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Abstract

We study the complex geometry and coherent cohomology of nonclassical
Mumford-Tate domains and their quotients by discrete groups. Our focus through-
out is on the domains D which occur as open G(R)-orbits in the flag varieties for
G = SU(2, 1) and Sp(4), regarded as classifying spaces for Hodge structures of
weight three. In the context provided by these basic examples, we formulate and
illustrate the general method by which correspondence spaces W give rise to Pen-
rose transforms between the cohomologies Hq(D,L) of distinct such orbits with
coefficients in homogeneous line bundles.

Turning to the quotients, representation theory allows us to define subspaces
of Hq(Γ\D,L) called cuspidal automorphic cohomology, which via the Penrose
transform are endowed in some cases with an arithmetic structure. We demonstrate
that the arithmetic classes assume arithmetic values at CM points in W, up to a
transcendental factor that depends only on the CM type.

The representations related to this result are certain holomorphic discrete series
representations of G(R). We conclude with a discussion of how our framework may
also be used to study the K-types and n-cohomology of (non-holomorphic) totally
degenerate limits of discrete series, and to give an alternative treatment of the main
result of [C1]. These especially ineteresting connections will be further developed
further in future works.
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Key words and phrases. Mumford-Tate group, automorphic cohomology, Mumford-Tate domain,
CM point, homogeneous complex manifold, Lagrange quadrilateral, homogeneous line bundle,
correspondence space, cycle space, Stein manifold, Penrose transform, coherent cohomology, Pi-

card and Siegel automorphic forms, automorphic cohomology, cuspidal automorphic cohomology,
discrete series, Lie algebra cohomology, K-type, TDLDS.
Partially supported by NSF Standard Grant DMS-1068974.

iv



Introduction

The objective of this work is to study aspects of the automorphic cohomology
groups Hq(X,Lµ) on quotients X = Γ\D by an arithmetic group Γ acting on a class
of homogeneous complex manifolds D = GR/T . Here GR is the connected real Lie
group associated to a reductive Q-algebraic group G, T ⊂ GR is a compact maximal
torus, and µ the weight associated to a character of T that gives a homogeneous
holomorphic line bundle Lµ → D. These D’s may be realized as Mumford-Tate
domains that arise in Hodge theory, and in general we shall follow the terminology
and notations from the monograph [GGK1].1 We shall say that D is classical if
it equivariantly fibres holomorphically or anti-holomorphically over an Hermitian
symmetric domain; otherwise it is non-classical, and this is the case of primary
interest in this paper.

In the non-classical case it has been known for a long time that, at least when
Γ is co-compact in GR,

• H0(X,Lµ) = 0 for any non-trivial µ;
• when µ is sufficiently non-singular,2 then{

Hq(X,Lµ) = 0, q 6= q(µ+ ρ)

Hq(µ+ρ)(X,Lµ) 6= 0

where q(µ+ ρ) will be defined in the text.

More precisely, for k = k0 and any non-singular µ

dimHq(µ+ρ)(X,Lkµ) = vol(X) · Pµ(k)

where Pµ(k) is a Hilbert polynomial with leading term Cµk
dimD where Cµ > 0

is independent of Γ. Thus, in the non-classical case there is a lot of automorphic
cohomology and it does not occur in degree zero. In the classical case, the intensive
study of the very rich geometric, Hodge theoretic, arithmetic and representation
theoretic properties of automorphic forms has a long and venerable history and
remains one of great current interest. In contrast, until recently in the non-classical
case the geometric and arithmetic properties of automorphic cohomology have re-
mained largely mysterious.3

For three reasons this situation has recently changed. One reason is the works
[Gi], [EGW] that give a general method for interpreting analytic coherent cohomol-
ogy on a complex manifold as holomorphic de Rham cohomology on an associated

1Cf. the Notations and Terminology section below.
2Non-singular, or regular, means that µ is not on the wall of a Weyl chamber; sufficiently non-
singular means that µ is at a large enough distance |µ| from any wall.
3Important exceptions are the works Schmid [Schm1], Williams [Wi1], [Wi2], [Wi3], [Wi4],

[Wi5], Wells and Wolf [WW1], [WW2], [WW3], and Wolf [Wo], some of which will be discussed
below. These deal primarily with the representation-theoretic aspects of automorphic cohomology.

1



2 INTRODUCTION

correspondence space W.4 In the two examples of this paper, of which a particular
case of the first example is studied in [Gi] and [EGW], the associated space W

will be seen to have a very rich geometric structure and the relevant holomorphic
de Rham cohomology classes will turn out to have canonical representatives. The
upshot is that in the situation of this work automorphic cohomology classes can be
“evaluated” at points of W.

A second reason is the very interesting work [C1], [C2], [C3] of Carayol.5 In
the case G = U(2, 1), a case already considered in [EGW], Carayol uses the result
in [EGW] applied to a diagram

W

π′

��555555
π

��������

D D′,

(1)

where D is non-classical and D′ is classical, to construct a Penrose-type transform

(2) P : H0(D′, L′µ′)→ H1(D,Lµ)

that relates the classical object H0(D′, L′µ′) to the non-classical object H1(D,Lµ).

He also shows that (1) and (2) exist on the quotients by Γ. For special choices of µ′

the group H0(X ′, L′µ′) is interpreted as Picard automorphic forms. The construc-

tion of P is via the commutative diagram (the notations are explained below)

(3) H0
DR

(
Γ(W,Ω•π′ ⊗ π

′−1L′µ′)
)

//___ H1
DR

(
Γ(W,Ω•π ⊗ π−1Lµ)

)

∼ = ∼ =

H0(D′, L′µ′)
P // H1(D,Lµ)

where the vertical isomorphisms are the above mentioned result in [EGW].6

In [C1], [C2] for U(2, 1) the dotted arrow above is constructed by explicit
“coordinate calculations”, and one of the main purposes of this paper is to give a
general, intrinsic geometric construction of such maps. More specifically, the dotted

4For some time it has been known that in certain cases the cohomology group Hq
0(D,Lµ) may

be realized as a subspace of the space of holomorphic sections of a holomorphic vector bundle

over the cycle space U (cf. [Schm2], [BE] and [FHW]). Moreover this interpretation descends to

quotients by Γ. The correspondence space will lie over the cycle space and in a number of ways
appears to be a more fundamental object.
5The authors would like to thank Wushi Goldring for bringing this work to our attention and for
some helpful discussions early in the preparation of this manuscript.
6Penrose transforms associated to the diagram

(4) I

�������

��0
0000

D U,

where I ⊂ D × U is the incidence variety by means of “pull-back and push-down” are classical
and over the years have been the subject of extensive work; cf. [Schm2], [BE], [EWZ], [FHW]
and the references cited therein. The “Penrose-type” transforms we will be discussing in this

paper are somewhat different and have more the flavor of the maps on cohomology induced by
a correspondence in classical algebraic geometry induced by a cycle on the product of the two
varieties.
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arrow will be seen to be multiplication by the restriction to W ⊂ W̌ of a canonical
form

ω ∈ Γ
(
W̌,Ω1

π ⊗ L(µ, µ′)
)

where L(µ, µ′) → W̌ is a homogeneous line bundle over W̌ ∼= GC/TC associated to
the characters µ, µ′ and to the relative positions of the Borel subgroups B and B′

associated to D and D′. For the analogous diagram to (3) for a general Hq′(D′, L′µ)
and Hq(D,Lµ) one has

ω =
∏
α

ωα

where the product is over the positive roots associated to B′ which change sign when
they are considered as roots of B, and ωα is the dual under the Cartan-Killing form
to the root vector Xα. The form ω is invariant under the group action and thus the
construction (3) descends to quotients by Γ.7 As we shall see in section IV.B, the
bottom row of (3) is (in this quotient) replaced by a map between two Lie algebra
cohomology groups induced by “multiplication by Xα.”

A third reason is the recent classification [GGK1] of the reductive, Q-algebraic
groups that can be realized as a Mumford-Tate group of a polarized Hodge structure
and the related classification of the associated Mumford-Tate domains D. Although
these domains and their quotients X = Γ\D by arithmetic groups arose as target
spaces for period mappings P : S → X where S is a quasi-projective algebraic
variety, it has since emerged that their geometry and the cohomology of homoge-
neous vector bundles over them is of interest in its own right. For the line bundles
Lµ → D for which the restriction Lµ|S is ample, corresponding in the classical case
to automorphic forms but for which in the non-classical case H0(X,Lµ) = 0, the au-

tomorphic cohomology Hq(µ)(X,Lµ), q(µ) > 0, seemed a curiosity of no particular
relevance to variations of Hodge structure. It was through the interesting geometry
of Mumford-Tate domains that from a Hodge-theoretic perspective automorphic
cohomology has emerged as an object of interest.

Just how interpreting automorphic cohomology as global holomorphic objects
might be related to period mappings is a matter yet to be explored. More specif-
ically, representation theory and complex geometry associate to Γ\D natural ob-
jects. Except in the classical case, pulling these objects back under P : S → Γ\D
generally gives zero. The constructions in this paper suggest a diagram

S̃ //

��

Γ\W

��
S // Γ\D,

where S̃ is a complex manifold with dim S̃ = 2 dimS which has a mixed function-
theoretic/algebro-geometric character, and where automorphic cohomology pulls
back naturally to the above diagram. We hope to pursue this further in a future
work.

7One will notice the similarity to the classical Borel-Weil-Bott theorem. This is of course not
accidental and will be discussed below where the form ω will be seen to have a representation-

theoretic interpretation; cf. the appendix to section III.D.



4 INTRODUCTION

In this work we shall especially focus on examples.8 One will be the basic
example, essentially P1. Although the most elementary of cases, many of the main
features of the general situation already arise here. The other two will be referred
to as example one and example two. Example one will be the U(2, 1) case; here we
shall use the correspondence space from [EGW] and shall formulate intrinsically
and reprove some of the results from [C1], [C2].9 This suggests how the general
case might go. In order to test the validity of this suggestion, we shall work out
our second example of Sp(4). Here, a main step is to construct the correspondence
space W for Sp(4), a construction that turns out to involve the concept of Lagrange
quadrilaterals. In fact, from the two examples it is clear how the Penrose transform
can be defined once one has the correspondence space W in hand. Although there
is now a general construction of W and an analysis of its properties which will be
given in a separate work, we have chosen to here focus on the two examples, in
part because of the very beautiful geometry associated to each and in part because
understanding them points to the way the general case should go.

The term correspondence space arises from the following consideration: The
equivalence classes of homogeneous complex structures on GR/T are indexed by
the cosets in W/WK where W is the Weyl group of GC and WK is the Weyl
group of the maximal compact subgroup K of GR. We label these as Dw where
w ∈W/WK . The correspondence space is then “universal” for maps W→ Dw and
leads to diagrams

W

��						

��777777

Dw Dw′

giving rise to Penrose transforms between Hq(Dw, Lµ)’s and Hq′(Dw′ , Lµ′)’s. In
particular, when one of the Dw is classical, which implies that GR is of Hermitian
type, this should lead to an identification of at least some non-classical automorphic
cohomology with a classical object. This insight appears in [C1] and [C2] and is one
hint that automorphic cohomology has a richer structure than previously thought.

We mention that as homogeneous complex manifolds for the complex Lie group
GC all of the domains Dw have a common compact dual Ď ∼= GC/B where B is a
Borel subgroup. The Dw’s are the GR-equivalence classes of the open GR-orbits in
Ď. The correspondence space for the compact dual is W̌ ∼= GC/TC, and W ⊂ W̌

turns out to be an open subset that is somewhat subtle to define.10 In particular,
it seems to be a somewhat new type of object; one that fibres over the cycle space
U, which has many of the characteristics of a bounded domain of holomorphy in
CN , with affine algebraic varieties as fibres. It thus has a mixed complex function
theoretic/algebro-geometric character. As mentioned above, this will be treated in
the separate work [GG].

8The main reason for this is that the examples suggest how the general case might go. For instance,
based on this work the general definition and properties of the correspondence space is given in

[GG]. A second reason is that the examples reveal what is to us a very nice geometry.
9As will be explained below, for a given choice of positive Weyl chamber SU(2, 1)/TS and U(2, 1)/T

are the same as complex manifolds but are not the same as homogeneous complex manifolds. For

Hodge-theoretic purposes the latter is more important.
10W̌ is sometimes referred to as the “enhanced flag variety” in the representation theory literature.
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In section III.C we shall discuss our basic example, the case of G = SL2. Al-
though it is certainly “elementary”, looking at it from the point of view of the
correspondence space and Penrose transform gives new perspective on this simplest
of cases and already suggests some aspects of what turns out to be the general
mechanism. Of note is the canonical identification of the group H1(Ω1

P1(k)), k 5 0,
with global holomorphic data; this is a harbinger of a fairly general situation.

The general mechanism was also suggested in part by formulating the calcu-
lations in the setting of moving frames. The elements of GC may be identified as
frames adopted to the geometry of the situation. The points of GC/TC are the
corresponding projective frames, and then the equations of the moving frame and
their integrability conditions, the Maurer-Cartan equations, reveal the computa-
tional framework for the Penrose transform and suggest what the form ω above
should be. Interpreting the formulas in terms of the roots of GC, GR and the Borel
subgroups Bw corresponding to Dw gives the suggested general prescription for ω
that was mentioned above.

Associated to a domain is its cycle space U, defined in this paper to be the
set of GC-translates Z = gZ0 of the maximal compact subvariety Z0 = K/T that
remain in the open domain D ⊂ Ď. There is a comprehensive treatment of cycle
spaces in [FHW], where they give a more general definition of the cycle space. It
is known (loc. cit.) that in the non-classical case

U ⊂ Ǔ := GC/KC

where U is an open Stein domain in the affine algebraic variety Ǔ.11 There is the
incidence diagram (4) but I is not Stein so the [EGW] method does not apply
to this picture.12 There is however a surjective map W → U where, in first ap-
proximation, the fibre lying over a point in U corresponding to Z ∼= K/T ⊂ D is
the correspondence space KC/TC for the homogeneous projective variety Z. For
instance, in both the examples we shall consider we will have Z ∼= P1 and the
corresponding fibre will be P1 × P1\{diagonal}. In some sense one may think of
W as a common Stein refinement of the cycle spaces Uw for all the domains Dw, a
refinement to which the methods of [EGW] apply for all the Dw’s.13

The cycle spaces will enter in an essential way in the proof of the injectivity
of the Penrose transform for certain ranges of µ and µ′. Basically, the idea is that
non-injectivity leads to an equation

(5) Fω = dπG

where G is a holomorphic section of a line bundle L(µ, µ′) → W. The equation
(5) gives differential restrictions on G, and with these it is shown that G lives on a

quotient variety J of W and that J is covered by the lifts Z̃ of compact subvarieties
Z ⊂ D. Then is is shown that for the range of weights µ of interest and for all such

11The substantive statements here are (i) that KC = {g ∈ GC : gZ0 = Z0}, (ii) that U is Stein,

and (iii) U is Kobayashi hyperbolic.
12As noted above, it is this picture to which much of the classical literature on Penrose transforms,

given by “pull-back and push-down”, pertains.
13It is a non-trivial consequence of Matsuki duality that the Uw are all the same open set in Ǔ =

GC/KC, but the compact subvarieties of Dw parametrized by Uw are different. This universality
property, which is closely related to Matsuki duality, will play an important role in the subsequent

definition and analysis of the properties of W given in [GG].
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Z the restriction

G
∣∣
Z̃

= 0 .

Since J is covered by the Z̃’s, this implies that G = 0.14

As mentioned above one primary objective of this work is to formulate and illus-
trate the general method of Penrose-type transforms. A second objective is to use
this method to define and derive results about one arithmetic aspect of automorphic
cohomology. Informally stated, the result is that, up to a transcendental factor that
depends only on the CM type, arithmetic automorphic cohomology classes assume
arithmetic values at CM points in W.

To explain this, a first observation is that the compact dual Ď is a homogeneous,
rational projective variety defined over a number field k. We shall say that a
complex vector space V has an arithmetic structure in case there is a number field
L with an embedding L ↪→ C together with an L-vector space VL ⊂ V such that
V ∼= C ⊗L VL. In all cases considered below the arithmetic structures will be
natural in a sense that we hope will be clear from the context. For example, for
any number field L ⊃ k, at an L-rational point of Ď the fibres of GC-homogeneous
vector bundles that are defined over k will have a natural arithmetic structure.

A second type of arithmetic structure arises when we realize D as a Mumford-
Tate domain. There are then defined the set of complex multiplication, or CM,
points ϕ ∈ D. The action of the CM field Lϕ on the fibres at ϕ of the Hodge bundles
then gives an arithmetic structure to these vector spaces. A basic result [GGK1]
is that this arithmetic structure is comparable with the previously mentioned one
for ϕ ∈ Ď, in the sense that there is a number field L′ with k ⊂ L′, Lϕ ⊂ L′ and
such that when tensored with L′ these two arithmetic structures coincide.

In our two examples, via the Penrose transform with the resulting natural
isomorphism of the images of cuspidal automorphic forms15

(6) H1
o (X,Lµ) ∼= H0

o (X ′, L′µ′)

an arithmetic structure on the RHS will induce one on the LHS. For the U(2, 1)
and Sp(4) examples and for a special choice of µ′, the RHS consists of cuspidal

Picard, respectively Siegel modular forms. If H
π−→ Γ\H =: Y is the quotient of the

Hermitian symmetric domain H to which X ′ maps, then the RHS is the cuspidal

subspace of H0(Y, ω
⊗l/3
Y ).

It is known that Y has a canonical model, which is a projective variety defined

over a number field k with homogeneous coordinate ring ⊕
l=0

H0(Y, ω
⊗l/3
Y ) that is

defined over k.16 The vector space H0(Y (k), ω
⊗l/3
Y (k)) := H0(Y, ω

⊗l/3
Y )k are the

modular forms of weight l defined over k. For y ∈ Y (k) a k-rational point, the fibre

14This method will not apply to W itself since, being Stein, it contains no compact subvarieties.
In order for it to apply we must quotient W on the right by parabolic subgroups PC with TC ⊂
PC ⊂ KC. The roots of PC are the ones that appear in the definition of the form ω mentioned

above. Again, it is the examples discussed in this paper that suggest the general mechanism.
These extensions are currently under investigation by a number of people.
15Cf. section IV.A for the notation and terminology. For Γ ⊂ G co-compact, the subscript “o”
may be dropped on both sides.
16For the examples considered in this work, the boundary components of Y in the Baily-Borel
compactification will have codimension at least two, so finiteness conditions at the cusps are not
necessary.
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ωY,y of C⊗k ωY (k),y at y is defined over k, and if ψ ∈ H0(Y, ω
⊗l/3
Y )k then the value

ψ(y) ∈ ω⊗l/3Y (k),y .

In our two examples, H will be realized as a Mumford-Tate domain and the
notion of a CM point h ∈ H is well-defined. As noted above, the fibres Fph of
the Hodge bundles Fp → H then have an arithmetic structure, so that there is
a number field L and an L-vector space Fph,L ⊂ Fph with Fph = C ⊗L Fph,L. The
canonical bundle ωH is constructed from the Hodge bundles, and therefore at a

CM point h we have ω
⊗l/3
H,h,L ⊂ ω

⊗l/3
H,h . A classical result [Shi] is that there is a fixed

transcendental factor ∆ ∈ C∗/Q∗ that depends only on the CM field associated to
h, together with a choice of positive embeddings of the field, and a finite extension

L′ ⊃ L such that for ψ ∈ H0(Y, ω
⊗l/3
H )k

∆−l(π∗ψ)(h) ∈ ω⊗l/3H,h;L′ .

In other words, in the sense just explained up to the factor ∆ arithmetic automor-
phic forms assume arithmetic values at CM points.

Using the isomorphism (6), for suitable characters µ we may define an arith-
metic structure on the cuspidal automorphic cohomology group H1

o (X,Lµ). Us-
ing the [EGW] method we may then evaluate an automorphic cohomology class
α ∈ H1

o (X,Lµ) in the fibres of bundles at w ∈ W constructed from the Hodge
bundles. At a CM point of W these vector spaces have arithmetic structures, and
our result (IV.D.3) is that at such a point w whose CM structure is compatible with
that on its image ψ ∈ H, up to a fixed transcendental factor as above the value
α(w) is arithmetic. Moreover, these points are dense in the analytic topology.17

We remark that this work is one dealing primarily with the complex geometry
and coherent cohomology of Mumford-Tate domains and their quotients by discrete
groups. It is written from the perspective of the geometry of a class of interesting
locally homogeneous complex manifolds that independently arise from Hodge theory
and from representation theory. The deeper geometric and cohomological aspects
of representation theory are treated here only superficially. We refer to the paper
[Schm3] for an exposition of some of these aspects that will be used in the sequel
to this paper [GG] where the general properties of correspondence spaces will
be discussed. We also refer to the introduction to [CK] for a lucid overview of
some related aspects of arithmetic automorphic representation theory and the role
of TDLDS’s in this theory.18 One of our main points is that different coherent

17We remark that a geometrically more natural “evaluation” of automorphic cohomology classes

in H1
0 (X,Lµ) would be to classes in H1

(
S,OS(Lµ)

)
S = ΓS ∩H

where H ⊂ D is an equivariantly embedded copy of the upper half plane H = SL2(R)/ SO(2)
arising from an inclusion SL2(Q) ↪→ G and ΓS = Γ∩SL2(Q) is an arithmetic group. The notation
“S” stands for Shimura curve. In general, equivariantly embedded Hermitian symmetric domains

in non-classical Mumford-Tate domains have independently arisen from a number of perspectives

([FL], [R] and the above) and would seem to be objects worthy of further study. Some comments
about this issue will be given in the forthcoming CBMS volume [GGK2]. In a related vein,

[KP] using the framework in this paper has given a general setting and extension of results in
[C3], which in particular provide another definition for arithmeticity of automorphic cohomology
classes.
18As will be noted below, there is a to us striking similarity between the groups Hd(Γ\D,L−ρ),

where Hd(D,L−ρ) is the Harish-Chandra module associated to a TDLDS, and to special divisors
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cohomology groups may be associated to the same representation, either finite
dimensional of GC in the compact case or infinite dimensional of GR in the non-
compact case (including both GR/T ’s and Γ\GR/T ’s), and that in some generality
the connection between these different manifestations may be realized geometrically.
Although we here have informally mentioned some of these general results, for the
reasons stated above we have in this work focused on our examples.

It is the authors’ pleasure to thank Sarah Warren for a marvelous job of con-
verting an at best barely legible handwritten manuscript into mathematical text.

Outline

The following is an outline of the contents of the various sections of this paper.
We begin in section I.A with a general discussion of the homogeneous complex

manifolds that will be considered in this work. Here, and later, we emphasize the
distinction between equivalence of homogenous complex manifolds and homogeneous
vector bundles over them, rather than just equivalence as complex manifolds and
holomorphic vector bundles.

In section I.B we discuss our first example, which is the non-classical complex
structure on U(2, 1)/T := D, realized as one of the three open orbits of U(2, 1)
acting on the homogeneous projective variety of flags (0) ⊂ F1 ⊂ F2 ⊂ F3 = C3

where dimFi = i. Here C3 has the important additional structure of being the
complexification of F3 where F = Q(

√
−d) is a quadratic imaginary number field.

It is this additional structure that leads to the realization of D as a Mumford-Tate
domain, thereby bringing Hodge theory into the story. The other two open GR-
orbits D′ and D′′ are classical and may also be realized as Mumford-Tate domains,
or what is more relevant to this work, the set of Hodge flags asssociated to Mumford-
Tate domains consisting of polarized Hodge structures of weight one with additional
structure.

All three of the above domains have three descriptions: geometric, group-
theoretic and Hodge-theoretic. The interplay between these different perspectives
is an important part of the exposition. Especially important is the book-keeping
between the tautological, root and weight, and Hodge theoretic descriptions of the
U(2, 1)-homogeneous line bundles over the domains, which is given in section II.B.

In our first example the three domains may be pictured as

��
��

�
��

�
��

�
��

s
L

sp l

P

B

Figure 1

of degree g− 1 on an algebraic curve of genus g. In both cases, Euler characteristics are zero and
deeper methods must be used to get at the geometry.
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where B is the unit ball in C2 ⊂ P2 defined by the Hermitian form with matrix
diag(1, 1− 1) and 

D = {(p, l)}
D′ = {(P, l)}
D′′ = {(p, L)} .

All of thse domains are quotients of the correspondence variety W given by the set
of configurations

��
��

�
��

�
��

�
��

s

L

sp l

P

HHH
HHH

HHH
HHH

H

s p̃
l̃

Figure 1a

Correspondence varieties play a central role in the theory.19

Although it will not be needed for the present work, we mention that three
other non-open orbits of the action of GR on the flag manifold may be pictured as

p
s l

���
���

���
���

�

���
���

���
���

���

p
s l

19We observe that W may be described as the set of projective frames (p, p̃, P ) in the above figure;

this is a general phenomenon. We note that W is an open domain in the set W̌ ∼= GC/TC, which
is the enhanced flag variety. As noted in the introduction, motivated by the examples below is a
general phenomenon as will be proved in [GG].
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p
s

l

���
���

���
���

�

where the third is the unique closed orbit. These and their Mutsuki dual KC-orbits
will play a central role in the sequel.20

The second example is the non-classical complex structure on Sp(4,R)/T := D
where D is realized as the period domain of polarized Hodge structures of weight
n = 3 and with all Hodge numbers hp,q = 1, an example that arises in the study
of the mirror-quintic Calabi-Yau varieties. In this case there are four inequivalent
complex structures, of which two, the D mentioned above and one classical one D′,
will play important roles in this work. Again, the three descriptions — geometric,
group-theoretic and Hodge-theoretic — and their interplay are important in this
work.

The geometric description of the domains D and D′ will be given by configu-
rations

E′

(1, 1)

E

< 0p
•

�
�
�
�
�
�
�
�
�
�

Figure 2

where

D = {(p,E′)}
D′ = {(p,E)} .

Here we are given a non-degenerate alternating form Q and conjugation σ on a
four dimensional complex vector space V with P3 = PV . The form Q defines the
Hermitian form H(u, v) = iQ(u, σv). In the above figure, E and E′ are Lagrange
lines and the (1, 1) and < 0 denote the signature of H restricted to them. The

20In the above example the pictured orbits in ∂D will be seen to have Hodge-theoretic significance

in terms of the Kato-Usui theory [KU] of limiting mixed Hodge structures and in representation
theory where the TDLDS is constructed by parabolic inductions from the unique closed GR-orbit

given by the third figure above (cf. [KP] and [GGK2]).
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correspondence space W consists of all configurations

•
E′> 0

< 0

p3 p4

E
p1 p2

(1, 1)

�
�
�
�
�
�
�
�
�
�

• •

•
�
�
�
�
�
�
�
�
�
�

(1, 1)

Figure 2a

which we will refer to as Lagrange quadrilaterals.21

In chapter II we discuss the equivalence classes of homogeneous line bundles
over the two examples. Of particular importance is the “dictionary” between the
three descriptions — geometric, representation-theoretic, and Hodge-theoretic —
of these line bundles. We note that when D is considered as a homogeneous space
for U(2, 1), all the homogeneous line bundles are Hodge bundles but this is not
when the complex manifold D is considered as a homogeneous space for SU(2, 1) or
the adjoint group SU(2, 1)ad. As there are several sign and notational conventions
in the literature, and since the signs are critical for the considerations below, in a
brief appendix to section II.B we have given our sign conventions and the rationale
for them.

In each of our two examples, the classical homogeneous complex structures D′

will fibre holomorphically with P1 as fibre over an Hermitian symmetric domain H.
In the first example, H is the unit ball B in C2 and in the second H is Siegel’s gen-
eralized upper-half-plane H2. Of particular importance are the homogeneous line

bundles ω
′⊗k/3
B → D′ that are pullbacks of ω

⊗k/3
B → H where ωB is the canonical

line bundle, as the Γ-invariant sections over H, or equivalently over D′, of these
bundles give Picard, respectively Siegel modular forms of weight k. As will be ex-
plained below, these are relevant to automorphic cohomology in the non-classical
case via the Penrose-type transforms.

In chapter III we discuss correspondence and cycle spaces and the Penrose
transforms associated to the former. Our definition of a correspondence space W

is motivated by the example in [EGW] and the uses of this example in [C1],
[C2],[C3].22 In this paper we will use diagrams like

W

π

��������
π′

��44444

D D′

where the correspondence space W is Stein and the fibres of π, π′ are contractible.
By the results in [EGW] the coherent cohomology of homogeneous line bundles

21Again we note that the above figure is specified by the projective Lagrange frame p1, p2, p3, p4.
22The general definition and properties of W will be given in [GG]; it was motivated by careful
analysis of the two examples studied here.
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over each of D, D′ is represented by global, holomorphic relative de Rham coho-
mology on W. In the examples in this work there will be canonical “harmonic”
representations of the de Rham classes, so that coherent cohomology on D,D′

is canonically represented by global, holomorphic objects on the correspondence
space. As explained below, in the cases of particular interest here the cohomol-
ogy groups arising from D,D′ and represented holomorphically on W will then be
related by multiplication by a canonical invariant differential form ω.

In addition to the correspondence spaces we shall make use of the cycle space
U associated to D. For the definition of U used here we first note that D = GR/T
contains maximal compact subvarieties, one of which is Z0 := K/T . Then U is
defined to be the set of translates Z = gZ0, g ∈ GC, such that Z ⊂ D. Just as with
Hilbert schemes in algebraic geometry, cycle spaces lead to diagrams

I

�������

��2
2222

D U .

Using the basic result that U is Stein, for certain homogeneous line bundles L→ D
the standard “pull-back and push-down” method enables the groups Hs(D,L),
s = dimZ0, to be represented by global holomorphic objects over U. As noted in
the introduction above, cycle spaces and their use as just described have been the
subject of considerable work over the years, but for our purposes the correspondence
spaces, which lie over the cycle spaces and contain more information, will play a
more fundamental role.

Following brief introductory comments in section III.A, in section III.B the
correspondence and cycles spaces for our two examples will be constructed and
their properties described. For example one, W is given by the set of configurations
(p, P, p̃) in Figure 1a above, and U is given by the configurations (P,L) there. For
example two, W is given by the set of configurations (p1, p2, p3, p4) in Figure 2a,
and U is given by configurations (E,E′) there.

In section III.C we study in some detain the basic example of Ď = P1 and
D = H ⊂ P1. Although not essential for what follows, many of the main features of
correspondence spaces and their uses already appear here. Moreover, the explicit
formulas — especially their arithmetic interpretations — indicate the flavor of our
two examples discussed in chapter IV.

In section III.D, and especially in the appendix to that section, we discuss
the relation in the compact case between the Penrose transform and the Borel-
Weil-Bott (BWB) theorem. As is well known the BWB theorem shows that the
same irreducible GC-module may appear in multiple ways as cohomology groups
Hq(M,Lµ) where Lµ → M = GC/B is a homogeneous line bundle. The EGW
method gives a way of geometrically realizing these identifications. For use later
for our two examples we give the explicit identification of the Maurer-Cartan forms
ω on GC such that, suitably interpreted and for particular q′ and q, multiplication

by ω realizes the isomorphisms Hq′(M,Lµ′)
ω−→ Hq(M,Lµ) of GC-modules as given

by the BWB theorem. In the appendix to this section the general expression for ω
when q′ = 0 is given and is related to the classical paper [Ko] where ω appears in
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the setting of n-cohomology.23 Also, in the appendix as a harbinger of the results in
chapter IV we discuss the arithmetic aspects of the groups Hq(M,Lµ), the form ω
and the resulting Penrose transforms, the result being that “the Penrose transform
is arithmetic.”

In section III.E we discuss the Penrose transform in the first example. The
main result is that, in certain ranges of indices and for the line bundles in question,
the Penrose transform is injective. For a different range of indices a similar result
is given in [C1] and [C2]. The reason for the difference is that in those works the
proof of injectivity is computational whereas our argument is geometric, making
use of the maximal compact subvarieties lying in a quotient J of W over those
parametrized by the cycle space for D. Both ranges of indices include the case of
particular interest corresponding to Picard modular forms that is used in chapter
IV below.

In section III.F we discuss the Penrose transform in the second example. Again
the main result is its injectivity in certain ranges, which is established by an argu-
ment using the cycle space similar to that used in the first example.24

Section IV is devoted to one of the new results in this work. The basic under-
lying geometric fact is that the quotient space Γ\W, for Γ ⊂ GR co-compact and
neat, is Stein. This result lies deeper than that W is Stein. It will be proved in
general in [GG].

Section IV.A is devoted first to a discussion of Williams’ lemma, which is the
main technical tool we shall use in the computations of the relevant n-cohomology
groups in our two examples. Then following [C1] we give the definition of cusp-
idal automorphic cohomology, and the somewhat delicate proof of the injectivity,
which by dimension count implies isomorphism, of the Penrose transform in our
two examples.

In section IV.B Picard and Siegel cuspidal automorphic forms are discussed;
again the proof of injectivity of the Penrose transform, using Williams’ lemma which
turns out to just work, is somewhat subtle.

Section IV.C is devoted to a discussion of the arithmetic structures on vector
spaces, including such structures in special fibres of the homogeneous vector bundles
of interest. There are three types of such structures: (i) Hodge-theoretic or HT,
defined in the fibres of the Hodge bundles at complex multiplication (CM) points;
(ii) projective, defined using the embeddingD ⊂ Ď where Ď is a projective algebraic
variety defined over a number field; and (iii) algebro-geometric or AG, defined only
when D is classical and using the canonical model of Γ\H where H is the Hermitian
symmetric domain over which D fibres. In (ii) and (iii) the arithmetic structures
are defined in the fibres over points which are defined over the number fields, this
set of points being quite different in the two cases. The comparison between the
arithmetic structures in cases (i) and (ii) from [GGK1], chapter V; the result is
that these structures are “comparable” at common points. The deep arithmetic
result we shall use is the comparison between the HT and AG arithmetic structures

23Geometrically, ω corresponds to the fundamental class of the Schubert cycle associated to the
set of positive roots that “change sign” when one passes from the curvature form of Lµ′ to that

of Lµ.
24The general question of ranges of injectivity of Penrose transforms is an interesting one from
both a geometric and a representation theoretic perspective; it will be discussed in [GGK2].
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in the fibres of the Hodge bundles at CM points. In the appendix to section IV.C
we discuss the explicit canonical models in our two examples.

