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Abstract

In this paper we introduce new local symbols, which we call 4-function local
symbols. We formulate reciprocity laws for them. These reciprocity laws are proven
using a new method - multidimensional iterated integrals. Besides providing reci-
procity laws for the new 4-function local symbols, the same method works for proving
reciprocity laws for the Parshin symbol. Both the new 4-function local symbols and
the Parshin symbol can be expressed as a finite product of newly defined bi-local
symbols, each of which satisfies a reciprocity law. The K-theoretic variant of the
first 4-function local symbol is defined in the Appendix. It differs by a sign from
the one defined via iterated integrals. Both the sign and the K-theoretic variant of
the 4-function local symbol satisfy reciprocity laws, whose proof is based on Milnor
K-theory (see the Appendix). The relation of the 4-function local symbols to the
double free loop space of the surface is given by iterated integrals over membranes.
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0 Introduction

This paper is the second one in a series of papers on reciprocity laws on varieties via
iterated integrals (after [H1]). We construct and prove reciprocity laws for both classical
and new symbols. First, we define new bi-local symbols and prove the corresponding
reciprocity laws. Using them we introduce new 4-function local symbols on surfaces
and prove their reciprocity laws. Using the same methods, we find a new proof of the
reciprocity laws for the Parshin symbol. We recall that the Parshin symbol was defined
by Parshin in [P1] and [P2] up to a sign. The sign was computed by Fesenko and
Vostokov in [FV] and a K-theoretic proof of the reciprocity laws for the Parshin symbol
was given by Kato in [Ka].

The present paper uses many ideas from the preprint “Refinement of the Parshin
symbol for surfaces” [H2]. In an email to the author [D2], Deligne pointed out that the
refinement of the Parshin symbol was not independent of choices of local uniformizers.
After examining carefully the origin of the refinement - namely, iterated integrals of
differential forms over membranes - we realized that the refinement becomes independent
of local uniformizers by introducing bi-local symbols. A key property of the bi-local
symbols is that they resemble the tame symbol on a curve; however, they are defined
over surfaces.
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We introduce the new 4-function local symbols as a product of simpler bi-local sym-
bols that satisfy reciprocity laws. Moreover, such a presentation in terms of bi-local
symbols provides proofs of the reciprocity laws for the local symbols. In the same man-
ner we construct a refinement of the Parshin symbol in the sense that the latter is a
product of bi-local symbols each of which satisfies a reciprocity law. Another reason for
using bi-local symbols is that they are computationally effective.

Iterated integrals over membranes

In our paper [H1], we used iterated integrals over paths for reciprocity laws on a com-
plex curve. Here, we define a higher dimensional analogue of iterated path integrals,
which we call iterated integrals over membranes for extending this technique to complex
algebraic surfaces. The idea for iterated integrals over membranes had its genesis in a
generalization of Manin’s non-commutative modular symbol [M1] to a non-commutative
Hilbert modular symbol [H3], [H5]. Iterated integrals over membranes give functions on
the double free loop space of a surface.

Our approach is based on examining a cocycle on the loop space of the surface or on
the double free loop space of a surface. In this way both the 4-function symbol and the
Parshin symbol occur naturally. A homotopy invariant function on the double free loop
space of a complex algebraic surface is a 0-cocycle such as I2, I3 and I4 from Section
1.4. The Parshin symbol is expressed in terms of the cocycles I2 and I3, while the first
4-function local symbol is expressed in terms of the cocycle I4. We define such functions
on the double free loop space of the surface, using iterated integrals over membranes,
which resembles Chen’s construction of functions on the loop space of a manifold [Ch1],
[Ch2].

A geometric proof of the reciprocity laws uses the following observation: a closed
form on a loop space (with a base) is homotopy invariant with respect to homotopy
variations of the loop. Integrating over certain loops gives us essentially a logarithm of
a local symbol. If a composition of such loops is homotopy trivial then the integral over
that loop will vanish. Moreover, the integral over this homotopy trivial loop is equal to
the sum of the logarithm of the symbols. After exponentiating, we obtain that a product
of local symbols is equal to 1.

Usually, reciprocity laws are proved by providing a cocycle of a Galois group. One
uses them to examine a portion of the Galois group, for example, the abelian Galois
group. Instead of a Galois group one can consider the fundamental group. (An interme-
diate object is the étale fundamental group.) The cocycle on the fundamental group can
be replaced by a cocycle on the loop space. Both the fundamental group of a non-simply
connected space (see [Ch1]) and the loop space of a simply connected space (see [Ch2])
were studied by iterated integrals. This paper gives a new direction for reciprocity laws.
Here we exhibit the need to study the loop space and the double free loop space of a
non-simply connected variety. In particular the Parshin symbol is given by a 1-cocycle
on a loop space of a (possibly) non-simply connected surface and the new 4-function local
symbol is given by a 0-cocycle on a double free loop space of such a surface. Hopefully,
the relation of local symbols to the loop space and to the double free loop space can give
more structure both in reciprocity laws and in study of loop spaces. For example, one
question is: what portion of the double free loop space is captured by such reciprocity
laws?
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The Parshin symbol is interpreted in this paper as a 1-cocycle of the loop space of a
surface. Alternatively, it gives a closed 0-cocycle on the double loop space of the surface.
The first 4-function local symbol naturally occurs as a closed 0-cocycle on the double
free loop space. Equivalently, the first 4-function local symbol is a homotopy invariant
integral over a torus with respect to homotopy variations of the torus (Subsection 1.4).

The use of iterated integrals over membranes has other applications in number the-
ory and algebraic geometry. For example, they provide a new approach to the two-
dimensional Contou-Carrère symbol [H6]. We also use them to construct multiple
Dedekind zeta values [H4] and a non-commutative Hilbert modular symbol [H5].

The sources of new symbols in our approach are iterated integrals. More precisely,
every iterated integral leads to a reciprocity law. In [H1] Theorems 2.9 and 3.3, we use
higher order iteration on a complex curve. Then the reciprocity laws are complicated.
One can do the same for surfaces. However, we have chosen to consider at most double
iterated integrals, which lead to relatively simple reciprocity laws. Over a surface there
are three such (iterated) integrals, involving:

(i) a 2-form - leading to an analogue of “the sum of the residues is zero”;
(ii) an iteration of a 2-form with a 1-form - leading to the Parshin symbol;
(iii) an iteration of a 2-form with a 2-form - leading to both 4-function local symbols.
Higher order iterations will lead again to reciprocity laws. They will be considered

in a follow up paper, since they capture more properties from the cohomology of the
double free loop space of a complex algebraic surface.

Some known reciprocity laws

There are several interesting formulas that we would like to bring to the attention of the
reader. For explaining the formulas defining the reciprocity laws, it would be instructive
to make a comparison with the Weil reciprocity law stated in terms of the tame symbol
(defined in the Appendix).

A divisor of a non-zero rational function f on a complex smooth projective curve is
the formal sum

(f) =
∑
i

aiPi,

such that Pi’s are points where f has zeros or poles and the coefficients ai ∈ Z are the
orders of vanishing of f at the points Pi. Let also

(g) =
∑
j

bjQj .

Assume for the moment that the {Qj} and {Pi} are disjoint. Following Weil [W], we
define

f((g)) =
∏
j

f(Qj)
bj and g((f)) =

∏
i

g(Pi)
ai .

Denote by |(f)| the support of the divisor of a non-zero rational function f .

Theorem 0.1. (Weil reciprocity law) If |(f)| and |(g)| are disjoint then

f((g)) = g((f)).
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Weil reciprocity can be expressed in terms of the tame symbol, in order to include
the cases when the support of f and g have common points. The tame symbol on a
curve C is defined as

{f, g}P = (−1)ab
(
f b

ga

)
(P ),

where a = ordP (f) and b = ordP (g).

Theorem 0.2. (Weil reciprocity law in terms of the tame symbol) The tame symbol
satisfies the following reciprocity law∏

P

{f, g}P = 1,

where the product is taken over all points P of the smooth projective curve C.

If Q is in the support of g but not in the support of f then

{f, g}Q = f(Q)b,

where b = ordQ(g). As a consequence, if |(f)| ∩ |(g)| = ∅ then∏
Q∈|(g)|

{f, g}Q = f((g)),

from which one recovers Theorem 0.1.
We give a different proof of the Weil reciprocity law for the tame symbol in Subsection

1.2 (Theorem 1.9), using iterated integrals. This proof is essential for the paper. Based
on it we derive a reciprocity law for the bi-local symbols, for the Parshin symbol for
surfaces, and for the newly defined 4-function local symbols. Moreover, the use of iterated
integrals gives a geometric meaning to the symbols as homotopy invariant functions on
double free loop space of a complex algebraic surface.

Before we present the definition of the Parshin symbol and the two 4-function local
symbols, we need to introduce the following notation.

Let X be a smooth complex projective surface, let C be a smooth curve on the
surface X and let P be a point on the curve C. For a non-zero rational function fk on
the surface X, let

ak = ordC(fk) (0.1)

be the order of vanishing of fk on the curve C. Let also x be a rational function on
the surface X, representing a uniformizer at the curve C, such that any two irreducible
components of the support of the divisor of x do not intersect at the point P . Let

bk = ordP ((x−akfk)|C). (0.2)

Definition 0.3. The Parshin symbol for the surface X with respect to a curve C on X
and a point P on C is defined as

{f1, f2, f3}C,P = (−1)K
(
fD1

1 fD2
2 fD3

3

)
(P ), (0.3)

where

D1 =

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ , D2 =

∣∣∣∣ a3 a1

b3 b1

∣∣∣∣ , D3 =

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣
and

K = a1a2b3 + a2a3b1 + a3a1b2 + b1b2a3 + b2b3a1 + b3b1a2.

