (∀s ∈ ∆). We ask: is there as sense in which

(4.3) lim
s→0

AJXs(Zs) = AJX0(Z0)?

4.2.1. Meaning of the left-hand side of (4.3). AJXs(Zs) yields (as in
§3.3) a section νz ∈ Γ(∆∗,J ), where J → ∆∗ is the Jacobian bundle
associated with V := R2m−1π∗ZX ∗ . There exists a non-Hausdorff ex-
tension of J to ∆, defined by the short-exact sequence (cf. §4.1.1 for
notation)

0→ ∗V→
Ve
Fme
→ Je → 0,

and an extension ν̄z ∈ Γ(∆,Je) of the normal function νz due to El
Zein and Zucker [EZ].10 Set

lim
s→0

AJXs(Zs) := ν̄z(0).

4.2.2. Meaning of the right-hand side of (4.3). The singular variety
X0 = ∪Yi

ı0
↪→ X has substrata (of codimensions ` = 0, . . . , 2m− 1)

Y [`] := q
|I|=`+1

YI ,

where YI := ∩i∈IYi. Its motivic cohomology H2m
M (X0,Z(m)) is the

2mth cohomology of a double complex constructed (essentially) from
Bloch’s higher Chow complexes on the substrata. Up to torsion, one
may think of this as being built out of (subquotients of) the K-groups
of substrata Kalg

` (Y [`]). An explicit map of double complexes described
10Their theorem applies to the more general setting [z|X∗ ] = 0 in H2m(X ∗).
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in [KL, GGK3] induces an Abel-Jacobi homomorphism
(4.4)

AJmX0 : H2m
M (X0,Z(m))hom → Jm(X0) := H2m−1(X0,C)

Fm +H2m−1(X0,Z(m)) ,

defined on the cohomologically-trivial classes. Again up to torsion, one
may consider (4.4) to be induced from the Chern-class (or “regulator”)
maps on Kalg

` (Y [`]).

Example 4.17. For the reader familiar with higher Chow cycles, for
m = 2 the double complex computing H4

M(X0,Z(2)) is

Z2
] (Y [0]) δ→ Z2

] (Y [1])
↑ ↑ ∂

→ Z2
] (Y [1], 1) δ→ Z2

] (Y [2], 1)
↑ ↑ ∂

→ Z2
] (Y [2], 2) δ→ Z2(Y [3], 2)
↑ ↑ ∂

→ Z2(Y [3], 3) .

Here ∂ is Bloch’s boundary map restricted to a quasi-isomorphic sub-
complex Z2

] (Y [i], •) ⊂ Z2(Y [i], •) which consists of higher cycles meet-
ing substrata properly, and δ is the alternating sum of pullbacks thus
enabled.

4.2.3. Meaning of equality in (4.3). Now intersection with the Yi yields
a map

ı∗0 : CHm(X )hom → H2m
M (X0,Z(m))hom,

which intuitively sends “z 7→ Z0”. Writing

Ψ : Jm(X0)→ (Je)0

for the map induced by H2m−1(X0)→ H2m−1
lim (Xs) in Clemens-Schmid,

we can state

Theorem 4.18. [GGK3] (4.3) holds with the right-hand side replaced
by Ψ(AJX0(ı∗0z)).
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Let Ĵe be the modification of Je produced by replacing the fiber
(Je)0 over 0 by Jm(X0). It was shown by M.Saito [Sa] that Ĵe is
Hausdorff.11

Corollary 4.19. [GGK3] The extension ν̄z is actually a section of Ĵe.

4.2.4. Arithmetic implications. Thinking back to §3.1, it turns out that
the IPR implies a rigidity result for limits of certain kinds of normal
functions. The limits of this type, for z defined over C, therefore already
come from algebraic geometry over Q̄, leaving only countably many
possible values. This suggests

Corollary 4.20. [GGK3] The regulators in (4.4) imply arithmetic be-
havior for the limit of the AJ map.

Example 4.21. Rather than making a precise statement, we discuss
what the last Corollary looks like when X is a certain 1-parameter
family of quintic threefolds. After carrying out semistable reduction,
X0 is a union of five P3’s blown up along Fermat quintic curves. The
Abel-Jacobi map relevant for codimension-2 cycles sits in the diagram

H4
M(X0,Z(2))

AJ2
X0→ J2(X0) Ψ

↪→ (Je)0

∪ ∪
Kind

3 (C) R→ C/Z(2)
↓ =
R

in which the regulator map R has countable image. In particular, the
image of Kind

3 (C) is just that of Kind
3 (Q̄), with imaginary part related

to special values of L-functions of number fields. In §4 of [op. cit.], it is
shown how to construct families of cycles z with ı∗0z in the Kind

3 (C) part
of motivic cohomology, and compute the limits ν0 := lims→0 νz(s) of the
associated normal functions. In particular, one has ν0 ∈ C/Z(2), and

11There is a related important construction of Schnell which leads to a very natural
proof of the algebraicity of 0-loci of normal functions [Sl1]. Also note that, while
Hausdorff, Ĵe may not be a complex analytic space: the fiber over 0 usually has
lower dimension than the other fibers (cf. §4.2.5).
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=(ν0) can be written as a Z-linear combination of values of the Bloch-
Wigner function at algebraic arguments. (For instance, one limit takes
the value D2(

√
−3) (6= 0).)