In section IV.D we state and begin the proof of the result, Theorem (IV.D.3),
concerning the field of definition of cuspidal arithmetic automorphic classes eval-
uated in the fibres of Hodge bundles at CM points. The two main points in the
argument are: (i) that using the [EGW] formalism automorphic cohomology classes
of higher degree may be evaluated at points of the correspondence space, and (ii)
the comparison between the HT and AG arithmetic structures in the classical case.
In the appendix to this section we discuss the Penrose transform and arithmeticity
of automorphic cohomology classes in H1(X,Lµ) where X = Γ\D and µ + ρ is in
the anti-dominant Weyl chamber. In some sense the anti-dominant one is the most
important Weyl chamber for representation theory but it is not the Weyl chamber
where the Penrose transform of Picard and Siegel modular forms ends up.25 One
point of note here is that there are many Penrose transforms, a topic that will be
discussed elsewhere when the general definitions and properties of correspondence
spaces will be treated.

In section IV.E we complete the proof of theorem (IV.D.3). The argument
involves a somewhat intricate analysis of compatible pairs of CM points in corre-
spondence spaces.

Finally, in section IV.F we will present an exposition of the main result in [C1]
and [C2] concerning the relation of the cup-products of the Penrose transform of
Picard automorphic forms and their conjugates to the automorphic cohomology
group H2(X,L−ρ). It is this group that appears in the automorphic representation
of the adele group U(2, 1;A) whose infinite component is a totally degenerate limit
of discrete series (TDLDS); i.e., one whose Harish-Chandra infinitesimal character
is zero (cf. [CK]). It is known that such a representation cannot arise from the
cohomology, either l-adic or coherent, associated to a Shimura variety of Hodge
type.26 To be able to define an arithmetic structure on H2(X,L−ρ) was a moti-
vating question for Carayol, and his result is given in theorem (IV.F.1) with his
proof presented in the context of this work.27 In Carayol’s work he used the explicit
construction of the TDLDS represented by functions on the closed SU(2, 1)-orbit,
which is the 3-sphere as depicted by the third of the above pictures of non-open
orbits acted on by SU(2, 1) through linear functional transformations. In the ap-
pendix to section IV.F we shall discuss a different geometric realization of a part
of the TDLDS and relate this to n-cohomology considerations. This construction,
interpreted in the context of Beilinson-Bernstein localization [BB] and the duality
theorem in [HMSW] and coupled with the general construction of correspondence
spaces should allow the methods of this work to be extended to further interesting
geometric examples. In particular, we note that the analogue of (IV.F.1) for Sp(4)
has been carried out in the forthcoming paper [Ke1].

25In the appendix to section IV.D we give an alternate method for evaluating cohomology classes in

the case µ+ρ is anti-dominant and pose an interesting question that arises from this construction.
26A necessary condition for (0, C) to give a TDLDS is that no compact root in C is simple [CK].

This implies that the complex structure given by C on GR/T is non-classical. It also enters, in an
essential way, in the subtle issues concerning the Hochschild-Serre spectral sequence.
27Although Carayol’s result does not yet give the sought for arithmetic structure on H2(X,L−ρ),
and by duality one onH1(X,L−ρ), we feel that his work is extremely interesting and the arguments

bring new and deep insight into automorphic cohomology.
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Some notations and assumptions

• G will be a reductive Q-algebraic group; GR, GC will denote the corre-
sponding real and complex Lie groups. We always assume that GR is
connected and that GR contains a compact maximal torus;

• Γ ⊂ G will denote an arithmetic subgroup;
• T ⊂ GR will be a compact maximal torus with Lie algebra t; tC will

denote the corresponding Cartan sub-algebra of gC (the more customary
notation is h or hC, but these will be used elsewhere);

• Φ ⊂ ǐt will be the roots, and Φc,Φnc will denote the compact, respectively
non-compact roots. Upon the choice of a set of positive roots Φ+, we have
Φ = Φ+ ∪Φ− where Φ− = Φ+, the conjugation being relative to the real
form gR of gC;

• Xα, α ∈ Φ, will denote the root vectors, normalized as in [K1];
• We set n± = ⊕

α∈Φ±
gα where gα = CXα is the root space. In chapter IV

we will simply set n = n+;
• K ⊂ GR will denote a maximal compact subgroup with T ⊂ K;
• W and WK will denote the Weyl groups of GC,K respectively;
• A homogeneous complex manifold D ∼= GR/T will be classical if it fibres

holomorphically or anti-holomorphically over an Hermitian symmetric
domain;

• D will denote the homogeneous complex manifold with the conjugate
complex structure; it may or may not happen that D ∼= D as homoge-
neous complex manifolds (cf. the beginning of chapter I for a discussion
of this point);

• B will denote the unit ball in C2 ⊂ P2, and Bc will denote the complement
in P2 of the closure of B (we do not use P2\B because B refers to B with
the conjugate complex structure);

• A polarized Hodge structure (V,Q, ϕ) is given by a Q-vector space V , a
non-degenerate bilinear form Q : V ⊗V → Q withQ(u, v) = (−1)nQ(v, u)
where n is weight, and a circle ϕ : S1 → Aut(VR, Q) such that the
eigenspace decomposition VC = ⊕

p+q=n
V p,q where ϕ(z) = zpzq on V p,q

gives a Hodge structure that is polarized by Q. We refer to [GGK1]
whose notations and terminology we shall generally follow;

• Mumford-Tate domains in this paper will be homogeneous complex man-
ifolds that parametrize a connected component of the set of polarized
Hodge structures on (V,Q) where V is a Q-vector space, Q : V ⊗V → Q
is a non-degenerate form with Q(u, v) = (−1)nQ(v, u) where n is the
weight, and where the Hodge numbers hp,q = dimV p,q are given, and
where the polarized Hodge structures have the additional structure of
containing a given set of Hodge tensors. We will denote by G the
Mumford-Tate group of a generic ϕ ∈ D. For much of this work it is
only the complex structure that is relevant, but the arithmetic part re-
quires the additional structure as a Mumford-Tate domain. Moreover,
the Hodge-theoretic interpretation of our examples enriches the geome-
try. In general, as noted above we shall follow the terminology and nota-
tions of [GGK1], one exception being that these Mumford-Tate groups
were denoted there by “M” whereas here they are “G”;
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• The homogeneous complex manifolds D = GR/T that we shall consider
have compact duals Ď = GC/B where B ⊂ GC is a Borel subgroup with
B ∩GR = T ;

• In some subsections, such as I.A and III.D, we will consider these mani-
folds not as compact duals of D’s but as homogeneous complex manifolds
in their own right, and there they will be denoted by M ;

• We shall consider three types of correspondence spaces: W̌ for Ď, W for
D and X for M (cf. section III.B for the definitions);

• U will denote the cycle space for D (also defined in section III.B);
• There are notations for each of our examples, introduced individually at

the beginning of sections I.B and I.C. These notations are consistent
with two exceptions: (i) Because of the necessity of keeping careful track
of the notation for the three different realizations of the one complex
manifold D as a homogeneous complex manifold, we shall use a slightly
non-standard but hopefully clear notation for the roots of U(2, 1). (ii)
In the first example V will be a Q-vector space, whereas in the second
example it will be a complex vector space.

• Sq(X,Lµ) will denote the space of cuspidal automorphic cohomology as
defined in section IV.A. It maps to a subspace Hq

o (X,Lµ) ⊂ Hq(X,Lµ)
of the usual automorphic cohomology.



CHAPTER I

Geometry of the Mumford Tate domains

I.A. Generalities on homogeneous complex manifolds

Before turning to our two examples we give some general remarks on homo-
geneous complex manifolds M = G/H. Here, G and H are Lie groups with H a
closed subgroup such that G/H has a G-invariant complex structure. A morphism
of homogeneous complex manifolds

M
f // M ′

= =

G/H G′/H ′

is given by a homomorphism G → G′ taking H to H ′ and such that the induced
map f is holomorphic. We shall consider two types of examples.

Compact case. Here M = GC/B where GC is a complex semi-simple Lie group
and B is a Borel subgroup. The choice of B is equivalent to the choice of a set of
positive roots where the Lie algebra u of the unipotent radical U is the span of the
negative root vectors. Then the holomorphic tangent space to M = GC/B at the
identity coset is identified as

TM = span{Xα : α ∈ Φ+}.
A different choice of a set of positive roots, or equivalently of a Weyl chamber, is
given by an element w ∈W and the corresponding homogeneous complex manifold
is

Mw = GC/Bw

where

Bw = wBw−1 .

M and Mw are equivalent as homogeneous complex manifolds under the automor-
phism GC → GC given by g → wgw−1 which takes B to Bw.

Non-compact case. Here we use the notation D instead of M , and then D =
GR/T where GR is a real, semi-simple Lie group and T ⊂ GR is a compact maximal
torus. There are two ways of describing the homogeneous complex structure.

(i) By a choice Φ+ of positive roots. Then with the identifications at the
identity coset

TRGR/T ∼= gR/t

TRGR/T ⊗ C := TCGR/T ∼= n+ ⊕ n−

17
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where n+ = span{Xα, α ∈ Φ+} and n− = n+, setting

T 1,0GR/T = n+

gives an integrable almost complex structure making D = GR/T a homogeneous
complex manifold. A different choice of positive roots is equivalent to the choice of
an element w ∈ W leading to a possibly different homogeneous complex structure
Dw on GR/T . An important observation is

D ∼= Dw as homogeneous complex manifolds if, and only if,
w ∈WK .

Thus there are |W/WK | inequivalent homogeneous complex structures on GR/T .

Example. The unit ball B ⊂ C2 is not equivalent as a homogeneous complex
manifold for GR = SU(2, 1;R) to B, the ball with the conjugate complex structure.

(ii) The second method is by the choice of an open orbit of GR acting on
M = GC/B. These two descriptions are related as follows: Let ϕ0 =: eB ∈ GC/B
be the identity coset and D =: GR(ϕ0) ∼= GR/T with T = GR∩B the corresponding
GR-orbit. For w ∈ W , we choose w ∈ NGC(TC) inducing w and set Dw = GR ·
(w−1(ϕ0)) ⊂ M . Then the isotropy group in GC of w−1(ϕ0) is Bw = wBw−1,
so that Dw is the GR-orbit of the identity coset in GC/Bw corresponding to the
choice w(Φ+) = Φ+

w of positive roots. The above identification of GC/B with
GC/Bw as GC-homogeneous complex manifolds induces an identification D ∼= Dw

as GR-homogeneous complex manifolds if, and only if, w ∈ GR ∩NGC(TC) = WK .

I.B. The first example (U(2, 1))

Notations. We assume given

• a Q-vector space V of dimension six;
• a non-degenerate alternating form Q : V ⊗ V → Q; and
• an action of F = Q(

√
−d) on V , i.e.

F ↪→ EndQ(V ) .

Here, d is a square-free positive integer. Setting VF = F ⊗Q V we have a
decomposition

VF = V+ ⊕ V−
into the ± eigenspaces of the action of F. If ρ ∈ Gal(F/Q) is the generator, then
ρV+ = V−. For later reference we note that

VF ∩ VR = V .

We assume that

• Q(V+, V+) = 0 and Q(V−, V−) = 0, and
• the Hermitian form

H(u, v) = ±iQ(u, v̄) u, v ∈ V+,C

has signature (2, 1).

The ± sign will be chosen later depending on the weight of the Hodge structure we
are considering.

We assume that we may choose a basis e1, e2, e3 ∈ V+ so that H(ei, ēj) is the
matrix H given below. Then
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• V+,C ∼= C3, written as column vectors with e1 =
(

1
0
0

)
, e2 =

(
0
1
0

)
, e3 =(

0
0
1

)
;

• in this basis

H =

1

1

−1

 .

We observe that if we take any basis e1, e2, e3 for the F-vector space V+ and define
the Hermitian form H by the above matrix, then the alternating form Q on VF
defined by

Q(V+, V+) = 0 = Q(V−, V−)

and for u, v ∈ V+, identifying V + = V−, requiring Q to be alternating and setting

Q(u, v̄) =
√
−dH(u, v),

is actually defined over Q. This is because the vectors{
1
2 (ei + ēi)
√
−d
2 (ei − ēi)

give a basis for VR ∩ VF = V , and on these vectors Q takes values in R ∩ F = Q.
• The group AutF(V,Q) of automorphisms in Aut(V,Q) that commute with

the F-action is an algebraic group defined over F, and we set

U(2, 1) = AutQ(V,Q) ∩ ResF/Q GLF(V ) .

This is a Q-algebraic group, and is a Q-form of the real Lie group U(2, 1)R
of automorphisms of C3 preserving the Hermitian form H.

If A ∈ AutF(V,Q), then A : VF → VF preserves the decomposition into the V±
eigenspaces, and the induced map A+ : V+ → V+ determines A. Thus, we shall
think of U(2, 1) and U(2, 1)R as subgroups of SL(3,F) and SL(3,C). We shall also
consider the subgroup SU(2, 1) that corresponds to a subgroup of ResF/Q(SL3,F)
and the quotient group SU(2, 1)ad of SU(2, 1).

• We denote by e∗1, e
∗
2, e
∗
3 the dual basis to e1, e2, e3, considered as row

vectors.
• The maximal torus T of U(2, 1)R isg =

e
2πiθ1

e2πiθ2

e2πiθ3


 .

Then the isomorphism between T and t/Λ is given explicitly by

g → θ =

θ1

θ2

θ3

 =: θ1e1 + θ2e2 + θ3e3 .

Here, t ∼= R3 and Λ ∼= Z3.
• The maximal tori TS and Tad of SU(2, 1)R and SU(2, 1)ad,R are given by{

TS = tS/ΛS
Tad = tad/Λad .
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The inclusion SU(2, 1) ↪→ U(2, 1) induces

tS ↪→ t

where tS ∼= R2 ∼= spanR{u1, u2} where

u1 →
(

1
−1
0

)
= e1 − e2

u2 →
(

0
1
−1

)
= e2 − e3 .

We have tS ∼= tad and the inclusion

Λad ↪→ ΛS

is given by letting Λad = spanZ{v1, v2} and setting{
u1 = 2v1 − v2

u2 = 2v2 − v1 .

Then Λad/ΛS ∼= Z/3Z, and Λad in R3 is spanned by
v1 =

(
2/3
−1/3
−1/3

)
v2 =

(
1/3
1/3
−2/3

)
.

• We will view tS ⊂ t as the linear subspace defined by

e∗1 + e∗2 + e∗3 = 0 .

Then the roots of U(2, 1) are the roots of SU(2, 1) and are generated by
the restrictions to tS of e∗1− e∗2 (compact root), e∗2− e∗3, e∗3− e∗1.1 We also
have the picture

c

nc

c

c

c

nc

where the arrows and denote the action of the compact Weyl
group and where the Weyl chambers corresponding to classical complex
structures are labelled c and those corresponding to the non-classical
complex structures are labelled nc .

• For the usual root picture of su(2, 1) we have

1In the literature (cf. [K1]) the roots of SU(2, 1) are frequently denoted by ei − ej , i.e. omitting
the ∗’s. For the calculations below it will be better to keep separate the vector space t and its

dual.
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•
α2 = e∗3 − e∗2 α1 + α2 = e∗3 − e∗1

α1 = ee∗2 − e∗1

−α1 − α2 = e∗1 − e∗3 − α2 = e∗2 − e∗3

− α1 = e∗1 − e∗2

•

D

D

D

••

Figure 1.

The Weyl chambers are the indicated sectors, and the compact roots have a box

around them. We will explain the notations D′′ , D and D′ below.

Description of D. We will give three descriptions of D:

(i) geometric, when D is realized as the homogeneous complex manifold
DS = SU(2, 1)R/TS ;

(ii) group theoretic, when the complex structure on the homogeneous mani-
fold SU(2, 1)R/TS is specified by a choice of Weyl chamber;

(iii) Hodge theoretic, when D is realized as a Mumford-Tate domain D =
U(2, 1)R/T .

We begin with the description of the compact dual Ď = GL(3,C)/B where
GL(3,C) is the complex Lie group GL(V+,C) of which U(2, 1)R is a particular real

form. In fact, Ď is just the flag manifold F(1, 2) of flags F1 ⊂ F2 ⊂ F3 = V+,C
where dimFi = i. We may realize Ď geometrically as the incidence variety

Ď ⊂ P2 × P̌2

where P2 = PV+,C and P̌2 = PV̌+,C = PV−,C, the latter identification coming from

V̌+
∼= V−

using the form Q. The points of Ď are

p
•

l

where p =
[ p1
p2
p3

]
and l = [l1, l2, l3].

We set GC = GL(V+,C) and identify GC with the set of frames f1, f2, f3 ∈
V+,C ∼= C3, the element of g ∈ GC corresponding to the frame

fi = gei .

We have the equations of a moving frame and Maurer-Cartan equation{
dfi = ωji ∧ fj
dωki = ωji ∧ ωkj .
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Here we are using the summation convention and thinking of fi as a vector-valued
map fi : GC → C3 with differential dfi. The Maurer-Cartan matrix ω = ‖ωij‖ is

given by ω = g−1dg.
The domain D will be an open U(2, 1)R-orbit under the action of U(2, 1)R ⊂

GL(3,C) on Ď. To describe it, we have the unit ball

B =
{
p ∈ P2 : H(p) < 0

}
.

The notation means that we choose a vector v ∈ C3\{0} lying over p and require
H(v, v̄) < 0. In homogeneous coordinates this is

|p1|2 + |p2|2 < |p3|2 .
We then have the

Geometric definition of D.

D = {(p, l) : p ∈ Bc, l ∩ B 6= φ}
where Bc is the complement in P2 of the closure of B.

p
• l

B

Using the notations from above, D is the U(2, 1)R-orbit of the reference flag

[e1] ⊂ [e1, e3] ⊂ [e1, e3, e2]

where [∗] denotes the span over C of the indicated vectors. We note that the point
[e1] ∈ P2 lies outside B, and since H(e3, ē3) < 0 the line [e1, e3] ∈ P̌2 meets B. The
Borel subgroup that stabilizes the above flag is

B =


∗ ∗ ∗0 ∗ 0

0 ∗ ∗


 .

Group theoretic definition of D. As noted above, this is obtained by iden-
tifying the tangent space to SU(2, 1)R/TS at the identity coset e with su(2, 1)R/tS
and choosing a set Φ+ of positive roots whose root vectors Xα, α ∈ Φ+, span the
(1, 0) part of the tangent space{

Te(SU(2, 1)R/TS)⊗ C ∼= T 1,0 ⊕ T 1,0

T 1,0 = spanC{Xα : α ∈ Φ+} .
This defines an invariant almost-complex structure, which is integrable because the
sum of positive roots is either zero or a positive root. From

T 1,0 ∼= gl(3,C)/b

and the above picture of B, we see that the positive roots are

e∗3 − e∗1, e∗2 − e∗1, e∗2 − e∗3 .
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The root picture of the positive roots is

α1 + α2 = e∗3 − e∗1

α1 = ee∗2 − e∗1

− α2 = e∗2 − e∗3
••

•
•

Figure 2

Using the correspondence between choices of positive roots and Weyl chambers, the

Weyl chamber for this complex structure is the one labelled D in Figure 1 above.

Hodge-theoretic definition of D. We define a polarized Hodge structure of
weight three on (V,Q) by taking as Hodge basis{

e1 for V 3,0 ē1 for V 0,3

e3, ē2 for V 2,1 ē3, e2 for V 1,2 .

Since we want

i3Q(e1, ē1) > 0, iQ(e3, ē3) > 0 and iQ(ē2, e2) > 0

we choose the minus sign in the above definition ofH. The “picture” of the polarized
Hodge structure is

∗ ∗ ∗
∗ ∗ ∗

V+

V−

V 3,0 V 2,1 V 1,2 V 0,3

where the number of ∗’s in a box is the dimension of the corresponding vector
space V p,q± . Clearly this polarized Hodge structure has an F-action. In fact, it is a
complex multiplication (CM) polarized Hodge structure (cf. section IV.D).

We now let D be the set of polarized Hodge structures on (V,Q) with the above
Hodge numbers and which admit an F-action. It is easy to see that

• U(2, 1)R acts transitively on this set with isotropy group T of the reference
Hodge structure given above, so that

D = U(2, 1)R/T ;

• the generic point of D has Mumford-Tate group U(2, 1).

We observe that the circle

ϕ : S1 → AutF(VR, Q)

that gives polarized Hodge structure of the above type with

ϕ(z) = zp−q on V p,q

has image ϕ(S1) ⊂ U(2, 1)R and not in SU(2, 1)R; in fact, SU(2, 1) cannot be the
Mumford-Tate group of an odd weight polarized Hodge structure (cf. [GGK1]).
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Description of D′, D′′ and B. There are two other GR-equivalence classes of
open orbits of U(2, 1)R acting on Ď, which we shall call D′ and D′′. We begin with
a description of D′.

D′-geometric: It is given by

D′ = {(p, l) : p ∈ B, p ∈ l}

p
•

l

B

We take as reference flag

[e3] ⊂ [e3, e1] ⊂ [e3, e1, e2]

with Borel group stabilizing this flag given by

B′ =


∗ ∗ 0

0 ∗ 0

∗ ∗ ∗




D′-group-theoretic: The corresponding positive roots are

e∗2 − e∗1, e∗2 − e∗3, e∗1 − e∗3
with the picture having the positive roots labelled

α1 α2 = e∗1 − e∗3

α1 = ee∗2 − e∗1

− α2 = e∗2 − e∗3
••

•
•

− −

Figure 2′

The corresponding Weyl chamber is D′ in Figure 1.

D′-Hodge theoretic: Here the minimal weight is five with all Hodge numbers
hp,q = 1, and a reference Hodge structure has the picture

∗ ∗ ∗
∗ ∗ ∗

V+

V−

V 5,0 V 4,1 V 3,2 V 2,3 V 1,4 V 0,5
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Here 
e3 ∈ V 5,0

+

e1 ∈ V 4,1
+

e2 ∈ V 2,3
+

and we take the + sign for H to have for i5Q(V 5,0, V
5,0

) > 0

H(e3, e3) = iQ(e3, ē3) > 0

as well as i3Q(e1, ē1) > 0, i−1Q(e2, ē2) > 0.

Description of D′′.

Geometric: For the geometric description of D′′ we have the picture

p•

l

B

and D′′ = {(p, l) ∈ Ď : l ⊂ Bc}. Here we take as reference flag

[e1] ⊂ [e1, e2] ⊂ [e1, e2, e3]

with corresponding Borel subgroup

B′′ =


∗ ∗ ∗0 ∗ ∗

0 0 ∗


 .

Group-theoretic: The corresponding positive roots are

e∗3 − e∗1, e∗2 − e∗1, e∗3 − e∗2
with the picture

α2 = ee∗3 − e∗2

••

•
•

• • • α1 = ee∗2 − e∗1

α1 + α2 = e∗3 − e∗1

Figure 2′′

and Weyl chamber D′′ in Figure 1.
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Hodge-theoretic: Here the minimal weight is five with all Hodge numbers
hp,q = 1 and picture

∗ ∗ ∗
∗ ∗ ∗

V+

V−

where 
e1 ∈ V 3,0

+

e2 ∈ V 1,2
+

e3 ∈ V 0,3
+ .

Note. We note that for D the positive compact is not simple, whereas for D′

and D′′ it is simple. It is for this reason that D will be related to the TDLDS for
SU(2, 1)R, whereas D′ and D′′ will not (cf. [CK]).

The ball B: As a homogeneous space

B = U(2, 1)R/K

where K is the maximal compact subgroup. Taking a reference point [e3] ∈ P2, we
have

P2 = GL(3,C)/P

where P is the parabolic subgroup
∗ ∗ 0

∗ ∗ 0

∗ ∗ ∗


 ,

and B is the open U(2, 1)R-orbit of [e3] where

K =

{(
A 0

0 a

)
: A ∈ U(2), a ∈ U(1)

}
.

Identifying T[e3]B with u(2, 1)R/k with u(2, 1) the Lie algebra of U(2, 1), after com-

plexifying the (1, 0) tangent space T 1,0
[e3]B of B, the root vectors spanning T 1,0

[e3]B
correspond to the positive roots e∗2 − e∗3 and e∗1 − e∗3 with the picture

− α2 = e∗2 − e∗3
••

• •

− α2 = e∗1 − e∗3− α1

Comparing with Figure 2′ we see that there is an equivariant holomorphic fibration

D′ → B
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given geometrically by

p
•

l

p
• .

From a Hodge-theoretic perspective, we may describe B as the Mumford-Tate
domain for polarized Hodge structures of weight one on (V,Q) and which admit an
F-action. The picture is

∗ ∗∗
∗∗ ∗

V+

V−

V 1,0 V 0,1

where {
e3 ∈ V 1,0

+

e1, e2 ∈ V 0,1
+ .

As maps of Hodge structures, D′ → B is given by{
V 1,0

+ = V 5,0

V 0,1
+ = V 4,1 ⊕ V 2,3

and the conjugate of that.
In fact, it will be more convenient to interpret D′ not as a Mumford-Tate

domain as above, but rather as the F-Hodge flags for the Mumford-Tate domain B
as just described. Here an F-Hodge flag for VC = V 1,0 ⊕ V 1,0 is a partial flag

{0} ⊂ F1 ⊂ V 1,0

where dimF1 = 1 and the partial flag is invariant under the action of F. In fact,

F1 = V+ ∩ V 1,0 .

All of this will become particularly relevant when we relate CM points on D,D′

and B in section IV.D.

I.C. The second example (Sp(4))

In this section the non-classical Mumford-Tate domain will be the period do-
main for polarized Hodge structures of weight n = 3 and all Hodge numbers
hp,q = 1, an example that has been much studied from the point of view of mirror
symmetry.

Notations:

• V is a complex vector space of dimension four;
• Q : V ⊗ V → C is a non-degenerate alternating form;

• there is a basis v−e1 , v−e2 , ve2 , ve1 for V such that Q =

( −1
−1

1
1

)
.

(The reason for this notation will appear below.)
• there is a complex conjugation σ : V → V where σv−e1 = ive1 ,σv−e2 =
ive2 (and then σve2 = iv−e2 , σve1 = iv−e1);
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• There is a Q-form VQ ⊂ V given by VQ = spanQ{w1, w2, w3, w4} where
w1 = 1√

2i
(v−e1 − ive1)

w2 = 1√
2
(v−e1 + ive1)

w3 = 1√
2i

(v−e2 − ive2)

w4 = 1√
2
(v−e2 + ive2) .

The matrix Qw of Q in this basis is
0 −1

1 0

0 −1

1 0

 ;

• H : V ⊗ V → C is the Hermitian form H(u, v) = iQ(u,σv). It has
signature (2, 2);

• H(v,σv) = 0 defines a real quadratic hypersurface QH in PV ∼= P3,
which we picture as

Figure 3

• GC = Aut(V,Q);
• GR = Autσ(V,Q). Then GR is a real form of GC containing a compact

maximal torus T ;2

• GR is also the subgroup of GL(VC) that preserves both Q and H.
Proof. For g ∈ GC = Aut(VC, Q) we have

H
(
g(v), g(w)

)
= iQ

(
g(v),σg(w)

)
= iQ

(
g(v), σg(σ(w))

)
where g ∈ GL(VC) ⊂ V̌C ⊗ VC and σg is the induced conjugation

= iQ
(
v, g−1 σg(σ(w))

)
= H

(
w,σg−1 σg(σ(w))

)
.

Since v is arbitrary this gives g−1 σg = identity or g = σg, which was to
be proved.

• TC is given by 
λ−1

1

λ−1
2

λ2

λ1

 ;

2In fact, GR = Aut(VR, Qw) ∼= Sp(4,R).
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• v−e1 , v−e2 , ve2 , ve1 are the eigenvectors for the action of T ;
• The weight lattice Λ ∼= Ze1 ⊕Ze2, and the root lattice R ∼= Z(e1 + e2)⊕
Z(e1 − e2) (equivalently, it is {n1e1 + n2e2 : n1 + n2 ≡ 0(2)};3

• With the usual ordering, e1 > e2 > −e2 > −e1, v−e1 , v−e2 , ve2 , ve1 are
the weight vectors for the indicated weights with the ordering inverse to
that of the weights;

• The picture of the root diagram is

2e2•

+
e2 − e1 •�

−2e1 •

−e1 − e2
•

−2e2

•

e1 − e2
•�+

2e1•+

e1 + e2

+
•

Figure 4

where the compact roots have a box around them.
• We denote by B0 the Borel subgroup that stabilizes the weight vector flag

[v−e1 ] ⊂ [v−e1 , v−e2 ] ⊂ [v−e1 , v−e2 , ve2 ] ⊂ [v−e1 , v−e2 , ve2 , ve1 ] ,

where [ ] denotes the span of the indicated vectors. With the choice
of positive roots in Figure 4, b0 is spanned by tC and the negative root
vectors X−2e2 , X−e1−e2 , X−2e1 , Xe2−e1 .

• In terms of Weyl chambers one has the picture, where c means a classical
complex structure and nc a non-classical one

c

nc

c

c

c

nc

nc

nc

3In this example we use the customary notation [K1] for the roots and weights.
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The action of the compact Weyl group is pictured by and ; thus
there are four equivalence classes of homogeneous complex structures on
GR/T .

• GL(V ) ⊂ Grass(2, V ) is the set of Lagrangian planes in V . We picture
points E of GL(V ) as lines in P3 lying in a quadric. As a variety it is the
transverse intersection of two non-singular quadrics in P(Λ2V ).

Description of Ď.

Note. The two non-classical chambers are those for which the compact root
is not simple. These correspond to the two TDLDS’s for Sp(4).

Definition. A Lagrangian flag F is given by a flag

(0) ⊂ F1 ⊂ F2 ⊂ F3 ⊂ F4 = V, dimFj = j

where F2 = F⊥2 , F3 = F⊥1 , the ⊥ being with respect to Q.

The Lagrangian flag is determined by F1 ⊂ F2, and we denote by Ď the set of
Lagrangian flags. Then Ď → GL(V ) given by (F1, F2)→ F2 is a P1-bundle. Upon
choice of a reference flag we have an identification

Ď = GC/B

where B is a Borel subgroup of GC. The weight vector flag is a Lagrangian flag.
We may think of GC as the set of Lagrange frames f• = (f1, f2, f3, f4), mean-

ing those where Q(fi, fj) is the matrix

( −1
−1

1
1

)
and where [f1] ⊂ [f1, f2] ⊂

[f1, f2, f3] ⊂ [f1, f2, f3, f4] is a Lagrange flag. The principal bundle GC → Ď is
given by f• → ([f1], [f1, f2]), where [ ] denotes the span.4

We have the equations of a moving frame (using summation convention){
dfi = ωji fj

dωki = ωji ∧ ωkj

where the Maurer-Cartan forms ωji on GC satisfy

(I.C.1)


ω3

1 = ω4
2 , ω1

3 = ω2
4

ω1
1 + ω4

4 = 0, ω2
2 + ω3

3 = 0

ω2
1 + ω4

3 = 0, ω1
2 + ω3

4 = 0 .

By definition, upon choice of a projective Lagrange frame [f•] =: ([f1], [f2], [f3], [f4])
where f• = (f1, f2, f3, f4) is a Lagrange frame, we have an identification of sets

{projective Lagrange frames} ←→ GC/TC .

Definition. A Lagrange quadrilateral (LQ) is given by the following picture
associated to a projective Lagrange frame p = (p1, p2, p3, p4) where pj = [fj ]

4In particular, for 0 6= f ∈ V , [f ] ∈ PV , and for linearly independent f1, f2 ∈ V , [f1 ∧ f2] ∈ PΛ2V
gives the Plücker coordinates of [f1, f2].
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E13 E24

•

•

•

•

p3

p2

p4

p1

E12

E34

The lines Eij = pipj drawn in are Lagrangian, and the omitted lines Eij are not
Lagrangian.

An alternative, perhaps more suggestive but for our purposes less convenient,
picture is

p1

s

p3s
�
�
�
�
�@

@

sp2

s@@
p4

The Weyl group W is of order 8 and the Weyl group WK is of order 2 in W . We
may realize W as the group of symmetries of a square given by the above Lagrange
quadrilateral.

Description of D. As in the case of the first example we will give three
descriptions of D

(i) geometric;
(ii) group theoretic;

(iii) Hodge theoretic.

Referring to figures 3 and 4 the position of a Lagrange quadrilateral relative to the
real hyperquadric QH may be pictured as

p
3

p
4

p
1

p
2

E13

E24

E12

E34

Figure 5

that is, the pictured Lagrangian lines Eij are of three types

• E12 lies “inside” QH , meaning that H < 0 on the corresponding La-
grangian 2-plane Ẽ12 in V ;
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• E13 meets QH in a real circle; as a consequence H has signature (1, 1)

on Ẽ13; E24 has a similar property;5

• E34 lies “outside” QH , meaning that H > 0 on Ẽ34.

There are eight orbits of the four Lagrange flags in the above picture; thus we
have (p1, E12) and (p2, E12) associated to E12. These orbits give eight complex
structures on GR/T , of which four pairs are equivalent under the action of WK .
The four types may be pictured as the orbits of

< 0 > 0

< 0

> 0

(1,1)

(1,1)

The notations mean that H < 0, H > 0 on the first two, H has signature (1, 1)
on the second two, and the two where H has signature (1, 1) we have indicated the
sign of H on the marked points.

From the previously noted fact that GR is the subgroup of GL(VC) that pre-
serves both Q and H, we infer that GR acts transitively on pointed Lagrange lines
of each of the above four types. These are the four inequivalent complex structures
on GR/T .

We now choose as reference Lagrange quadrilateral

•

•

•

•

ve2

v−e2

ve1

v−e1

Definition. The domain D is the GR-orbit of the Lagrange flag ([v−e1 ],
[v−e1 , ve2 ])

C
C
C
C
C
C
C
C

• ve2

• v−e1

(1, 1)

From a group-theoretic view, D is the homogeneous complex manifold given
by the set of positive roots as indicated in the following figure:

5We do not include the case where the circle has shrunk to a point, because as will be seen below
any Lagrangian line meets QH transversely in a proper circle.
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e1+
+

+

+

e2

e1 e2--

e2--2
+

e12

Figure 6

As will be explained below, the shaded Weyl chamber is one of those in which we
“expect” to have non-zero L2-cohomology group H1

(2)(D,Lµ) where µ is a weight

such that µ+ ρ is a non-singular element of that Weyl chamber.
The Borel subgroup of GC that stabilizes the reference frame is given by ma-

trices in gC of the form

(I.C.2)


∗ ∗ ∗ ∗
0 ∗ 0 ∗
0 ∗ ∗ ∗
0 0 0 ∗

 .