4



The Parshin symbol was defined by Parshin in [P1] and [P2].

Definition 0.4. We are going to use the terminology strict normal crossing divisor,
which means that the irreducible components of the divisor are assumed smooth, meet
transversally, and no three components of the divisor meet at a point.

Theorem 0.5. (Reciprocity laws of the Parshin symbol) Let f1, f2, f3 be non-zero ratio-
nal functions on a smooth complex projective surface X, then the following reciprocity
laws hold:

(a) ∏
P

{f1, f2, f3}C,P = 1,

where the product is taken over all points P over a fixed curve C. Here we assume that
the union of the divisors

⋃3
i=1 |(fi)| in X is a strict normal crossing divisor.

(b) ∏
C

{f1, f2, f3}C,P = 1,

where the product is taken over all curves C passing through a fixed point P . Here we
assume that the the divisor

⋃3
i=1 |(fi)| in X̃ is a strict normal crossing divisor. We

denote by X̃ the blow-up of X at the point P .

Remark: The assumptions can be removed using invariance of the Parshin symbol
under blow-ups, which allows to extend the definition of the Parshin symbol to any
complex projective surface and any divisor

⋃3
i=1 |(fi)|.

A K-theoretic proof of the reciprocity laws for the Parshin symbol was given by Kato
[Ka]. We give an alternative proof (of Theorem 0.3), based on iterated integrals over
membranes (Theorems 2.10 and 3.7). The usefulness of this proof is that it leads to
relations of the Parshin symbol to double free loop space of a complex algebraic surface.

Main results

The main result of this paper is the construction of the new 4-function local symbols,
their reciprocity laws and their relation to the double free loop space of the surface. A
K-theoretic definition of the first 4-function local symbol (up to a sign) is given in the
Appendix.

Definition 0.6. (4-function local symbols) Using the notation from Equations (0.1) and
(0.2), we define two new 4-function local symbols:

{f1, f2, f3, f4}(1)
C,P = (−1)L

(
f
a2
1

f
a1
2

)a3b4−b3a4
(
f
a4
3

f
a3
4

)a1b2−b1a2 (P ).

and

{f1, f2, f3, f4}(2)
C,P = (−1)L

(
f
a2+b2
1

f
a1+b1
2

)−(a3b4−b3a4)

(
f
a4+b4
3

f
a3+b3
4

)−(a1b2−b1a2)
(P ),

where L = (a1b2 − b1a2)(a3b4 − b3a4).
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Theorem 0.7. (Reciprocity laws for the new 4-function local symbols) Let f1, f2, f3, f4 be
non-zero rational functions on a smooth complex projective surface X, then the following
reciprocity laws hold:

(a) ∏
P

{f1, f2, f3, f4}(1)
C,P = 1,

where the product is taken over all point P of a fixed curve C. Here we assume that the
divisor

⋃4
i=1 |(fi)| in X has strict normal crossings.

(b) ∏
C

{f1, f2, f3, f4}(2)
C,P = 1,

where the product is taken over all curves C passing through a fixed point P . Here we
assume that the divisor

⋃4
i=1 |(fi)| in X̃ is a strict normal crossing divisor after a single

blow-up X̃ → X at the point P ∈ X.

Remark: In part (a), for convenience for the analytic construction, we assume that⋃4
i=1 |(fi)| is a strict normal crossing divisor. That assumption can be removed using

invariance of the first 4-function local symbol under blow-ups, which allows to extend
the definition of the 4-function local symbol to any complex projective surface and any
divisor

⋃4
i=1 |(fi)|. For part (b), we use a single blow-up X̃ → X at the point P ∈ X.

Then, we apply part (a) of the Theorem 0.7 for the first 4-function local symbol to the
divisor

⋃4
i=1 |(fi)| on the surface X̃ (see Definition 3.8 and Lemma 3.9) and relate it to

the second 4-function local symbol on x from part (b).
Our approach is based on new types of symbols which we call bi-local symbols. They

allow us to refine the local symbols that we study (the Parshin symbol, the 4-function
symbols) in the sense that the local symbols of interest are presented as products of the
bi-local symbols and then reciprocity laws are proven for the latter.

Our reciprocity laws have a K-theoretic interpretation that can be found in the
Appendix.

We learned from Pablos Romo that recently a third proof of the reciprocity laws for
the 4-function local symbols, as well as new results about refinements of the Parshin
symbol were obtained [PR2].

The work in this paper is related to other results in the area. Brylinski and McLaugh-
lin (see [BrMcL]) used gerbes to define the Parshin symbol. Here we give an alternative,
more analytic approach, based on iterated integrals over membranes. We should mention
a few other approaches to tame symbols and to the Parshin symbol, for example, [D1],
[OZh], [PR1].

Structure of the paper

In Subsection 1.1, we recall basic properties of iterated integrals over paths. Then,
in Subsection 1.2, we prove Weil reciprocity, using iterated integrals, by establishing
first a reciprocity law for a bi-local symbol, and then removing the dependence on the
base point, we recover the Weil reciprocity for the tame symbol on a curve. Subsection
1.3 gives a construction of two foliations. They are needed for the definition of iterated
integrals on membranes, presented in Subsection 1.4. Such integrals are the key technical
ingredient in this paper.
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Section 2 contains the first type of reciprocity laws for the Parshin symbol (Theorem
2.9) and for the first 4-function local symbol (Theorem 2.13), where the product of the
symbols is over all points P of a fixed curve C on a surface X. The proofs are based on
the reciprocity laws for bi-local symbols (Theorem 2.6) expressed as iterated integrals
on membranes. Certain products of bi-local symbols become local symbols such as the
Parshin symbol or the first 4-function local symbol. We call such products a refinement
of the Parshin symbol or a refinement of the first 4-function local symbol. Moreover, the
product of bi-local symbols that express the Parshin symbol or the first 4-function local
symbol are homotopy invariant functions on a double free loop space (see Definition 2.5).

Section 3 is about the second type of reciprocity laws, where the product of the
symbols is taken over all curves C on X passing though a fixed point P . We also define
bi-local symbols suitable for the second type of reciprocity law. Then the corresponding
reciprocity laws are proven for the bi-local symbols (Theorem 3.2), the Parshin symbol
(Theorem 3.7), and the second 4-function local symbol (Theorem 3.11). The bi-local
symbols in Section 3 provide a second type of refinement of the Parshin symbol and of
the second 4-function local symbol.

For convenience of the reader, in the Appendix we give an alternative proof of the
reciprocity laws of the 4-function local symbols based on Milnor K-theory.
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1 Geometric and analytic background

1.1 Iterated path integrals on complex curves

This Subsection contains a definition and properties of iterated integrals, which will be
used for the definition of bi-local symbols and for another proof of the Weil reciprocity
law in Subsection 1.2.

Let C ⊂ Pk be a smooth complex curve. Let f1 and f2 be two non-zero rational
functions on C. Let

γ : [0, 1]→ C

be a path, which is a continuous, piecewise differentiable function on the unit interval.
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Definition 1.1. We define the following iterated integral∫
γ

df1

f1
◦ df2

f2
=

∫
0<t1<t2<1

γ∗
(
df1

f1

)
(t1) ∧ γ∗

(
df2

f2

)
(t2).

The two Lemmas below are due to K.-T. Chen [Ch1].

Lemma 1.2. An iterated integral over a path γ on a smooth curve C is homotopy
invariant with respect to a homotopy, fixing the end points of the path γ.

Lemma 1.3. If γ = γ1γ2 is a composition of two paths, where the end of the first path
γ1 is the beginning of the second path γ2, then∫

γ1γ2

df1

f1
◦ df2

f2
=

∫
γ1

df1

f1
◦ df2

f2
+

∫
γ1

df1

f1

∫
γ2

df2

f2
+

∫
γ2

df1

f1
◦ df2

f2
.

Let σ be a simple loop around a point P on C with a base point Q. Let σ = γσ0γ
−1,

where σ0 is a small loop around P , with a base the point R and let γ be a path joining
the point Q with R.

The following Lemma is essential for the proof of the Weil reciprocity (see also [H1]).

Lemma 1.4. With the above notation, the following holds∫
σ

df1

f1
◦ df2

f2
=

∫
γ

df1

f1

∫
σ0

df2

f2
+

∫
σ0

df1

f1
◦ df2

f2
+

∫
σ0

df1

f1

∫
γ−1

df2

f2
.

Proof. First, we use Lemma 1.3 for the composition γσ0γ
−1. We obtain

∫
σ
df1
f1
◦ df2f2 =

∫
γ
df1
f1
◦ df2f2 +

∫
γ
df1
f1

∫
σ0

df2
f2

+
∫
σ0

df1
f1
◦ df2f2

+
∫
γ
df1
f1

∫
γ−1

df2
f2

+
∫
σ0

df1
f1

∫
γ−1

df2
f2

+
∫
γ−1

df1
f1
◦ df2f2

(1.1)

Then, we use the homotopy invariance of iterated integrals, Lemma 1.2, for the path
γγ−1. Thus,

0 =

∫
γγ−1

df1

f1
◦ df2

f2
.