Referring to Example 4.17, here is a rough sketch of the method used
in [op. cit.] to construct local families of cycles z with this property. Be-
gin with a ∂-cocycleW in one summand (say, Z2(Y2345, 3)) of the boxed
term of the double complex (which gives a class in CH2(Spec(k), 3) ∼=

⊗Q
Kind

3 (k)). The main problem is to find a class of such W ’s which
can be moved by the total differential D = ∂ ± δ to (say) a cy-
cle Z5 in Z2

] (Y5) in the upper left term, satisfying additional inter-
section conditions (Z5 does not meet the Yj5, and meets the Fermat
curve blowups only along the proper transform of the Fermat quintic
surface) which allow it to deform to the smooth fibers {Xs}. Ex-
plicit computation in the double complex shows that cycles of the
form Wf,g := {(u, f(u), g(u)) |u ∈ P1} ∩ (P1\{1})3 (where f ≡ 1 on
|(g)| ∪ {0}, g ≡ 1 on |(f)| ∪ {∞}, and poles of f are allowed to have
order 3 at u = 1 and order 2 elsewhere) give such a class.

A number of examples arising from open mirror symmetry, which
gives another source for such cycle families z, have been computed in
[JW, LW].

4.2.5. Hausdorffness of Ĵe. To conclude, we shall explain why Je is
not in general Hausdorff, and try to convey the flavor of the estimates
used by M. Saito [Sa] to show that Ĵe avoids this fate. We shall do
this in the context of a nilpotent orbit over ∆∗ with (Q-split) LMHS
of the type parametrized by B(N3) in Example 4.11.

Consider then the rank 4 local system VZ with fiber VZ = Z〈α, β, γ, δ〉
over s0, and monodromy logarithm N sending α 7→ β 7→ 0 and γ 7→
δ 7→ 0. Writing `(s) = log(s)

2πi (s ∈ ∆∗), a basis of Ṽ is given by α̃ =
α− `(s)β, β̃ = β, γ̃ = γ− `(s)δ, and δ̃ = δ. We may take our variation
to have F2

s = 〈α̃− iγ̃, β̃ − iδ̃〉. Then

Je = O∆〈α̃, β̃, γ̃, δ̃〉
O∆〈α̃− iγ̃, β̃ − iδ̃〉+ Z〈α, β, γ, δ〉
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∼=
O∆〈γ̃, δ̃〉

Z〈iγ̃ + i`(s)δ̃, iδ̃, γ̃ + `(s)δ̃, δ̃〉
has fibers

(Je)s ∼=
C2

Γs
:= C2

Z
〈(

i

i`(s)

)
,
(

0
i

)
,
(

1
`(s)

)
,
(

0
1

)〉
over s 6= 0 and

(Je)0 ∼=
C2

Z
〈(

0
i

)
,
(

0
1

)〉 = C⊕ C/Z[i],

whereas
(Ĵe)0 ∼=

C〈β, δ〉
C〈β − iδ〉+ Z〈β, δ〉

= C/Z[i].

Now to see that Je is not Hausdorff, choose a ∈ Z\{0}, b ∈ C. The
sequence of points (sn, vn) :=(

sn,
(

a

b

))
:=
(

exp
(

2πi
(
b+ ni

a

))
, a
(

1
`(sn)

)
− n

(
0
i

))

in O∆〈γ̃, δ̃〉 clearly approaches
(

0,
(

a

b

))
as n → ∞. But in Je, we

have vn ∈ Γsn =⇒ (sn, vn) ≡ (sn, 0), and so the sequence approaches
both

(
0
0

)
and

(
a

b

)
(which are distinct points of (Je)0) in the quo-

tient topology. Hence these two points cannot be separated.
In spite of this, Ĵe is Hausdorff. Let a = 0, b ∈ C\Z[i]. Then there

exist

• ε > 0 sufficiently small, and
• M � 0 sufficiently large,

that =(z) > M =⇒∥∥∥∥n1

(
i

i`(s)

)
+ n2

(
0
i

)
+ n3

(
1
`(s)

)
+ n4

(
0
1

)
−
(

0
b

)∥∥∥∥ > ε

for all n ∈ Z4. This can be checked by hand, and similar norm estimates
lead to M. Saito’s result.
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