Remark that gC consists of matrices

(I.C.3)


a11 a21 c11 c21

a12 a22 c12 c22

b11 b21 −a22 −a21

b12 b11 −a12 −a11

 ,

so that (I.C.2) is given by the four conditions

a12 = 0, b11 = 0, b12 = 0, c12 = 0

which is the right count.
From a Hodge theoretic perspective D is the period domain for polarized Hodge

structures of weight n = 3 and with all Hodge numbers hp,q = 1. For the reference
polarized Hodge structure we have{

V 3,0 = [v−e1 ], V 0,3 = [ve1 ]

V 2,1 = [ve2 ], V 1,2 = [v−e2 ] .

The conjugation V
p,q

= V q,p is understood as

σV p,q = V q,p .
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Description of D′.

Geometric: D′ is the GR-orbit of

�
�
�

�
�
�

�

< 0

v−e1
•

Group theoretic: The analogue of Figure 6 is

e1+
+

+

+

e2

e1 e2--

+e22

e12

Figure 6′

The shaded Weyl chamber is the one where we expect to have non-zeroH0
(2)(D

′, L′µ′).

The Borel subgroup at the reference flag ([v−e1 ], [v−e1 , v−e2 ]), denoted by B0

above, is given by matrices (cf. (I.C.3) above)

(I.C.4)


a11 a21 c11 c21

0 a22 c12 c22

0 0 −a22 −a21

0 0 0 −a11

 .

Referring to (I.C.3) it is defined by the four equations

a12 = 0, b11 = 0, b12 = 0, b21 = 0 .

From a Hodge theoretic perspective one possibility is to realize D′ as a sub-
domain for polarized Hodge structures of weight n = 5 and with Hodge numbers
h5,0 = h0,5 = 1, h4,1 = h1,4 = 0, h3,2 = h2,3 = 1. In fact, it will be more convenient
to interpret D′ not as this Mumford-Tate domain, but rather as the Hodge flags
for the Mumford-Tate domain to be described now.

The Siegel space H.

Definition. We define H to the open set in GL(2, V ) consisting of Lagrange
lines E ⊂ P3 with H < 0 on E.

By reversing the sign of H we see that H is biholomorphic to the Siegel gen-
eralized upper plane Hg for g = 2, which is the Mumford-Tate domain for polar-
ized Hodge structures of weight n = 1 and with Hodge number h1,0 = 2. Given
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V 1,0 ∈ H, a Hodge flag is a line F1 ⊂ V 1,0; projectively we have the picture

�
�
�

�
�

�
�

[V 1,0]

•
[F1]

where the brackets represent the projectivezation of V 1,0 and F1. There is an
obvious map

D′ → H

that represents D′ as the P1-bundle PV1,0 over H.

CR geometry of QH . The CR geometry of the real hyperquadric QH in P3

given by
|z1|2 + |z2|2 = |z3|2 + |z4|2

is standard. The Levi form L, which is a (1, 1) form defined at each p ∈ QH on

TCR
p QH =: TR,pQH ∩ JTR,pQH ∼= C2

where TRQH is the real tangent space and JTR,pQH is its image under the almost-
complex structure J in the real tangent bundle to D. L is is an Hermitian form of
signature (1, 1). The regions Ω± in P3 where H > 0, H < 0 “look the same”; at the
boundary each is “1/2 pseudo-convex and 1/2 pseudoconcave”. However, when one
adds the additional condition that H(u, v) = iQ(u,σv) where Q is an alternating
form and σ is the conjugation described above (σ is not the standard conjugation
on C4), then an additional feature arises in the CR geometry.

(I.C.5) Proposition. At each point of QH , the null-direction of L on TCR
p QH is

a Lagrangian line contained in QH .

Proof. By the homogeneity of QH under the group GR, it will suffice to verify
the result at one point p. From the beginning of this section we have, up to a factor
of i,

Q(z, z̃) = (z1z̃4 − z4z̃1) + (z2z̃3 − z3z̃2) .
Then

[t0, t1]→ [t0, t1,−t1, t0]
gives a Lagrangian line contained in QH .

To explain where this comes from, let p = [1, 0, 0, 1] and choose the affine
coordinates (u, v, w)→ [u, v, w, 1] in a neighborhood of p. The form H is

|u|2 + |v|2 − |w|2 − 1

and at the point p given by u = 1, v = w = 0

TCR
p QH = span{∂/∂v, ∂/∂w}

and the Levi form is
L = i(dv ∧ dv − dw ∧ dw) .

Then at p and for the tangent vector X = ∂/∂v − ∂/∂w we have

L(X,X) = 0 .

The above Lagrangian line is given in affine coordinates t0 = 1, t1 = t by

t→ (1, t,−t)
with tangent X at p. �
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(I.C.6) Corollary. Let E be a Lagrangian line in P3 that meets, but does not lie
in, QH . Then E meets QH transversely in a circle.

In other words, Lagrangian lines not in QH meet QH transversely. This will be
important when we prove below that the correspondence space W for D is Stein.



CHAPTER II

Homogeneous line bundles over the Mumford Tate
domains

II.A. Generalities on homogeneous vector bundles

We will be dealing with homogeneous vector bundles over a homogeneous man-
ifold M = G/H where G is a Lie group and H is a closed subgroup. A homogeneous
vector bundle is a vector bundle E → M together with a G-action such that for
g ∈ G

E

��

g // E

��
M

g // M

commutes. There is an evident notion of a morphism between homogeneous mani-
folds and of a morphism between homogeneous vector bundles. We shall be working
in the setting of holomorphic homogeneous vector bundles over homogeneous com-
plex manifolds. The following are three observations.

(i) Given a representation r : H → GL(E) there is an associated homoge-
neous vector bundle

E = G×H E

where (g, e) ∼ (gh−1, r(h)e). Any homogeneous vector bundle is trivial
as a homogeneous vector bundle if, and only if, r is the restriction to H
of a representation r : G→ GL(E).

Remark. We shall be working in the holomorphic setting, and as noted at the
beginning of chapter I, there will be two cases for G/H. One is when G is a real,
reductive Lie group and H is a compact subgroup that contains a compact maximal
torus. The other is when G is a complex reductive Lie group and H is a parabolic
subgroup.

(ii) Two holomorphic homogeneous vector bundles may be equivalent as holo-
morphic vector bundles but not as homogeneous vector bundles.

(iii) The set of equivalence classes of holomorphic homogeneous vector bundles
depends on the particular representation of M = G/H as a homogeneous
complex manifold.

We will illustrate this below.

II.B. Homogeneous line bundles over the first example

In this section we will use the notations

D = U(2, 1)R/T, DS = SU(2, 1)R/TS , Dad = SU(2, 1)ad,R/Tad .

37
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As complex manifolds these are all the same, but as homogeneous complex manifolds
they are different. The maps SU(2, 1) ↪→ U(2, 1) and SU(2, 1)� SU(2, 1)ad induce
maps of homogeneous complex manifolds

DS ↪→ D

↓↓
Dad .

We shall denote by Pich(∗) the equivalence classes of holomorphic homogeneous
line bundles in each case. We then have the

(II.B.7) Proposition. The above maps induce

(i) Pich(D)
∼−→ Pich(DS)

(ii) 0→ Pich(Dad)→ Pich(DS)→ Z/3Z→ 0.

Proof. For a torus T# = t#/Λ# one has the usual description

X(T#) ∼= Hom(Λ#,Z)

of the characters. In each of the above three cases, Pich(∗) is isomorphic as an
abelian group to the corresponding character group, modulo those characters that
come by restriction from the whole group.

For (i) we have

0→ ΛS → Λ
π−→ Z→ 0

where π
(
n1
n2
n3

)
= n1 + n2 + n3. This gives

0→ Z π̌−→ X(T )→ X(TS)→ 0

where π̌(1) = det. By (i) in the previous section we obtain (i) in the proposition.
For (ii) we have

0→ ΛS → Λad → Z/3Z→ 0

which gives

0→ Hom(Λad,Z)→ Hom(Λ,Z)→ Z/3Z→ 0

∼ = ∼ =

X(Tad) X(TS) . �

There are three types of homogeneous line bundles over D that we shall con-
sider.

(a) the line bundles F(a,b) obtained by restricting OP2(a)� OP̌2(b);
(b) the line bundles Lk obtained from the character

χk(g) = e2πi〈k,θ〉 = e2πi(k1θ1+k2θ2+k2θ3)

where k = (k1, k2, k3) ∈ Ž3 = Hom(Λ,Z);
(c) the Hodge bundles Vp,q.

Remark. Because of (ii) in the proposition not all of these homogeneous line
bundles will exist over Dad. For example, the condition that Lk exist on Dad is

k1 + k2 + k3 = 3m

for some integer m.



II.B. HOMOGENEOUS LINE BUNDLES OVER THE FIRST EXAMPLE 39

We will now give the relations among the line bundles of types a), b) and c)
above. First, we note that as homogeneous U(2, 1)R line bundles

Lk
∼= Lk′ ⇔ k = k′ +m(1, 1, 1) .

Taking m ∈
(

1
3

)
Z, we can normalize so that k1 + k2 + k3 = 0, in which we can

write k as a linear combination of the roots{
e∗2 − e∗1 = α1

e∗3 − e∗2 = α2 .

(II.B.8) Proposition. We have

F(a,b) = L( 2a+b
3 )(e∗2−e∗1)+( a−b3 )(e∗3−e∗2) = L( 2a+b

3 )α1+( a−b3 )α2
.

Proof. The fibre F(−1,0) at the reference flag is the line [e1]. The character

of T acting on the line is e2πiθ1 whose differential, using our conventions, is e∗1.
Thus F(−1,0) = Le∗1 . Similarly, the fibre of F(0,−1) is the line [e2]⊥ ⊂ Č3, which
corresponds to −e∗2. Thus

F(a,b) = L−ae∗1+be∗2
.

To normalize as above we take m = 1
3 (b− a), so that the normalized

k =
1

3
(−2a− b, 2b+ a, a− b) .

Note that k +m(1, 1, 1) = (−a, b, 0). Then

k =
1

3
(−2a− b, 2a+ b, 0) +

1

3
(0,−a+ b, a− b)

=

(
2a+ b

3

)
(e∗2 − e∗1) +

(
a− b

3

)
(e∗3 − e∗2) . �

Note. The normalized k above is in the weight lattice for SU(2, 1)R. The
necessary and sufficient condition that it be in the root lattice, so that F(a,b) is a
homogeneous line bundle in Dad, is a ≡ b (mod 3).

Remark. In [C2], pages 309ff., we observe that in the notation there where
e1(diag(x, y, z)) = x−y corresponds to our e∗1−e∗2, one finds Fe1 = F(−1,−1), which
is in agreement with the above.

Of special interest are the F(a,b) which are anti-dominant in the sense that the
corresponding character is in the anti-dominant Weyl chamber.

Proposition. F(a,b) is anti-dominant for D if, and only if,{
2a+ b < 0

a+ 2b < 0 .

Proof. We write

xα1 + yα2 = µ(α1 + α2) + λ(−α2) .

The anti-dominant Weyl chamber is given by

µ < 0, λ < 0 .

In terms of x, y these conditions are

x < 0, x < y .

Taking x = 2a+b
3 , y = a−b

3 gives the result. �
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From the theory of the discrete series one is particularly interested in the F(a,b)

such that F(a,b) ⊗ Lρ is anti-dominant, where ρ = 1
2 (sum of the positive roots)

= α1.

Proposition. F(a,b) ⊗ Lρ is anti-dominant if, and only if,{
2a+ b+ 3 < 0

a+ 2b+ 3 < 0 .

Proof. This follows from the previous proposition and Lρ = F(1,1), where this
equality follows from the proposition above where ρ = α1. �

We note that the canonical line bundle

ωD = L−2ρ = F(−2,−2) .

Corollary. ω⊗kD ⊗ Lρ is the anti-dominant Weyl chamber for k = 2.

The picture in the (a, b) plane of the F(a,b) such that F(a,b)⊗Lρ is anti-dominant
is

a

b

−3 −3/2

−3/2

−3−1,( −2)

−2,( −1)

The dots on the dotted line are (−1,−1), (−3,−3), (−5,−5), . . . . The minimal
integral (a, b) in the shaded region are the points{

a = −2, b = −1

a = −1, b = −2 .

The dots on the dashed line are the powers ω⊗kD , k = 1. This diagram will appear
when we discuss the Penrose transforms of Picard modular forms.

Turning to the Hodge bundles Vp,q± → D, we have from the choice [e1] ⊂
[e1, e3] ⊂ [e1, e3, e2] of a reference flag and definition of the fibres of the Hodge
bundles at that point that 

V3,0
+ = L(1,0,0)

V2,1
+ = L(0,0,1)

V1,2
+ = L(0,1,0) .

Note that this is consistent with
p,q
⊗ Vp,q+

∼= det(V+,C), with det(V+,C) = V+,C ×D
being trivial as a homogeneous line bundle. We note also that

V3,0
+ = F(−1,0) .
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For later use we want to focus on another Weyl chamber, namely, the shaded
one in

C

The reason is that this is the Weyl chamber where bothH1
(2)(D,Lµ) andH0

(2)(B, ω
⊗k
B ),

k = 2, will be non-zero. We recall from [Schm1] that the sufficient condition to
have H1

(2)(D,Lµ) non-zero is that ρ+ µ should be non-singular, and that

q(µ+ ρ) := #
{
α ∈ Φ+

c : (µ+ ρ, α) < 0
}

+ #
{
β ∈ Φ+

nc : (µ+ ρ, β) > 0
}

should be equal to one.

(II.B.9) Proposition. The above condition for µ = xα1 + yα2 on Lxα1+yα2
is

x+ 1 + y > 0

x+ 1 < 2y

2x+ 2 > y .

In terms of F(a,b) the conditions are
a+ 1 > 0

b+ 1 < 0

a+ b+ 2 > 0 .

The picture in (a, b) space is

−2,( 0)

−1,( −1)

(0
,−2)

a = −1

b = −1

a+b = −2
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Conclusion: The positive root is α =: e∗2 − e∗1 and E,F = ( 0 1
0 0 ), and H =(−1 0

0 1

)
is a basis for sl2.

• the line bundle OP1(−1) has fibre at the reference point the line [e1].
Then

hx · e1 = xe1 ,

so that identifying characters with weights

OP1(−1)←→ weight e∗1 .

Here, we are identifying ȟ with Č2/{e∗1 + e∗2 = 0}.
As a check on the signs, we have for the canonical bundle the two descriptions{

ωP1 ∼= OP1(−2)

ωP1 ←→ homogeneous line bundle with weight − α .
The second is because E ∈ T 1,0P1 has weight α. Since −α = e∗1 − e∗2 = 2e∗1, the
two descriptions of ωP1 agree.

As a final check, when we restrict homogeneous line bundles to H, the curvature
reverses sign. Thus, ωH

∼= OP1(−2)
∣∣
H

has positive curvature (= negative Gaussian

curvature).

Homogeneous line bundles over D′ and B. We shall denote the homo-
geneous line bundles over D′ by F ′(a,b), L

′
k etc. We recall our reference flag [e3] ⊂

[e3, e1] ⊂ [e3, e1, e2] for which D′ is a U(2, 1)-orbit in Ď.

(II.B.10) Proposition. We have

F ′(a,b) = L′1
3 (a−b,2b+a,−2a−b) = L′1

3 (b−a)α1+ 1
3 (−2a−b)α2

.

Proof. Using the reference flag gives

F ′(1,0) = L′−e∗3 , F
′
(0,1) = L′e∗2

so that
F ′(a,b) = L′−ae∗3+be∗2

.

As in the case of D above, m = 1
3 (b − a) and the normalized k′ = (0, b,−a) ⊕

(m,m,m) is

k′ =
1

3
(a− b, 2b+ a,−2a− b)

=
(b− a)

3
(e∗2 − e∗1) +

(−2a− b
3

)
(e∗3 − e∗2) . �

The condition that F ′(a,b) be anti-dominant is

F ′(a,b) = Lkα1+l(−α1−α2), k, l < 0 .

This gives the same conditions

a+ 2b < 0, 2a+ b < 0

as for D.
For D′, we have

ρ′ =
1

2
(α1 − α2 − α1 − α2) = −α2

which gives for the canonical bundle

ωD′ = L′α2
= F ′(−1,−1) .
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The conditions in terms of a and b that F ′(a,b)⊗L′ρ′ be anti-dominant are again the

same as for D.
We next ask the question:

Which Weyl chamber C has the property that for a normalized
k′ ∈ C{

(k′ + ρ′, α1) > 0

(k′ + ρ′,−α2) < 0, (k′ + ρ′,−α1 − α2) < 0 ?

From [Schm1] these are the conditions that give H0
(2)(D

′, L′k′) 6= 0. The first and

second imply the third. We write

k′ = k(e∗2 − e∗1) + l(e∗3 − e∗2) = kα1 + lα2 .

From the picture

C

−α1 − α2 = e∗1 − e∗3

• •

α1 = ee∗2 − e∗1

and setting µ = k′ + ρ′ = kα1 + (l − 1)α2 we want the conditions that give

(µ, α1) > 0, (µ,−α2) < 0 .

These work out to be {
2k + 1 > l

k + 2 < 2l .

We are interested in the sections in H0
(2)(B, ω

⊗k
B ). From the Leray spectral

sequence, and denoting by ω′B the pullback of ωB to D′, we want H0
(2)(D

′, ω
′⊗k
B ) 6= 0.

Now on D′

ω′B = L′2α2+α1
= L′2e∗3−e∗1−e∗2 .

The picture for ω′B is given by the dot

C

∗

•

•

ωB

ρ = −α2
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We observe that ω′B is orthogonal to the compact root, which must be the case.
Then ω′B ⊗ L′ρ′ = L′α1+α2

, which is the ∗ in the picture.

Conclusion. We have ω′⊗kB ⊗ L′ρ′ ∈ C for k > 1.

Next, we claim that

ω′B ⊗ L′ρ′ = F ′(−2,1) .

The LHS is

L′2e∗3−e∗1−e∗2 ⊗ L
′
e∗2−e∗3 = L′e∗3−e∗1 = L′α1+α2

.

From the proposition, for F ′(a,b) = L′α1+α2
we have

b− a = 3, −2a− b = 3. �

Finally we note that

ω′B = F ′(−3,0) ,

which is consistent with B ⊂ P2 and ωP2 ∼= OP2(−3).
For the Hodge bundle, from the picture

∗ ∗∗
∗∗ ∗

V+,C

V−,C

V 1,0 V 0,1

where the fibre of V1,0
+ at the reference point is [e3],

V 1,0
+ = OB(−1)

and

ωB = ⊗3V1,0
+ .

We shall abuse notation and write

ω
′⊗k/3
B = F ′(−k,0) = V1,0

+ .

Appendix to section II.B: Sign conventions

Since the signs and Weyl chambers are critical, as a check we will here do the
simple case of H ⊂ P1. We set

• C2 = column vectors with basis e1 =
(

1
0

)
, e2 =

(
0
1

)
;

• Č2 = dual space of row vectors with dual basis e∗1 = (1, 0), e∗2 = (0, 1);
• with the reference point [e1] = line in C2 spanned by e1, we have the

identification

P1 = SL2(C)/B

where B =
{(

a b
0 a−1

)}
;

• for the Cartan subalgebra h =
{
hx =

(
x 0
0 −x

)}
we identify h with C and

hx with x(e1 − e2);
• For E = ( 0 0

1 0 ), we may identify the holomorphic tangent space to P1 at
[e1] with sl2(C)/b ∼= CE. Then

[hx, E] = −2xE = 〈e∗2 − e∗1, hx〉 .
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II.C. Homogeneous line bundles in the second example

In this section we shall use the following notations.

• G = Sp(4);
• D and D′ are the homogenous complex structures on GR/T given by the

respective root diagram

D D′

•

•�

•

•

−2e2

•
+

e1 − e2
+ •�

2e1•+

e1 + e2+ •

2e2•

•�

•

•

•

e1 − e2
+ •�

2e1•+

e1 + e2+ •

Figure 1

• Ď will be the compact dual of all Lagrangian flags F• = {F1 ⊂ F2 ⊂
F3 ⊂ F4 = V } where F 1

2 = F2, F⊥1 = F3;
• F(a,b) → Ď will be the homogeneous line bundle defined to be the ho-

mogeneous line bundle associated to the character whose corresponding
weight is ae1 + be2;

• the restrictions of F(a,b) → Ď to D and D′ will be denoted respectively
by {

F(a,b) → D

F ′(a,b) → D′ .

When we construct the correspondence space W ⊂ GC/TC with maps

W

π′

��555555
π

��������

D D′,

we will have the isomorphism of homogeneous line bundles

π−1F(a,b)
∼= π

′−1F ′(a,b) .

Homogeneous line bundles over D. Recall that in Ď we have the reference flag

[v−e1 ] ⊂ [v−e1 , v−e2 ] ⊂ [v−e1 , v−e2 , ve2 ] ⊂ [v−e1 , v−e2 , ve2 , ve1 ]

with corresponding Borel subgroup denoted by B0 above. Recalling that a Lagrange
flag is determined by the first two subspaces in the reference flag over the point
F• ∈ Ď whose GR-orbit is D, we take for the first two subspaces

[v−e1 ], [v−e1 , ve2 ] .
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It follows that the fibres of F(a,b) → D at the reference flag are determined by

(II.C.1)

F(1,0),F• = ˇ[v−e1 ]←→ e1

F(0,1),F• = [ve2 ]←→ e2 .

Here the notation “←→” means that homogeneous line bundles are given by the
characters of T corresponding to the indicated weight.

When we realize D as the Mumford-Tate domain for polarized Hodge structures
of weight n = 3 and all hp,q = 1, we then have for the Hodge bundles

(II.C.2)

{
V3,0 = F(−1,0)

V2,1 = F(0,1) .

Homogeneous line bundles over D′. Here the reference flag F ′• is the same as
that for Ď given above. It follows that

(II.C.3)

F
′
(1,0),F ′•

= ˇ[v−e1 ]←→ e1

F ′(0,1),F ′•
= ˇ[v−e2 ]←→ e2 .

As previously noted, the Hodge-theoretic interpretation of D′ that we shall use
is the following.

• H is the space of polarized Hodge structures of weight one on V given
by Lagrangian 2-planes F2 ⊂ V such that H < 0 on F2, where H is the
Hermitian form given above;

• D′ → H is the space of Hodge flags

F1 ⊂ F2

where F2 ∈ H.

Thus, D′ is a P1-bundle over an Hermitian symmetric domain. If we denote by

V
′1,0 → D′

the pullback to D′ of the Hodge bundle over H, then

(II.C.4) detV1,0 = F ′(−1,−1) .

Of importance for later use will be the pullback ω′H to D′ of the canonical line
bundle ωH → H. Referring to figure 1 above, the (1, 0) tangent space to H at the
image of the reference flag for D′ is

T 1,0H ∼= span {X2e2 , Xe1+e2 , X2e1} .
It follows that

(II.C.5) ω′H = F(−3,−3) ←→ −3(e1 + e2) .

An important Weyl chamber. Denoting by Φ+ the set of positive roots corre-
sponding to the complex structure on D, we have

Φ+ = Φ+
c ∪ Φ+

nc

where Φ+
c ,Φ

+
nc are respectively the compact, non-compact positive roots. For a

weight µ recall the definition

q(λ) = #
{
α ∈ Φ+

c : (λ, α) < 0
}

+ #
{
β ∈ Φ+

nc : (λ, β) > 0
}
.
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For the complex structure on D′, we have similarly

Φ
′+ = Φ

′+
c ∪ Φ

′+
nc ,

and for a weight λ we set

q′(λ) = #
{
α ∈ Φ

′+
c : (λ, α) < 0

}
+ #

{
β ∈ Φ+

nc : (λ, β) > 0
}
.

Referring to Figure 1 above, we denote by C the following Weyl chamber:

e1+ e2

e1 e2--

e2-- 2

e12

e22

C

Figure 2

From inspection of this picture we infer the

(II.C.6) Proposition. For λ ∈ C we have{
q(λ) = 1

q′(λ) = 0 .

The importance of the Weyl chamber C is the following: With the usual nota-
tions

(II.C.7)

{
ρ = 1

2

(∑
α∈Φ+ α

)
= 2e1 − e2

ρ′ = 1
2

(∑
α∈Φ′+ α

)
= 2e1 + e2 ,

from the work of Schmid [Schm1] we have

(II.C.8)

{
• If µ+ ρ ∈ C, then H1

(2)(D,Lµ) 6= 0

• If µ′ + ρ′ ∈ C, then H0
(2)(D

′, L′µ′) 6= 0 .

The same result will hold for quotients X = Γ\D and X ′ = Γ\D′ where Γ is a
co-compact discrete subgroup of G acting freely on D and D′, provided that µ+ ρ
and µ′ + ρ′ are “sufficiently far” from the walls of C.

For a line bundle L′µ′ → D′, we shall say that

L′µ′ ∈ C

if the weight of µ′ + ρ′ ∈ C. Then we have the

(II.C.9) Proposition. For m = 1 we have

ω
′⊗m
H ⊗ L′ρ′ ∈ C .

The sections in H0(X ′, ω
′⊗k/3
H ) will correspond to Siegel modular forms of

weight k. The Penrose transform will give a natural map

P : H0(X ′, ω
′⊗k/3
H )→ H1(X,Lµk)
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for a weight µk to be determined below. In this way, Siegel modular forms are
mapped to the non-classical automorphic cohomology H1(X,Lµk).



CHAPTER III

Correspondence and cycle spaces; Penrose
transforms

III.A. Introduction

For this paper correspondence and cycle spaces will provide a Penrose-transfer
type mechanism for transforming higher cohomology of homogeneous line bundles
over Mumford-Tate domains, and the quotients of such by discrete groups, into
global holomorphic objects. In particular, for the cases we shall consider the corre-
spondence spaces will provide a way to “evaluate” automorphic cohomology classes
α at CM points and then to be able to say that α has an “arithmetic value” there.
The correspondence spaces will have three descriptions

• geometric
• group theoretic
• Hodge theoretic

and it will be the interplay between these, especially the explicit formulas, that will
be of use in this work.

The cycle spaces, which first appeared from Hodge-theoretic considerations
in the 1960’s and have been the subject of substantial recent work (cf. [FHW]
and the references cited therein), will for us provide an intermediary between the
correspondence spaces and the Mumford-Tate domains.

III.B. Basic definitions and examples

Definition. Let M be a complex manifold. A correspondence space for M is
a complex manifold X together with a holomorphic submersion

π : X→M

such that (i) X is a Stein manifold, and (ii) the fibres of π are contractible.

Being closed complex submanifolds of a Stein manifold, the fibres π−1(m) =
Xm, m ∈ M of π are Stein manifolds. The term correspondence space is used
because in the examples we shall consider there will be a diagram

X

π

��������
π′

��44444

M M ′

where each projection satisfies (i), (ii) above, and where there will be maps arising
from the EGW theorem below and a canonical class on X that combine to give a
“Penrose transform” map

P : Hq′(M ′, L′)→ Hq(M,L)

49



50 III. CORRESPONDENCE AND CYCLE SPACES; PENROSE TRANSFORMS

relating cohomology on M ′ to that on M .
Our use of correspondence spaces arises from the fundamental works [Gi] and

[EGW]. The basic result we shall use is this: Let F →M be a holomorphic vector
bundle and π−1F → X the pullback of F to X. The sheaves

Ωqπ =: ΛqΩ1
π where Ω1

π = Ω1
X/π

∗Ω1
M

of relative differentials are defined and form a complex (Ω•π, dπ). Thinking of
π−1F → X as having transition functions that are constant along the fibres of
X → M , we may define dπ : Ωqπ(π−1F ) → Ωq+1

π (π−1F ), and then from this define
the global, relative de Rham cohomology groups

H∗DR

(
Γ(X,Ω•π(π−1F ))

)
.

Here, and below, we shall omit reference to the differential dπ.1

Theorem ([Gi], [EGW]). There is a natural isomorphism

(III.B.1) H∗(M,F ) ∼= H∗DR

(
Γ(X,Ω•π(π−1F ))

)
.

In the examples we shall consider, there will be natural “harmonic” represen-
tatives of the cohomology classes on the RHS of (III.B.1). In this way the higher
cohomology classes on M on the LHS will be represented on X by global holomor-
phic objects.

The examples we shall consider will be when M is a homogeneous complex
manifold. They will be of two types.

Compact case: M = K/T = KC/BK where K is a compact, reductive real
Lie group, T ⊂ K is a compact maximal torus and BK ⊂ KC is a Borel subgroup.
We think of M as “flags,” and then we will have

X = {pairs of flags in general position} ∼= KC/TC .

More precisely, if BK stabilizes a reference flag and if B∗K is the opposite Borel
subgroup, then TC = BK ∩ B∗K . Here one may think of BK = TCU where TC is
a Cartan subgroup and U , the unipotent radical of BK , is the exponential of the
negative root spaces. Then B∗K = TCU

∗ where U∗ is the exponential of the positive
root spaces.

Basic example in the compact case: M = P1 and X = P1×P1\{diagonal}
consists of pairs of distinct points in P1. The cohomology groups are the standard
Hq(R1,OP1(k)), with the groups for q = 1 and k 5 2 being interpreted by global
holomorphic data via the RHS of (III.B.1). We will analyze this example in detail
in section III.C below.

Mumford-Tate domain case: In this case we will have M = D = GR/T
where T is a compact maximal torus. We then have the compact dual Ď, and
denoting by W, W̌ the respective correspondence spaces we will have

W ⊂ W̌y y
D ⊂ Ď

1These groups are commonly written as Hq
DR(X/M, π−1F ) = Hq

(
Γ(X,Ω•π(π−1F )); dπ

)
, the rela-

tive de Rham cohomology groups with coefficients in the local system π−1F over X.
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where W is an open set in W̌. Although W̌ → Ď is an example of the compact
case, we shall reserve the notation X for the correspondence space X→ K/T where
K ⊂ GR is a maximal compact subgroup.

In our examples we will have for Ď an identification

W̌ = GC/TC ,

so that again we may think of W̌ as pairs of flags in general position. Much more
subtle is the definition of the correspondence space W → D for a homogeneous
complex manifold D = GR/T which is the GR-orbit of a point ϕ in Ď (these
include the Mumford-Tate domains we shall consider). Letting W denote the Weyl
group of GC when GR is of Hermitian type, there is the description

(III.B.2) W =

( ⋂
w∈W

GR ·Bw
)
/TC

where B ⊂ GC is the stabilizer of ϕ ∈ Ď and Bw = wBw−1.2 We note here that
TC =

⋂
w∈W Bw, so that (III.B.2) is defined. We will work out the description

of (III.B.2) explicitly in our two examples. The geometry of the correspondence
spaces is a very rich story and is the subject of [GG].

First example: D = U(2, 1)R/T as in chapter I. Then Ď ⊂ P2 × P̌2 is the

incidence or flag variety, and W̌ is the set of configurations of pair (p, l; p̌, l̃) ∈ Ď×Ď

p̃

l̃
p

l

in general position.
We may obviously identify W̌ with the set of projective frames (p, P, p̃)

p s
p̃ s

Ps
by drawing in the lines pP and p̃P to obtain the first picture and by omitting them
in the first to obtain the second. We have chosen to use the first, and also the
notations p, P, p̃ so as to be consistent with the rest of this work. Remark that the
second picture is the more fundamental and is the one that will generalize.

For W we have the picture

B
p̃

l̃

p

l

2When GR is not of Hermitian type this description needs to be refined; this happens already
for SO(4, 1). The general definition of W is somewhat subtle and requires use of the universality

property of the correspondence space, related to that property of the cycle space.
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of configurations above where l ∩ l̃ ∈ B and the line pp̃ ⊂ Bc. We may identify this
picture with sets of triples of points

p

pP ˜

where P ∈ B and where the line pp̃ lies in Bc. This description may then be seen
to agree with (III.B.2) in this special case.

Below we will describe W̌ and W for the second example.
Next, we turn to the

Definition. Let D = GR/T be a non-classical Mumford-Tate domain. Let
Z = K/T be a maximal compact complex analytic subvariety of D. Then the cycle
space

U = {gZ : g ∈ GC and gZ ⊂ D}
is the set of translates of Z by elements g of the complex group such that gZ0

remains in D. If g1Z0 = g2Z0 they represent the same point of U. For u ∈ U we
denote by Zu ⊂ D the corresponding subvariety.

Because D is non-classical, i.e., it does not fibre holomorphically or antiholo-
morphically over an Hermitian symmetric domain, it is a non-trivial result (cf.
[FHW] and the references cited there) that

{g ∈ GC : gZ0 = Z0} = KC .

It follows that
U ⊂ GC/KC

is an open set, and this gives U as an open set in the affine variety GC/KC. Another
basic result (loc. cit.) is that

U is a Stein manifold.

First example (continued): In this case U has the picture

B

P

L

That is
U = {(P,L) : P ∈ B, L ⊂ Bc} ∼= B× B .

The corresponding maximal compact subvariety Z(P,L) is given by the picture

P

L

p

l

Thus Z(P,L) = {(p, l) ∈ D} ∼= P1.
In general, denoting by Zu the maximal compact subvariety corresponding to

u ∈ U, the correspondence space and cycle space are related through the
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Definition. The incidence variety I ⊂ D × U is defined by I = {(ϕ, u) : ϕ ∈
Zu}.

We then have the projections

I

τ

�������
η

��3
3333

D U

where {
τ−1(ϕ) = {(ϕ, u) : ϕ ∈ Zu} = all Zu passing through ϕ

η−1(u) = {(ϕ, u) : ϕ ∈ Zu} ∼= Zu .

First example (continued): The picture of I is

P

L

p

l

In this example we have the following

Observation: There is a map W
σ−→ I that gives a factorization

W

π ��666666
σ // I

τ�������

D

defined by the conditions that if (ϕ, ϕ̃) = (p, l; p̃, l̃) ∈W, then

σ(ϕ, ϕ̃) = (p, l; l ∩ l̃, pp̃) ∈ I ⊂ D × U ;

i.e., the conditions give that P = l ∩ l̃ ∈ B and L = pp̃ lies in Bc, and consequently
(P,L) ∈ U.