Finally, we use Lemma 1.3 for the composition of paths γγ−1. That gives

0 =

∫
γγ−1

df1

f2
◦ df2

f2
=

∫
γ

df1

f1
◦ df2

f2
+

∫
γ

df1

f1

∫
γ−1

df2

f2
+

∫
γ−1

df1

f1
◦ df2

f2
. (1.2)

The Lemma 1.4 follows from Equations (1.1) and (1.2).
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1.2 Weil reciprocity via iterated path integrals

Here, we present a proof of the Weil reciprocity law, based on iterated integrals and
bi-local symbols. This method will be generalized in the later Subsections in order to
prove reciprocity laws on complex surfaces. Similar ideas about the Weil reciprocity law
are contained in [H1], however, without bi-local symbols.

Let x be a rational function on a curve C ⊂ Pk, representing a uniformizer at P . Let

ai = ordP (fi).

and let
gi = x−aifi.

Then
dfi
fi

= ai
dx

x
+
dgi
gi
.

Let σε0 be a small loop around the point P , whose points are at most at distance ε from
the point P . One can take the metric inherited from the Fubini-Study metric on Pk.
Put σε0 = σ0 in Lemma 1.4, then∫

γ

df1

f1

∫
σε0

df2

f2
= 2πia2

∫
γ

df1

f1
= 2πia2

(
a1

∫
γ

dx

x
+

∫
γ

dg1

g1

)
.

Similarly, ∫
σε0

df1

f1

∫
γ−1

df2

f2
= 2πia1

(
−a2

∫
γ

dx

x
−
∫
γ

dg2

g2

)
.

From [H1], we have that

lim
ε→0

∫
σε0

df1

f1
◦ df2

f2
=

(2πi)2

2
a1a2. (1.3)

Using Lemma 1.4, we obtain∫
σ

df1

f2
◦ df2

f2
= 2πi (a2 log(g1)− a1 log(g2) + πia1a2) |PQ.

After exponentiation, we obtain

Lemma 1.5. With the above notation the following holds

exp

(
1

2πi

∫
σ

df1

f2
◦ df2

f2

)
= (−1)a1a2

ga21

ga12

(P )

(
ga21

ga12

(Q)

)−1

= (−1)a1a2
fa21

fa12

(P )

(
fa21

fa12

(Q)

)−1

Definition 1.6. (Bi-local symbol on a curve) With the above notation, we define a bi-
local symbol

{f1, f2}QP = (−1)a1a2
fa21

fa12

(P )

(
fa21

fa12

(Q)

)−1

. (1.4)
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Let the curve C be of genus g and let P1, . . . , Pn be the points of the union of the
support of the divisors of f1 and f2. Let σ1, . . . , σn be simple loops around the points
P1, . . . , Pn, respectively. Let also α1, β1, . . . , αg, βg be the 2g loops on the curve C such
that

π1(C,Q) =< σ1, . . . , σn, α1, β1, . . . , αn, βn > / ∼,

where δ ∼ 1, for

δ =
n∏
i=1

σi

g∏
j=1

[αj , βj ].

From Theorem 3.1 in [H1], we have

Lemma 1.7. ∫
αβα−1β−1

df1

f1
◦ df2

f2
=

∫
α

df1

f1

∫
β

df2

f2
−
∫
α

df2

f2

∫
β

df1

f1
.

Using the above result, we obtain that

0 =

∫
δ

df1

f1
◦ df2

f2
∈ (2πi)2Z +

n∑
i=1

∫
σi

df1

f1
· df2

f2
,

where the sum is over simple loops σi around each of the points Pi. Then we obtain:

Theorem 1.8. (Reciprocity law for the bi-local symbol (1.4)) With the above notation,
the following holds ∏

P

{f1, f2}QP = 1.

If we want to make the above reciprocity law into a reciprocity law for a local symbol
we have to remove the dependency on the base point Q. This can be achieved in the
following way: In the reciprocity law for the bi-local symbol, the dependency on Q is∏

P

f1(Q)a2f2(Q)−a1 = f1(Q)
∑
P ResP

df2
f2 × f2(Q)

−
∑
P ResP

df1
f1 =

= f1(Q)0f2(Q)0 = 1.

Thus, we recover Weil reciprocity:

Theorem 1.9. (Weil reciprocity) The local symbol

{f1, f2}P = (−1)a1a2
fa21

fa12

(P ).

satisfies the following reciprocity law∏
P

{f1, f2}P = 1,

where the product is over all points P in C.
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1.3 Two foliations on a surface

The goal of this Subsection is to construct two foliations on a complex projective algebraic
surface X in Pk. This algebro-geometric material is needed for the definition of iterated
integrals on membranes presented in Subsection 1.4.

Let f1, f2, f3 and f4 be four non-zero rational functions on the surface X. Let

C ∪ C1 ∪ · · · ∪ Cn =

4⋃
i=1

|div(fi)|,

where we fix one of the irreducible components C. Let

{P1, . . . , PN} = C ∩ (C1 ∪ · · · ∪ Cn).

We can assume that the curves C,C1, . . . , Cn are smooth and that they form a strict
normal crossing divisor on X, by allowing blow-ups on the surface X. For the second
type of reciprocity laws, where the product of the symbols is over all curves passing
through a point P , we require that strict transforms of the curves C,C1, . . . , Cn under a
single blow-up at the point P together with the exceptional curve form a strict normal
crossing divisor.

The two foliations have to satisfy the following
Conditions:

1. There exists a foliation F ′v such that

(a) F ′v = (f − v)0 are the level sets of a rational function

f : X → P1,

for small values of v, (that is, for |v| < ε for a chosen ε);

(b) F ′v is smooth for all but finitely many values of v;

(c) F ′v has only nodal singularities;

(d) ordC(f) = 1;

(e) Ri /∈ Cj , for i = 1, . . . ,M and j = 1, . . . , n, where

{R1, . . . , RM} = C ∩ (D1 ∪ · · · ∪Dm)

and
F ′0 = (f)0 = C ∪D1 ∪ · · · ∪Dm.

2. There exists a foliation Gw such that

(a) Gw = (g − w)0 are the level sets of a rational function

g : X → P1;

(b) Gw is smooth for all but finitely many values of w;

(c) Gw has only nodal singularities;

(d) g|C is non constant.
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3. Coherence between the two foliations F ′ and G:

(a) All but finitely many leaves of the foliation G are transversal to the curve C.

(b) Gg(Pi) intersects the curve C transversally, for i = 1, . . . , N . (For definition
of the points Pi see the beginning of this Subsection.)

(c) Gg(Ri) intersects the curve C transversally, for i = 1, . . . ,M . (For definition
of the points Ri see condition 1(e).)

The existence of f ∈ C(X)× satisfying properties 1(a-d) is a direct consequence
from the following result, which follows immediately from (a special case of) a result of
Thomas ([Th], Theorem 4.2).

Theorem 1.10. Consider a smooth curve C in a smooth projective surface X, with
hyperplane section HX . There exists a large constant N ∈ N and a pencil in |NHX |,
given as the level sets (f−x)0 of some rational function f such that (f−x)0 is smooth for
all but finitely many values of x, at which it has only nodal singularities, and C ⊂ (f)0.

Moreover, a general choice of g ∈ C(X)× will satisfy 2(a-d) and 3(a-c). (For instance,
the quotient of two generic linear forms on Pk restricted to C will not have branch points
in {Pi} ∪ {Rj}.)

It remains to examine property 1(e). The proof of Theorem 4.2 in [op. cit.] contains
the basic

Observation: The base locus of the linear system H0(IC(N)) is the smooth curve C
for N � 0. So by Bertini’s theorem the general element of the linear system is smooth
away from C.

Consider C ⊂ X. By the Observation, there exists F ∈ H0(X,O(N)) such that
ordC(F) = 1 and (F) = C + D, where D is a second smooth curve on X, meeting C
transversally (if at all).

Claim: We may choose F so that condition 1(e) holds, that is, Ri /∈ Cj for each i, j,
where {R1, . . . , RM} = C ∩D. Equivalently, C ∩D ∩ Cj = ∅.

Proof. Define H0(IC(N))reg to be the subset of H0(X, IC(N)) whose elements F satisfy
ordC(F) = 1 and (F) = C + D as above. Assume that for every N >> 0 and F ∈
H0(IC(N))reg we have D∩C∩Cj 6= ∅ for some particular j. If we obtain a contradiction
(for some N) then the claim is proved, since this is a closed condition for each j.

According to our assumption, (F) always has an ordinary double point at the inter-
section ∆ := C ∩ Cj 6= ∅. In the exact sequence

0→ H0(X, I2
C(N))→ H0(X, IC(N))→ H0(C,N ∗C/X(N))→ H1(X, I2

C(N)),

the last term vanishes by ([GH], Vanishing Theorem B) for N sufficiently large. Hence,
every section over C of the twisted conormal sheafN ∗C/X(N) has a zero along ∆ = C∩Cj .

Next consider the exact sequence

0→ H0(C, I∆ ⊗N ∗C/X(N))→ H0(C,N ∗C/X(N))→ C|∆| → H1(C, I∆ ⊗N ∗C/X(N)).
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The last term vanishes again by [loc. cit.]. Denote the third arrow by ev∆. Then we
can take a section of N ∗C/X(N) not vanishing on ∆ simply by taking an element in the

preimage of ev∆(1, . . . , 1). This produces the desired contradiction.