This observation has the following

Consequences. The above diagram factors the map π into two simpler maps.
Namely

(i) In our example

P

L

p

l

τ−1(p, l) =

{
P ∈ l ∩ B ∼= ∆

L through p, L ⊂ Bc ∼= ∆

}
∼= ∆×∆

where ∆ is the unit disc in C. Thus, even though I is not Stein the fibres
over D are Stein and contractible.
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(ii) In this example, the map W
σ−→ I is

p̃ l̃

p
l

p̃ l̃

p
l

P

L

−→

(p, l; p̃, l̃) −→ (p, l;P,L)

The fibre

σ−1(p, l;P,L) ∼=
{
p̃ ∈ L\{p}

}
∼=
{
l̃ through P, l 6= l̃

} ∼= C .

Thus, the EGW theorem applies to W
σ−→ I.

(iii) In this example

W =
⋃
u∈U

Xu ,

i.e., the correspondence space W is fibered over U by the simpler corre-
spondence spaces given in the basic example.

In particular, for each u ∈ U by restriction there is a commutative
diagram

H∗DR (Γ(W,Ω•π(Lµ))) // H∗DR

(
Γ(Xu,Ω

•
γ(Lµ))

)

∼ = ∼ =

H∗(D,Lµ) // H∗(Zu, Lµ) .

(III.B.3)

It is known that for a weight µ such that µ + ρ is anti-dominant, the
cohomology Hd(D,Lµ) is essentially captured by its restrictions to the
maximal compact subvarieties (Schmid’s identity theorem [Schm1]), and
as will be seen below the RHS of this diagram can be very explicitly
analyzed. This will be carried out in the appendix to section IV.D.

The second example. Our purpose here is to construct and give properties of
the correspondence space in the second example. Specifically, we will show that

(III.B.4) Proposition. The construction (III.B.2) gives a correspondence space.

We will also (i) give the geometric picture of W, (ii) give the geometric pictures
of the cycle space U and the analogue in this example of I above, and (iii) give the
geometric description of the maps between these various spaces. The discussion
will be given in a sequence of steps.

Step one. We recall from section I.C the description of the correspondence
space W̌ = GC/TC for the compact dual as
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W̌ =

{
set of Lagrange

quadrilaterals

}

C
C
C
C
C
C
C
C
C
C
CC

••
p3

E34p4

•
p2p1

•

E24E13

E12

�
�
�
�
�
�
�
�
�
�
��

Such a Lagrange quadrilateral is given by the projective frame (p1, p2, p3, p4) asso-
ciated to a frame (f1, f2, f3, f4) ∈ GC where pi = [fi]. The correspondence space

W will be the open set in W̌ described geometrically as the points of W̌ given by

C
C
C
C
C
C
C
C
CC

••
> 0

• •

�
�
�
�
�
�
�
�
�� < 0

(1, 1) (1, 1)

Figure 9

This means that the restrictions of the Hermitian form H to the Lagrange lines Eij
have the indicated signature.

Step two. We recall that the Weyl group W is the subgroup of S4 = permuta-
tions of {1, 2, 3, 4} realized geometrically as the symmetries of the square

•

•

•

•

3

2

4

1

For w ∈ W we denote by σw ∈ S4 the corresponding permutation, and we denote
by

f1 = v−e1 , f2 = v−e2 , f3 = ve2 , f4 = ve1 ,

the reference frame. Setting Bw = wB0w
−1 we have the
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(III.B.5) Lemma. (i) Bw = {g ∈ GC : g preserves the reference flag ([fσw(1)],
[fσw(1), fσw(2)])}; (ii) GRBw = {g ∈ GC : H has the correct signature on the flag
([g(fσw(1))], [g(fσw(1)), g(fσw(2))])}.

Proof. We recall that any Lagrange flag F1 ⊂ F2 ⊂ F3 ⊂ V is determined
by F1 ⊂ F2. Then (i) follows from the description of Bw as the subgroup of GC
preserving the reference flag given in (i).

As for (ii), it is convenient to think in Hodge-theoretic terms. It will suffice to
prove the result when w is the identity. Then we may think of Dw = D as the set of
filtrations F1 ⊂ F2 ⊂ F3 ⊂ F4 = V satisfying the second Hodge-Riemann bilinear
relation (the first one is satisfied in Ď). This is the same as the set of partial flags
F1 ⊂ F2 satisfying the second bilinear relation, which is just the condition in (ii).
Letting ϕ0 ∈ D be the identity coset, we need then to show that GR = {g ∈ GC :
g ·ϕ0 ∈ D}. But D = GR ·ϕ, so that we have gϕ0 = gR ·ϕ0 and then g = gRb where
b ∈ Bw. �

Step three. We define

Dw = GRBw/Bw ⊂ GC/Bw .

Then from the discussion at the beginning of chapter I we have

(III.B.6)

{
Dw = GR-orbit of wB in GC/B

Dw
∼= Dw′ if, and only if, wWK = w′WK .

In the second statement the isomorphism is as homogeneous complex manifolds
given by a complex structure on GR/T .

Definition. We set

(III.B.7) W =

( ⋂
w∈W

GRBw

)
/TC .

We will show that W is an open set in W̌ and that it gives a correspondence
space for all the domains Dw.3

We note that W is universal in the sense that we have surjective holomorphic
submersions

W
πw−−→ Dw

for all w ∈W . This mapping is given by

W→ GRBw/Bw ∼= GR/T

where GR/T has the homogeneous complex structure corresponding to w ∈W .
From (ii) in the Lemma in step two we have the identification

GRBw/TC ←→


flags ([fσw(1)], [fσw(1), fσw(2)]) for

which H has the same signature as

for the reference flag ([f1], [f1, f2])

 .

It follows that we have the identification of sets

W = all pictures given by Figure 9.

3As previously noted, the definition (III.B.7) will work in general whenever GR is of Hermitian
type, but in general must be modified.
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This gives the inclusion W ⊂ W̌, where W is the open set given by the inequalities

> 0
•

> 0
•

•
< 0 < 0

•

Here one notes that this configuration can be completed to a Lagrange quadrilateral

> 0
• •

•
< 0

•

Step four. We next describe U = set of maximal compact subvarieties Z ⊂ D.
Denote by H the Siegel upper space parametrizing polarized Hodge structures

of weight one on V .

(III.B.8) Proposition. U ∼= H ×H.

Proof. We think of H as the set of Lagrange lines E in P3 on which H < 0,
and H as the set of Lagrange lines E′ where H > 0. Given the picture

,(1 1)

> 0

E

E
< 0

•

• = ⊥ ∩ Ep p

p

to each p ∈ E we have the unique point p′ = p⊥∩E′ ∈ E′, where ⊥ means orthogonal
with respect to Q. Then pp′ is the Lagrange line giving a partial filtration F1 ⊂ F2

satisfying the condition that H < 0 on F1 and H has a signature (1, 1) on F2. As
p varies over E ∼= P1 we obtain a maximal compact subvariety Z(E,E′) ⊂ D. It
then follows either directly, or from the general results in [FHW], that the above
description gives U. �

Step five. We willl show that

(III.B.9) Proposition. (i) W is a Stein manifold, and (ii) the fibres of any
projection W→ Dw are contractible.
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Proof. We map W→ U by

C
C
C
C
C
C
C
C
CC

•
p4•

p3

•
p1

•
p2

�
�
�
�
�
�
�
�
��

−→

•
p1 p2

•

•
p3 = p⊥1 •

p4 = p⊥2

E

where p⊥1 , p⊥2 are the points on the Lagrangian line that are orthogonal under Q to
p1 and p2. The fibre E ×E\{diagonal} is Stein as is U, from which it may be seen
that W is a Stein fibration over U. � for (i)

For the proof of (ii), the map W→ D is

C
C
C
C
C
C
C
C
CC

•
p4•

p3

•
p1

•
p2

�
�
�
�
�
�
�
�
��

−→

•
�
�
�
�
�
�
�
�
��

p1

then the fibre over
�
�
�
�
�Ẽ

•p1
, where H(p1) < 0 and H has signature (1, 1) on Ẽ, is

described as follows:

• pick a point p3 ∈ Ẽ where H(p3) > 0; this is a disc in Ẽ ∼= P1;
• pick a Lagrangian line E through p1 and where H < 0 on E; this is a

disc in the set of Lagrangian lines through p1, which is a P1;
• pick a Lagrangian line E′ through p3 and where H > 0 on E′; another

disc;

At this stage we have

•
E′Ẽ

p3

Ep1

•

�
�
�
�
�
�
�
�
�
�

• finally, pick p2 6= p1 on E, which is a C, and set p4 = p⊥2 ∩ E′.
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This completes the figure just above to a Lagrange quadrilateral, and the fibres are
successively ∆,∆,∆,C.

This completes the proof of (ii) for D. The arguments for the other Dw’s are
similar. �

Step six. We have I ⊂ D × U given by the set of configurations

•
E′> 0

< 0

p′ = p⊥

E

p

(1, 1)

•

�
�
�
�
�
�
�
�
�
�

That is
I = {(p, pp′, (E,E′)} ∈ D × U

as in the above picture. The fibres of the maps in

I

η

��0
0000

τ

�������

D U

may be analyzed as above. We note that τ−1(p, pp′) is contractible Stein.

III.C. The basic example

This section is not essential for the main results in the paper. It is in part
based on [Gi] and [EGW], and its purpose is to describe in detail the isomorphism
in Theorem III.B.1 in the case of the compact form of the basic example. The de-
scription will be given both in coordinates and group-theoretically (n-cohomology)
and in both the compact and non-compact cases. These descriptions will be shown
to agree (up to constants). The point is that both descriptions will be used in the
two examples in this work, where although the formulas are of course more compli-
cated the conceptual framework and method of calculation are essentially the same.
Additionally we can use the maps in the diagram (III.B.3) to analyze cohomology
in the example in terms of the simpler cohomology in the basic example. The basic
conclusion of this discussion of the compact case is summarized in step six below.
Following that we will give a discussion of the non-compact case. The conclusion
of that is (III.C.13) below.

We will proceed in several steps. In this section V will be a 2-dimensional
complex vector space.

Step one. We observe that a non-degenerate alternating form

Q : V ⊗ V → C
gives an SL2(C)-equivariant isomorphism

Ω1
PV
∼= OPV (−2) .
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Proof. We think of Q as giving an isomorphism

Λ2V ∼= C ,
and then Aut(V,Q) = SL2(C). Let [z] = [ z0z1 ] be homogeneous coordinates and
[ξ] = [ξ0, ξ1] the dual homogeneous coordinates in PV̌ . It is convenient to use the
physicists notation εij = −εji for a skew-symmetric matrix with dual εij and where
using summation convention εijε

jk = δki . Then

Q(z, z̃) = εijziz̃j .

We claim that the 1-form
ω(z) =: εijzidzj

gives a nowhere-zero section of Ω1
PV (2), and thus an SL2(C) equivariant isomor-

phism Ω1
PV
∼= OPV (−2). To see this we note that ω(z) as given by the formula is a

1-form on V \{0}, homogeneous of degree 2 and which satisfies

〈ω(z), Z〉 = 0

where Z = zk∂/∂zk is the Euler vector field that is tangent to the fibres of V \{0} →
PV . Thus ω(z) is semi-basic or horizontal; i.e., at each point of V \{0} it is in the
image of the pullback on cotangent spaces of the map ŤPV → Ť (V \{0}), and it is
homogeneous of degree 2 under the C∗-action. The conclusion follows from this. �

Remark. If f(z) is a holomorphic function defined locally over an open set
in PV and pulled back to the inverse image in V \{0}, then for λ 6= 0 we have
f(λz) = f(z) and Euler’s relation gives(

1

z1

)
∂f

∂z0
(z) = −

(
1

z0

)
∂f

∂z1
(z) .

Using the form Q to identify V with V̌ , for the pullback of the differential of f
there is the formula

(III.C.1) df =

(
1

2

)( ∇f
z0z1

)
ω(z)

where ω(z) = z1dz0 − z0dz1 and

∇f = z0
∂f

∂z0
− z1

∂f

∂z1
.

We will encounter a similar expression for the formula for dπ given below.

Step two. We set
X = PV × PV̌ \{〈ξ, z〉 = 0} .

Using the isomorphism V ∼= V̌ given by Q, we have an identification

X ∼= PV × PV \{diagonal}
where the diagonal is {([z], [z̃]) : Q(z, z̃) = 0}.4 For notational convenience we
will use ([z], [ξ]) for points of X in the second description, so that [ξ0, ξ1] ∈ PV̌
corresponds to the point

(
ξ1

−ξ0

)
∈

PV . We also assume that Q =
(

0 1
−1 0

)
. Let O(k, l) be the sheaf OPV (k) � OPV̌ (l)

on PV × PV̌ restricted to X. Denoting by

π : X→ PV
4If Q(z, z̃) = z ∧ z̃, then we are taking out from P1 × P1 the usual diagonal [z] = [z̃].
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the projection on the first factor, from step one we have the Aut(V,Q)-invariant
identification

Ω1
π
∼= O(0,−2) .

We set OPV (k)π = π−1OPV (k), Ω1
π(k) = Ω1

π⊗OPV (k)π, and using this identification
we have a diagram

Oπ(k, 0)
dπ // Ω1

π(k)

∼ = ∼ =

Oπ(k) // Oπ(k,−2) .

For f(z, ξ) a holomorphic function defined in an open set in V \{0} × V̌ \{0} lying
over an open set in X and which is homogeneous of degree k in z and degree zero
in ξ, we claim that the top map is given by

(III.C.2) dπf(z, ξ) =
εijzi
〈ξ, z〉

∂f(z, ξ)

∂ξj
ω(ξ)

where ω(ξ) = εijξ
idξj .

For the proof of this formula, taking again for Q the standard form and using
Euler’s relation, we have

z0
∂f

∂ξ0
− z1

∂f

∂ξ1
=

(z0ξ
0 + z1ξ

1)∇ξf
2ξ0ξ1

=
〈ξ, z〉∇ξf

2ξ0ξ1

where ∇ξf = ξ1 ∂f
∂ξ1 + ξ0 ∂f

∂ξ0 . This establishes the above claim and explains the

factor 〈ξ, z〉 in the denominator.
The bottom map is given by the same formula (III.C.2) omitting the ω(ξ).

From this we see that dπf = 0 implies that f = f(z) depends only on z, and this
gives

H0
DR

(
Γ(X,Ω•π(k))

) ∼= H0
(
PV,OPV (k)

)
.

Step three. More interestingly, for k ≥ 2 we will now make explicit the isomor-
phism

H1
(
PV,Ω1

PV (−k)
) ∼= H1

DR

(
Γ(X,Ω•π(−k − 2))

)
,

and then will show that each class on the RHS has a canonical representative. For
this we use the isomorphism V ∼= V̌ given by Q to have

H1
(
Ω1

PV (−k)
) ∼= H1

(
OPV (−k − 2)

)
(using Q)

∼= H0
(
OPV (k)

)∨
(Kodaira-Serre duality)

∼= (Symk V̌ )∨

∼= Symk V̌ (using Q).

Given g(z) ∈ Symk V̌ a homogeneous form of degree k, we define ǧ(ξ) ∈ Symk V
by setting zi = εijξ

j in g(z). We then define the map

Symk V̌ → Γ(X,O(−k − 2,−2))

by

g(z)→ ǧ(ξ)

〈ξ, z〉k+2
.
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(III.C.3) Proposition III. This map induces a canonical isomorphism

H1
(
Ω1

PV (−k)
) ∼= H1

DR

(
Γ
(
X,Ω•π(−k − 2)

))
.

The element on the RHS corresponding to g(z) is ǧ(ξ)ω(ξ)

〈ξ,z〉k+2 .

Here, canonical means with respect to the form Q and group Aut(V,Q).
A direct proof of the proposition would be to show that the equation

ǧ(ξ)

〈ξ, z〉k+2
=
εijzj
〈ξ, z〉

∂f(z, ξ)

∂ξi

has no non-trivial solution for f(z, ξ) ∈ Γ(X,O(−k − 2, 0)). The more conceptual
argument is to define an “adjoint”

d∗π : O(−k − 2,−2)→ O(−k − 2, 0)

and to show that for k = 0 there is a unique representative ψ of a class in
H1

DR

(
Γ
(
X,Ω•π ⊗ O(−k − 2, 0)

))
that satisfies d∗πψ = 0. The coordinate formula

for d∗π is given by

(III.C.4) f → 〈ξ, z〉 εijξj
∂f

∂zi
.

Using εijξ
iξj = 0 we see that

εijξ
j ∂

∂zi

(
ǧ(ξ)

〈ξ, z〉k+2

)
= 0 ,

so that the form given by ǧ(ξ)ω(ξ)

〈ξ,z〉k+2 is in fact the unique “harmonic” representative

in its cohomology class.
Because similar arguments will be used in more elaborate situations below, we

will here give the

Direct proof: We take for εij the standard skew-symmetric form and must show
that the equation

(III.C.5) z0
∂f(z, ξ)

∂ξ1
− z1

∂f(z, ξ)

∂ξ0
=

ǧ(ξ)

〈ξ, z〉k+1

implies that g(z) = 0. Here, f(z, ξ) is homogeneous by degree −k− 2 in z and 0 in
ξ. We expand

f(z, ξ) =
∑
n

fn(z, ξ)

〈ξ, z〉n

where fn(z, ξ) is holomorphic in z and ξ and has degree n− k − 2 in z and degree
n in ξ. It follows that we have{

k = 0 (by assumption)

n = k + 2 ⇒ n = 2 in the sum on the right .

On the other hand the equation (III.C.5) gives

z0
∂f1

∂ξ1
− z1

∂f1

∂ξ0
= ǧ ,

but since k = 0 implies n = 2, and because the RHS of the above equation corre-
sponds to n = 1 we see that ǧ = 0. �
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Step four. Here we will

• describe X group-theoretically
• describe H∗DR

(
Γ(X,Ω•π(k))

)
in terms of n-cohomology.

Step five will relate these descriptions to the coordinate description.
In this step we will assume given (V,Q) as above. Thus our symmetry group is

GC =: Aut(V,Q) ∼= SL2(C) .

Using the identification V ∼= V̌ we have

X = PV × PV \{diagonal}.
We choose an isomorphism V ∼= C2 and the reference frame e1 = ( 1

0 ), e2 = ( 0
1 )

with Q(e1, e2) = 1 in V , and then we denote by TC the subgroup of GC stabilizing
the reference frame. We then claim that we have an identification of homogeneous
spaces

(III.C.6) X ∼= GC/TC .

Proof. We have the GC-equivariant description

X = {paris of points [z], [z̃] ∈ PV in general position} .
Here, GC acts by

g([z], [z̃]) = ([gz], [gz̃]) ,

and the stability groups of [e1], [e2] are respectively

B =

(
∗ ∗
0 ∗

)
, B∗ =

(
∗ 0

∗ ∗

)
.

Thus the stability group of ([e1], [e2]) is

B ∩B∗ = TC .

It is clear that GC acts transitively on pairs of distinct points in PV . �

We have PV ∼= GC/B, and at the reference point [e1] there is the identification
of the (1, 0) tangent space

T 1,0
[e1]PV ∼= gC/b

∼= CE

where E = ( 0 0
1 0 ). Following the usual convention we choose as positive root

α = e∗2 − e∗1
so that E = Xα. Then F =: ( 0 1

0 0 ) = X−α, and with H =
(−1 0

0 1

)
we have a basis

{H,E, F} of sl2. Using the Cartan-Killing form the dual of Xα is X∗−α =
(
− 1

4

)
Xα

and we set
n = CX∗−α = CE .

Denoting by O(GC) the algebra of global holomorphic functions on GC and by Ck
the TC-module given by the character that gives the GC-homogeneous line bundle
OPV (k), we claim that we have the canonical identification of vector spaces

(III.C.7) Γ
(
X,Ω•π(k)

) ∼= (O(GC)⊗ Ck ⊗ Λ•n
)TC .

The RHS is also a complex, and below we will give the group-theoretic formula for
the differential dπ.
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Proof. We denote by X±α the corresponding left-invariant holomorphic vec-
tor field on GC, acting as usal on the right on O(GC), and by ω±α the corresponding
left-invariant holomorphic 1-forms. The vertical tangent space to GC → GC/TC
at the reference point is CXα ⊕ CX−α. In this the vertical tangent space to
GC/TC → GC/B = PV is CX−α. It follows that at the reference point the space
of relative differentials is Cω−α ∼= n. Thus the pullback to GC of Γ(X,Ω•π(k)) is
identified with a subspace of O(GC) ⊗ Ck ⊗ Λ•n, and then invariance under TC is
exactly the condition to be such a pullback. �

Next we have

b = tC ⊕ ň ,

and thus Ck ⊗ Λ•n is a b-module. For f ∈ O(GC)⊗ Ck we will see that

dπf = (X−αf)ω−α .

The “adjoint” d∗π is defined by

d∗π(gω−α) = −(Xα · g) .

A form ψ = gω−α is “harmonic” if{
dπψ = 0

d∗πψ = 0 .

In our case the first equation is automatic. In [EGW] it is proved that:

For k = 0, there is at most one harmonic form in each class
in H1

DR

(
Γ(X,Ω•π(−k))

)
.

In the next step we will show that the form ǧ(ξ)

〈ξ,z〉k+2ω(ξ) is harmonic in the group

theoretic way just defined.

Step five. For f(z) a holomorphic function defined in an open set in PV and
considered as a homogeneous function of degree zero in the inverse image of that
open set, in the remark at the end of step one we have given the formula

(III.C.8) df =

(
1

2

) 〈ž,∇f〉ω(z)

〈ž, z〉
for the pullback of df . Here we are using Q to give an isomorphism V ∼= V̌ taking

z ∈ V to ž ∈ V̌ and where ∇f =
(
∂f
∂z0

, ∂f∂z1

)
. In coordinates, ži = εijzj so that

ž = (−z1, z0) and 〈ž, z〉 = 2z0z1. We want to express the pullback to GC of the
RHS of this formula.

We begin by using the reference point to identify GC = Aut(V,Q) with SL2(C)
and PV with P1, the action of SL2(C) on [e1] being given by(

z0

z1

)
=

(
a b

c δ

)(
1

0

)
=

(
a

c

)
.

Here, we write δ for lower right entry because d will be the exterior derivative. The
pullback ω to SL2(C) of ω(z) is then

ω = adc− cda .
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The Maurer-Cartan matrix Ω = g−1dg on SL2(C) is given by

Ω =

(
δda− bdc δdb− bdδ
−cda+ adc −cdb+ adδ

)
:=

(
−θ ω−α

ωα θ

)
.

It follows that (see below for a proof)

ω = ωα

so that

df = (Xα · f)ωα = Xαcdf
where

Xα · f =

(
−1

2

) 〈ž,∇f〉
z0z1

.

The denominator and numerator reflect a particular choice of a pair of distinct
points in PV . Below we will vary over all pairs of distinct points and this will be
reflected in a more symmetric formula.

For f(g) a holomorphic function defined in an open set in SL2(C) we write

df = fαω
α + f−αω

−α + fθθ .

The condition that f(g) depend only on the first column of g = ( a eb δ ) is f−α = 0,
and the condition that f(z) be homogeneous of degree k in z = ( ab ) is fθ = kf .
When k = 0, we simply have df = fαω

α.
This being so, we may ask why is Xα · f a section of OPV (−2)? Denoting by

Xθ the vector field given by f → fθ above, we have Xθ · f = 0, and then

Xθ · (Xαf) = [Xθ, Xα]f +Xα(Xθ · f)

= 2Xαf .

We now apply these considerations to

X

π

��

⊂ PV × PV̌

PV.
Since we are interested in

dπ : O(k, 0)→ O(k,−2)

the above considerations will be applied to the second factor. Thus, with the above
notation we replace z by ξ, ž by z, Xα, ω

α by X−α, ω
−α and ω(z) by ω(ξ). This

gives

dπf = (X−αf)ω−α

or in coordinates

dπf(z, ξ) =

(
−1

4

) 〈z,∇ξf(z, ξ)〉
〈ξ, z〉 .

Here the numerator is

εijzi
∂f

∂ξj
(z, ξ) .

As above we may ask why is X−αf a section of O(k,−2)? A subtlety is that
as an SL2(C)-homogeneous line bundle over X,

(III.C.9) O(l, l) ∼= O(0, 0) .
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It is of course not the case that OPV (l)�OPV̌ (l) ∼= OPV �OPV̌ over PV × PV̌ . The
reason for (III.C.9) is that 〈ξ, z〉 gives an SL2(C)-invariant, non-vanishing section
of O(1, 1). In fact, in terms of the above coordinates on SL2(C) we have z = ( ab ),
ξ = (δ,−b) so that 〈ξ, z〉 = 1 on SL2(C). This reflects the fact that SL2(C) only
acts transitively on the “slice” 〈ξ, z〉 = 1 of (V \{0}) × (V̌ \{0}) → PV × PV̌ . We
note ω(ξ) = −ω−α in the Maurer-Cartan matrix Ω.

The proof that, for f a section of O(k,−2), (X−αf) ·ω−α is a section of Ω1
π(k, 0)

is now the same as the argument given above, taking into account the double sign
change in scaling factors passing from V to V̌ and Xα to X−α.

Step six: Summary. For P1 = PV with the alternating form Q giving an iso-
morphism V ∼= V̌ , we have a commutative diagram of isomorphisms

(III.C.10) H0
DR

(
Γ(X,Ω•π(k)

)
// H1

DR

(
Γ(X,Ω•π(−k − 2)

)
∼ = ∼ =

H0
(
OP1(k)

) P // H1
(
OP1(−k − 2)

)
where the top row is multiplication by ω(ξ)/ 〈ξ, z〉k+2

and g(z) ∈ Symk V̌ is iden-

tified with g̃(ξ) ∈ Symk V . The diagram (III.C.10) is a commutative diagram of

GC = SL2(C)-modules. The two ways of realizing the GC-module Symk V̌ as a
cohomology group are identified via the map P, which is an example of a Penrose
transform. As will be explained and illustrated in the next section and in the ap-
pendix to that section, in general the Borel-Weil-Bott theorem gives multiple ways
of realizing the same GC-module as cohomology groups Hq(µ)(GC/B,Lµ). These
different realizations are identified geometrically via Penrose transforms.

The non-compact case of the basic example. We shall use the real form SL2(R)
of SL2(C). In this case there are two open orbits of SL2(R) acting on P1 = PV , the

upper-half-plane H and the lower-half-plane H, which we denote by H′ to conform
to the notation in the rest of this paper. As coordinate on H we take z = [ z1 ],
Im z > 0, and on H′ we use z′ =

[
z′

1

]
, Im z′ < 0. We let Γ ⊂ SL2(R) be a

co-compact discrete group acting freely on H and denote by

X = Γ\H, X ′ = Γ\H′

the corresponding compact Riemann surfaces. Then X ′ = X is the Riemann surface
with the conjugate complex structure to that on X.

For the correspondence space W ⊂ X, recalling that we have X ⊂ P1 × P1 and
projections

X

π′

��3
33333

π

�������

P1 P1,

we take

W = π−1(H) ∩ π′−1(H′)
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so that we have a diagram

(III.C.11) W

π′

��555555
π

��������

H H′,

where W ∼= H×H′ is Stein and the fibres of π, π′ are contractible. Thus the [EGW]
formalism applies to (III.C.11) to give a diagram

H0
DR

(
Γ(W,Ω•π′(k

′)
) ω // H1

DR

(
Γ(W,Ω•π(k)

)
∼ = ∼ =

H0
(
X ′,OX′(k

′)
) P // H1

(
X,OX(k)

)
.

(III.C.12)

Then we have

(III.C.13) Multiplication by the form ω = ω(z′)/Q(z, z′)k+2 induces an isomor-
phism in the top row of (III.C.12) for k = −1 and k′ = k + 2.

Below we shall interpret the resulting isomorphism

H0
(
X ′,OX′(k

′)
) P
∼−→H1

(
X,OX(k)

)
given by the Penrose transform defined by the bottom row in the commutative
diagram (III.C.12).

The indices in the above may be understood as follows: The root diagram for
SL2 is

• • • • • • •
−2 −1 0 1 2 = α

and identifying the roots with Z, with our convention α = 2. The positive Weyl
chamber for the complex structure on H is given by the k ∈ Z with k = 0, and that
for the complex structure on H′ is given by the k′ ∈ Z with k′ 5 0. We thus have

ρ = 1, ρ′ = −1

and the condition on k and k′ in (III.C.13) is

(III.C.14) k + ρ = k′ + ρ′ .

The analogue of this condition will appear in both our examples discussed in sec-
tions III.E, III.F below. It is of course a familiar one from the perspective of the
representation theory of semi-simple, real Lie groups.

We shall not give the formal proof of (III.C.14), which may be done by showing
that multiplication by ω takes harmonic forms to harmonic forms, where “har-
monic” is in the sense of [EGW]. It follows that P is injective, and then the
isomorphism statement follows from the equality of dimensions. For k = 0 this
equality of dimensions is just the Riemann-Roch theorem for the compact Riemann
surfaces X and X ′. For k = −1 a special argument is required.

The sections in H0
(
X ′,OX′(k

′)
)

are automorphic forms ψf = f(z′)(dz′)⊗k
′/2

of weight k′. Here, f(z′) is holomorphic for z′ ∈ H′, i.e. Im z′ < 0, and ψf is
invariant under the action of Γ on H′. The mapping P is given by

(III.C.15) f →
[
f(z̄)(dz̄)⊗k/2

]
dz̄ .
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Here the expression in brackets is an anti-holomorphic section of the line bundle
OX(k), and the RHS is interpreted as a (0, 1) form on X with coefficients in this
line bundle.

When k = 0, (III.C.15) gives the standard identification

H1(X,OX) ∼= H0(X,Ω1
X) .

When k = 1 the line bundle OX(−1) = ω
1/2
X is a square root of the canonical

bundle5 so that by Kodaira-Serre duality

H1
(
X,OX(−1)

) ∼= H0
(
X,OX(−1)

)∨
.

Here H0(X,OX(−1)) is the space of automorphic forms on X of weight one. The
Penrose transform gives

H0
(
X ′,OX′(1)

) ∼−→ H1
(
X,OX(−1)

)
,

and using this identification the pairing between the space H0(X ′,OX′(1)) of weight
one automorphic forms on X ′ and H0(X,OX(1)) is, up to constant, given by

(f ′(z′)dz
′1/2)⊗ (f(z)dz1/2)→

∫
X

f ′(z̄)f(z) dz ∧ d z .

III.D. The Penrose transform in the compact case

We begin by recalling the statement of the Borel-Weil-Bott (BWB) theorem.
Let GC be a complex simple Lie group and B ⊂ GC a Borel subgroup. We assume
that B contains a Cartan subgroup TC that is the complexification of a compact
maximal torus T in a compact form Gc of GC.6 We set

M = GC/B

and denote by

Lµ →M

the homogeneous holomorphic line bundle corresponding to a weight µ. The Borel
subgroup B singles out a set Φ+ of positive roots and as usual we set

ρ =
1

2

∑
α∈Φ+

α .

(III.D.1) Theorem (BWB). If µ + ρ is singular, then Hq(M,Lµ) = 0 for all q.
If µ + ρ is non-singular we let q(µ+ ρ) = #{α ∈ Φ+ : (µ + ρ, α) < 0}. Then
Hq(M,Lµ) = 0 for q 6= q(µ+ ρ), and Hq(µ+ρ)(M,Lµ) is the irreducible GC-module
Wµ with highest weight w(µ+ρ)−ρ, where w is the element of the Weyl group that
moves µ+ ρ into the positive Weyl chamber.

5In classical terms, OX(−1) is a theta-characteristic. Among the set of 22g such that it is special

as it arises from the uniformization of X by H. It is also the Hodge bundle for the standard

realization of H as the period domain for elliptic curves.
6The reason for this notation will appear below.
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We next set7

W̌ = GC/TC .

Then W̌ is an affine algebraic variety, and since B = TCU , where the unipotent
radical U of B is affine and contractible, the EGW theorem applies to

W̌
π−→M

to give a GC-equivariant isomorphism

(III.D.2) Hq(M,Lµ) ∼= Hq
DR

(
Γ(W̌ ,Ω•π ⊗ π−1Lµ)

)
.

let B′ ⊂ GC be another Borel subgroup with TC ⊂ B′, M ′ = GC/B
′ and µ′ a

weight giving L′µ′ → M ′. Using the evident notations, we assume that µ′ + ρ′ is

non-singular and set q(µ′ + ρ′) = #{α ∈ Φ
′+ : (µ′ + ρ′, α) < 0}. We also assume

that
w(ρ+ µ)− ρ = w′(ρ′ + µ′)− ρ′ ,

where w′ for (GC, B
′, TC) is defined in the same way as for (GC, B, TC), so that the

GC-modules Wµ and Wµ′ are isomorphic. There is a diagram of GC-modules

(III.D.3)

H
q(µ+ρ)
DR

(
Γ(W̌,Ω•π ⊗ π−1Lµ

)
L99 H

q(µ′+ρ′)
DR

(
Γ(W̌,Ω•π′ ⊗ π

′−1L′µ
)

∼ = ∼ =

Hq(µ+ρ)(M,Lµ) ∼= Hq(µ′+ρ′)(M ′, L′µ) .

(III.D.4) Theorem. Assume that q(µ′ + ρ′) = 0 and q(µ+ ρ) 6= 0. Then there is
a unique GC-invariant form

ω ∈ Γ(W̌,Ωq(µ+ρ)
π ⊗ π−1Lµ ⊗ π

′−1Ľ′µ′) ,

such that multiplication by ω gives a map given by the dotted line in (III.D.3) for
which (III.D.3) is a commutative diagram of GC-modules.

We will first give the proof in the special case of the first example and in section
III.F we will give it for the second example. Then in the appendix to this section
we will show how the general argument goes.8 Thus we assume

GC = SL(3,C)

B =


∗ ∗ ∗0 ∗ 0

0 ∗ ∗




B′ =


∗ ∗ 0

0 ∗ 0

∗ ∗ ∗


 .

The intersection A = B ∩ B′ is a subgroup of GC that contains TC, and we have
the geometric interpretations

• GC/B ←→ flags
s

��
�
��

��

p
l

7Again, the reason for this notation will appear below.
8The reason for doing things this way is that the computations for this result in the two examples
will be the essential ones to be used in the proof of the main results in this paper.
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• GC/A←→ configurations s
P

s
�
��

�
��
�

p
l

• GC/TC ←→ pairs of flags in general position s
P

s
��

�
��

��p
l

H
HHH

HHHp′
s

l′

We note that GC/A =: J̌ is the set of pairs p, P of distinct points in P2, the
line l being pP . We have a diagram

(III.D.5) GC

��
W̌

��
π′

��2
22222222222222222222

π

��




















= GC/TC

J̌

}}{{{{{{{{{{{{

""DDDDDDDDDDDD = GC/A

GC/B = M M ′ = GC/B
′

where the maps are

(p, l; p′, l′)

��
(p, l, P = l ∩ l′)

~~}}}}}}}}}}

  BBBBBBBBBB

(p, l) (P, l)

Next, we denote by

g−1dg =

ω
1
1 ω1

2 ω1
3

ω2
1 ω2

2 ω2
3

ω3
1 ω3

2 ω3
3

 , g ∈ GC

the Maurer-Cartan matrix of left-invariant forms on GC. We will show that:

(III.D.6) ω1
3 gives the pullback to GC of the form ω in Theorem III.D.4.

From the pictures of B and B′, we observe that ω1
3 corresponds to a non-compact

root that changes sign when we pass from B to B′.
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Step one: We will identify SL(3,C) with the set of frames f1, f2, f3, given by
a basis for C3 with f1∧f2∧f3 = 1, and thought of as mappings fi : GC → C3. The
exterior derivative of these vector-valued functions and the integrability condition
d2 = 0 give the equations for a moving frame (summation convention){

dfi = ωji fj

dωki = ωji ∧ ωkj (Maurer-Cartan equation).

The mappings GC → W̌, GC → J̌ and GC →M are respectively

{fi} → s
P

s
��

��
�
��p
l

HH
HHH

HHp′
s

l′

p = [f1], p′ = [f2], P = [f3]

{fi} → s
P

s
��

��
�
��

p
l

p = [f1], P = [f3]

{fi} →
s

��
�
��

��

p
l

p = [f1], l = [f1, f3] .

We will think of the mapping GC →M as given by

(III.D.7)

{
ω2

1 = 0, ω3
1 = 0

ω2
3 = 0 .

This means: The Pfaffian equations (III.D.7) give a Frobenius system on GC, and
the leaves of the resulting foliation are the fibres of GC → M . Geometrically, the
first two equations mean that “p doesn’t move,” and then the third means that “in
addition, l doesn’t move.”

The fibres of GC → J̌ are given by (III.D.7) plus

(III.D.8) ω1
3 = 0 ,

meaning that “P doesn’t move.”
We note that (III.D.7) and (III.D.8) correspond to the zeroes in the matrices

in b, a respectively. They have an evident root-theoretic meaning.

Step two: We observe that

ω1
3 spans a line sub-bundle J ⊂ Ω1

π .

This means: ω1
3 is semi-basic for GC → W̌ , and it spans the pullback to GC of a line

sub-bundle J ⊂ Ω1
π. Geometrically, ω1

3 measures how dP moves along the line l.

Step three: We next observe that

The line bundle J ⊂ Ω1
π is integrable.
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Geometrically this means that on the fibres of W̌→M , J is integrable. Analytically
it means that for a section ψ of J{

dψ ≡ 0 in Ω2
π/(Im J ⊗ Ω1

π),

dπψ ≡ ψ ∧ η is zero in Ω2
π .

Indeed, the Maurer-Cartan equation

dω1
3 = ω1

3 ∧ ω1
1 + ω2

3 ∧ ω3
2 + ω3

3 ∧ ω1
3

gives the result, noting that the middle term is zero in Ω2
π.

Step four: In our situation

GC

��
GC/TC

π

~~}}}}}}}
π′

!!CCCCCCC

GC/B GC/B
′

the line bundles will be trivialized when pulled back up to GC. Sections of a
line bundle L′µ′ → GC/B

′ will be given by holomorphic functions F on GC that

transform by the character µ′ when TC acts on the right on GC. We recall that
sections s of π

′−1L′µ′ → GC/TC that satisfy dπ′s = 0 are constant along the fibres

of GC/TC → GC/B
′.

Observation. A holomorphic function F on GC is the pullback to GC of a
section s of π

′−1L′µ′ → GC/TC with dπ′s = 0 satisfies

(III.D.9) dF ≡ 0 mod{ω1
1 , ω

2
2 , ω

3
3 , ω

2
1 , ω

1
3 , ω

2
3} .

Put pictorially, dF does not involve the Maurer-Cartan forms ωij corresponding
to the off-diagonal terms in the Lie algebra b′. Geometrically, F is invariant under
the right action of the unipotent radical U ′ of B′.

A consequence of the above is

(III.D.10) dπF ≡ 0 mod{ω1
1 , ω

2
2 , ω

3
3 , ω

1
3} .

Step five: Let F be the pullback to GC of a section of π
′−1L′µ′ → GC/B

′.
Then

(III.D.11) dπ(Fω1
3) ≡ 0{ω1

1 , ω
2
2 , ω

3
3} .

Proof. This follows from (III.D.9) and the Maurer-Cartan equation

dω1
3 ≡ 0 mod{ω1

1 ∧ ω1
3 , ω

3
3 ∧ ω1

3 , ω
2
3 ∧ ω1

2}

which gives

dπω
1
3 ≡ 0 mod{ω1

1 ∧ ω1
3 , ω

3
3 ∧ ω1

3} .
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Completion of the proof of Theorem III.D.4. From the above calcula-
tions (using ω1

1 + ω2
2 + ω3

3 = 0) we have{
dπF ≡ aω1

1 + bω2
2 mod{ω1

3}
dπω

1
3 ≡ (ãω1

1 + b̃ω2
2) ∧ ω1

3 .

Choosing a = −ã, b = −b̃ we obtain

(III.D.12) dπ(Fω1
3) = 0 .

The choices of a, b correspond to the weight µ− µ′. Now

H0
DR

(
Γ(W̌ ,Ω•π′ ⊗ π

′−1L′µ′)
) ∼= { holomorphic functions F

on GC satisfying (III.D.9)

}
.

For µ, µ′ chosen as above, the map

F → Fω1
3

induces a map

H0
DR

(
Γ(W̌ ,Ω•π′ ⊗ π

′−1L′µ′)
)
→ H1

DR

(
Γ(W̌ ,Ω•π ⊗ π−1Lµ)

)
.

This map is injective on the form level. To show that it induces an isomorphism
on cohomology we need to show that

• the map is injective on cohomology
• both groups have the same dimension.

The second follows from the BWB theorem (III.D.1), and the first follows from
noting that, by the same argument as in steps four and five in section III.C, the
form Fω1

3 is harmonic in the sense of [EGW].9 The results in that work then
imply that if F 6= 0, then Fω1

3 is non-zero in H1
DR

(
Γ(W̌ ,Ω•π ⊗ π−1Lµ)

)
.10 �

Appendix to section III.D: Arithmetic aspects of the Penrose
transform in the compact case

Anticipating the discussion in chapter IV, and using the terminology and no-
tations from that section, we want to observe that

the Penrose transform is arithmetic.

We begin by noting that M,M ′ and W̌ are algebraic varieties defined over a

number field k, and W̌
π−→ M , W̌

π′−→ M ′ as well as the line bundles Lµ → M
and L′µ′ → M ′ are also defined over k. In our two examples we have k = F, Q
respectively. In general, an algebraic variety X that is the set of complex points of
a variety G/P where G and P are algebraic groups defined over k is itself defined

over k. It follows that each of the groups Hq(µ+ρ)(M,Lµ) and Hq(µ′+ρ′)(M ′, L′µ′)

in (III.D.3) are vector spaces defined over k; in the terminology of chapter IV, these
vector spaces have an arithmetic structure.

9In the appendix to this section we will give the general formula for the harmonic form that gives
the Penrose transform.
10We do not give the details of this argument as the statement of the result will not be needed

in the proof of the main results in this paper. Moreover, a proof can be given along the lines of

the analogous result (III.C.3) for the basic example. We will give the proof of the injectivity of
the Penrose transform for the relevant µ and µ′ in the more subtle non-compact cases of our two

examples and their quotients by an arithmetic group.
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The key observations are:

(i) the vector spaces in the top row of the diagram (III.D.3) have arithmetic
structures; and

(ii) the form ω will be a relative differential form on GC that is defined over
k.

In the basic example discussed in section III.C, both of these points are clear from
the explicit formulas: The vector space V and bilinear form Q are defined over k,
as is then Symk V̌ . Similarly, in our two examples both (i) and (ii) will be clear
from the explicit formulas given in the next two sections.

In general, because it is of some interest in its own right we will give the formula
for the harmonic form ω that, via the diagram (III.D.3) when µ′ + ρ′ is dominant,
i.e. q(µ′ + ρ′) = 0, gives the Penrose transform. For this we identify M with M ′

and for simplicity of notation set µ′ = λ. Then there is an element w in the Weyl
group such that

w(µ+ ρ) = λ+ ρ .

For any w ∈W we set

Ψw = wΦ− ∩ Φ+ ,

and for any subset Ψ = {ψ1, . . . , ψq} ⊂ Φ+ we set{
〈Ψ〉 = ψ1 + · · ·+ ψq

ω−Ψ = ω−ψ1 ∧ · · · ∧ ω−ψq .

If α1, . . . αr are the positive roots, from [Ko], pages 356 ff. we have

(i) ρ− 〈Ψ〉 = 1
2 (±α1 ± α2 + · · · ± αr) for some choice of the signs, and as Ψ

runs through all subsets of Φ+ all choices of signs are possible;
(ii) Ψw and Ψc

w := Φ+\Ψw are both closed under addition;
(iii) if Ψ ⊂ Φ+ has this property, then Ψ = Ψω for a unique w ∈W ;
(iv) w(ρ) = ρ− 〈Ψw〉; and
(v) 〈Ψ〉 = 〈Ψw〉 ⇒ Ψ = Ψw.

From (iii) we have

(III.D.13) µ = w(λ)− 〈Ψw〉 .

Let V λ be the irreducible GC-module with highest weight λ. The dual V̌ λ is
the irreducible GC-module with the lowest weight −λ, and we let v̌−λ be a lowest
weight vector. Then w(−λ) is an extremal weight11 for V̌ λ, and we let v̌w(−λ) be a
corresponding weight vector, which is well-defined up to scaling. With this notation
we set

(III.D.14) ω = ω−〈Ψw〉 ⊗ v̌w(−λ) .

(III.D.15) Theorem. In the diagram (III.D.3), multiplication by ω gives the Pen-
rose transform

P : H0(M,Lλ)
∼−→ Hq(µ+ρ)(M,Lµ) .

11That means that |w(−λ)| = |ξ| for any weight ξ. If equality holds then ξ = w′(−λ) for some
w′ ∈W and the corresponding weight space is 1-dimensional.
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Proof. We will use the proof to explain the way in which ω can be considered
as a section in Γ(W̌,Ωqπ ⊗ π−1Lλ) when q = q(µ + ρ). Denoting by O(GC) the
global holomorphic functions on GC and by O(GC)alg the coordinate ring of GC as
an affine algebraic variety, the inclusion

O(GC)alg ↪→ O(GC)

induces a morphism of complexes

Γalg(W̌,Ω•π ⊗ π−1Lλ)→ Γ(W̌,Ω•π ⊗ π−1Lλ) . 12

On the other hand, we have the isomorphism of GC-modules

(III.D.16) O(GC)alg ∼= ⊕
λ
V λ ⊗ V̌ λ

where λ runs over the positive Weyl chamber and the matrix entries of the GC-
module V λ ⊗ V̌ λ give functions in the coordinate ring O(GC)alg of GC.

Next we claim that, using (III.D.16), we have the isomorphism of GC-modules

(III.D.17) H∗DR

(
Γalg(W̌,Ω•π ⊗ π−1Lµ)

) ∼= ⊕
λ
V λ ⊗H∗(n−, V̌ λ ⊗ Cµ)TC

where Cµ is the TC-module corresponding to the weight µ. Here,

n− = ⊕
α∈Φ+

g−α

and GC acts on the summands on the RHS via its left action on V λ. As a check on
signs we observe that when pulled back to GC in the diagram

GC

��
W̌

π

��

= GC/TC

M = GC/B

the 1-forms ωα, α ∈ Φ+, are semi-basic for W̌ → M . This is because the holo-
morphic tangent space to M at the identity coset is identified with n+ = ⊕

α∈Φ+
gα.

Thus the pullback to GC of the relative differentials Ω1
π are spanned by the ω−α

where α ∈ Φ+.
With this understood we have the isomorphism of complexes

Γalg(W̌,Ω•π ⊗ π−1Lµ) ∼= ⊕
λ
V λ ⊗ C∗(n−, V̌ λ ⊗ Cµ)TC ,

which gives (III.D.17).
We now write

H∗(n−, V̌ λ ⊗ Cµ)TC = H∗(n−, V̌ λ)−µ ,

where the RHS denotes that part of the TC-module H∗(n−, V̌ λ) that transforms
under TC by −µ. With these conventions, for the form ω in (III.D.14) we have that

V λ ⊗ ω ∈ Γ(W̌,Ωqπ ⊗ π−1Lµ). The assertion in the theorem may then be inferred
by the classic paper [Ko]; cf. section 5, especially lemma 5.12, there. �

12A variant of Grothendieck’s algebraic de Rham theorem gives that this map induces an isomor-
phism on cohomology, but we do not need this result.
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Remarks. There are sign and duality issues in which the above differs from
[Ko], and we now comment on some of these.

First we note that when µ = λ belongs to the positive Weyl chambers,

H0(n−, V̌ λ) = (V̌ λ)n
−

= lowest weight space,

which then transforms under TC by −µ. We also note that using (III.D.13) the
form ω transforms under the action of TC by

〈Ψw〉+ w(−λ) = −µ .
Next we want to check that

(III.D.18) dπω = 0 .

For this we begin with the

(III.D.19) Lemma. dπω
−〈Ψw〉 = 0.

Proof. Here we are working up on GC. For any root α the Maurer-Cartan
equation is

dω−α ≡
∑
β,γ

cαβγω
−β ∧ ω−γ mod ťC ∧ ǧC ,

where the summation is over the set Φ of roots and where

cαβγ 6= 0 =⇒ α = β + γ .

It follows that if α ∈ Φ+,

dπω
−α ≡

∑
β,γ∈Φ+

cαβγω
−β ∧ ω−γ mod ťC ∧ ǧC .

The terms in ťC ∧ ǧC represent the action of TC on the right and will disapper
at the end; we will denote modding them out simply by ≡.13 It follows that if
Ψw = {ψ1, . . . , ψq} ⊂ Φ+,

dπω
−〈Ψw〉 ≡

∑
j

(−1)jc
ψj
βγω

−β ∧ ω−γ ∧ ω−ψ1 ∧ · · · ∧ ω̂−ψj ∧ · · · ∧ ω−ψq

where for each ψj the sum is over β, γ ∈ Ψc
w. Non-zero terms could occur only

when ψj = β + γ, and by property (ii) above this does not happen. �

By the lemma we have

dπω = (−1)qω−〈Ψw〉 ∧ dπ v̌w(−λ) .

Now

dπ v̌w(−λ) =
∑
β∈Φ+

X−β · v̌w(−λ) ⊗ ωβ .

Only the terms where β ∈ Ψc
w will contribute non-trivially to dπωi and for these

we have the

(III.D.20) Lemma. For β ∈ Ψc
w, X−β · v̌w(−λ) = 0.

13Equivalently, the symbol ≡ means that up on GC we only retain forms that are semi-basic for
the fibering GC → GC/TC.
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Proof. We have Φ+ = (−Ψw)∪(Ψc
w) (disjoint union). Now for every α ∈ Φ+,

X−α · v̌−λ = 0. It follows that for every β ∈ wΦ+,

X−β · v̌w(−λ) = 0 .

But β ∈ Ψc
w =⇒ β ∈ wΦ+, which gives the lemma. �

We conclude with a remark about the form ω−α where α is a simple root. This
corresponds to the form ω−Ψw when w = wα is the reflection in the root plane
corresponding to α. In order for a root α to have the property that for Ψ = {α}
both Ψ and Ψc are closed under addition, it is necessary that α be simple. Note
that ω−α gives a class in H1(n−,C)α where C is the trivial n−-module. For the line
bundle Lα → M , if as above wα is the reflection in the α root plane, then using
wα(ρ) = ρ− α we have

wα(−α+ ρ)− ρ = α+ ρ− α− ρ = 0 .

By the BWB theorem, H1(M,L−α) is the trivial 1-dimensional GC-module, and
then ω−α represents the generating class in H1(M,L−α) via the EGW formalism.

This class has the following geometric interpretation: Since GC acts trivially
on H1(M,Ω1

M ) ∼= H2(M,C), using the EGW formalism we have

H1(M,Ω1
M ) ∼= H1(n−, n−) .

We note that

n−/[n−, n−] ∼=
⊕

{
α∈Φ+

α simple

g−α

so that

H1(n−, n−/[n−, n−])TC ∼=
⊕

{
α∈Φ+

α simple

H1(n−, g−α)TC

∼=
⊕

{
α∈Φ+

α simple

H1(n−,C)α .

The mapping

H1(n−, n−)TC → H1(n−, n−/[n−, n−])TC

may be proved to be an isomorphism, so that combining the above we have

H1(M,Ω1
M ) ∼= spanC{ω−α : α ∈ Φ+ and α simple} .

With this interpretation, up to a non-zero constant ω−α represents c1(Lα), which
is consistent with the classical result that

H1(M,Z) ∼= spanZ{c1(Lα) : α ∈ Φ+ and α simple} .

III.E. The Penrose transform in the first example

In the previous section, including the appendix to that section, we have dis-
cussed (a special case of) the following general principle:



78 III. CORRESPONDENCE AND CYCLE SPACES; PENROSE TRANSFORMS

Given two realizations, via the BWB theorem, Hq(GC/B,Lµ)

and Hq′(GC/B
′, L′µ′) of an irreducible GC-module, the EGW

method gives canonical holomorphic realizations of these groups,
and then for certain values of q′ these holomorphic realizations
are canonically isomorphic via multiplication by a canonical
form ω.

The resulting identification

P : Hq′(GC/B
′, L′µ′)

∼−→ Hq(GC/B,Lµ)

is termed a Penrose transform.
In Carayol [C2] these methods are used to relate H1(D,Lµ) and H0(D′, L′µ′)

where D = SU(2, 1)R/T endowed with the non-classical complex structure and
D′ = SU(2, 1)R/T with a classical complex structure. Moreover, for Γ ⊂ SU(2, 1)
a co-compact discrete group, for X = Γ\D and X ′ = Γ\D′, Carayol uses the same
methods to establish an injection

(III.E.1) P : H0(X ′, L′µ′)
∼−→ H1(X,Lµ)

for certain µ’s and µ′’s satisfying µ+ρ = µ′+ρ′. The LHS of (III.E.1) has arithmetic-
algebro-geometric significance, in particular a Galois action, whereas the RHS does
not have such, at least in any direct fashion. Taking two different choices of µ, µ̃,
Carayol shows that for α ∈ H1(X,Lµ) and α̃ ∈ H1(X,Lµ̃) the cup-product

αα̃ ∈ H2(X,Lµ+µ̃)

is non-zero. The character µ+ µ̃ corresponds to a degenerate limit of discrete series,
and it is known that such can never be the infinite component of an automorphic
representation arising from the cohomology-coherent or l-adic — of a Shimura vari-
ety. The calculations in [C1] and [C2] are explicit “in coordinates,” and one of the
purposes of this work is to present proofs of the results of Carayol in a conceptual,
geometric framework, one which shows what form extensions of the method might
take. The essential idea appears in the proof of (III.D.6) above, and we will now
show how this applies to the non-compact case, and in the next section to quotients
of such by a co-compact discrete group. The results in this section are (III.E.13)
and (III.F.14) below.

Step one: With the notations from section II.B, we consider the restriction of
the diagram (III.D.5) to the correspondence space W