Consider a metric on the projective surface X, which respects the complex structure.
For example, we can take the metric inherited from the Fubini-Study metric on Pk via
the embedding X ↪→ Pk. Let U ε1, . . . , U

ε
M be disks of radii ε on C, centered respectively

at R1, . . . , RM . Let

C0 = C −
M⋃
j=1

U εj − {P1, . . . , PN}.

Definition 1.11. With the above notation, let Fv be the connected component of

F ′v −

(
M⋃
i=1

Gg(Uεi )

)
∩ F ′v,

containing C0, for |v| << ε, where

Gg(Uεi ) =
⋃
w∈Uεi

Gg(w)

Lemma 1.12. With the above notation, for small values of |v|, we have that each leaf
Fv is a continuous deformation of F0 = C0, preserving homotopy type.

Proof. From Property 3(c), it follows that C and Di meet Rj transversally (if at all).
At the intersection Ri, locally we can represent the curves by xy = 0. The deformation
leads to v− xy = 0, which is a leaf of F ′, locally near Ri. Consider a disk U of radius εi
at (x, y) = (0, 0) in the xy-plane. Then for |v| << εi we have that U separates F ′v into 2
components, one close to the x-axis and the other close to the y-axis. We do the same
for each of the points R1, . . . , RM and we take the minimum of the bounds εi. Then Fv
will consist of points close to the curve C0.

1.4 Iterated integrals on a membrane. Definitions and properties

In this Subsection, we define types of iterated integrals over membranes, needed in most
of this manuscript.

Let τ be a simple loop around C0 in X − C0 −
(⋃M

i=1Gg(Uεi )

)
. Let σ be a loop on

the curve C0. We define a membrane mσ associated to a loop σ in C0 by

mσ : [0, 1]2 → X

and
mσ(s, t) ∈ Ff(τ(t)) ∩Gg(σ(s)).

Note that for fixed values of s and t, we have that

Ff(τ(t)) ∩Gg(σ(s))

consists of finitely many points, where F and G are foliations satisfying the Conditions
in Subsection 1.3 and Lemma 1.12.
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Claim: The image of mσ is a torus.
Indeed, consider a tubular neighborhood around a loop σ on the curve C0. One can

take the following tubular neighborhood:⋃
|v|<ε

Fv ∩Gg(σ)

of σ. Its boundary is Ff(τ)∩Gg(σ), where τ is a simple loop around C0 on X−
⋃n
i=1Ci−⋃m

j=1Dj and |f(τ(t))| = ε.
We shall define the simplest type of iterated integrals over membranes. Also, we are

going to construct local symbols in terms of iterated integrals I1, I2, I3, I4 on membranes,
defined below.

We define the following differential forms

A(s, t) = m∗
(

df1

f1
∧ df2

f2

)
(s, t)

b(s, t) = m∗
(

df3

f3

)
(s, t)

and

B(s, t) = m∗
(

df3

f3
∧ df4

f4

)
(s, t).

The first diagram

s

t A

denotes

I1 =

∫ 1

0

∫ 1

0
A(s, t).

The second diagram

s

t1

t2

A

b

denotes

I2 =

∫ 1

0

∫ ∫
0<t1<t2<1

A(s, t1) ∧ b(s, t2).

Note that the iteration happens with respect to t1 and t2. In other word,∫ ∫
0<t1<t2<1

A(s, t1) ∧ b(s, t2)

is a differential 1-form on the loop space of X(see [Ch2]). These differential 1-forms on
the loop space of X are closed, since dA = db = 0 and A(s, t) ∧ b(s, t) = 0.

The third diagram
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s1 s2

t A b

denotes

I3 =

∫ ∫
0<s1<s2<1

∫ 1

0
A(s1, t) ∧ b(s2, t).

And the fourth diagram

s1 s2

t1

t2

A

B

denotes

I4 =

∫ ∫
0<s1<s2<1

∫ ∫
0<t1<t2<1

A(s1, t1) ∧B(s2, t2).

The integral I4 is a homotopy invariant function with variable the torus of integration
m. The proof of the homotopy invariance for iterated integrals over membranes, such at
I4, can be found in [H4] and in more general form in [H5].

Local symbols will be defined via the above four types of iterated integrals. The
integrals that we define below, used for defining bi-local symbols, are a technical tool for
proving reciprocity laws for the local symbols. Bi-local symbols also satisfy reciprocity
laws.

Consider the dependence of log(fi(m(s, t))) on the variables s and t via the parametriza-
tion of the membrane m.

Definition 1.13. Let
li(s, t) = log(fi(m(s, t)))

We have

dli(s, t) =
∂li(s, t)

∂s
ds+

∂li(s, t)

∂t
dt.

b(s, t) = dl3(s, t)

A(s, t) =
∂l1(s, t)

∂s

∂l2(s, t)

∂t
ds ∧ dt− ∂l1(s, t)

∂t

∂l2(s, t)

∂s
ds ∧ dt (1.5)

B(s, t) =
∂l3(s, t)

∂s

∂l4(s, t)

∂t
ds ∧ dt− ∂l3(s, t)

∂t

∂l4(s, t)

∂s
ds ∧ dt (1.6)

The above equations express the differential forms A, B and b is terms of monomials in
terms of first derivatives of l1, l2, l3, l4. We are going to define bi-local symbols associated
to monomials in first derivatives of l1, l2, l3, l4, which occur in

A(s, t), A(s, t1) ∧ b(s, t2), A(s1, t) ∧ b(s2, t), and A(s1, t2) ∧B(s2, t2)
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Definition 1.14. (Iterated integrals on membranes) Let f1, . . . , fk+l be rational functions
on X, where the pairs (k, l) will be superscripts of the integrals. Let m be a membrane
as above. We define:

(a) I(1,1)(m; f1, f2) =

=

∫ 1

0

∫ 1

0

(
∂l1(s, t)

∂s
ds

)
∧
(
∂l2(s, t)

∂t
dt

)
(b) I(1,2)(m; f1, f2, f3) =

=

∫ ∫ ∫
0≤s≤1; 0≤t1≤t2≤1

(
∂l1(s, t1)

∂s

∂l2(s, t1)

∂t1
ds ∧ dt1

)
∧
(
∂l3(s, t2)

∂t2
dt2

)
(c) I(2,1)(m; f1, f2, f3) =

=

∫ ∫ ∫
0≤s1≤s2≤1; 0≤t≤1

(
∂l1(s1, t)

∂s1

∂l2(s1, t)

∂t
ds1 ∧ dt

)
∧
(
∂l3(s2, t)

∂s2
ds2

)
(d) I(2,2)(m; f1, f2, f3, f4) =

=

∫ ∫ ∫ ∫
0≤s1≤s2≤1; 0≤t1≤t2≤1

(
∂l1(s1, t1)

∂s1

∂l2(s1, t1)

∂t1
ds1 ∧ dt1

)
∧

∧
(
∂l3(s2, t2)

∂s2

∂l4(s2, t2)

∂t2
ds2 ∧ dt2

)
Proposition 1.15. (a) I1 = I(1,1)(m; f1, f2)− I(1,1)(m; f2, f1);

(b) I2 = I(1,2)(m; f1, f2, f3)− I(1,2)(m; f2, f1, f3);
(c) I3 = I(2,1)(m; f1, f2, f3)− I(2,1)(m; f2, f1, f3);
(d) I4 = I(2,2)(m; f1, f2, f3, f4) − I(2,2)(m; f2, f1, f3, f4) − I(2,2)(m; f1, f2, f4, f3) +

I(2,2)(m; f2, f1, f4, f3);

Consider a metric on the projective surface X inherited from the Fubini-Study metric
on Pk. Let τ be a simple loop around the curve C of distance at most ε from C. We are
going to take the limit as ε→ 0. Informally, the radius of the loop τ goes to zero. Then
we have the following lemma.

Lemma 1.16. With the above notation the following holds:
(a)

lim
ε→0

I(1,1)(mσ, f1, f2) = (2πi)Res
df2

f2

∫
σ

df1

f1

(b)

lim
ε→0

I(1,2)(mσ, f1, f2, f3) =
(2πi)2

2
Res

df2

f2
Res

df3

f3

∫
σ

df1

f1

(c)

lim
ε→0

I(2,1)(mσ, f1, f2, f3) = −(2πi)Res
df2

f2

∫
σ

df1

f1
◦ df3

f3
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(d)

lim
ε→0

I(2,2)(mσ, f1, f2, f3, f4) = −(2πi)2

2
Res

df2

f2
Res

df4

f4

∫
σ

df1

f1
◦ df3

f3

Proof. First, we consider the integrals in parts (a) and (c), where there is integration
with respect to the variable t in the definition of the membrane m. Let m(s, ·) denote
the loop obtained by fixing the first variable s and varying the second variable t.Then,
there is no iteration along the loop m(s, ·) around the curve C, for fixed value of s. Using
Properties 1(d) and e(b), the integration over the loop m(s, ·) gives us a single residue.
This process is independent of the base point of the loop m(s, ·). That proves parts (a)
and (c).

For parts (b) and (d), we have a double iteration along the loop m(s, ·) around the
curve C, where the value of s is fixed and the second argument varies. After taking
the limit as ε goes to 0, the integral along m(s, ·), with respect to t1 and t2, becomes
a product of two residues (see Equation (1.3)), which are independent of a base point.
That proves parts (b) and (d).

2 First type of reciprocity laws

2.1 Reciprocity laws for bi-local symbols

In this Subsection, we define bi-local symbols and prove their reciprocity laws. Using
them, in the following two Sections, we establish the first type of reciprocity laws for the
Parshin symbol and for a new 4-function symbol. By a first type of reciprocity law, we
mean that the product of the local symbols is taken over all points P of a fixed curve C
on the surface X.