(III.E.2) W

τ

��
π

�����������������

π′

��0
00000000000000

J

σ′   AAAAAAAA

σ
~~~~~~~~~~

D D′

We will now denote by ωji the restriction to the open subset lying over W in GC =
SL(3,C) of the Maurer-Cartan forms and we set

ω = ω1
3 .
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(III.E.3) Proposition. ω is a holomorphic section of

Ω1
π ⊗ π−1F(−2,1) .

Proof. Denoting congruence modulo Ω•π by ≡π, by the Maurer-Cartan equa-
tion we have

dω1
3 ≡π (ω3

3 − ω1
1) ∧ ω1

3 .

From ω1
1 + ω2

2 + ω3
3 = 0 we obtain

dω1
3 ≡π (−2ω1

1 − ω2
2) ∧ ω1

3 .

From Proposition (III.B.3), we obtain that over D

F(a,b) = L−ae∗1+be∗2
,

from which the result follows. �

Remark. The maps in (III.E.2) are

s
P

s
��

�
��

�
��
�

p

l

HHH
HHH

HHHp̃
s

l̃

τ−→ s
P

s
��

�
��

�
��
�

p

l

σ−→
s

��
�
��

�
��
�

p

l

The fibres are

• τ−1(p, l, P ) =

{
set of lines l̃ through P , l̃ 6= l,

and points p̃ ∈ l̃ such that pp̃ ⊂ Bc

}
= disc bundle over C

• σ−1(p, l) = {P ∈ l ∩ B} ∼= ∆ .

These are contractible Stein manifolds, so that at least one half of the proof of the
EGW theorem applies to each map. However,

J ∼= {(p, P ) : P ∈ B and p ∈ Bc}
is not Stein. Thus even though the diagram

(III.E.4) J

�������

��2
2222

D D′

is the most natural one to interpolate between D and D′, we need to go up to the
correspondence space W to be able to apply the EGW theorem to holomorphically
realize the cohomologies of D and D′ and then to relate them via the Penrose
transform. This situation is the general one when B and B′ are not “opposite”
Borel subgroups. In the non-opposite case for the group A = B∩B′ we may expect
to have

J

�������

��1
1111⊂ GC/A

D D′

as the natural space to connect D and D′.
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Referring to (III.E.4), even though J is not Stein, the geometry is reflected in
the exact sequence

(III.E.5) 0→ τ∗Ω1
σ → Ω1

π → Ω1
τ → 0 ,

where the geometric meanings are

• τ∗Ω1
σ means dP moves along l,

• Ω1
π means dp̃, dl̃ move subject to d

〈
l̃, p̃
〉

= 0,

• Ω1
τ means dp̃ moves (l̃ = P p̃).

The exact sequence (III.E.5) gives a filtration of Ω•π. For any line bundle L → D
we may tensor (III.E.5) with

π−1L ∼= τ−1(σ−1L)

to obtain a spectral sequence

Ep,q0 = Γ
(
W,Ωqτ ⊗ τ∗Ωpσ(π−1L)

)
⇒ Hp+q

DR

(
Γ(W,Ω•π(π−1L))

)
.

For fixed p, the relative differentials are dτ ; since the fibres of τ are contractible
and Stein we may apply the proof of EGW to infer that

Ep,q1 = H1
(
J,Ωpσ(σ−1L)

)
.

One may then identify the canonical form ω as representing a class in the image of
the natural mapping
(III.E.6)

H1
DR

(
Γ(J,Ω•σ(σ−1OD(−2, 1)))

) τ∗−→ H1
DR

(
Γ(W,Ω•π(π−1OD(−2, 1)))

)

∼ =

E1,0
2 .

Step two: We want to relate the following

• over D we have the line bundles F(a,b);
• over D′ we have the line bundles F ′(a′,b′);

• over W we have the homogeneous line bundles

Le∗i →W

given by the identification W̌ ∼= GC/TC and the characters of TC corre-
sponding to the e∗i .

(III.E.7) Proposition. Over W we have{
π
′−1F ′(−1,0)

∼= π−1F(1,−1)

π
′−1F ′(0,−1)

∼= π−1F(0,−1) .

Corollary. Over W we have{
π
′−1F ′(a′,b′)

∼= π−1F(−a′,a′+b′)

π
′−1F ′(a′,b′) ⊗ π−1F(−2,1)

∼= π−1F(−a′−2,a′+b′+1) .

Proof. The result follows from{
π−1F(−1,0)

∼= Le∗1 , π
−1F(0,−1)

∼= L−e∗2
π
′−1F ′(−1,0)

∼= Le∗3 , π
′−1F ′(0,−1)

∼= L−e∗2 .
�
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Definition. The Penrose-transform

(III.E.8) P : H0(D′, L′(a′,b′))→ H1(D,L(a,b)) ,

where a = −a′ − 2 and b = a′ + b′ + 1, is defined by the commutative diagram

H0
DR

(
Γ(W,Ω•π′ ⊗ π

′−1L′(a′,b′))
) ω // H1

DR

(
Γ(W,Ω•π ⊗ π−1L(a,b))

)

∼ = ∼ =

H1(D′, L′(a′,b′))
P // H1(D,L(a,b)) .

Step three: We begin with the

(III.E.9) Observation. For F ∈ H0(D′, L′(a′,b′))
∼= H0

DR

(
Γ(W,Ω•π′⊗π

′−1L′(a′,b′)
)
,

Fω ∈ Γ(W,Ω1
π ⊗ π−1L(a,b))

is harmonic.14

Proof. Lifted up to the open set in GC lying over W, F is a function of
f1, f2, f3 of the form

F = F (f3, f1 ∧ f3) .

If α = e∗3 − e∗1 is the root with
ω1

3 = ω−α ,

then the harmonic condition from [EGW] is

Xα · (X−αcFω) = Xα · F = 0 .

This is equivalent to

F 1
3 = 0 ⇐⇒ the coefficient of ω3

1 in dF is zero.

By the chain rule, dF will be a linear combination of the forms in df3 and in
d(f1 ∧ f3). The former are the ωj3, and for the latter we have

d(f1 ∧ f3) ≡ (df1) ∧ f3 mod{ω3
3 , ω

2
3 , ω

1
3}

≡ 0 mod{ω1
1 , ω

2
1 , ω

3
3 , ω

2
3 ∧ ω1

3}
since f3 ∧ f3 = 0.

Since ω3
1 does not appear in the bracket term we have F 1

3 = 0. �

Theorem 2.13 in [EGW] gives conditions on (a, b) such that a de Rham class in
H1

DR

(
Γ(W,Ω1

π ⊗ π−1L(a,b))
)

has a unique harmonic representative. Unfortunately,
this result is not sharp enough for our purposes. Geometrically, one may say that
the reason for this is that the [EGW] proof uses the diagram

W

��3
3333

// I

�������

D

rather than the diagram (III.E.4) which more clearly captures the geometric rela-
tionship between D and D′. This brings us to the

14This observation is not needed logically for the sequel. We have put it in to connect to the
methods used in [EGW].
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(III.E.10) Proposition. (i) If H0(D′, L′(a′,b′)) 6= 0, then b′ = 0.

(ii) The Penrose transform (III.E.8) is injective if b′ 5 0. The common solu-
tions to (i) and (ii) are b′ = 0.

Remarks: (i) In terms of (a, b) these conditions are{
a+ b+ 1= 0

a+ b+ 15 0 .

(ii) The Weyl chamber where H0
(2)(D

′, L′(a′,b′)) is non-zero is given by

(III.E.11)

{
b′ + 1> 0

a′ + b′ + 2< 0 .

If b′ = 0 these reduce to

(III.E.12) a′ 5 −3 .

As we have seen, the pullback ω′B to D′ of the canonical bundle on B is given by

ω′B = F ′(−3,0) .

Also, we have noted that the pullback V
′1,0
+ to D′ of the Hodge bundle V1,0

+ over B
is given by

V
′1,0
+ = F ′(−1,0) .

Thus

ω′B = F ′(−3,0) .

We set ω
′⊗k/3
B = F ′(−k,0) = ⊗kV

′1,0
+ and in chapter IV will define Picard modular

forms of weight k to be Γ-invariant sections of ω
′⊗k/3
B . Picard modular forms of

weight k = 1 then give sections of

F ′(−k,0) → D′ .

Comparing with (III.E.12) we have the

(III.E.13) Corollary. The Penrose transform

P : H0(D′, F ′(−3−l,0))→ H1(D,F(l1,−2−1))

is injective for l = 0.

In particular, P will be seen to be injective on Picard modular forms of weight
k = 3.

Remark. In Carayol (cf. Proposition (3.1) in [C2]) it is proved that

(III.E.14) P is injective for b′ = 0, a′ + b′ + 2 5 0 .

The common solutions to (III.E.10) and (III.E.14) are

b′ = 0, a′ 5 −2 .

The solutions to (III.E.11) when b′ = 0 are

a′ < −2

which is exactly the range in (III.E.13).
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Proof of (ii). The first step is to use the diagram (III.E.4) and the spectral
sequence arising from (III.E.5) to reduce the question to one on J. The spectral
sequence leads to the maps

H1
DR

(
Γ(J,Ω•σ ⊗ σ−1L(a,b))

) τ∗−→H1
DR

(
Γ(W, τ∗Ω•σ ⊗ π−1L(a,b))

)
−→ H1

DR

(
Γ(W,Ω•π ⊗ π−1L(a,b))

)
.

We will show that

(a) Fω ∈ Γ(J,Ω1
σ ⊗ σ−1L(a,b));

(b) the image of Fω under the natural map

H1
DR

(
Γ(J,Ω•σ ⊗ σ−1F(a,b)

)
→ H1

DR

(
Γ(W,Ω•π ⊗ π−1F(a,b))

)
is non-zero in H1

DR

(
Γ(W,Ω•π ⊗ π−1L(a,b))

)
for (a, b) in the range stated

in the Proposition.

Proof of (b). We let GC(J) be the inverse image of J under the mapping

(f1, f2, f3)→ ([f1] ∈ Bc, [f3] ∈ B, [f1 ∧ f3])

where the RHS is the point

s
P

s
��

��
�
��

��

p

l

of J given by p = [f1], P = [f3] and l = Pp = f1 ∧ f3. The 1-forms ω2
1 , ω

3
1 , ω

2
3 , ω

1
3

are semi-basic for GC(J)→ J, and ω2
1 , ω

3
1 , ω

2
3 are semi-basic for GC(J)→ D. Then

ω = ω1
3 , F = F (f3, f1 ∧ f3) and

d(Fω) ≡ 0 mod{ω1
1 , ω

2
2 , ω

3
3 , ω

2
1 , ω

3
1 , ω

2
3}

implies that Fω ∈ Γ(J,Ω1
σ ⊗ σ−1L(a,b)).

15

Suppose now that

Fω = dπG

where G ∈ Γ(W, π−1L(a,b)). Pulling G back to the open subset GC(J) of GC we
have that G = G(f1, f2, f3, f1 ∧ f3, f2 ∧ f3). Then Fω = dπG implies that dG has
no ω1

2 , ω
3
2 term, which then gives that G = G(f1, f3, f1 ∧ f3), and when the scaling

is taken into account

G ∈ Γ(J, σ−1L(a,b)) .

This reduces the question to one on J; we have to show that the equation on J

(III.E.15) Fω = dσG

implies that F = 0. We will prove the stronger result

For (a′, b′) in the range stated in Proposition (III.E.10), equa-
tion (III.E.15) implies that G = 0.

15Here, the ωii ’s give the scaling, as we have seen above.
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The idea is to show that (i) the maximal compact subvarieties Z ⊂ D have natural

lifts to compact subvarieties Z̃ ⊂ J, and the Z̃ cover J; (ii) the restrictions G
∣∣
Z̃

are

zero. In fact, we have that Z ∼= P1 and under the projection σ : Z̃ → Z we will
show that

(III.E.16) σ−1F(a,b)

∣∣
Z̃
∼= OP1(a+ b) .

Thus

G
∣∣
Z̃
∈ H0(OP1(a+ b)) ,

and from (III.E.8) we see that the range of (a′, b′) in (III.E.10) is exactly a+ b < 0.
For the details, we identify J with pairs (P, p) ∈ B×Bc and B with lines L ⊂ Bc.

Then B × B = U is the cycle space, and we have seen that each point (P,L) ∈ U

gives a maximal compact subvariety Z(P,L) ⊂ D as in the picture

P

•

p•

ll

L

where

Z(P,L) = {(p, l) ∈ D} ∼= P1 .

The lift Z̃(P,L) ⊂ J of Z(P,L) is then given by the picture

Z̃(P,L) = {(p, l, P ) ∈ J}
where P is constant. We have

Z̃(P,L)

f

����������
f̌

��66666666

P2 P̌2

where {
f(p, l, P ) = p

f̌(p, l, P ) = l .

From this we may infer (III.E.16) where Z̃ = Z̃(P,L). This completes the proof of
(ii) in Proposition (III.E.10).

The proof of (i) is similar. Given (P,L) ∈ U we define Z ′(P,L) ⊂ D′ by

Z ′(P,L) = {(P,L) ∈ D′}
in the above figure. Then we have

Z ′(P,L)

f ′

����������
f̌ ′

��88888888

P2 P̌2
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where {
f ′(P, l) = P

f̌ ′(P, l) = l .

Since P is fixed we have that

F ′(a′,b′)
∣∣
Z′(P,L)

∼= OP1(b′) .

If follows that

b′ < 0⇒ Γ(J, σ
′−1F ′(a′,b′)) = 0⇒ Γ(D′, F ′(a′,b′)) = 0

where σ′(P, p) = P . �

Discussion: The argument in [C2] is rather different in that Carayol uses the
pseudo-concavity of J rather than the compact subvarieties. In outline his proof
goes as follows.

Since f1 and f3 obviously determine f1 ∧ f3, we may write

G(f1, f3, f1 ∧ f3) = H(f1, f3) .

Then for each fixed f3 the LHS is bi-homogeneous of degree (a, b) in f1 and f1∧f3.
The RHS is then bi-homogeneous of degree a+ b = b′ − 1 in f1 and b = a′ + b′ + 1
in f3. Now as noted above

J ∼= B× Bc

where [f3] ∈ B and [f1] ∈ Bc. For fixed f3, H(f1, f3) is a holomorphic function

defined for f1 ∈ (C3\{0})\B̃c, where ˜ denotes the inverse image in C3\{0} of
Bc ⊂ P2. By Hartogs’ theorem, H(f1, f3) extends to a holomorphic function of f1

to all of C3 where it is homogeneous of degree b′ − 1. Then if b′ 5 1, the case we
shall be primarily interested in, it follows that G = 0.

Remark. The above raises the following interesting point. The form Fω,
and in particular the Maurer-Cartan form ω = ω1

3 , are defined on the open set
GC(J) ⊂ GC. Now GL(3,C) is given by non-singular matrices

g = (f1, f2, f3) ,

and the Maurer-Cartan form ω1
3 is a holomorphic, rational function in the matrix

entries of g. In fact, aside from scaling ω1
3 depends only on f1, f3 and one may ask

for the behavior of ω1
3 along the locus f1 ∧ f3 = 0. The answer is that in the open

set f1 ∧ f2 6= 0, f3 ∧ f2 6= 0 along the divisor f1 ∧ f2 ∧ f3 = 0 the form ω1
3 has a pole

of order two. In fact, we have already seen this illustrated in the basic example.

As noted in [C2], the above argument gives the following

(III.E.17) Observation. Every section s ∈ Γ(D,F(a,b)) is the restriction to D of

a section ŝ ∈ Γ(Ď, F̌(a,b)).

Proof. The section s lifts to a function (f1, f1 ∧ f3) defined on an open set of
GC and homogeneous of degree (a, b) in (f1, f1 ∧ f3). We then define

S(f1, f3) = s(f1, f1 ∧ f3)

and apply Hartogs’ theorem to S to give (III.E.17) (cf. [C2] for the details). �

(III.E.18) Corollary.

H0(D,F(k−2,1−k)) = {0} for all k ∈ Z .
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Proof. By (III.E.17), we must show H0(Ď, F(k−2,1−k)) = {0}. Referring to

(III.D.1), for k ∈ Z (and µk = k−3
3 α1 + 2k−3

3 α2) we have
µk + ρ singular (k = 1, 2)

or

q(µk + ρ) = 1

which gives the result. �

III.F. The Penrose transform in the second example

The objectives of this section are

(i) to define the Penrose transform

(III.F.1) P : H0(D′, L′µ′)→ H1(D,Lµ)

in the second example, where D and D′ are Sp(4,R)/T with the non-
classical and classical complex structures described in section II.B above;

(ii) to show that P is injective for certain µ and µ′.

The discussion will be carried out in several steps, the main intermediate result
being Proposition (III.F.9) and end result being Theorem (III.F.14) below.

Step one: We first will carry out for Sp(4) the calculations that were given for
SU(2, 1) just below the statement of Theorem (III.D.4). As was done there, we
first discuss the compact case where we have{

M = GC/B

M ′ = GC/B
′

where B,B′ are the Borel subgroups given by (I.C.2) and (I.C.4). Of course, M = Ď
and M ′ = Ď′ are isomorphic as homogeneous complex manifolds, but after making
this identification D and D′ will be different GR orbits.

The first step is to describe in the compact case the diagram

(III.F.2) GC

��
W̌

��
π′

��2
22222222222222222222

π

��




















= GC/TC

J̌

}}{{{{{{{{{{{{

""DDDDDDDDDDDD = GC/A

GC/B = M M ′ = GC/B
′

which is the analogue of (III.D.5). Here the pictures are

• GC/B ←→
B
B
B
BB

E

• p
= Lagrange flag
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• GC/A←→
A
A
A
AA

E

• p

�
�
�
��

E′

=


pairs of

Lagrange flags

meeting in

a point



• GC/TC ←→

•

•

•

•

p3

p4

p2E12

p1

E13 E24

@
@
@

�
�

�
�

�
�
�� @

@
@@

E34

= Lagrange quadrilaterals

• GC = frames (f1, f2, f3, f4).

The maps in (III.F.2) are
(f1, f2, f3, f4) −→ (p1, p2, p3, p4), pi = [fi]

(p1, p2, p3, p4) −→ (p1, E13, E12),

(p,E,E′) −→ (p,E) and (p,E,E′)→ (p,E′), p = p1 and

E = E13, E
′ = E12 .

Step two: From (III.B.1) we have

(III.F.3) H1
DR

(
Γ(W̌,Ω•π ⊗ π−1Lµ

)
oo ω___ H0

DR

(
Γ(W̌,Ω•π′ ⊗ π

′−1L′µ′
)

∼ = ∼ =

H1(M,Lµ) H0(M ′, L′µ′).

We shall show that (cf. Proposition (III.F.9) below)

(III.F.4) The form ω3
2 gives the pullback to GC of a canonical form

ω ∈ Γ
(
W,Ω1

π ⊗ π−1Lµ ⊗ π
′−1Ľ′µ′

)
that gives the map indicated by the dotted line in (III.F.3).

Here, µ and µ′ are characters of TC that give homogeneous line bundles Lµ, L
′
µ′

over M,M ′, where µ + ρ = µ′ + ρ′ (see below). The calculations are parallel to
those given below (III.D.5).

Proof of (III.F.4). The method is similar to that used below (III.D.6). The
fibres of the map GC →M are given by

(III.F.5)

{
ω2

1 = 0, ω3
1 = 0, ω4

1 = 0

ω2
3 = 0
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where we have used ω2
1 + ω4

3 = 0 and ω3
1 + ω4

2 = 0 from (I.C.1). The fibres of

GC → J̌ are given by (III.F.5) together with

(III.F.6) ω3
2 = 0 .

Geometrically the above means that along the fibres of GC → J̌ the configuration

p1 •

�
�
�

�
�
�

�
�
��

E12E13

is constant, while along the fibres of GC →M the configuration

E13

• p1

is constant.
We next observe that

ω3
2 spans an integrable sub-bundle J ⊂ Ω1

π .

Indeed, using ω4
2 + ω3

1 = 0, the Maurer-Cartan equation

dω3
2 = ω1

2 ∧ ω3
1 + ω2

2 ∧ ω3
2 + ω3

2 ∧ ω3
3 + ω4

2 ∧ ω3
4

= ω1
2 ∧ ω3

1 + (ω2
2 − ω3

3) ∧ ω3
2 + ω3

4 ∧ ω3
1

gives

(III.F.7) dω3
2 ≡π (ω2

2 − ω3
3) ∧ ω3

2 .

This implies first that J is a sub-bundle and secondly that it is integrable.

Step three: We next have the observation

Let F be a holomorphic function, defined in an open set in GC
that is the pullback of a holomorphic section of L′µ′ → M ′.
Then

(III.F.8) dF ≡ 0 mod
{
ωjj , ω

2
1 , ω

3
1 , ω

4
1 , ω

3
2

}
.

Here, 1 5 j 5 4. It follows that, where again 1 5 j 5 4,

dπF ≡ 0 mod
{
ωjj , ω

3
2

}
.

From (III.F.7) and (III.F.8) we conclude that

dπ(Fω3
2) ≡ 0 .

We now let ω be the form on J̌ that pulls back to ω3
2 on GC. More precisely,

there is a line bundle L→ J̌ that will be identified below and then

ω is a section of J ⊗ L ⊂ Ω1
π ⊗ L .
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The above calculations then give the

(III.F.9) Proposition. For F ∈ H0(M,L′µ′), the map

F → Fω

induces a map given by the dotted arrow in (III.F.3).

Finally it remains to identify the relation among the line bundles L′µ′ , Lµ and
L. Let {

L′µ′ = F ′(a′,b′)
Lµ = F(a,b) .

Then from (III.F.7) it follows that

L = π−1F(0,2) .

Using this and π−1F(a,b) = π
′−1F ′(a,b) on J, the vertical identifications in (III.F.3)

give for the Penrose transformation

P : H0(D′, L′(a′,b′))→ H1(D,L(a,b)){
a = a′

b = b′ + 2 .

(III.F.10)

From (II.C.7) this is the same as

µ+ ρ = µ′ + ρ′ .

Step four: For F ∈ H0(D′, F ′(a′,b′)), we may pull F back to an open set in GC
where it is a holomorphic function

F (f1, f1 ∧ f2) .

It follows that

Fω ∈ Image
{
H1

DR

(
Γ(J,Ω•σ ⊗ σ−1F(a,b))

)
→ H1

(
Γ(W,Ω•π ⊗ π−1F(a,b))

)}
.

Suppose that

(III.F.11) Fω = dπG

where G ∈ Γ
(
W,OW(π∗F(a,b))

)
. We will show that

The pullback of G to an open set in GC is(III.F.12)

a function of the form G(f1, f1 ∧ f2, f1 ∧ f3).

Proof. As in the first example, we shall work modulo the differential scaling
coefficients ωjj , which will take care of themselves at the end. We recall that

Ω1
π = span

{
ω1

2 = −ω3
4 , ω

1
3 = −ω2

4 , ω
1
4 , ω

3
2

}
.

Then (III.F.11) implies that

dG does not involve ω1
2 = −ω3

4 , ω
1
3 = −ω2

4 , ω
1
4 .

It follows first that G = G(f1, f2, f3). Next, since ω1
2 and ω1

3 do not appear in dG,
we infer that

G = G(f1, f1 ∧ f2, f1 ∧ f3) .

This gives the

Conclusion: If (III.F.11) holds, then G ∈ Γ(J, σ−1F(a,b)).
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Step five: The space J has maximal compact subvarieties Z = Z(E,E′) that
have the picture

,(1 1)

> 0
E

E
< 0

•

•
= ⊥p p

p

That is, the locus

{p, pp′, E}, E fixed

gives a P1 in J. The line pp′ is Lagrangian since p′ = p⊥, and H has signature (1, 1)
on pp′ since H(p) < 0 and H(p′) > 0. Since J is covered by such Z(E,E′), to show
that the equation

dπG ≡ Fω, G ∈ Γ(J, σ−1F(a,b))

cannot hold non-trivially it will suffice to establish the stronger result that all

G
∣∣
Z(E,E′)

≡ 0 .

But we have seen that

F(a,b)

∣∣
Z(E,E′)

= OP1(a− b) .
This gives the

(III.F.13) Theorem. The Penrose transform

P : H0(D′, L′(a′,b′))→ H1(D,L(a,b))

is injective for a < b, or equivalently for

a′ + b′ + 1 < 0 .

(III.F.14) Corollary. The Penrose transform

P : H0(D,ω
′⊗k/3
H )→ H1(D,F(−k,−k+2))

is injective for k = 1.

Remark. As a check on the signs we recall that the distinguished Weyl chamber
C is the unique one where{

µ′ + ρ′ ∈ C⇒ H0
(2)(D

′, L′µ′) 6= 0

µ+ ρ ∈ C⇒ H1
(2)(D,Lµ) 6= 0 .

Then for µ′ = a′e1 + b′e2

(III.F.15)′ µ′ + ρ′ ∈ C⇐⇒
{
a′ < −2

b′ < a′ + 1 ,

and for µ = ae1 + be2

(III.F.15) µ+ ρ ∈ C⇐⇒
{
a < −2

b < a+ 3 .
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The Penrose transform{
P : H0(D′, L′(a′,b′))→ H1(D,L(a,b))

a = a′, b = b′ + 2

exactly takes the µ′ satisfying (III.F.15)′ to the µ satisfying (III.F.15).





CHAPTER IV

The Penrose transform in the automorphic case
and the main result

IV.A. Cuspidal automorphic cohomology

The objectives of this and the next section are

• to define cuspidal automorphic cohomology and to express it in terms of
Lie algebra cohomology (in this case, n-cohomology);

• to recall a lemma of Williams ([Wi1]) that will provide the crucial in-
gredient in the computation of cuspidal automorphic cohomology;

• in the next section, in case of our two examples to define the Penrose
transform on cuspidal automorphic cohomology and, using Williams’
lemma, show that it is an isomorphism for cuspidal Picard and Siegel
modular forms of weights k = 4.

Generalities. We consider a non-compact homogeneous complex manifold em-
bedded in its compact dual

D = GR/T ⊂ GC/B = Ď ,

where B is the subgroup of GC stabilizing a point ϕ ∈ Ď and where D is the
GR-orbit of ϕ. We write

b = tC ⊕ n

where

n = ⊕
α∈Φ−

gα

is the direct sum of the negative root spaces. We may think of the dual ň := n+ in
two ways:

(i) as the (1, 0) tangent space to D at ϕ;
(ii) as the (0, 1) cotangent space to D at ϕ.

For (i) we use the Cartan-Killing form to identify ň with ⊕
α∈Φ+

gα; this is the inter-

pretation of ň that we shall use when we stay completely in a holomorphic setting
as in the [EGW] formalism in chapter III. For (ii) we use the conjugation on gC
relative to a compact real form gc of gC to identify n = ⊕

α∈Φ+
g−α with the (0, 1)

tangent space to D at ϕ; this is the interpretation we shall use when we discuss
∂-cohomology below.

We let Γ ⊂ G be an arithmetic group and set X = Γ\D. For simplicity we make
the inessential assumption that Γ acts freely on D. For a weight µ the corresponding
homogeneous line bundle Lµ → D descends to one on X that we also denote by
Lµ → X. We will be interested in a subgroup Hq

o (X,Lµ) of Hq(X,Lµ) that we
will call cuspidal automorphic cohomology. In order to define and discuss some of

93
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its properties we need to recall some aspects of the representation theory of GR. A
general reference for this discussion is [K2].

We let Ṽ be an irreducible representation of GR and V = ṼK-finite the un-
derlying Harish-Chandra module. Denoting by Z(gC) the center of the universal
enveloping algebra U(gC), the infinitesimal character

χ
V

: Z(gC)→ C

is defined by

z · v = χ
V

(z)v z ∈ Z(gC), v ∈ V .
Recalling that gC = tC ⊕ n ⊕ n+ by Poincaré-Birkhoff-Witt we have the additive
isomorphism

U(gC) = U(tC)⊕
(
U(gC)n+ ⊕ nU(gC)

)
.

The projection of z ∈ Z(gC) onto the second factor lies in U(gC)n+, and therefore
it annihilates the highest weight vector v ∈ V if such exists. It follows that the
projection of z to the first factor above

γ′ : Z(gC)→ Z(tC) ∼= Sym(tC) ∼= C[̌tC]

has the same action on v as does z.1 Composing γ′ with the translation map{
τ : C[̌tC]→ C[̌tC]

τ(φ(·)) = φ(· − ρ)

yields the Harish-Chandra homomorphism

(IV.A.1) γ := τ ◦ γ′ : Z(gC)→ C[̌tC]W

where W is the complex Weyl group.
For a weight λ we may use (IV.A.1) to define a homomorphism

χ
λ

: Z(gC)→ C

by

χ
λ
(z) = γ(z)(λ) .

For v ∈ V n+

a highest weight vector of weight µ, from

χ
V

(z)v = z · v
= γ′(z)v (since v is a highest weight vector)

=
(
γ′(z)(µ)

)
v (since v has weight µ)

=
(
γ(z)(µ+ ρ)

)
v (definition of γ)

= χµ+ρ(z)v (definition of χ
λ
)

we see that if V has highest weight vector with weight µ, then V has infinitesimal
character χµ+ρ.

We will think of the highest weight vector of weight µ as an element

v ∈ H0(n+, V )µ

where, as usual, H0(n+, V ) = V n+

and the subscript µ means that as a T -module
H0(n+, V )µ is that part of the Lie algebra cohomology that transforms by the

1C[̌tC] means the coordinate ring of ťC; i.e., the polynomial functions φ(·) on ťC.
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weight µ. The Casselman-Osborne lemma [CO] says that the above result extends
to Hk(n+, V ):

(IV.A.2) If Hk(n+, V )µ 6= {0}, then χ
V

= χµ+ρ.

Note that by the W -invariance of γ,

χ
λ

= χµ+ρ if λ = w(µ+ ρ) for some w ∈W .

The converse also holds, from which one concludes that if Hk(n+, V )µ 6= {0}, then
the other weights of the T -module Hk(n+, V ) are w(µ+ ρ)− ρ for w ∈W .

We shall use (IV.A.2) in the form obtained by replacing n+ by n, µ by −µ, and
ρ by −ρ to have

(IV.A.3) If Ṽ is a unitary representation of GR and Hk(n, V )−µ 6= {0}, then V
has infinitesimal character χ−(µ+ρ).

A consequence is that there are only finitely many possibilities for V , and hence

up to infinitesimal equivalence for Ṽ . If µ + ρ is regular, then |W/WK | of these

are equivalence classes of discrete series representations. In order to ensure that Ṽ
itself is in the discrete series we need an extra hypothesis, which is given by

(IV.A.4) Williams Lemma. Given an irreducible unitary representation of GR
and a weight µ satisfying

(i) µ+ ρ is regular;
(ii) Property P: For each α ∈ Φnc with (µ+ ρ, α) > 0,(

µ+ ρ− 1
2

∑
{
β∈Φ
(µ+ρ,β)>0

β, α

)
> 0 .

Then

Hk(n, V )−µ 6= {0} =⇒


• k = q(µ+ ρ)

• dimHk(n, V )−µ = 1

• Ṽ is V−(µ+ρ)

where V−(µ+ρ) is the discrete series representation with Harish-Chandra character
Θ−(µ+ρ).

Here we continue to use the notation

q(µ+ ρ) = #{α ∈ Φ+
c : (µ+ ρ, α) < 0}+ #{β ∈ Φ+

nc : (µ+ ρ, β) > 0} .

Cuspidal automorphic cohomology. For Γ an arithmetic but not necessarily co-
compact subgroup of G, in the non-classical case and for X = Γ\D very little
seems to be known (e.g. finite dimensionality (Köecher principle) for a range of
k’s depending on Γ) about the groups Hk(X,Lµ). The general behavior of these
groups at the Kato-Usui boundary components (cf. [KU]) is a subject yet to be
explored. Here we shall define the subgroup Hk

o (X,Lµ) to be the image of cuspidal
automorphic cohomology as defined below.

In order to study the groups Hq(X,Lµ) by standard methods, say using ∂-
cohomology, by lifting everything up to Γ\GR and trivializing the homogeneous
bundles over GR one encounters C∞(Γ\GR). Replacing this by a sub-object that
decomposes into an algebraic direct sum of Harish-Chandra modules is necessary
to proceed. Two such objects are
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(i) the L2 automorphic forms

A2(GR,Γ) := A(GR,Γ) ∩ L2(Γ\GR)

where A(GR,Γ) are the usual automorphic forms as defined, e.g., in [Bor]. From
their properties one has

A2(GR,Γ) ⊂ L2
disc(Γ\GR)

where the RHS is the discrete spectrum of the unitary GR-module L2(Γ\GR). We
note that the irreducible GR-factors in A2(GR,Γ) will in general not all be discrete
series representations of GR.

(ii) the cuspidal automorphic forms ([Bor], loc. cit.)

Ao(GR,Γ) ∼= ⊕
π∈ĜR

V ⊕mπ(Γ)
π (algebraic ⊕)(IV.A.5)

∩
L2
o(Γ\GR) ∼= ⊕̂

π∈ĜR

Ṽ ⊕mπ(Γ)
π (Hilbert space ⊕)

where

mπ(Γ) =


multiplicity of Vπ in Ao(GR,Γ),

which is equal to the

multiplicity of Ṽπ in L2
o(Γ\GR)


.

With assumptions on µ (see below), it appears to be reasonably clear that replacing
C∞(Γ\GR) by A2(GR,Γ) or Ao(GR,Γ) should lead to a subgroup of Hq(X,Lµ).
For our purposes we will use (ii) and reasoning essentially as in Carayol [C1] and
denoting by A0,q(X,Lµ) the smooth Lµ-valued (0, q)-forms on X, we have

Hq(X,Lµ) = Hq(A0,•(X,Lµ), ∂)

= Hq
{

HomT

(
Λ•n, C∞(Γ\GR)⊗ Cµ

)}
= Hq

(
n, C∞(Γ\GR)

)
−µ

where we have omitted the operator corresponding to ∂ in the second step. In
the last step this operator becomes the usual coboundary operator in Lie algebra
cohomology due to the second identification above of ň as the (0, 1) cotangent space
to D at the identity. Also, Cµ is the T -module corresponding to the character whose
weight is µ, and the steps in the chain of equalities are the standard ones used to
replace ∂-cohomology by Lie algebra cohomology. With this as motivation we give
the

(IV.A.6) Definition. The cuspidal automorphic cohomology is defined by

Sq(X,Lµ) := Hq
(
n,Ao(Γ\GR)

)
−µ .

From (IV.A.5) we have

Sq(X,Lµ) ∼= ⊕
π∈ĜR

Hq(n, Vπ)
⊕mπ(Γ)
−µ(IV.A.7)

∼= ⊕{
π∈ĜR
χ
π

=χ−(µ+ρ)

Hq(n, Vπ)
⊕mπ(Γ)
−µ

which is a finite direct sum.
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There is an obvious natural mapping

(IV.A.8) Sq(X,Lµ)→ Hq(X,Lµ)

and we shall denote by Hq
o (X,Lµ) the image of this mapping. Although very little

seems to be known about this mapping, in the cases of the Penrose transform of
Picard and Siegel modular forms we will see that it is injective.

(IV.A.9) Proposition. Assume that µ + ρ is regular and satisfies property P.
Then

Sq(X,Lµ) ∼=
{

0, q 6= q(µ+ ρ)

Cmπ(Γ), q = q(µ+ ρ)

where π = π−(µ+ρ).

Proof. This follows immediately from the definition of Sq(X,Lµ) and Williams’
lemma �

Remark. Using the extension of the Hirzebruch proportionality principle made
possible by Atiyah-Singer to the case of X = Γ\D when D is non-classical and Γ
is co-compact, it may be shown that

mπ−(µ+ρ)
(Γ) = vol(X)Pµ

where Pµ is a Hilbert-type polynomial in µ whose coefficients are independent of
Γ. In fact, for µ non-singular and setting N = dimD and Pkµ = Pµ(k), we have

Pµ(k) = Cµk
N + (lower order terms in k)

for a constant Cµ > 0 that is independent of Γ (cf. [Wi5]).

As noted above, one may ask about the relation between the cuspidal automor-
phic cohomology Sq(X,Lµ) and the ordinary automorphic cohomology Hq(X,Lµ).
A first result along these lines is the

(IV.A.10) Proposition. The map (IV.A.8) is injective in each of the following
cases:

(i) µ+ ρ is regular antidominant and satisfies property P, and q = q(µ+ ρ);
(ii) q = 0; or

(iii) Γ cocompact (in which case it is an isomorphism).

Unfortunately, for the case of the Penrose transform of Picard modular forms
(example one) or Siegel modular forms (example two), µ+ ρ is not anti-dominant,
or even K-anti-dominant and the issue of injectivity is somewhat delicate.

Proof of (i). Using (IV.A.7) and (IV.A.9) we have

Sq(µ+ρ)(X,Lµ) ∼= ⊕
π∈ĜR

Hom(gC,K)(V−(µ+ρ), Vπ)⊕mπ(Γ)

∼= Hom(gC,K)

(
V−(µ+ρ),Ao(GR,Γ)

)
⊂ Hom(gC,K)

(
V−(µ+ρ), C

∞(Γ\GR)K-finite

)
∼= H0

(
Γ,MG(Vµ+ρ)

)
where the last step uses [Schm1], theorem 7 on page 109, and MG means “maximal
globalization”. Using [Schm1], the corollary on page 109, this last term is

∼= H0
(
Γ, Hq(µ+ρ)(D,Lµ)

)
.
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Next, using [Schm1], part (a) of the theorem on page 98 and theorem 3 on page
106, we have Hq(D,Lµ) = {0} for q 6= q(µ+ρ), and from the Cartan-Serre spectral
sequence

Hi(Γ, Hj(D,Lµ))⇒ Hi+j(Γ\D,Lµ),

the last term above is
∼= Hq(µ+ρ)(X,Lµ) .

Next, (ii) is essentially trivial. We write simply

S0(Γ\D,Lµ) = Ao(GR,Γ)n−µ

⊆ C∞(Γ\GR)n−µ = H0(Γ\D,Lµ) .

Turning to (iii), in the co-compact case we clearly have

Ao(GR,Γ) ⊂ C∞(Γ\GR) ⊂ L2
o(Γ\GR)

where the terms on either end decompose respectively into an algebraic direct sum
of Harish-Chandra modules and a Hilbert space direct sum of globalizations of these
modules with the same multiplicities. By reasoning as above we have

Hq(µ+ρ)(X,Lµ) ∼= Hq(µ+ρ)
(
n, C∞(Γ\GR)

)
−µ

∼= ⊕
π∈ĜR

Hq(µ+ρ)(n, V̂∞π )
⊕mπ(Γ)
−µ

and from lemma 1 on page 98 of [Schm1] this is

∼= ⊕
π∈ĜR

Hq(µ+ρ)(n, Vπ)
⊕mπ(Γ)
−µ

∼= Sq(µ+ρ)(X,Lµ) . �

IV.B. Picard and Siegel cuspidal automorphic forms

The purposes of this section are (see the conclusion (IV.B.10) at the end):

(IV.B.1) to show that the µ′ corresponding to Picard and Siegel automorphic forms
satisfy Williams’ property P, together with and the accompanying regularity condi-
tion for q = q(µ′ + ρ′) = 1 and for k = 4, for both Picard and Siegel,

and

(IV.B.2) to show that for the µ′ giving weight k Picard automorphic forms for
SU(2, 1), respectively Siegel automorphic forms for Sp(4), the Penrose transform

(IV.B.3) PΓ : S0(X ′, L′µ′)→ S1(X,Lµ),

where ρ′ + µ′ = ρ+ µ, is defined and in both cases is an isomorphism for k = 4.

We observe that in case Γ is co-compact, injectivity of P follows from (III.E.13)
and (III.F.14); and then surjectivity will follow from the equality of dimensions,
which is a consequence of (IV.B.1).2

2In the co-compact case and for µ sufficiently far from the walls of the Weyl chamber, as previously

noted Hq(X′, L′
µ′ ) = 0 for q 6= 0 and Hq(X,Lµ) = 0 for q 6= 1. The equality of dimensions then

follows from the Atiyah-Singer Hirzebruch Riemann-Roch theorem, as both sides may be computed

to be the same multiple of vol(Γ\GR).
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Proof of (IV.B.1) for SU(2, 1). We recall that the Penrose transform is a
map

P : H0(D′, F ′(a,b))→ H1(D,F(−a−2,a+b+1)) .

In terms of the roots α1, α2 we have

F ′(a,b) = Lµ′ where µ′ =

(
b− a

3

)
α1 +

(−2a− b
3

)
α2

and

F(−a−2,a+b+1) = Lµ where

µ =

(
2(−a− 2) + (a+ b+ 1)

3

)
α1 +

(
(−a− 2)− (a+ b+ 1)

3

)
α2 .

We note that

µ′ + ρ′ =

(
b− a

3

)
α1 +

(−2a− b− 3

3

)
α2 = µ+ ρ .

Denoting by ω′B the pullback under the map D′ → B of the canonical bundle
ωB → B, we have seen that ωB (and hence ω′B) has a canonical cube root. The
Penrose transform for Picard modular forms of weight k then corresponds to

ω
′⊗k/3
B = F ′(−k,0) → F(k−2,1−k)

where

µ′ + ρ′ =

(
k

3

)
α1 +

(
2k − 3

3

)
α2 = µ+ ρ .

The picture is

*

*

*

. .
 .

*

*

C′

k = 4

k = 3

k = 2

k = 1

k = 0

so that for k = 3, µ′ + ρ′ = µ+ ρ lies in the Weyl chamber C′. Recalling Williams’
property P from (IV.A.3), the noncompact roots α with (µ+ ρ, α) > 0 are α1 +α2

and α2, where we have used (α1, α1) = (α2, α2) = 2 and (α1, α2) = −1 and assumed
k = 3. Moreover, (

1

2

) ∑
{

β∈Φ
(µ+ρ,β)>0

β = α1 + α2

and {
(µ+ ρ− α1 − α2, α1 + α2) = 2

3 (k − 3)

(µ+ ρ− α1 − α2, α2) = k − 3,

so condition P holds for k > 3 (i.e. k = 4). We emphasize that k = 1 or 2 makes
µ+ ρ irregular, and that P fails for k = 3.
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Proof of (IV.B.2) for SU(2, 1). We have

(IV.B.4) S0(X ′, ω
′⊗k/3
B ) ∼= H0

(
n′, V−(µ′+ρ′)

)⊕m−(µ′+ρ′)(Γ)

−µ′
∼= Sk(SU(2, 1),Γ)

where the last term denotes the cuspidal Picard modular forms of weight k in the

classical sense; i.e., this space is the space of cuspidal forms in H0(Γ\B, ω⊗k/3Γ\B ).

The sections on the LHS of (IV.B.4) are constant along the P1 fibres of X ′ → Γ\B.
Moreover, that the cuspidal condition given by Ao(GR,Γ) ⊂ L2

o(Γ\GR) specializes
to the usual cuspidal condition for automorphic forms on quotients of bounded
symmetric domains by arithmetic groups is standard ([Bor], loc. cit.).

The issue of defining the Penrose transform (IV.B.3) and showing that it is
injective is an interesting one. The most natural way to proceed would be to have
a diagram

S0(X ′, L′µ′)
j0 //

PΓ

���
�
�

H0(X ′, L′µ′)

P

��
S1(X,Lµ)

j1 // H1(X,Lµ)

(IV.B.5)

where

(i) the horizontal maps are injective, and
(ii) PΓ

(
j0(S0(X ′, L′µ′))

)
⊆ j1

(
S1(X,Lµ)

)
;

i.e. we can fill in the dotted arrow in the diagram to define PΓ. It turns out that
(i) and (ii) are true, but the proof will be indirect. In preparation for that we have
the

(IV.B.6) Lemma. For µ′ corresponding to Picard or to Siegel automorphic forms,
and µ = µ′ − ρ+ ρ′ to their Penrose transforms{

H0(X ′, L′µ′) = H0(D′, L′µ′)
Γ

H1(X,Lµ) = H1(D,Lµ)Γ .

Proof. The result is obvious for q = 0. In general the Cartan-Leray spectral
sequence

Hp
(
Γ, Hq(D,F(a,b))

)
⇒ Hp+q(X,F(a,b)) ,

leads to an exact sequence

0→ H1
(
Γ, H0(D,F(a,b))

)
→ H1(X,F(a,b))→ H1(D,F(a,b))

Γ

→ H2
(
Γ, H0(D,F(a,b))

)
.

The lemma then follows since we have seen in (III.E.18) and section III.F that
H0(D,F(a,b)) = 0 for the case of Picard and Siegel automorphic forms. �

As a consequence we may replace the diagram (IV.B.5) by

S0(X ′, L′µ′)
j′0 //

PΓ

���
�
�

H0(D′, L′µ′)
Γ

P

��
S1(X,Lµ)

j1 //j1 // H1(D,Lµ)Γ

(IV.B.7)

where j′0 and P are injective by (IV.A.10)(iii) and (III.E.13).
To define PΓ we recall that

S1(X,F(k−2,1−k)) ∼= H1(n, V−(µ+ρ))
mπ−(µ+ρ)

(Γ)

−µ
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where µ + ρ =
(
k
3

)
α1 +

(
2k
3 − 1

)
α2 and where the n-cohomology group is 1-

dimensional. Since {
n = span{X−(α1+α2), Xα2

, X−α1
}

n′ = span{Xα1+α2
, Xα2

, X−α1
}

we will define PΓ as a map

H0 {HomT (Λ•n′,Ao(GR,Γ)⊗ Cµ′)} → H1 {HomT (Λ•n,Ao(GR,Γ)⊗ Cµ)} .
For this we need a T -invariant homomorphism

(IV.B.8) n→ Cµ−µ′ .
But µ− µ′ = −α1 − α2, and so we may define the map (IV.B.8) by

(IV.B.9) X−α1−α2
→ 1 ∈ Cµ−µ′

and Xα2
, X−α1

map to zero. Now, and this is the key point,

The map (IV.B.8) is just that given by the form ω = ω1
3 in

(III.E.8).

The link between the two Penrose transforms is given by the isomorphism

Hq
DR

{
Γ
(
Γ\W,Ω•π ⊗ π−1Lµ

)} ∼= Hq
{

HomTC

(
Λ•n, C∞(Γ\ ∩w∈W GRBw)⊗ Cµ

)}
(cf. (III.B.7)) together with the identification ω3

1 |idG = ω−(α1+α2).
A first consequence is that, for PΓ defined in this way and noting that P is GR-

invariant, the the diagram (IV.B.7) is commutative. Consequently, PΓ is injective.
Moreover, by Williams’ formula and using µ′ + ρ′ = µ+ ρ, the two spaces have the
same dimension; it follows that PΓ is an isomorphism and that j1 is also injective.
This completes the proof of (IV.B.2) for SU(2, 1). �

Proof of (IV.B.1) for Sp(4). In this case we have{
F(a,b) = F(−k,−k+2) = L−ke∗1+(−k+2)e∗2

ρ = 2e∗1 − e∗2
which gives

µ+ ρ = (−k + 2)e∗1 + (−k + 1)e∗2 .

The non-compact roots are

±(e∗1 + e∗2),±2e∗1,±2e∗2

and for α denoting these roots the values of (µ+ ρ, α) are successively

±(−2k + 3), ±(−2k + 4), ±(−2k + 2) .

Thus, for k = 3 the roots entering into Williams’ condition P are

α = −2e∗2,−2e∗1,−(e∗1 + e∗2).

(For k = 1, 2 the weight µ+ ρ is non-regular). The roots β satisfying (µ+ ρ, β) > 0
are

−2e∗2, e
∗
1 − e∗2,−e∗1 − e∗2,−2e∗1

so that
1

2

∑
{

β∈Φ
(µ+ρ,β)>0

β = −e∗1 − 2e∗2 .
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Then

µ+ ρ− 1

2

∑
{

β∈Φ
(µ+ρ,β)>0

β = (−k + 3)e∗1 + (−k + 3)e∗2

and for α each of the above three roots(
µ+ ρ− 1

2

∑
{

β∈Φ
(µ+ρ,β)>0

β, α

)
= 2k − 6,

which is positive for k = 4. �

The proof of (IV.B.2) for Siegel modular forms is the same as that for Picard
modular forms.

(IV.B.10) Conclusion. For Picard modular forms of weight k = 4 and Siegel
modular forms of weight k = 4, the Penrose transform PΓ may be defined and is an
isomorphism leading to a commutative diagram

H0
o (X ′, L′µ′)

PΓ

��

� � // H0(X ′, L′µ′)

��

∼= H0(D′, L′µ′)
Γ

P

��
H1
o (X,Lµ) �

� // H1(X,Lµ) ∼= H1(D,Lµ)Γ .

(IV.B.11)

(IV.B.12) Remark. It is interesting, and will be of use in IV.F, to compare the
inequality for the Williams Lemma with the one for integrability of V−(µk+ρ):

|(µk + ρ, α)| > 1

2

∑
β∈Φ

(µk+ρ,β)>0

|(β, α)| for all α ∈ Φnc with (µk + ρ, α) > 0 .

For both Picard and Siegel, this is equivalent to k ≥ 5.

IV.C. Arithmetic structures on vector spaces

Notations: In this section k, k0, k
′, . . . will be number fields with given embed-

dings k ↪→ C, k0 ↪→ C, k′ ↪→ C, etc.

Definition. Let E be a complex vector space. An arithmetic structure on E
is given by a k-vector subspace Ek ⊂ E such that E = C⊗k Ek.

This means that Ek ⊂ E is a subgroup together with an action k ⊗Z Ek → Ek
that makes Ek into a vector space defined over k.

Of course any vector space has many arithmetic structures. The ones we shall
use will be “natural” in the sense that should be clear from the context.

Definitions. (i) Two arithmetic structures given by Ek ⊂ E and Ek′ ⊂ E are
comparable if there is a number field k0 such that k ⊂ k0, k

′ ⊂ k0 and k0 ⊗k Ek =
k0⊗k′ ·Ek′ . (ii) Two arithmetic structures as above are proportional if there is a k0

also as above and a complex number ∆ ∈ C∗ such that ∆(k0 ⊗k Ek) = k0 ⊗k′ Ek′ .
In other words, the two arithmetic structures Ek and Ek′ are proportional if,

after finite algebraic extensions, the vector spaces are the same up to scaling by a
generally transcendental number ∆.
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The standard operations of linear algebra make sense when arithmetic struc-
tures are included. Thus, if we have E = C ⊗k Ek and F = C ⊗k Fk then
E ⊗ F = C ⊗k (Ek ⊗k Fk). More useful will be extending the operations of linear
algebra to equivalence classes of comparable arithmetic structures; this is done in
the evident way.

Definitions. (i) Let E have an arithmetic structure and e ∈ E. Then e is
arithmetic if e ∈ Ek′ for some field k′ ⊃ k with Ek′ = k′ ⊗k Ek. (ii) Keeping the
same notation, e is proportionally arithmetic if there is a proportional arithmetic
structure Ek0 to the given Ek such that e ∈ Ek0 .

Concretely, for a fixed transcendental number ∆, we will have ∆e ∈ Ek0 for all
of the e’s under consideration.

The motivation for these terms will hopefully become clear through the exam-
ples given below. One could presumably simplify by replacing all number fields
with Q, but for reasons to be explained below we prefer not to do this.

Example (i): Let X be a smooth algebraic variety defined over k and E→ X
an algebraic vector bundle also defined over k. Then if ϕ ∈ X(k), the fibre Eϕ has
an arithmetic structure.

Example (ii): With X as above, and working in both the Zariski and analytic
topologies and using the comparison theorem,

H∗DR(Xan
C ,C) ∼= H∗(Ω•XC/C) ∼= H∗(Ω•Xk/k)⊗k C

has an arithmetic structure. Also,

Hp,q(X) ∼= Hq(Xan,ΩpXC
) ∼= Hq(XZar,Ω•Xk)⊗k C

has an arithmetic structure, compatible with that on H∗DR by the (algebraic) Hodge
to de Rham spectral sequence.

Example (iii): Still keeping X as above, the Betti cohomology H∗B(Xan
C ,C) ∼=

H∗B(Xan
C ,Q)⊗Q C has an arithmetic structure.

The matter of the non-proportionality between the arithmetic structure in Ex-
amples (ii) and (iii), identifying H∗B(Xan

C ,C) and H∗DR(Xan
C ,C), is the subject

of extensive and deep work and conjectures. In particular, one should mention
Deligne’s theory of absolute Hodge cycles; cf. [D] and the discussion in chapter
VIII of [GGK1].

A simple example that does however illustrate the notion of proportionality is
that for X = C∗ viewed as the complex points of an algebraic variety defined over
Q, ∫

|z|=1

dz

z
= 2πi

gives that H1
B(X(C),C) and H1(X(C),C) have proportional arithmetic structures

with ∆ = 2πi.
One can also consider the case of X = E, an elliptic curve defined over a number

field. The arithmetic structures on H1
B resp. H1

DR are those arising from “classes
with algebraic periods” and “classes represented by algebraic differential forms”;
they are not in general proportional. We can also look at the arithmetic structures
on F 1H1 induced from algebraic 1-forms or “from periods”; but the latter structure
may depend on the choice of 1-cycle. In fact, it is well-defined precisely when E
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has complex multiplication. This observation generalizes nicely, as we shall see in
(IV.C.7) below.

Example (iv): Let Ď = GC/B be a rational homogeneous variety where GC
is the complex Lie group associated to a reductive, Q-algebraic group G. Then Ď
is defined over a number field k, as are the homogeneous vector bundles F → Ď
associated to representations of B defined over k. In particular, if D is a Mumford-
Tate domain with compact dual Ď, then for ϕ ∈ D ∩ Ď(k) the fibres Fpϕ of Hodge
filtration bundles Fp → D have arithmetic structures which are preserved under
the action by an arithmetic subgroup Γ ⊂ G(Q).

Remark. If X as in example (i) is complete and projective, and if ϕ(X) ∈ D
is the period point associated to the polarized Hodge structure on Hn(Xan

C ,Q),

then to say that ϕ(X) ∈ Ď(k) imposes very strong arithmetic restrictions on the
polarized Hodge structure ϕ(X).

Example (v): Let D be a Mumford-Tate domain and ϕ ∈ D a complex-
multiplication (CM) polarized Hodge structure (cf. chapter V of [GGK1]).

(IV.C.1) Theorem. ϕ ∈ Ď is defined over a number field constructed from L.

Example (vi): The fibres Fpϕ of the Hodge filtration bundles, as well as the

quotients Vp,qϕ = Fpϕ/Fp+1
ϕ , have arithmetic structures arising from a CM field L.

Example (vii): Let H = GR/K be a Mumford-Tate domain parametrizing po-
larized Hodge structures of weight n = 1 and whose generic member has Mumford-
Tate group G. Then H is an Hermitian symmetric domain that may be equivari-
antly embedded in Siegel’s generalized upper half space Hg

∼= Sp(2g)R/U(g) where
g is the dimension of the abelian variety Aϕ corresponding to ϕ ∈ H. In example
one, H = B is the ball in C2 and g = 3; in example two H = H2.

Let Γ be an arithmetic group and set Y = Γ\H. Then we have the

(IV.C.2) Theorem. Y is a quasi-projective algebraic variety defined over a num-
ber field.

More specifically, replacing Γ by a subgroup of finite index if necessary, a step
that will not affect our main result, we may assume that Y is smooth. Let ωY
be the canonical bundle and assume that the boundary components in the Baily-
Borel-Satake compactificaiton Y ↪→ Y have codimension at least two. Then

(IV.C.3) RY := ⊕
l=0

H0(Y, ω⊗lY )

gives the coordinate ring for a projective variety Y in which Y is a Zariski open
set. Moreover, RY has an arithmetic structure, meaning that

• the individual spaces H0(Y, ω⊗lY ) have arithmetic structures; and
• these arithmetic structures are compatible with the homogeneous coor-

dinate ring structure on RY .

These observations are corollaries to the existence of canonical models for Shimura
varieties of Hodge type, due to Shimura and Deligne. (We refer the reader to
[Mi] for further discussion and references.) For examples of the algebro-geometric
information carried by these models in the Picard and Siegel cases, see the appendix
below.
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A consequence is

(IV.C.4) For k a number field and y ∈ Y (k), the fibres ω⊗lY,y have arithmetic
structures that are compatible with the evident multiplication mappings.

We will call these algebro-geometric or AG- arithmetic structures.
For certain points of Y there are other arithmetic structures in the fibres ω⊗lY,y

that arise from the Hodge-theoretic interpretation of H as a Mumford-Tate domain,
and therefore of Y as the moduli space of Γ-equivalence classes of polarized Hodge
structures of weight one having additional structure. That is, they are inherited
from the natural Q-algebraic structure on ω⊗lH . In example one we may think of the

additional structure as the action of F = Q(
√
−d) on the polarized Hodge structure

plus an additional level structure. In example two, the additional structure may be
thought of as a level structure. In both cases G is a linear Q-algebraic group and
Γ is a linear group whose matrix entries are integers in a number field.

Besides ωY there are other natural line bundles to consider. Sitting over Y is a
canonical family A of abelian varieties defined over Q, the relative algebraic 1-forms
on which define a Hodge bundle V1,0

Y (which is also Q-algebraic). Its pullback V1,0
H

to H gives the tautological weight-one VHS, and extends to a bundle over Ȟ, from
which it inherits a different sort of Q-algebraic structure as follows. The pullback

family Ã� H is a quotient of Cg×H; and writing z1, . . . , zg for the coordinates on

Cg, dz1, . . . , dzg provide a basis for the sections of V1,0
H . Passing to the gth exterior

power, for H = B or Hg we have isomorphisms{
ωY ≡ (detV1,0

Y )⊗m

ωH ≡ (detV1,0
H )⊗m

replacing the Q-algebraic structures, for some m ∈ Q which depends on H.3

When H = Hg (instead of some proper subdomain), we have m = g + 1, and

sections ψ ∈ H0(Y, (detV1,0
Y )⊗l) identify with Siegel modular forms of weight l.

More precisely, writing ψ̃ = fψ · (dz1 ∧ · · · ∧ dzg)⊗l for the pullback to H, fψ is
the modular form. For more general H, we will still call such {fψ} restricted-Siegel
modular forms.

On the other hand, for H = B the 2-ball and G = SU(2, 1), the F-action

produces a line sub-bundle V1,0
+ ⊂ V1,0. Over H, we can take this to be generated

by dz1. One again has Q-algebraic isomorphisms{
ω
⊗1/3
Y

∼= V1,0
Y,+
∼= (detV1,0

Y )⊗1/2

ω
⊗1/3
H

∼= V1,0
H,+
∼= (detV1,0

Y )⊗1/2 ,

where the powers are consequences of our weight computations in earlier sections.

Given ψ ∈ H0(Y, (V1,0
Y,+)⊗k), fψ ∈ O(B) (defined by ψ̃ = fψ · dz1) is known as a

Picard modular form of weight k.
We will now write the points of Y as y = [ϕ] where [ϕ] is the Γ-equivalence

class of a point ϕ ∈ H ⊂ Ȟ. Since Ȟ is a projective variety defined over a number
field k0 the notion of an arithmetic point ϕ ∈ Ȟ is defined; it means that ϕ ∈ Ȟ(k′0)
where k′0 ⊃ k0 is a finite extension. These arithmetic points are invariant under the
action of Γ, and we denote by YHT ⊂ Y the set of such points.

3The meaning of L
⊗a/b
1

∼= L2 being L⊗a1
∼= L⊗b2 .
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The natural lift of this action to Ã also respects the arithmetic structure derived
from dz1, . . . , dzg on V1,0

H . So for y = [ϕ] ∈ YHT, the fibre V1,0
Y,y of the Hodge

bundle has a well-defined arithmetic structure induced from the complex-analytic
isomorphism with V1,0

H,ϕ; and there are clearly compatible structures on detV1,0
Y,y,

ωY,y, etc. We shall call these Hodge-theoretic or HT-arithmetic structures.

The AG-arithmetic structures and HT-arithmetic structures in ω⊗lY,y, detV1,0

etc. are defined for different sets of points y ∈ Y . We will denote these sets by
Y (Q) and YHT respectively. For common points y ∈ Y (Q) ∩ YHT these arithmetic
structures are in general not comparable. An example will illustrate this.

Example. Let H be the upper-half-plane with standard coordinate τ and Γ ⊂
SL2(Z) a congruence subgroup. We think of H as the SL2-orbit of i (and Ȟ ∼= P1),
parametrizing Hodge structures of type h1,0 = h0,1 = 1 on a 2-dimensional vector
space V . Then there is the standard trivialization

ωH
∼= OH

of the canonical line bundle given by the section dτ of ωH → H. Using this
trivialization, sections ψ ∈ H0(Y, ω⊗lY ) that are finite at the cusps are represented
by automorphic functions fψ(τ) satisfying the usual condition

fψ

(
aτ + b

cτ + d

)
= (cτ + d)lfψ(τ)

and where fψ is finite at the cusps. Denote this space of functions by Ml(H,Γ).
It is well-known that Ml(H,Γ) has an arithmetic structure, and that for l � 0
the functions in Ml(H,Γ)k projectively embed Y as a curve defined over a number
field.4 The arithmetic points Y (Q) may be defined by the condition that for all
pairs f, g ∈Ml(H,Γ)k with g(τ) 6= 0, we have

(f/g)(τ) ∈ Q .

The Hodge bundle V1,0 → H has an arithmetic structure as described above,
and therefore

(IV.C.5) ωH = ⊗2V1,0

has an induced arithmetic structure. We observe that

(IV.C.6) dτ is an arithmetic section of ωH → H .

This means the following: For τ ∈ P1(k) ∩ H the filtration V1,0
τ ⊂ VC is defined

over k; thus
V1,0
τ = C⊗ (V1,0

τ )k .

With the identification (IV.C.5)

dτ ∈ ŤτH ∼=
(
C⊗ (V1,0

τ )k
)⊗2

and in fact
dτ ∈

(
(V1,0

τ )k
)⊗2

.

The proof consists in writing out the identification (IV.C.5) in coordinates.
Returning to the discussion of this example, it is well known [Wu] that for

τ ∈ P1(Q) ∩H and f, g as above, (f/g)(τ) is in general transcendental. It is only
for those τ giving a CM Hodge structure, i.e. for τ a quadratic imaginary complex

4Of course, much more precise results are known about this.
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number, that we have (f/g)(τ) ∈ Q. Moreover, even in this case, for ψ (AG-)

arithmetic we have that fψ(τ) is transcendental — although its value in C∗/Q∗

depends only on l and the imaginary quadratic field Q(τ).
This is a a special case of the following deep result, in which (b) is adapted

from (11.1) on page 77 of [Shi].

(IV.C.7) Theorem.

(a) [C], [SW] Suppose given ϕ ∈ H such that [ϕ] ∈ Y (Q)∩YHT; in particular,
ϕ ∈ H ∩ Ȟ(Q). Then ϕ is a CM point. There is a finite extension
k0 ⊃ k depending only on Γ and the CM type associated to ϕ, such that
[ϕ] ∈ Y (k0).

(b) [Shi] Let ϕ ∈ H be a CM point (and k0 as above). Then there is a tran-

scendental number ∆ϕ, which modulo Q∗ depends only on the CM type

associated to ϕ, such that for every l ∈ N and ψ ∈ H0(Y, (detV1,0
Y )⊗l)k,

we have
∆−lϕ · ψ̃(ϕ) ∈ (detV1,0

H )⊗lk0
.

Alternately, writing ψ̃ = fψ · (dz1 ∧ · · · ∧ dzg)⊗l, we have

fψ(ϕ) ∈ ∆l
ϕQ . �

(IV.C.8) Remark. Informally, this says (a) that the points where one can compare
the AG- and HT-arithmetic structures on fibres of the canonical Hodge line bundle
detV1,0 are precisely the CM points; and (b) the proportionality factor between
these structures5 has good invariance properties. For example, given γ ∈ G(Q) we
have ∆ϕ = ∆γ·ϕ.

(IV.C.9) Example. For a CM point P ∈ B, there is a CM field LP with [LP :

F] =: e = 1, 2, or 3 and P/LP . Let ψ+, ψ− = ψ+ denote the embeddings of F in
C, and {

θ+
1 , . . . , θ

+
e

θ−1 , . . . , θ
−
e

where

{
θ−i = θ+

i and

θ+
i |F= ψ+ for each i

denote the embeddings of LP in C. Then (up to reordering) P = [1 : θ+
1 (x) : θ+

1 (y)]
for some x, y ∈ LP ,6 and we set

ΘP :=


{θ+

1 } = {ψ+}, e = 1

{θ+
1 , θ

−
2 }, e = 2

{θ+
1 , θ

−
2 , θ

−
3 }, e = 3 .

Associated to the CM type (LP ,ΘP ) is an abelian 3-fold AP , analytically isogenous
to

Ce/ΘP (OLP )×
(
C/ψ+(OF)

)3−e
,

which is defined over a finite abelian extension L̃P of LcP . Taking any nonzero
η ∈ Γ(Ω3

AP /Q
) and7 [δ] ∈ H3(AP ,Q), define

∆P :=

∫
δ

η ∈ C∗ .

5Trivially, any two rank-1 arithmetic structures are proportional.
6So P is really defined over θ+

1 (LP ), which we informally identify with LP .
7More precisely, we must require [δ] to be in the image of H2(C2/ΘP (LP ))⊗H1(C/ψ+(OF ))⊗3−e.
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Theorem (IV.C.7) says that the class of ∆P in C∗/Q∗ depends only on (LP ,ΘP )
and is invariant under the section of G(Q) on B. However, in this special case it
turns out that for each given LP , the possible F-compatible types are permuted
transitively by the Galois group Gal(LcP /F), acting on the right. Consequently ∆P

depends only on LP . �

In general, any irreducible, polarizable CM Hodge structure of type (1, 0)+(0, 1)
is obtained by taking

• a CM field L (say, of degree 2g over Q), considered as a Q-vector space;
and

• a set Θ = {θ1, . . . , θg} of embeddings satisfying Θ
∐

Θ = Hom(L,C).

Noting that L⊗Q C ∼= ⊕
θ∈Hom(L,C)

Cθ, we then set

F 1(L⊗Q C) := ⊕
θ∈Θ

Cθ .

The resulting Hodge structure identifies with H1 of a Q-abelian variety A(L,Θ)

analytically isogenous to Cg/Θ(OL), where Θ(β) := (θ1(β), . . . , θg(β)). The corre-

sponding ∆-factor is any period of a Q-holomorphic form of top degree.
For ϕ ∈ H, ∆ϕ is the product of ∆-factors of ϕ’s irreducible summands. This

is nothing but a special value of a period of an algebraic section of detV1,0
Y . In

(III.C.7)(b) it was therefore most natural to consider restricted-Siegel modular
forms, but we could also have replaced (detV1,0)⊗l by ω⊗m and pluricanonical
forms.

(IV.C.10) Example.

(a) In the first, respectively second examples (H = B resp. H2), this means

replacing ∆l
ϕ by ∆

3m/2
ϕ , respectively ∆3m

ϕ .

(b) For the first example, we could instead use f ∈ H0(Y, (V1,0
+ )⊗k), which

makes f a Picard modular form of weight k, replacing ∆l
ϕ by ∆

k/2
ϕ .

For the two examples, we shall set henceforth

∆̃ϕ :=

{
∆

1/2
ϕ (Picard)

∆ϕ (Siegel).

The choice of square root does not matter.

Appendix to section IV.C: Explicit canonical models for the two
examples

The generators of the coordinate ring RY parametrize algebro-geometric struc-
tures lying over Y = Γ\H. These algebro-geometric structures are not only families
of abelian varieties, but also families of curves and K3 surfaces. In this appendix
we summarize, for specific choices of Γ, how this looks in our two examples.

We first recall the classical definition of Siegel modular forms of degree g = 2
and weight l with respect to Γ ⊆ Sp(2g,Z). A holomorphic function F ∈ O(Hg)
belongs to the space Ml(Hg,Γ) of such forms if for each γ = (A B

C D ) ∈ Γ we have

F (γ[τ ]) = {det(C[τ ] +D)}lf([τ ]) .

Here, A,B,C,D, [τ ] are g × g matrices with t[τ ] = [τ ], Im[τ ] > 0 and

γ[τ ] = (A[τ ] +B)(C[τ ] +D)−1 .
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By the Köcher principle we need not impose any growth conditions.
In the special case g = 2 and Γ = Sp(4,Z) Clingher and Doran [CD] have

constructed a family of K3 surfaces of generic Picard number 17 and given by the

minimal resolution X̃α of the hypersurface

Xα = {Y 2ZW − 4X3Z + 3α2XZW
2 + α3ZW

3

+α5XZ
2W − 1

2 (α6Z
2W 2 +W 4) = 0}

in P3. Here

α = [α2, α3, α5, α6] ∈M := WP(2, 3, 5, 6)\{α5 − α6 = 0}
where WP denotes the weighted projective space with the indicated weights. The

isomorphism class of X̃α as an H⊕E8⊕E7-polarized K3 surface is recorded exactly
by M ([CD]), where here H = ( 0 1

1 0 ). The period map gives an isomorphism

M
∼−→ Γ\H2

whose inverse is given by explicit modular forms: in fact,

αj ∈M2j(H2,Γ) for j = 2, 3, 5, 6

where two of the αj are Eisenstein series and two are cusp forms. These generate
an index-two subring of ⊕

l=0
Ml(H2,Γ). The details are in [CD].

For the next example we take g = 3 and F = Q(
√
−3), and assume M ∈ Sp6(Z)

satisfies M2 + M + 1 = 0 and Sp6(Z)M = U((2, 1),OF). The fixed point set of M
acting on H3 is a two-ball B, and we define Picard modular forms with respect to
Γ′ ⊂ U((2, 1),OF) as follows: Writing γ = [γij ]

2
i,j=0 ∈ Γ′ and representing points of

B by z = (z1, z2), we set

(IV.C.11)

{
jγ(z1, z2) := γ00 + γ01z1 + γ02z2

γ(z1, z2) :=
(
γ10+γ11z1+γ12z2

jγ(z1,z2) , γ20+γ21z1+γ22z2
jγ(z1,z2)

)
.

For g(z) ∈ O(B) we have G ∈Ml′(B,Γ′) if

(IV.C.12) G(γ(z)) = (jγ(z1, z2))l
′
G(z)

for all γ ∈ Γ′. The natural restriction map F → F |B gives

Ml(H3,Γ)→M2l(B,ΓM ) .

Taking Γ′ = U((2, 1),OF) and SΓ′ = SU((2, 1),OF) we consider the family of
quartic curves Cβ given by

{Y 3Z = X4 + β2X
2Z2 + β3XZ

3 + β4Z
4} ⊂ P2 .

Write the RHS of this equation as
∏4
i=1(X − tiZ) with

∑
i ti = 0 and take

P2
t ⊂ P3 to be defined by

∑
i

ti = 0

∪
∆ :=

⋃
i<j

{ti = tj}

∪
δ :=

⋃
i<j<k

{ti = tj = tk} .
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The above family of curves lives naturally over

M′ := (P2
t \∆)/S4

where S4 is the permutation group of the ti. The period map extends to an iso-
morphism

(P2
t \∆)/S4

∼−→ Γ′\B
and composing its inverse with the quotient SΓ′\B� Γ′\B exhibits

βj ∈M3j(B, SΓ′), j = 2, 3, 4 .

The monograph [Ho] is the standard reference.

Remark. One reason for putting in the discussion is this: As mentioned in
the introduction, historically higher degree automorphic cohomology in the non-
classical case was a somewhat mysterious object; one had not actually explicitly
“seen” such a class. Via the [EGW] formalism this is now possible. For example,
if we let G = βj ∈ M3j(B, SΓ′) and pick µ′ so that L′µ′ = (ω′B)⊗j then the SΓ′-

invariant pluricanonical form G(z)(dz1 ∧ dz2)⊗j lifts to define

σG ∈ H0
DR

{
Γ
(
SΓ′\W,Ω•π′ ⊗ (π′)−1L′µ′

)}
with Penrose transform

σGω
3
1 ∈ H1

{
Γ
(
SΓ′\W,Ω•π ⊗ π−1Lµ

)} ∼= H1
(
SΓ′\D,Lµ

)
.

IV.D. Special values of cuspidal automorphic cohomology classes

Given a class α ∈ Hq
o (X,Lµ), its pullback8 α̃ to D has a canonical representa-

tive in the guise of a relative differential form on W. In order to study the “special
values” of these representatives in parallel with (IV.C.7), we need a notion of special
points for W. To this end, recall from section III.D the general notion of correspon-
dence spaces W ⊂ W̌ with compatible holomorphic projections πw : W� Dw and
π̌w : W̌� Ďw, where the π̌w are clearly defined over a number field.

(IV.D.1) Definition. A point Φ ∈ W is CM if all ϕw := πw(Φ) ∈ Dw are CM
Hodge structures.

This notion does not depend on the choices of Hodge numbers one makes for
the {Dw}w∈W . It also forces Φ ∈W ∩ W̌(Q).

If D is nonclassical and D′ fibres holomorphically over an Hermitian symmetric
domain H (both in {Dw}w∈W ), then one has a diagram

W

π

~~}}}}}}}}
π′

  BBBBBBBB

πH

���
�
�
�
�
�
�

D D′

~~||||||||

H

(IV.D.2)

which is what we shall mainly work with. Note that πH of a CM point is also CM.

8Recall that in the cases of interest in this work, the pullback map Hq
o (X,Lµ) → Hq(D,Lµ) is

injective.
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Now let X = Γ\D be one of our two examples, with G = SU(2, 1), respectively
Sp(4). Assume k ≥ 4. We shall write throughout this section

µ′k :=

{
ke∗3, 1st example

−k(e∗1 + e∗2), 2nd example

and µk := µ′k−ρ+ρ′, for the weights corresponding to Picard resp. Siegel modular
forms and their Penrose transforms. Let Fk →W denote the vector bundles Ω1

π ⊗
π−1Lµk ; at any CM point, or even any point in W ∩ W̌(Q), it has a natural HT-
arithmetic structure. In this section we shall prove the

(IV.D.3) Theorem.

(i) The cuspidal automorphic cohomology H1
o (X,Lµk) has a natural arith-

metic structure; cf. (IV.D.5) below.
(ii) Let Φ ∈ W be CM, with image ϕH := πH(Φ) in H, and let α ∈

H1
o (X,Lµ) be an arithmetic class. Then9

(IV.D.4) ∆̃−kπH(Φ)α̃(Φ) ∈ (Fk |Φ)Q .

(iii) CM points are dense in W.

This result (ii) is an analogue of (IV.C.7)(b), again providing a link between
HT- and AG- notions of arithmeticity.

Classically there are at least four ways of describing arithmeticity of automor-
phic forms:

(A) in terms of the canonical model, as was done above;
(B) by the values of automorphic forms at CM points, as in Theorem (IV.C.7);
(C) in terms of the coefficients of Fourier expansions around rational bound-

ary components;
(D) using a basis consisting of normalized Hecke eigenfunctions.10

For automorphic cohomology, (A)–(C) are available11 in modified form: (A) via
the Penrose transform; (B) in the sense described above; and (C) with Fourier
coefficients as defined in [C3]. In fact, (C) turns out to be quite interesting as
it gets into the arithmetic structure of extensions, or partial compactifications, of
Mumford-Tate domains (cf. [KU] and the recent work [KP]). It is planned for this
to be the subject of a future work, one in which, for example, we hope to discuss
the arithmeticity of cuspidal automorphic representations of the exceptional group
G2. As for (D), Hecke operators (and hence eigenfunctions) are available directly,
leaving the issue of normalization. The latter may in fact be accessible directly
(without the aid of Penrose transforms) when the boundary component quotient
admits a canonical model.

The proof of theorem (IV.D.1) will be given in several steps.

9The precise meaning of (IV.D.4) will be defined in proof.
10Assuming a multiplicity one result for the Hecke eigenvalues, normalizing the leading Fourier

coefficients to 1 forces the remaining ones into Q. Hence, Q-linear combinations will also have this
property.
11At least, for (A) and (C), in special cases such as those considered here.
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Step one: The definition of the arithmetic structure is given by the image

(IV.D.5) PΓ

(
H0
o (X ′, L′µ′)k

)
⊂ H1

o (X,Lµ)

of the Penrose transform in (IV.B.11). This definition is, at least in principal,
available whenever G is of Hermitian type: in this case, the quotient of the cor-
responding Hermitian symmetric domain by an arithmetic group has a canonical
model defined over a number field.

Step two: The Penrose transform (IV.D.5) is induced from the diagram

H0
(
Γ(W,Ω•π′ ⊗ π

′−1L′µ′)
) ω // H1

(
Γ(W,Ω•π ⊗ π−1Lµ)

)
∼ = ∼ =

H0(D′, L1
µ′)

P // H1(D,Lµ) ,

(IV.D.6)

where ω ∈ Γ(W̌,Ω1
π ⊗ π̌−1Lρ′−ρ), and we are making use of the Q-isomorphism

π̌−1Lρ′−ρ ∼= π̌−1Lµk ⊗
(
π̌
′−1L′µ′k

)∨
of line bundles over the quasi-projective Q-variety W̌. Locally at any point Φ ∈ W̌,
ω descends from a matrix entry of g−1dg, where the matrix is computed with respect
to the frame recorded projectively by Φ. Consequently, ω is Q-rational at Q-points
(and is thus itself defined over Q).

Step three: Given an (AG-) arithmetic class ψ as in (IV.C.7) with pullbacks

Ψ ∈ H0(X ′, L′µ′k
) and Ψ̃ ∈ H0(D′, L′µ′k

), we wish to show that α := PΓ(ψ) satisfies

(IV.D.4). By (IV.D.6), α̃ has the canonical representative

π
′∗(Ψ̃) · ω ∈ Γ(W,Fk);

and (IV.D.4) now clearly follows from step 2 and Theorem (IV.C.7)(b), since the

CM point Φ is Q-rational and (π
′∗Ψ̃)(Φ) = ψ̃(πH(Φ)). Having thus disposed of

(IV.D.3)(i) and (ii), we take up (iii) in the next section.

Remark: The arithmetic structure on H1