Consider the fundamental group of C0. We recall that C0 is essentially the curve
C without several intersection points and without several open neighborhoods. More
precisely,

C0 = C −

 m⋃
j=1

GUεj

 ∩ C −( n⋃
i=1

Ci

)
∩ C.

where U εj is a small neighborhood of Rj on the complex curve C. We recall the notation
for the intersection points

{P1, . . . , PN} = C ∩ (C1 ∪ · · · ∪ Cn) ,

{R1, . . . , RM} = C ∩ (D1 ∪ · · · ∪Dm) ,

Let
π1(C0, Q) =< σ1, . . . , σn, α1, β1, . . . , αg, βg > / ∼

be a presentation of the fundamental group, where

δ ∼ 1,

for

δ =
n∏
i=1

σi

g∏
j=1

[αj , βj ].
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We are going to drop the indices i and j. Thus, we are going to write P instead of
Pi or Rj and σ instead of σi. Consider the definition of a membrane mσ, associated to
a loop σ, given in the beginning of Subsection 1.4. Let mσ(s, ·) be the loop obtained by
fixing the variable s and letting the second argument vary. Similarly, mσ(·, t) denotes
the loop obtained by fixing the variable t and letting the first argument vary.

Definition 2.1. Let ak = ordC(fk) and bk = ordP ((x−akfk)|C), where x is a rational
function, representing an uniformizer such that ordC(x) = 1 and P is not an intersection
of any two of the components of the divisor of x.

It is straightforward to represent the order of vanishing as residues, given by the
following:

Lemma 2.2. We have

ak =
1

2πi

∫
mσ(s,·)

dfk
fk

and bk =
1

2πi

∫
mσ(·,t)

dfk
fk
.

Using properties 1(d) and 3(b), we should think of mσ(·, t) and mσ(s, ·) as translates
of σ and of τ , respectively. Then the above integrals are residues, which detect the order
of vanishing. For example ak is the order of vanishing of fk along a generic point of C.
Then the following theorem holds, whose proof is immediate from Lemmas 1.16 and 2.2.

Theorem 2.3. (a)
(2πi)−2 lim

ε→0
I(1,1)(mσ, f1, f2) = a2b1,

(b)
(2πi)−2 lim

ε→0
I(1,2)(mσ, f1, f2, f3) = (πi)a2a3b1,

(c)

exp
(

(2πi)−2 lim
ε→0

I(2,1)(mσ, f1, f2, f3)
)

=
(
{f1, f3}QP

)−a2
,

(d)

exp

(
2

(2πi)3
lim
ε→0

I(2,2)(mσ, f1, f2, f3, f4)

)
=
(
{f1, f3}QP

)−a2a4
.

Let us denote by α the loop αj and by β the loop βj . Then the following lemma
holds

Lemma 2.4. (a)
(2πi)−2 lim

ε→0
I(1,1)(m[α,β]f1, f2) = 0,

(b)
(2πi)−2 lim

ε→0
I(1,2)(m[α,β], f1, f2, f3) = 0,

(c)

exp
(

(2πi)−2 lim
ε→0

I(2,1)(m[α,β], f1, f2, f3)
)

= 1,

(d)

exp

(
2

(2πi)3
lim
ε→0

I(2,2)(m[α,β], f1, f2, f3, f4)

)
= 1.
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Proof. It follows from Lemmas 1.16 and 1.7. A more modern proof follows from the
well-definedness of the integral Beilinson regulator on K2 on the level of homology (see
[Ke1].)

Definition 2.5. (Bi-local symbols on a surface) For a simple loop σ around a point P
in C0, based at Q, let

Log(i,j)[f1, . . . , fi+j ]
(1),Q
C,P = lim

e→0
I(i,j)(mσ, f1, . . . , fi+j),

1,2[f1, f2, f3]
(1),Q
C,P = exp

(
(2πi)−2 lim

ε→0
I(1,2)(mσ, f1, f2, f3)

)
,

2,1[f1, f2, f3]
(1),Q
C,P = exp

(
(2πi)−2 lim

ε→0
I(2,1)(mσ, f1, f2, f3)

)
,

2,2[f1, f2, f3, f4]
(1),Q
C,P = exp

(
2

(2πi)3
lim
ε→0

I(2,2)(mσ, f1, f2, f3, f4)

)
.

The following reciprocity laws hold for the above bi-local symbols.

Theorem 2.6. (a)
∑

P Log
1,1[f1, f2]

(1),Q
C,P = 0.

(b)
∏
P

1,2[f1, f2, f3]
(1),Q
C,P = 1.

(c)
∏
P

2,1[f1, f2, f3]
(1),Q
C,P = 1.

(d)
∏
P

2,2[f1, f2, f3, f4]
(1),Q
C,P = 1.

Proof. Parts (b), (c) and (d) follow directly from Theorem 2.3 and from Weil reciprocity.
Part (a) follows again from Theorem 2.3 and the theorem that the sum of the residues
of a differential form on a curve is zero.

2.2 Parshin symbol and its first reciprocity law.

In this Subsection, we construct a refinement of the Parshin symbol in terms of six bi-
local symbols. Using this presentation of the Parshin symbol, Definition 2.7 and Theorem
2.8, we prove the first reciprocity of the Parshin symbol (Theorem 2.9).

Definition 2.7. We define the following bi-local symbol

PrQC,P =
(

1,2[f1, f2, f3]
(1),Q
C,P

)(
1,2[f2, f3, f1]

(1),Q
C,P

)(
1,2[f3, f1, f2]

(1),Q
C,P

)
×

×
(

2,1[f1, f2, f3]
(1),Q
C,P

)(
2,1[f2, f3, f1]

(1),Q
C,P

)(
2,1[f3, f1, f2]

(1),Q
C,P

)
at the points P = Pi ∈ C ∩ (C1∪ · · ·∪Cn) and a fixed point Q in C−C ∩ (C1∪ · · ·∪Cn).

Using Theorem 2.3 parts (b) and (c), we obtain:

Theorem 2.8. (Refinement of the Parshin symbol) We have the following explicit for-
mula

PrQC,P = (−1)K

(
fD1

1 fD2
2 fD3

3

)
(P )(

fD1
1 fD2

2 fD3
3

)
(Q)

,
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where

D1 =

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ , D2 =

∣∣∣∣ a3 a1

b3 b1

∣∣∣∣ , D3 =

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣
and

K = a1a2b3 + a2a3b1 + a3a1b2 + b1b2a3 + b2b3a1 + b3b1a2.

Note that PrQC,P is essentially the Parshin symbol given in Definition (0.3). Recall,
the Parshin symbol is

{f1, f2, f3}C,P = (−1)K
(
fD1

1 fD2
2 fD3

3

)
(P ).

The only difference between the two symbols is the constant factor in PrQC,P , depend-

ing only on the base point Q (the denominator of PrQC,P ). Rescaling by that constant
leads to the Parshin symbol.

Theorem 2.9. (First reciprocity law for the Parshin symbol) For the Parshin symbol,
the following reciprocity law holds∏

P

{f1, f2, f3}C,P = 1,

where the product is taken over points P in C ∩ (C1 ∪ · · · ∪ Cn). (When P is another
point of C then the symbol is trivial.)

Proof. Without loss of generality, we can assume that the divisor
⋃3
i=1 |(fi)| in X is a

strict normal crossing divisor. The assumption can be achieved, first, by considering
successive blow-ups of the surface X to obtain a strict normal crossing divisor. Then we
can use the invariance of the Parshin symbol under blow-ups. Indeed, if

⋃3
i=1 |(fi)| is

a strict normal crossing divisor then a blow-up will change the parameters from (ai, bi)
to (ai, ai + bi) for i = 1, 2, 3. Note that the Parshin symbol is invariant under such
transformation. If we have two resolutions of singularities via blow-ups of X, X1 → X
and X2 → X , we can take their fiber product X1 ×X X2 → X, which will be a third
resolution of singularity. Using the above change of coordinates we obtain that the
Parshin symbols on X1 and on X1 ×X X2, will be the same. Similarly, the Parshin
symbols on X2 and on X1 ×X X2. Thus, the Pashin symbol is independent of blow-ups.

The reciprocity law for the bi-local symbol PrQP follows at once from Theorem 2.6
parts (b) and (c). It is related to the Parshin symbol by the formula

{f1, f2, f3}C,P = PrQC,P

(
fD1

1 fD2
2 fD3

3

)
(Q).

Now, we remove the dependence of PrQP on the base point Q. In order to do that, note
that ∏

P

f1(Q)D1 = g1(Q)
∑
P D1 .

Here g1 = x−a1f1, where x is a rational function on the surface X, representing an
uniformazer at the curve C, such that the components of the divisor of x do not intersect
at the points P or Q. Moreover,

D1 = (2πi)−2
(
Log1,1[f2, f3]

(1),Q
P − Log1,1[f3, f2]

(1),Q
P

)
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by Theorem 2.3 part (a) and Proposition 1.15 part (a). Using Theorem 2.6 part (a), for
the above equality, we obtain ∑

P

D1 = 0.

Therefore, ∏
P

g1(Q)D1 = 1.

Similarly, ∏
P

g2(Q)D2 = 1 and
∏
P

g3(Q)D3 = 1,

where gk = x−akfk.

2.3 First 4-function local symbol and its reciprocity law

In this Subsection, we define a new 4-function local symbol on a surface. We also express
the new 4-function local symbol as a product of bi-local symbols (Definition 2.10 and
Proposition 2.11), which serves as a refinement similar to the refinement of the Parshin
symbol in Subsection 2.2. Using the reciprocity laws for bi-local symbols established in
Subsection 2.1, we obtain the first type of reciprocity law for the new 4-function local
symbol (Theorem 2.13).

Definition 2.10. We define the following bi-local symbol, which will lead to the 4-
function local symbol on a surface.

PRQC,P =
(

2,2[f1, f2, f3, f4]
(1),Q
P

)(
2,2[f1, f2, f4, f3]

(1),Q
P

)−1
×

×
(

2,2[f2, f1, f3, f4]
(1),Q
P

)−1 (
2,2[f2, f1, f4, f3]

(1),Q
P

)
.

Using Theorem 2.3, part (d), we obtain:

Proposition 2.11. Explicitly, the bi-local symbol PRQC,P is given by

PRQC,P = (−1)L

(
f
a2
1

f
a1
2

)a3b4−b3a4
(
f
a4
3

f
a3
4

)a1b2−b1a2 (P ) ·


(
f
a2
1

f
a1
2

)a3b4−b3a4
(
f
a4
3

f
a3
4

)a1b2−b1a2 (Q)


−1

, (2.1)

where
L = (a1b2 − a2b1)(a3b4 − a4b3).

Definition 2.12. (4-function local symbol) With the above notation, we define a 4-
function local symbol

{f1, f2, f3, f4}(1)
C,P = (−1)L

(
f
a2
1

f
a1
2

)a3b4−b3a4
(
f
a4
3

f
a3
4

)a1b2−b1a2 (P ).
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It is an easy exercise to check that the symbol {f1, f2, f3, f4}(1)
C,P is independent of

the choices of local uniformizers. See also the Appendix for K-theoretical approach for
the 4-function local symbol. Note that the relation between the bi-local symbol PRCC,P

and the local symbol {f1, f2, f3, f4}(1)
C,P is only a constant factor depending on the base

point Q. There is a similar relation between the bi-local symbol PrQC,P and the Parshin
symbol {f1, f2, f3}C,P .

Theorem 2.13. (Reciprocity law for the first 4-function local symbol) The following
reciprocity law for the 4-function local symbol on a surface holds∏

P

{f1, f2, f3, f4}(1)
C,P = 1,

where the product is taken over points P on a fixed curve C.

Proof. Without loss of generality, we can assume that the divisor
⋃4
i=1 |(fi)| in X is

a strict normal crossing divisor. The assumption can be achieved, first, by considering
successive blow-ups of the complex projective surface X to a obtain strict normal crossing
divisor.

Similar to the Parshin symbol the 4-function local symbol is invariant under blow-
ups. Indeed, if

⋃4
i=1 |(fi)| is a strict normal crossing divisor then a blow-up will change

the parameters from (ai, bi) to (ai, ai+ bi) for i = 1, 2, 3, 4. Note that the first 4-function
local symbol is invariant under such transformation.

Note also that both a torus of integration and the two foliations can push-forward
with respect to a blow-up map. That allows to transfer analytic tools to a general
complex projective surface.

Using Theorem 2.6 part (d), we obtain that the bi-local symbol PRQC,P satisfies a
reciprocity law, namely, ∏

P

PRQC,P = 1, (2.2)

where the product is over all points P in C ∩ (C1 ∪ · · · ∪ Cn). In order to complete the
proof of Theorem 2.13, we proceed similarly to the proof of the first Parshin reciprocity
law. Namely, ∏

P

g1(Q)a2(a3b4−a4b3) = g1(Q)a2
∑
P a3b4−a4b3 = g(Q)b2·0 = 1, (2.3)

where g1 = x−a1f1 and x is a rational function representing an uniforminzer at the curve
C, such that the components of the divisor of x do not intersect at the points P or Q.
The last equality of (2.3) holds, because

a3b4 − a4b3 = (2πi)−2
(
Log1,1[f3, f4]

(1),Q
C,P − Log

1,1[f4, f3]
(1),Q
C,P

)
= 0

and ∑
P

(2πi)−2
(
Log1,1[f3, f4]

(1),Q
C,P − Log

1,1[f4, f3]
(1),Q
C,P

)
= 0,

by Theorem 2.3 (a) and Theorem 2.6 (a), respectively.
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There is one more interesting relation for the 4-function symbol, whose is a direct
consequence of the explicit formula of the symbol.

Theorem 2.14. Let
Rijkl = {fi, fj , fk, fl}C,P .

Then Rijkl has the same symmetry as the symmetry of a Riemann curvature tensor with
respect to permutations of the indices, namely

Rijkl = −Rjikl = −Rijlk = −Rklij .

3 Second type of reciprocity laws

3.1 Bi-local symbols revisited

In this Subsection, we define bi-local symbols, designed for proofs of the second type of
reciprocity laws for local symbols. These bi-local symbols also satisfy reciprocity laws.
Using them, in the following two sections, we establish the second type of reciprocity
laws for the Parshin symbol and for a new 4-function new symbol. By a second type of
reciprocity law, we mean that the product of the local symbols is taken over all curves
C on the surface X, passing through a fixed point P .

Let C1, . . . , Cn be curves in X intersecting at a point P . Assume that C1, . . . , Cn are
among the divisors of the rational functions f1, . . . , f4. Let X̃ be the blow-up of X at the
point P . Assume that after the blow-up the curves above C1, . . . , Cn meet transversally
the exceptional curve E and no two of them intersect at a point on the exceptional curve
E.

Let D be a curve on X̃ such that D intersects E in one point. Setting

P̃k = E ∩ C̃k,

where C̃k is the strict transform of Ck under the blow-up, and

Q = E ∩D,

Definition 3.1. We define the following bi-local symbols

i,j [f1, . . . , fi+j ]
(2),D
Ck,P

:=i,j [f1, . . . , fi+j ]
(1),Q

E,P̃k
.

Theorem 3.2. The following reciprocity laws for bi-local symbols hold:

(a) ∏
Ck

1,2[f1, f2, f3]
(2),D
Ck,P

= 1,

(b) ∏
Ck

2,1[f1, f2, f3]
(2),D
Ck,P

= 1,

(c) ∏
Ck

2,2[f1, f2, f3, f4]
(2),D
Ck,P

= 1,

where the product is over the curves C, among the divisors of at least one of the rational
functions f1, . . . , f4, which pass through the point P .
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The proof is reformulation of Theorem 2.6, where the triple (Ck, D, P ) in the above
Theorem correspond to the triple (P,Q,C) with P = Ck∩E and Q = D∩E in Theorem
2.6, where the curve C in Theorem 2.6 corresponds to the curve E.

3.2 Parshin symbol and its second reciprocity law.

In this Subsection, we present an alternative refinement of the Parshin symbol in terms of
bi-local symbols (Definition 3.3). This implies the second reciprocity law for the Parshin
symbol, since each of the bi-local symbols satisfy the second type of reciprocity laws (see
Subsection 3.1).

Definition 3.3. We define the following bi-local symbol, useful for the proof of the second
reciprocity law of the Parshin symbol

PrDC,E =
(

1,2[f1, f2, f3]
(2),D
C,P

)(
1,2[f2, f3, f1]

(2),D
C,P

)(
1,2[f3, f1, f2]

(2),D
C,P

)
×

×
(

2,1[f1, f2, f3]
(2),D
C,P

)(
2,1[f2, f3, f1]

(2),D
C,P

)(
2,1[f3, f1, f2]

(2),D
C,P

)
,

Let P̃ = C̃ ∩ E, Q = D ∩ E. Then

PrDC,E = PrQ
E,P̃

.

Similarly to the proof of Theorem 2.9, we can remove the dependence of the bi-local
symbol PrQ

E,P̃
on the base point Q.

Definition 3.4. The second Parshin symbol {f1, f2, f3}(2)
C,E is the symbol, explicitly given

by

{f1, f2, f3}(2)
C,E = (−1)K

(
fD1

1 fD2
2 fD3

3

)
(P̃ ),

where

D1 =

∣∣∣∣ c2 c3

d2 d3

∣∣∣∣ , D2 =

∣∣∣∣ c3 c1

d3 d1

∣∣∣∣ , D3 =

∣∣∣∣ c1 c2

d1 d2

∣∣∣∣
and

K = c1c2d3 + c2c3d1 + c3c1d2 + d1d2c3 + d2d3c1 + d3d1c2,

with ck = ordE(fk) and di = ordP̃ ((y−ckfk)|E). Here y is a rational function representing
an uniformizer at E such that the components of the divisor of y do not intersect at the
point P̃ .

Proposition 3.5. The second Parshin symbol is equal to the inverse of the Parshin
symbol. More precisely,

{f1, f2, f3}(2)
C,E = ({f1, f2, f3}C,P )−1

Let
ai = ordC(fi)

and
bi = ordP ((x−aifi)|C),

where x is a rational function representing a uniformizer at C, whose support does not
contain other components passing through the point P .
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Lemma 3.6. With the above notation, the following holds

ordE(fi) = ci = ai + bi.

Proof. We still assume that after the blow-up the union of the support of the rational
functions f1, f2, f3 have normal crossings and no three curves intersect at a point. Before
the blow-up, let C1, . . . , Cn be all the components of the union of the support of the three
rational functions that meet at the point P . And let E be the exceptional curve above
the point P . Then for C = C1, we have

bi =

n∑
j=2

ordCj (fi)

and

ordE(fi) =

n∑
j=1

ordCj (fi).

That proves the Lemma.

Proof. (of Proposition 3.5) Consider the pairs (C,P ) on the surface X and (E, C̃) on
the blow-up X̃. Then by the above Lemma, we have

[
ci
di

]
=

 ordE(fi)

ordC̃(fi)

 =

[
1 1
1 0

]
·

 ai

bi

 (3.1)

The Parshin symbol is invariant under change of variables given by

[
1 0
1 1

]
. Also

the Parshin symbol is sent to its reciprocal when we change the variables by a matrix[
0 1
1 0

]
. That proves the Proposition.

Theorem 3.7. (Second reciprocity law for the Parshin symbol) We have∏
C

{f1, f2, f3}C,P = 1,

where the product is over the curves C from the divisor
⋃3
i=1 |(fi)|, which pass through

the point P . (For all other choices of curves C, the Parshin symbol will be equal to 1.)

Proof. We can use Proposition 3.5 and the first reciprocity law for the Parshin symbol
given in Theorem 2.9. Then Theorem 3.7 follows.

3.3 The second 4-function local symbol and its reciprocity law

In this Subsection, We define a second type of 4-function local symbol (Definition 3.10),
which satisfies the second type reciprocity laws. By a second reciprocity law, we mean
that the product of the local symbols is taken over all curves C on the surface X,
which pass through a fixed point P . The 4-function local symbol has a refinement (see
Definition 3.8, which provides a proof of the second reciprocity law (Theorem 3.11).
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Definition 3.8. We define a bi-local symbol, useful for the second reciprocity law for a
new 4-function local symbol. Let

PRDC,P =
(

2,2[f1, f2, f3, f4]
(2),D
C,E

)(
2,2[f1, f2, f4, f3]

(2),D
C,E

)−1
×

×
(

2,2[f2, f1, f3, f4]
(2),D
C,E

)−1 (
2,2[f2, f1, f4, f3]

(2),D
C,E

)
.

Let
L = (c1d2 − c2d1)(c3d4 − c4d3),

where
ci = ordE(fi),

di = ordP̃ ((x−aifi)|E),

for a rational function x, representing a uniformizer at E, whose support does not contain
other components passing through the point P̃ = E ∩ C̃.

Lemma 3.9.

PRDC,E = (−1)L


(
f
c2
1

f
c1
2

)c3d4−c4d3
(
f
c4
3

f
c3
4

)c1d2−c2d1 (P̃ )


−1 (

f
c2
1

f
c1
2

)c3d4−c4d3
(
f
c4
3

f
c3
4

)c1d2−c2d1 (Q),

where Q = D ∩ E.

It follows directly from Equation 2.1 and Lemma 3.6.

Definition 3.10. The second 4-function local symbol has the following explicit represen-
tation:

{f1, f2, f3, f4}(2)
C,P = (−1)L


(
f
a2+b2
1

f
a1+b1
2

)a3b4−b3a4
(
f
a4+b4
3

f
a3+b3
4

)a1b2−b1a2 (P )


−1

.

Theorem 3.11. (Reciprocity law for the second 4-function local symbol) We have the
following reciprocity law ∏

C

{f1, f2, f3, f4}(2)
C,P = 1,

where the product is over the curves C from the support
⋃4
i=1 |(fi)|, which pass through

the point P .

Proof. Without loss of generality, we can assume that the the divisor
⋃4
i=1 |(fi)| in X̃ is

a strict normal crossing divisor, where π : X̃ → X is a single blow-up at the point P .
For any complex projective surface X we can blow-up at a point P ∈ X and use the
first 4-function local symbol with respect to the exceptional curve. See Lemma 3.9 for
comparison between the first and the second 4-function local symbols and the Remark
after Theorem 2.13 for the first 4-function local symbol on a general complex projective
surface.
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Using Theorem 3.2, we obtain a reciprocity law for the bi-local symbol PR
(2),D
C,E .

Multiplying each symbol by the same constant, depending only on Q, we can remove
the dependence on Q. Explicitly, the separation between the dependence on D and the
second 4 function local symbol are given in Lemma 3.9. Then we can use Lemma 3.6
in order to express the coefficients ci and di in terms of ai and bi, which implies the
reciprocity law stated in the Theorem 3.11.

A A K-theoretic perspective on the 4-function symbol

Ivan Horozov and Matt Kerr

In this Appendix, we will give an alternative construction of the 4-function local
symbol (valid up to sign) using Milnor K-theory and the Tame symbol. This leads to a
complementary proof of the reciprocity laws. To begin, we shall recall the K-theoretic
approach to the Parshin symbol (Definition 0.3) and its reciprocity laws, due to Kato
[Ka].

Preliminaries on the Tame symbol

For a field F, let SF∗ denote the set of elements of F∗. The nth Milnor K-group KM
n (F)

of F is the quotient of the abelian group ⊗nZ[SF∗ ] by the subgroup generated by all
permutations of

(i) α1 ⊗ α2 ⊗ · · · ⊗ αn + β1 ⊗ α2 ⊗ · · · ⊗ αn − α1β1 ⊗ α2 ⊗ · · · ⊗ αn,
(ii) α1 ⊗ α2 ⊗ · · · ⊗ αn + α2 ⊗ α1 ⊗ · · · ⊗ αn, and
(iii) α1 ⊗ (1− α1)⊗ α3 ⊗ · · · ⊗ αn.

We shall write the resulting abelian group multiplicatively, as products of Milnor symbols
{α1, . . . , αn} (= image of α1 ⊗ · · · ⊗ αn in the quotient). So for example (n = 3), by (ii)
we have {α1, α2, α3}{α2, α1, α3} = 1. An easy consequence of (i) is that {α1, . . . , αn} = 1
if any αi = 1. We remark that KM

2 (F) = K2(F), and KM
1 (F) = K1(F) = F∗.

Specializing henceforth to the case F = C(X), for X a smooth complex projective
variety, we shall use the notations: (f) = (f)0 − (f)∞ ∈ Z1(X) for the divisor of a
function f ∈ C(X)∗, where (f)0 and (f)∞ are effective; |Z| for the support of Z ∈ Z1(X);
x ∈ X1 for a point of codimension 1; and a bar for Zariski closure (for instance, x̄).

Let ξ = {f1, . . . , fn} ∈ KM
n (C(X)) be given. One can show (cf. Prop. 1.2.12 of [Ke2])

that ξ may be expressed as
∏N
i=1{gi1, . . . , gin}mi , where the {gij} ⊂ C(X)∗ satisfy

codimX(i)

⋂
j∈J

∣∣(gij)ε(j)∣∣
 ≥ |J | (A.1)

for each i ∈ {1, . . . , N}, multi-index J ⊂ {1, . . . , n}, and function ε : J → {0,∞},
and where X(i) := X \ ∪nj=1g

−1
ij (1). The point is that we may decompose an arbitrary

Milnor symbol ξ into a product of better behaved symbols, within each of which we have
control over intersections of divisors of functions away from the locus where one or more
functions are 1.
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Now fix a point x ∈ X1 (of codimension 1), and write C(x) for the residue field. The
pullback of a function g ∈ C(X)∗ with ordx(g) = 0 will be denoted by g(x) ∈ C(x)∗.
The Tame symbol is a homomorphism of abelian groups

Tamex : KM
n (C(X))→ KM

n−1(C(x)), (A.2)

which we shall define on an arbitrary ξ = {f1, . . . , fn} by defining it on the factors
{gi1, . . . , gin} described above. Namely, for each such factor (i.e. choice of i ∈ {1, . . . , N}),
there are two possibilities: either (1) x̄ is contained in the closed subset X \ X(i) of X;
or (2) we have x ∈ X1

(i). In case (1), or if (in case (2)) ordx(gij) = 0 (∀j), we set

Tamex{gi1, . . . , gin} = 1. Otherwise, by (A.1) there is exactly one j ∈ {1, . . . , n} such
that ordx(gij) 6= 0; denoting this by j(i), we set

Tamex{gi1, . . . , gin} = {gi1(x), . . . , ĝi,j(i), . . . , gin(x)}(−1)j(i)ordx(gi,j(i)). (A.3)

One may check that relations map to relations, so that (A.2) is well-defined. More-
over, given y ∈ X2 (of codimension 2), a short computation using (A.1) and (A.3) shows
that the composition

KM
n (C(X))

⊕Tamex−→ ⊕x∈X1KM
n−1(C(x))

∑
Tamey−→ KM

n−2(C(y)) (A.4)

is trivial. Finally, if ¯̃x is the proper transform of x̄ under a blow-up X̃
β→ X, then

C(x)
∼=−→ C(x̃) identifies Tamex̃β

∗ξ = Tamexξ.
We remark that Prop. 1.2.12 of [Ke2] relies on the Nesterenko-Suslin-Totaro result

KM
n (C(X)) ∼= CHn(Spec(C(X)), n) together with Bloch’s moving lemma (cf. [op. cit.],

Cor. 1.2.6), which also gives the well-definedness of (A.2). Once one has used this to
rewrite ξ, triviality of (A.4) is nothing but the statement that ∂ ◦∂ = 0 in Bloch’s higher
Chow complex. The triviality of (A.4) may alternatively be deduced from the Gersten
sequence for Milnor K-theory (proved by Gabber; cf. §6 of [Ro]).

We also note that a direct formula for Tamex{f1, . . . , fn} is known, cf. §1.2.3 of

[Ke2]. For n = 2, this is (−1)ordx(f1)ordx(f2)

(
f
ordx(f2)
1

f
ordx(f1)
2

)
(x); if n > 2 and ordx(fj) = 0 for

j > 2, then Tamex{f1, . . . , fn} = {Tamex{f1, f2}, f3(x), . . . , fn(x)}.

Alternate description of the Parshin symbol

Henceforth we shall take dimC(X) = 2. Let x ∈ X1 be a point of codimension 1, C be
the normalization of the complete curve x̄, and P ∈ C(C) be a (closed) point on C.

Definition A.1. PC,P is the composition

KM
3 (C(X))

TameC // K2(C(C))
Tamep // C∗. (A.5)

Clearly PC,P is invariant under blow-up, when x̄ is replaced by its proper transform.
The first reciprocity law

∏
P∈C(C) PC,P {f1, f2, f3} = 1 follows from Weil reciprocity, and

the second law
∏
C(C)3P PC,P {f1, f2, f3} = 1 from (A.4). Alternatively, after a series of

blow-ups one has that ∪|(fi)| is a strict normal crossing divisor, with only C ′ and C ′′

through P ′. Then the second reciprocity law follows from the special case
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PC′,P ′{f1, f2, f3} =
(
PC′′,P ′{f1, f2, f3}

)−1
(A.6)

of (A.4) together with Weil reciprocity on the irreducible components of the exceptional
divisor.

To check that PC,P is the Parshin symbol (0.3), it will suffice to restrict to the case
where only two of the |(fi)| contain P , by (A.1) and the fact that both symbols are
homomorphisms. (This means that both annihilate relations (i)-(iii) above for n = 3.
This is true of PC,P by construction, and is an easy explicit check for (0.3) which we
leave to the reader.) Moreover, we may assume ∪|(fi)| is a strict normal crossing divisor,
due to invariance of both under blow-up.

Let U 3 P be an analytic open neighborhood with U ∩ (
⋃
i |(fi)|) = U ∩ (C ∪ C ′),

and x, y ∈ C(X)∗ be such that (x)|U = C ∩ U and (y)|U = C ′ ∩ U . Then for i = 1, 2, 3
we have fi = xaiybigi where gi|U ∈ O∗(U); the above assumptions give aj = bj = 0 for
some j, say j = 3. We compute PC,P {f1, f2, f3} =

= TamePTameC{xa1yb1g1, x
a2yb2g2, f3}

= TameP

{
(−1)a1a2yb1a2−b2a1

ga21

ga12

∣∣∣∣
C

, f3|C
}

= f3(P )a1b2−a2b1

which coincides with (0.3). The reader may easily check the cases j = 1, 2.

The K-theoretic 4-function local symbol

Turning to our main subject, let x, C, and P be as above.

Definition A.2. QC,P is the composition

K2(C(X))⊗2
Tame⊗2

C // (C(C)∗)⊗2 // // K2(C(C))
Tamep // C∗. (A.7)

Again, invariance under blow-up follows from the definition, and the first reciprocity
law from Weil reciprocity on C. On the other hand, the second reciprocity law fails
dramatically for QC,P , even in the setting of (A.6) above.

Example A.3. Let X = P2 with coordinates [X0 : X1 : X2], and put x = X1
X0
, y = X2

X0

on U = X \ {X0 = 0}. Working on U , set C = {y = 0}, C ′ = {x = 0}, f1 = x, f2 =
−αy, f3 = −x

β , f4 = y, with α, β ∈ C∗. Then TameC{f1, f2} = x, TameC′{f1, f2} = −1
αy ,

TameC{f3, f4} = −x
β , TameC′{f3, f4} = y−1, and so

QC,P ({f1, f2} ⊗ {f3, f4}) = TameP

{
x,−x

β

}
= β

QC′,P ({f1, f2} ⊗ {f3, f4}) = TameP

{
−1

αy
, y−1

}
= α

have no relationship whatsoever.
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To compare QC,P with the 4-function local symbol, invariance under blow-up again
allows us to restrict to the strict normal crossing divisor setting. As above we write
fi = xaiybigi, and compute QC,P ({f1, f2} ⊗ {f3, f4}) =

= TameP {TameC{f1, f2},TameC{f3, f4}}
= TameP {TameC{xa1yb1g1, x

a2yb2g2},TameC{xa3yb3g3, x
a4yb4g4}}

= TameP

{
(−1)a1a2xa1b2−a2b1

(g1|C)a2

(g2|C)a1
, (−1)a3a4xa3b4−a4b3

(g3|C)a4

(g4|C)a3

}

= (−1)(a1b2−a2b1)(a3b4−a4b3)

{
(−1)a1a2

(
(g1(P ))a2

(g2(P ))a1

)}(a3b4−a4b3)

{
(−1)a3a4

(
(g3(P ))a4

(g4(P ))a3

)}(a1b2−a2b1)

= (−1)b1a2a3a4+a1b2a3a4+a1a2b3a4+a1a2a3b4{f1, f2, f3, f4}(1)
C,P .

This motivates the following

Definition A.4. For any f1, f2, f3, f4 ∈ C(X)∗, we set

K [f1, f2, f3, f4]
(1)
C,P := QC,P ({f1, f2} ⊗ {f3, f4})

(f1, f2, f3, f4)
(1)
C,P := K [f1, f2, f3, f4]

(1)
C,P

/
{f1, f2, f3, f4}(1)

C,P .

In light of the above computation and the properties of K [ , , , ]
(1)
C,P and { , , , }(1)

C,P , we
have

Proposition A.5. The symbol ( , , , )
(1)
C,P is invariant under blow-up, takes values in

{1,−1}, and satisfies the first reciprocity law. It is given by

(f1, f2, f3, f4)
(1)
C,P = (−1)b1a2a3a4+a1b2a3a4+a1a2b3a4+a1a2a3b4 , (A.8)

where ak = ordC(fk) and bk = ordP ((x−akfk)|C). Here x is a rational function repre-
senting an uniformizer at C such that P is not an intersection point of the irreducible
components of the support of the divisor (x).

Proof. Validity of (A.8) in general follows from the strict normal crossing divisor case
(the computation above) and invariance under blow-up.

A direct proof of
∏
P∈C(C)(f1, f2, f3, f4)

(1)
C,P = 1 may be obtained from the following

observation. For given fk and C, ak is constant on C. Setting ωk =
(
−ak dxx + dfk

fk

)∣∣∣
C

gives bk(P ) = ResP (ωk), so that (using (A.8))

(f1, f2, f3, f4)
(1)
C,P = exp

(
1
2 (a1a2a3ResP (ω4) + a2a3a4ResP (ω1)+

+a3a4a1ResP (ω2) + a4a1a2ResP (ω3)))

The first reciprocity law then follows from the fact that the sum of residues of each ωk
on C is equal to zero.

This leads to an independent proof of Theorem 2.13, using the reciprocity laws for
K [ , , , ]

(1)
C,P and ( , , , )

(1)
C,P . In our view, both proofs are of conceptual importance. In

particular, the proof in §2 seems promising for the general prospect of building symbols
satisfying reciprocity laws in higher dimension from bilocal symbols.
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Analogues of the second 4-function local symbol

Now we proceed toward an alternative proof of the second type of reciprocity laws for
the new 4-function local symbol.

Let E be the exceptional curve for the blowup of X at the point P . Let C̃ be the
irreducible component sitting above the curve C in the blow-up. We define P̃ = C̃ ∩E.
Similarly to the Proof of Proposition 3.5, we obtain

{f1, f2, f3, f4}(2)
C,P =

(
{f1, f2, f3, f4}(1)

E,P̃

)−1

for the 4-function local symbols. Similarly we define

(f1, f2, f3, f4)
(2)
C,P =

(
(f1, f2, f3, f4)

(1)

E,P̃

)−1
(A.9)

for the sign and
K [f1, f2, f3, f4]

(2)
C,P =

(
K [f1, f2, f3, f4]

(1)

E,P̃

)−1
(A.10)

for the K-theoretic symbol.

Proposition A.6. For the sign and the K-theoretic symbol we have a second type of
reciprocity laws. ∏

C

(f1, f2, f3, f4)
(2)
C,P = 1

and ∏
C

K [f1, f2, f3, f4]
(2)
C,P = 1,

where the product is taken over all curves C, passing through the point P . Here we
assume that the union of the support of the divisors

⋃4
i=1 |div(fi)| in X̃ have normal

crossings and no two components have a common point with the exceptional curve E in
X̃ above the point P . We denote by X̃ the blow-up of X at the point P .

Proof. For the K-theoretic symbol we have

∏
C

K [f1, f2, f3, f4]
(2)
C,P =

∏
P̃

K [f1, f2, f3, f4]
(1)

E,P̃

−1

= 1.

The first equality follows from the definition of K [f1, f2, f3, f4]
(2)
C,P and the second equality

from Definition A.2 and Weil reciprocity on E.

Proof. (an alternative proof of Theorem 3.11) We have the following equalities∏
C

{f1, f2, f3, f4}(2)
C,P =

∏
C

K [f1, f2, f3, f4]
(2)
C,P

∏
C

(f1, f2, f3, f4)
(2)
C,P = 1.

The first equality follows from Definition A.4 and Equations (A.9) and (A.10). The
second equality follows from Proposition A.6.
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