o (X,Lµ) is “classical” in the sense that

it is derived from the arithmetic structure on the space of Picard or Siegel automor-
phic forms. From the point of view of the representation of GR on L2(Γ\GR), or
rather the adelic version of this ([C1]), since µ+ ρ is regular and satisfies property
P the only irreducible unitary GR-modules that make a nonzero contribution to
H1
o are discrete series, and these representations all occur elsewhere as the infinite

component of automorphic representations arising from the coherent cohomology
of Shimura varieties.

For Γ co-compact, much deeper is the sought for arithmetic structure onH2(Γ\D,L−ρ)
given by the results in [C1] and [C2]. To explain these, we recall that to a weight
µ and Weyl chamber C such that µ+ρ is on a wall of C (and is therefore singular),
there is associated a unitary GR-module V(µ+ρ,C) called a limit of discrete series (cf.
[K2]). The limit of discrete series is totally degenerate if µ+ ρ = 0 and it is associ-
ated to a Weyl chamber C for which no C-simple root is compact. It is known that
such a representation cannot occur as the infinite component of an automorphic
representation arising from the coherent cohomology of Shimura varieties.

For the case of SU(2, 1), µ = −ρ and C the dominant Weyl chamber, Carayol
shows that
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• V(µ+ρ,C) occurs as the infinite component of the adelic version of an

automorphic representation of GR corresponding to H2(X,L−ρ);
• in the cup product mapping given below to the vector space H2(X,L−ρ),

the two factors have an arithmetic structure, and therefore if the kernel
has one then so does the image;

• If one takes the limit over Γ’s then the image of the cup product spans.

We will give an exposition, in the setting of this work, of Carayol’s argument
in section IV.F below.

Appendix to section IV.D: An alternate method for evaluating
cohomology classes and a question

In several respects the “preferred” Weyl chamber for D is the anti-dominant
one.12 Among the reasons for this are

(i) This is the Weyl chamber where the L2-cohomology H1
(2)(D,Lµ) and or-

dinary cohomology H1(D,Lµ) best “line up;” more precisely, in a natural
way H1(D,Lµ) is the Harish-Chandra module associated to the discrete
series representation H1

(2)(D,Lµ);

(ii) Relatedly, the K-type of the Harish-Chandra module is given by “ex-
panding” H1(D,Lµ) about a maximal compact subvariety Z, via the
sequence of maps

H1(D, IZ ⊗ Lµ) // H1(D,Lµ) // H1(Z,Lµ) // 0

H1(D, I2
Z ⊗ Lµ) // H1(D, IZ ⊗ Lµ) // H1(Z,Lµ ⊗ Ň) // 0

H1(D, I3
Z ⊗ Lµ) // H1(D, I2

Z ⊗ Lµ) // H1(Z,Lµ ⊗ Sym2 Ň) // 0

...

where IZ ⊂ OD is the ideal sheaf of Z and N = NZ/D → Z is the normal
bundle of Z in D (cf. [Schm2] for the origin of this method). This
method will be used in the appendix to section IV.F to give a geometric
derivation of the K-type of the totally degenerate limit of discrete series
that was used in the proof of the main result in [C1].

12Suitably interpreted the following remarks are valid for a general D = GR/T . We shall illustrate
the main point in the case GR = SU(2, 1) of the first example.
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(iii) We recall the picture of the Weyl chambers for D with the numbers giving
the degree in which Hq

(2)(D,Lµ) 6= 0 for µ + ρ non-singular, the shaded

one being the anti-dominant one:

�
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@
@
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2 1

2

12

C

C∗

For Γ co-compact, using the Penrose transform we may define an arithmetic struc-
ture on the group H1(X,Lµ) when µ + ρ ∈ C, and by Kodaira-Serre duality an
arithmetic structure on H2(X,Lµ∗) when µ∗ + ρ ∈ C∗.

Remark that for the Weyl chamber C such that for µ + ρ ∈ C the group
H1(D,Lµ) contains the image of the Penrose transform, and since (µ, α) > 0 for α
the positive compact root, the group H1(Z,Lµ) is zero. Thus the expansion about
Z method does not work for C. We will explain below a method for evaluating
classes in H1(D,Lµ) at points of the correspondence space W when µ + ρ is anti-
dominant.

The question remains of how to define an arithmetic structure on Hq(X,Lµ)
for the remaining Weyl chambers, in particular when µ+ ρ is anti-dominant.

Evaluation of classes in H1(X,Lµ) when µ + ρ is anti-dominant. For this we
recall the cycle space U whose points are u = (P,L) in the figure

P

•

p•

ll

L

and when u = (P,Z) corresponds to the maximal compact subvariety Zu = Z(P,L) =
{(p, l) ∈ D} in the above figure. For each Zu ∼= P1 we have its cycle space Xu as in
the basic example in section III.C. We set

X =
⋃
u∈U

Xu .

We also recall our notation for the incidence correspondence

I

πu

��������

��1
11111 = {(ϕ, u) : ϕ ∈ Zu}

D U .
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Proposition. There is a commutative diagram of holomorphic mappings where
F is biholomorphic:

W

π ��

F // X
π̃��

⊃ Xu
π̃u��

D I
πD
oo 3 (ϕ, u) .

Proof. We have our usual picture

@
@
@
@
@
@
@
@

�
�

�
�
�

�
�
�

L

p̃

ps

s
l̃

l

s
P


ϕ = (p, l) ∈ D
u = (P,L)

Xu = {(p, p̃)} ∈ Zu × Zu\{diagonal}

and if we define
F (p, P, p̃) = (u = (P,L = pp̃); p, p̃) ∈ X

π̃(u = (P,L); p, p̃) = (ϕ = (p, Pp = l), u = (P,L))

πD(ϕ, u) = ϕ

then it is straightforward to check commutativity and that F is biholomorphic. �

From the diagram and the observation that the EGW theorem applies to both
π and to π̃u, fixing u = u0 ∈ U and setting

Z = Zu0
,XZ = Xu0

, πZ = π̃u0

we have a commutative diagram

H1
DR

(
Γ(W,Ω•π ⊗ π−1Lµ)

)
// H1

DR

(
Γ(XZ ,Ω

•
πZ ⊗ π

−1
Z (Lµ)

)

∼ = ∼ =

H1(D,Lµ) // H1(Z,Lµ)

that reflects the restriction map given by the bottom arrow interpreted via the
EGW method in the top arrow. We have seen in section III.C that each class in
H1

DR

(
Γ(XZ ,Ω

•
πZ ⊗π−1Fµ)

)
has a canonical harmonic representative, and it is using

this that we may evaluate a class in H1(D,Lµ) at a point w ∈W.

Arithmetic structure on H1(X,Lµ) when µ + ρ is anti-dominant. Above we
have used the Penrose transform to give a map

H0(X ′, L′µ′)
P−→ H1(X,Lµ)

when µ′ + ρ′ = µ + ρ ∈ C, and this led to an arithmetic structure on H1(X,Lµ).
The question arises if a similar method may be used in other Weyl chambers, e.g.
the anti-dominant one. The answer is yes, and to explain it we note that

There are many Penrose transforms.
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This is not surprising, because different cohomology groups Hq(D,Lµ) for D, and

even Hq(D,Lµ) and Hq′(D′, L′µ′) for different D and D′, may represent the same
GR-module. Rather than list the possibilities we shall illustrate them with the

Proposition. Using the [EGW] formalism we have

H1
DR

(
Γ(W,Ω•π ⊗ π−1Lµ)

) ω3
1 // H2

DR

(
Γ(W,Ω•π′ ⊗ π

′−1L1
µ′)
)

∼ = ∼ =

H1(D,Lµ)
P′ // H2(D′, L′µ′)

where µ+ ρ = µ′ + ρ′.

Remark that when µ + ρ is anti-dominant for D, with a suitable topology
H1(D,Lµ) is the Harish-Chandra module associated to the discrete series Vµ+ρ.
Also, for µ′ + ρ′ in the same Weyl chamber but with the complex structure D′,
q(µ′ + ρ′) = 2 so that H2

(2)(D
′, L′µ′) 6= 0 and has the same Harish-Chandra module

as H1
(2)(D,Lµ).

Proof. The proposition will follow by showing that multiplication by ω3
1 in-

duces a morphism of complexes

(Ω•π ⊗ π−1Lµ, dπ)
ω3

1−−→ (Ω•+1
π′ ⊗ π

′−1L′µ′ , dπ′) .

By lifting up to GC and using the Maurer-Cartan forms that are semi-basic for
GC →W, we have {

Ω1
π = Ω1

W/{ω2
1 , ω

3
1 , ω

2
3}

Ω1
π′ = Ω1

W/{ω1
3 , ω

2
3 , ω

2
1}

where the brackets denote the span over OW. It follows that there is an induced
map

Ω•π
ω3

1−−→ Ω•+1
π′ ⊗ π

′−1F(2,−1) .

From the Maurer-Cartan equation

dω3
1 ≡ ω2

1 ∧ ω3
2 mod{ω1

1 , ω
2
2 , ω

3
3}

we have {
dω3

1 ≡π 0

dω3
1 ≡π′ 0

which implies that ω3
1 induces a map of complexes. �

Passing to the quotient by Γ there is an induced map

H1(X,Lµ)
P′−→ H2(X ′, L′µ′) .

Because of the representation-theoretic interpretations, it is feasible that P′ is an
isomorphism. If so, then we may use P′ to define an arithmetic structure on
H1(X,Lµ) from that on the classical object H2(X ′, L′µ′). Above we have shown

how to evaluate classes α ∈ H1(X,Lµ) at points of Γ\W. This raises the



IV.E. CM POINTS ON CORRESPONDENCE SPACES 117

Question: If (ϕ1, ϕ2) ∈ W is a compatible pair of CM points, then is there a
number ∆ ∈ C∗ such that for α ∈ H1(X,Lµ) the value ∆α(ϕ1, ϕ2) is arithmetic? 13

To explain why this question is feasible, we note there is also a well-defined
map of complexes

Ω•π′ ⊗ L′µ′
ω1

2−−→ Ω•+1
π′ ⊗ L′λ′

inducing a map

Hq(X ′, L′µ′)
ω1

2−−→ Hq+1(X ′, L′λ′) .

Now ω1
2 is an arithmetic section of Ω1

π′ relative to the HT-arithmetic structure.
Since the HT and AG-arithmetic structures are proportional at CM points, it is
plausible, but we don’t have a proof, that ω1

2 induces a map of the AG-arithmetic
structures on the cohomology groups.

IV.E. CM points on correspondence spaces

In this section we complete the proof of (IV.D.3) by proving existence and
density of such points in the two running examples. For the first of these, we have

W ⊂ D ×D
visualized by the picture PV+(∼= P2)

B
p

l

p̃ l̃ ,

with maps to the 6 Dw’s14 given by

(p, l), (p̃, l̃), (P, l), (P, l̃), (p, L), (p̃, L)

where L := pp̃ and P := l ∩ l̃.
In the second example,

W ⊂ D ×D−
where D− is the “conjugate” domain, with points corresponding to configurations15

in PV (∼= P3)

B
B
B
B
B
B
BB

E
(1, 1)

0p1

s
�
�
�
�
�
�
��

E−

p4 0

(1, 1)

s

13We do not expect that ∆ is independent of the choice of (ϕ1, ϕ2).
14These come in 3 isomorphism classes, but that is not needed here.
15We need NOT have p1 and p4 (or E and E−) conjugate.
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with H(p1) < 0 < H(p4) and E,E− and Lagrangian with the restriction of H
having signature (1, 1). Writing p2 = p⊥1 ∩E−, p3 := p⊥4 ∩E, E′ := p3p4, E′′ := p1p2,
the maps to the {Dw} are given by the 8 evident “point ∈ line” pairs.

In either case, we can recast CM points on W as pairs (ϕ1, ϕ2) (in D × D,
respectively D × D−) of CM Hodge structures16 satisfying a compatibility condi-
tion. A priori this condition is unchanged from (IV.D.1), but at least in the first

example there is a substantial simplification: in addition to (p, l) and (p̃, l̃) being
CM points of D, it is enough to assume that P and L⊥ (see below) are points of
B. Before proceeding to the comparatively simple proofs of density, we shall look
in depth at some consequences of this observation — specifically, an approach to
the classification of compatible CM pairs (in the first example) via their behavior
under Galois conjugation.

We begin by recalling the description of the polarized Hodge structures in-
volved. We are given the data (V,Q,F) where:

• V is a 6-dimensional Q-vector space;
• Q : V ⊗ V → Q is a non-degenerate alternating form;
• F = Q(

√
−d) acts faithfully on V ;

• if VF = V+ ⊕ V− is the eigenspace decomposition for the F-action, then
V± are Q-isotropic; and

• the Hermitian form

〈v, w〉 :=
√
−dQ(v, w)

has signature (2, 1).

The reason for the
√
−d is so that, writing v =

∑
viξi and w =

∑
wjξj for arbitrary

vectors in V+,C, the matrix kij = kji defined by 〈v, w〉 =:
∑
kijviwj has entries in F.

Now set GQ = Gal(C/Q), GF = Gal(C/F) and let ρ = complex conjugation. Then
any element of GQ is the product of ρ with a σ ∈ GF, and any σ ∈ GF preserves V±.
The behavior of 〈 , 〉 under Galois conjugation is thus described by{

σ 〈v, w〉 = 〈σv, ψρ(σ)w〉 , σ ∈ GF

ρ 〈v, w〉 = 〈w, v〉
where ψρ(σ) = ρσρ.

Let now L be a CM field containing F and with normal closure Lc, which is also
a CM field. One characterization of CM fields ([GGK1], section V.A) says that
the restriction of ρ to Lc belongs to the center of Gal(Lc/Q). Since any element of
GQ or GF acts on v ∈ V+,L through Gal(Lc/Q), we have

(IV.E.1) σv = σ(ρ(v)) = ρ(σ(v)) = σv .

We shall be working with {
P2 = PV+,C

P̌2 = PV̌+,C

and we shall use the notational correspondence

p ∈ PV+,C = [v] where 0 6= v ∈ V+,C .

16That is, their Mumford-Tate groups are Q-rational tori. For our purposes here, however, we
need the more explicit characterization of polarizable CM Hodge structures from [GGK1, §V.B].
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Then from section I.B we have the following descriptions of the Mumford-Tate
domains B and D

B = {[v] ∈ PV+,C : 〈v, v〉 < 0}

=


Mumford-Tate domain for weight one polarized

Hodge structures for (V,Q) which have an

F-action and where dim(V+,C ∩ V 1,0) = 1


D = {([v], [w]) ∈ P2 × P2 : 〈v, v〉 and 〈w,w〉 > 0, 〈v, w〉 = 0}

= {(p, l) ∈ P2 × P̌2 : p ∈ l, p ∈ Bc, l ∩ B 6= φ}

=


Mumford-Tate domain for weight three polarized Hodge

structures for (V,Q) which have an F-action

and where h3,0 = 1, h2,1 = 2 and dimV+,C ∩ V 3,0 = 1


.

The correspondence between the first two equalities for D is

[w] = l⊥

where ⊥ is the bijection P2
∼=←→ P̌2 induced by 〈 , 〉. We also recall the Hodge-

theoretic meaning of the map πB : W → B: Writing ϕB := πB(ϕ1, ϕ2), it is given
by F 1

ϕB
V+,C := F 2

ϕ1
V+,C ∩ F 2

ϕ2
V+,C.

From [GGK1] we recall the notion of a Hodge-Galois basis ω consisting of
vectors ωi ∈ VC which are of pure Hodge type, are defined over Lc, and have

σωi = ωσ(i) (up to constants)

for some permutation of the indices. A polarized Hodge structure is CM if and only
if it has a Hodge-Galois basis over a CM field which satisfies Q(ωi, ωj) = 0⇔ i 6= j.
In the present setting, this means that for ωi ∈ V+,C and σ ∈ GF, ωi and σωi are
either equal or orthogonal under 〈 , 〉. Together with the above characterization
of CM fields, this leads to:

(IV.E.2) p ∈ B is a CM point if, and only if, for all σ ∈ GF{
(a) σp = σp, and

(b) σp = p or σp ⊥ p;

(IV.E.3) (p, l) ∈ D is a CM point if, and only if, for all σ ∈ GF{
(a) (i) σp = σp and (ii) σl = σl, and

(b) (i) σp = p or σp ⊥ p and (ii) σl = l or σl ⊥ l .

This last statement means that σl⊥ ⊥ l⊥ where l⊥ is the unique point in P2

perpendicular under 〈 , 〉 to all points of l.
To see the “if” part of (IV.E.3) one has to show that (a) and (b) imply that

σ permutes the three points p, p⊥ ∩ l, and l⊥; that is, this set of points is closed
under σ. This is similar to the proofs below and is left to the reader.

Thus the statement that

(p, l; p̃, l̃) is a compatible CM pair,
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i.e. a CM point of W, is equivalent to

(IV.E.4)


(i) (p, l) and (p̃, l̃) belong to D

and satisfy (IV.E.3)

(ii) P belongs to B and satisfies (IV.E.2)

(iii) L⊥ belongs to B and satisfies (IV.E.2).

One can also look at this as saying that the configuration (p, l; p̃, l̃) in P2 and its dual
configuration in P̌2 both satisfy (i)–(ii). Consequently, one can obtain significant
insight into the situation by understanding the possibilities for semi-compatible CM
pairs — those configurations satisfying (IV.E.4)(i–ii) — and this is something we
can understand well:

(IV.E.5) Let (p, l; p̃, l̃) be a semi-compatible CM pair, and σ ∈ GF. Then the union

of images of the configuration l∪ l̃ ⊂ PV+,C under successive powers of σ takes one
of the following forms (up to swapping tildes):

(A) l̃

l

P

B
(i) σl = l and σ l̃ = l̃

(ii) σ l̃ = l̃ and σ l̃ = l

(B)

l̃

l

l̃
σ

P

B

σl = l and σ2

l̃ = l̃
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(C) * l̃

l

l̃
σ

lσ

P

B

σ2

l = l and σ2

l̃ = l̃

(D)

σ

l̃

l

l̃P

B

P

P
(i) σl = l and σ2

l̃ = l̃

(ii) σl = l̃ and σ2

l̃ = l .

In case (D) we also have that P, P ′, and P ′′ (hence also l, l̃, and σ l̃) are all perpen-
dicular, and that p̃ = P ′′. In subcase (ii) we have additionally that p = P ′.

Sketch of proof: Assuming (IV.E.3) for (p, l) and (p̃, l̃), it is clear that (IV.E.2)(a)

will hold for P ; it is the separate imposition of P := l ∩ l̃ ∈ B and (IV.E.2)(b) that
creates significant restrictions. The key step is to show that the situation

(IV.E.6) σl 6= l, σ l̃ 6= l̃, σP 6= P

can only lead to case (D)(ii). We shall prove this, as well as the assertions about
case (D)(i), and leave the rest to the reader.

Assuming (IV.E.7), we have P ⊥ σP , l⊥ ∈ σl, and σl⊥ ∈ l. If σP 6= l⊥ then
since P ⊥ σP, l⊥,

P ⊥ span(σP, l⊥) = σl =⇒ P = σl⊥ .

Conversely, if P 6= σl⊥, one finds σP = l⊥. Now since P , σP , σ2

P etc. are all

mutually perpendicular, we must have either σ
2

P = P or σ
3

P = P .

Case σ2

P = P : Since σP = l⊥ =⇒ P = σ2

P = σl⊥ and P = σl⊥ =⇒ σP =
σ−1

P = l⊥, both σP = l⊥ and P = σl⊥ hold. The arguments thus far apply equally
to l̃, and so

l̃⊥ = σP = l⊥ =⇒ l̃ = l ,

a contradiction.

Case σ3

P = P : Clearly then σ3

l = l, otherwise σ2

l = l and so P = l ∩ σl =
σP (contradiction); likewise for l̃. The only possibilities which do not lead to a

contradiction (namely, l = l̃) are then

σP = l⊥ and P = σ l̃⊥

and the same thing with tildes swapped. This gives l = σ2

l̃ hence σl = l̃, which is
case (D)(ii).
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To deal with case (D)(i), we first check the perpendicularity (i.e. P = σ l̃⊥,

P ′ = l⊥, and σP = l̃⊥). Since σ l̃ 6= l̃ and σP = P ′ 6= P , we have

σ l̃⊥ ⊥ l̃⊥ =⇒
{
l̃⊥ ∈ σ l̃
σ l̃⊥ ∈ l̃ =⇒ σ l̃⊥ ∈ σ2

l̃

while

P ⊥ σP and σl = l =⇒ σP ⊥ σ2

P (and both in l)

=⇒ σ2

P = P =⇒ P ∈ σ2

l̃ .

Suppose σ2

l̃ 6= l̃. Then σ l̃⊥, P ∈ σ2

l̃ ∩ l̃ =⇒ σ l̃⊥ = P =⇒ σP = σ−1

P = l̃⊥.

It follows that σ l̃ = P⊥ and σ2

l̃ = σP⊥ = l̃, a contradiction.

So we must have σ
2

l̃ = l̃, and σP ′ = σ(σ l̃∩ l̃) = σ2

l̃∩σ l̃ = l̃∩σ l̃ = P ′. If P 6= σ l̃⊥,

then P can be perpendicular to only one point of σ l̃, and since it is perpendicular
to σP and l̃⊥, we have σP = l̃⊥ =⇒ P = σ l̃⊥, a contradiction.

So (again) we must have P = σ l̃⊥, and thus σP = l̃⊥. But then P ′ = l̃ ∩ σ l̃ is
perpendicular to both P and σP , hence to l, so that P ′ = l⊥.

Finally we check that p̃ = P ′; otherwise, σp̃ 6= p̃, and so σp̃ ⊥ p̃. Now, p̃ 6∈ B
while P ∈ B =⇒ p̃ 6= P . Since P ′ ∈ span{p̃, P} and P ′ ∈ span{σp̃, σP}, where
p̃, P are both perpendicular to σp̃, σP , we get P ′ ⊥ P ′, a contradiction. �

We turn to existence and density, starting with the first example. In the choice
of basis above, we may assume that (say) 〈ξ2, ξ2〉 < 0. The standard orthogonal-
ization procedure then shows that we may choose ξ1, ξ3 so that kij = 0 ⇔ i 6= j,
while keeping the basis over F. If we define (ϕ1, ϕ2) by{

p = [ξ1]

l = [〈ξ1, ξ2〉]
and

{
p̃ = [ξ3]

l̃ = [〈ξ2, ξ3〉] ,
then P = [ξ2] ∈ B and pp̃ ∩ B = ∅ as desired, while ϕ1 and ϕ2 each split into 3
rank-two sub-Hodge structures with CM by F. Clearly (IV.E.4) is satisfied trivially,
and we are in case (A) of (IV.E.5) for every σ ∈ GF.

Now D is a homogeneous space for the real points G(R) of the Q-algebraic
group G, and G(Q) ⊂ G(R) is dense. The G(Q) translates of either ϕ1 or ϕ2 in D
are therefore analytically dense, and the same may be said for

W ∩ {(G(Q)×G(Q)) · (ϕ1, ϕ2)}
in W. Since this set consists of pairs trivially satisfying (IV.E.3)–(IV.E.4), we are
done.

For the second example, one easily sees that any point (p1, E; p4, E−) ∈ W ⊂
D ×D− defined over an imaginary quadratic field17 F, is CM. These are dense by
the same argument as above, finishing the proof of (IV.D.3)(iii).

(IV.E.7) Remark. Another way of constructing CM points on W (say, in the
second example), would be to identify V with a degree 4 CM field L, and take the
projective frame (for p1, p2, p3, p4) corresponding to the four eigenvectors for the
multiplicative action. But just as general Lagrange frames (those (p1, p2, p3, p4)
giving points of W) need not be projectivized Hodge bases, this will give only a
small slice of the CM points of W. Moreover, it is only clear that “diagonal” G(Q)

17equivalently, p1, p2, p3, and p4 ∈ P3(F).
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— translates of such CM points (remaining in W) would remain CM — not enough
to establish density.

IV.F. On a result of Carayol

In this concluding section we shall given an expository account of the main
theorem of [C1], in which the notion of totally degenerate limits of discrete series
(TDLDS) plays a crucial role. To state a form of this result, fix

G = a Q-anisotropic form of SU(2, 1)
Γ ⊆ G(Z) a congruence subgroup

so that Γ\GR and X(Γ) = Γ\D = Γ\GR/T are compact.18 For each congruence
subgroup Γ0 ⊆ Γ we denote by p0 the covering map X(Γ0) � X(Γ). Picard
modular forms Mk(B,Γ) are defined as in (IV.C.10); their Penrose transforms and
those of their conjugates correspond to the weights

µ
(1)
k := k

3 (α1 + 2α2)− α1 − α2

µ
(1)
k := −k

3 (α1 + 2α2) + α2 ;

cf. section IV.B.
Now consider the composition

Mk(B,Γ)⊗Mk(B,Γ)

P′Γ⊗P
′′
Γ=:P

(k)
Γ

��
H1(X(Γ), L

µ
(1)
k

)⊗H1(X(Γ), L
µ

(1)
k

)

Θ̃
(k)
Γ

��

Θ
(k)
Γ

H2(X(Γ), L−ρ) ��

where Θ̃
(k)
Γ is the cup product and the Penrose transforms P

(k)
Γ are known to be

surjective for k ≥ 4.

(IV.F.1) Theorem ([C1]): For k ≥ 5, we have the “virtual surjectivity”

H2(X(Γ), L−ρ) = lim−→
Γ0⊆Γ

(p0)∗

{
Im
(

Θ̃
(k)
Γ0

)}
(IV.F.2)

= lim−→
Γ0⊆Γ

(p0)∗

{
Im
(

Θ
(k)
Γ0

)}
.

An immediate corollary of this result is that

(IV.F.3) H2(Γ\D,L−ρ) inherits a dense Q-submodule19

H2(Γ\D,L−ρ)Q ⊂ H2(Γ\D,L−ρ)
from the Q-arithmetic structures on the spaces of modular forms. This is of par-
ticular interest considering that this group corresponds to a TDLDS. Of course,

18D,D′, and D′′ will be as above.
19not necessarily a Q-arithmetic structure, because we do not know that the ker(Θ

(k)
Γ ) are defined

over Q.
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the assumption that ker Θ
(k)
Γ is defined over Q means that the result is just a sug-

gestion of where the hoped for Q-structure on the up until now very elusive group
H2(Γ\D,L−ρ) might come from. In our view, the depth of Carayol’s argument
suggest that there is more here than has been established thus far.

The proof, which occupies the remainder of this section, will consist of several
steps, during which we will briefly elaborate on limits of discrete series for SU(2, 1).
There is further discussion of this in the appendix to this section. Obviously we
have only to prove the first line of (IV.F.2). Before commencing, we have the
following

(IV.F.4) Remark. (i) While not necessary for the statement, for the last step of
the proof, the adelic point of view will be required. Given a compact open subgroup
Kf ≤ G(Af ), we set

XKf := G(Q)\(G(R)×G(Af ))/(TR ×Kf ) ∼=
∐

g∈C(Kf )

X(Γg)

with components indexed by the finite set

C(Kf ) := G(Q)\G(Af )/Kf

and where for given g ∈ G(Af ) the

Γg := gKfg
−1 ∩G(Q)

are always congruence subgroups. (We shall also write Γ := Kf∩G(Q).) Associated
to any20 α ∈ G(Af ) is an analytic Hecke correspondence in XKf ×XKf ; cf. [Ke2].

(ii) The spaces of automorphic forms A(G,Γ) ⊂ C∞(Γ\G(R)) are the Z(g)-
finite and right K(R)(= U(2))-finite vectors. The Hecke correspondences lift to the
self-product of

G(Q)\
(
G(R)×G(Af )

)
/Kf

∼=
∐

g∈C(Kf )

Γg\G(R) ,

and so operate on the spaces of functions

AGKF := ×
g∈C(KF )

A(G,Γg) .

Step 1: Classifying the unitary irreducible representations of G with integral
infinitesimal character. These are

(a) discrete series and limits thereof:


(i) holomorphic

(ii) antiholomorphic

(iii) nonholomorphic;

(b) characters (which have no cohomology in degrees 1 and 2);
(c) certain non-tempered representations (which do not occur in A(G,Γ)

under the anisotropy assumption).

We shall need no further information about (b) or (c). Representations (a) are in
one-to-one correspondence with the set{

(λ,C) | C (open) Weyl chamber, λ ∈ X∗(T ) ∩C,

λ is not orthogonal to any C-simple compact root

}

20more precisely, to the decomposition KfαKf =
∐
qKfai
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modulo the action of the Weyl group WK . Referring to the picture

C ′′

C ′

C

they therefore break into the classes V(λ,C) with

(i) [holo] C = C ′, λ ∈ C ′ but not on the vertical line;
(ii) [anti] C = C ′′, λ ∈ C ′′ but not on the vertical line;

(iii) [non] C = C, λ ∈ C.

A given V(λ,C) with λ regular is the unique discrete series representation with
Harish-Chandra parameter λ. If λ is instead on a wall, V(λ,C) is a limit of discrete
series representation, the special case V(0,C) being the TDLDS. Abstractly, this
can be constructed from discrete series by choosing ν ∈ X∗(T ) such that λ + ν
belongs to C, taking U−ν the finite-dimensional irreducible representation of G
with lowest weight −ν, then taking (roughly) the sub-irreducible representation of
V(λ+ν,C) ⊗ U−ν with infinitesimal character χλ; cf. [K2, pp. 460ff.].

Step 2: Explicit description of discrete series and their limits. Carayol [C1]
completely describes the decomposition of the Harish-Chandra module V(λ,C) into

K-types, as well as the action of the generators {X−α1
, Xα2

, X−(α1+α2)} of n.21 We
restrict ourselves to the decomposition into (k, T )-modules. Let Sn(m) be the lift
of the nth standard representation from (su(2), T ) to (u(2), T ) for which the T =

{
( γ1 0

0 γ2

)
| γ1, γ2 ∈ S1}-type ranges from (det)−3k/2 ⊗ (γ2/γ1)−n/2 to (det)−3k/2 ⊗

(γ2/γ1)n/2; and let CΛ be the “trivial” lift22 of Λ ∈ X∗(T ). Then for the three
choices of C we have isomorphisms of (u(2), T )-modules

(i) V(λ,C′)
∼= ⊕
n≥0

Sn(−n)⊗ CΛ, Λ = λ− α2;

(ii) V(λ,C′′)
∼= ⊕
n≥0

Sn(n)⊗ CΛ, Λ = λ+ α1 + α2;

(iii) V(λ,C)
∼= ⊕
p,q≥0

Sp+q(q − p)⊗ CΛ, Λ = λ;

21Carayol’s description is based on [JW] in which a space of functions on the 3-sphere giving the

corresponding GR-module are explicitly written out. In the appendix to this section we shall give

a more conceptual and geometric method for obtaining the K-type.
22that is, Xα1 acts trivially
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in each case the weight Λ, called the Blattner parameter, corresponds to the minimal
K-type of V . In pictures, we have23

n = 0

Λn = 0

(p� q) = (2 0)

   (0 1)
Λ

      (1 2),
,

3

2
1

,,

3

2
1

      (2 2),

      (2 1),    (1 1),

   (0 0),

   (1 0),

(i) [holo] (ii) [anti] (iii) [non]

   (0 2),
Λ

The action of n is given by

� @
@

@I

�
�

�	

X−α1

X−(α1+α2)

Xα2

Writing εk := k
3 (α1 + 2α2) (= det−k) for the weights along the vertical axis, the

special cases we shall care about are

(i) Vk := V(λ′k,C
′) where λ′k = ε−k + α2, Λ′k = ε−k;

(ii) V k := V(λ′′k ,C
′′) where λ′′k = εk − α1 − α2,Λ

′′ = εk;

(iii) V0 := V(0,C) with λ0 = 0 = Λ0.

(IV.F.5) Remark. These have analytic realizations: using the notation from
(IV.C.9), and writing

f
∣∣(p,q)
γ

(z) :=
f(γ(z))

(jγ(z))p(jγ(z))q

(
f ∈

{
C∞(B)

C∞(∂B)
and γ ∈ G(R)

)
(i) Ṽk ⊂ C∞(B) with (γ, f) 7→ f

∣∣(k,0)

γ−1 ;

(ii) Ṽ k ⊂ C∞(B) with (γ, f) 7→ f
∣∣(0,k)

γ−1 ;

(iii) Ṽ0 ⊂ C∞(∂B) with (γ, f) 7→ f
∣∣(1,1)

γ−1 .

Step 3: Compute the automorphic cohomology of XKf in degrees q = 1 or 2.
We have by section IV.A, Remark (IV.F.4) and Steps 1 and 2

Hq(XKf , Lµ) = ⊕
g∈C(Kf )

Hq(X(Γg), Lµ)

= ⊕
g
Hq(n,A(G,Γg))−µ

= Hq(n, V−(µ+ρ))
⊕{
∑
gm−(µ+ρ)(Γg)}

−µ

23These pictures will be “explained” in the appendix to this section.
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where the group Hq(n, V−(µ+ρ))−µ is always of dimension 0 or 1. For example,

writing ξp,q ∈ V0 for highest-weight vectors of Sp+q(q − p) Carayol computes (loc.
cit.)
(IV.F.6)

Hq(n, V0) is generated by

{
ξ0,0ω

−α1 − ξ0,1ωα2 − ξ1,0ω−(α1+α2), q = 1

ξ0,0ω
−(α1+α2) ∧ ωα2 , q = 2;

while one easily checks, writing vk ∈ Vk for the vector of minimal weight Λ′k, that

(IV.F.7) Hq(n, Vk) is generated by

{
vkω

−(α1+α2), q = 1

vkω
−α1 ∧ ω−(α1+α2), q = 2 .

The point is that a more precise description of the representations, which Carayol
extracts from [JW], can get us further than the Williams lemma. In general,
if w ∈ WK

∼= Z/2 is the generator which flips about the vertical axis, then for
Hq(n, Vλ)−µ to be nonzero we must have λ or w(λ) = −(µ + ρ). The three cases
we need are taken care of by the following:

(i) Hq(n, Vk)−µ 6= {0} ⇐⇒


µ = µ

(1)
k := εk − α1 − α2 and q = 1

or

µ = µ
(2)
k = εk − 2α1 − α2 and q = 2;

(ii) Hq(n, V k)−µ 6= {0} ⇐⇒


µ = µ

(1)
k := ε−k + α2 and q = 1

or

µ = µ
(2)
k := ε−k − α1 + α2 and q = 2;

(iii) Hq(n, V0)µ 6= {0} ⇐⇒
{
µ = µ0 := −ρ
and q = 1 or 2,

with pictures
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(i)

µ
(2)
k∗

µ
(1)
k∗

�
��

��
��

�
��
�
��HH

HHH
HHH

HHH
HH

∗

λ′k∗

Λ′k

(ii)

λ′′k
∗

�
��

�
��

��
��

�
��HH

HHH
HHH

HHH
HH

µ
(1)
k∗∗µ

(2)
k

Λ′′k∗

(iii)

��
�
��

�
��

�
��

��
H
HHH

HHH
HHH

HHH

∗
µ0

∗ λ0=Λ0

The first two groups, as we know, are in the image of P for k ≥ 4.

Step 4: Nonvanishing of the cup product in Lie algebra cohomology. Carayol
applies a criterion of [HL] for deciding when a given discrete series representation of
G occurs in the restriction to G of a unitary irreducible representation of a larger
reductive group with “compatible” minimal types. At issue here is the diagonal

restriction to G of the representation Ṽk � Ṽ0 of G × G. The crucial observation

is that for Ṽk integrable, which is equivalent to k ≥ 5, by (IV.B.12), the matrix

coefficients of Ṽk ⊗ Ṽ0 = (Ṽk � Ṽ0)
∣∣
G

are L2, so that the criterion applies to yield:

(IV.F.8) for k ≥ 5, Ṽk is a subrepresentation of Ṽk ⊗ Ṽ0.

He then uses the explicit description of Vk and V0 as Lie algebra representations to
deduce that Vk ⊗ V0 contains a unique 1-dimensional subspace killed by Xα2

and

on which K acts via detk. Consequently, Ṽk is of multiplicity one in Ṽk ⊗ Ṽ0, and
the corresponding projection restricted to Harish-Chandra modules

π(k) : V0 ⊗ Vk � Vk

induces an isomorphism between tensors of minimal K-types, sending

ξ0,0 ⊗ vk 7→ cvk for some c 6= 0 .

Together with the cup product, π(k) induces a map

(IV.F.9) π
(k)
∗ : H1(n, V0)−µ(1)

k

⊗H1(n, Vk)ρ → H2(n, Vk)−µ(2)
k

.

Wedging together generators of the LHS factors (cf. (IV.F.6)–(IV.F.7)) gives

(ξ0,0ω
−α1 − ξ0,1ωα2 − ξ1,0ω−(α1+α2)) ∧ (vkω

−(α1+α2))

= (ξ0,0 ⊗ vk)ω−α1 ∧ ω−(α1+α2) − (ξ0,1 ⊗ vk)ωα2 ∧ ω−(α1+α2) ,
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whereupon applying π(k) evidently yields

cvkω
−α1 ∧ ω−(α1+α2)

which is the generator of the RHS. Since all three groups are 1-dimensional, (IV.F.9)
is therefore an isomorphism.

Step 5: Nonvanishing of cup products in automorphic cohomology. By Step 3,

any nonzero φ
(1)
k ∈ H1(XKf , Lµ(1)

k

) belongs to the image of the map(
j

(1)
k

)
∗

: H1(n, Vk)−µ(1)
k

↪→ H1
(
XKf , Lµ(1)

k

)
induced by some j

(1)
k ∈ Hom(g,K)(Vk,A

G
Kf

). Similarly, for φ0 ∈ H1(XKf , L−ρ)

there is some j0 ∈ Hom(g,K)(V0,A
G
Kf

). Since Vk is integrable, results of [Ha, §7]

imply that there exist a compact open K0
f ⊂ Kf , a Hecke correspondence C̃ = C⊗id

on XK0
f
×XK0

f
, and a nonzero j̃

(2)
k ∈ Hom(g,K)(Vk,A

G
K0
f
) such that

Vk ⊗ V0
� �j

(1)
k ⊗j0//

π(k)

����

AG×GKf×Kf
C̃∗◦p∗0 // AG×G

K0
f×K

0
f∣∣

∆

��
Vk
� � j̃

(2)
k // AG

K0
f

commutes. It follows easily from this that

H1(n, Vk)−µ(1)
k

⊗H1(n, V0)ρ
(C∗◦p∗0◦(j

(1)
k )∗)⊗

(p∗0◦(j0)∗)
//

∼=π(k)
∗

��

H1(XK0
f
, L

µ
(1)
k

)⊗H1(XK0
f
, L−ρ)

∪

��
H2(n, Vk)−µ(2)

k

� � (j̃
(2)
k )∗ // H2(XK0

f
, L

µ
(2)
k

)

commutes as well. So for any k ≥ 5 and any element φ0 ∈ H1(X(Γ), L−ρ) ⊂
H1(XKf , L−ρ) there exists K0

f such that

∪p∗0φ0 ∈ Hom
(
H1
(
X(Γ0), L

µ
(1)
k

)
, H2

(
X(Γ0), L

µ
(2)
k

))
is nonzero.24 Dually, this says that in the limit over Γ0,

H1
(
X(Γ0), L

µ
(1)
k

)
⊗H2

(
X(Γ0), L

µ
(2)
k

)∨
∼=

Serre
H1
(
X(Γ0), L

µ
(1)
k

)
⊗H1

(
X(Γ0), L−2ρ−µ(2)

k =µ
(1)
k

)
surjects onto

H1
(
X(Γ), L−ρ

)∨ ∼=
Serre

H2
(
X(Γ), L−ρ

)
via (p0)∗ ◦ ∪. This completes the proof of (IV.F.1). �

24Here Γ0 = K0
f ∩G(Q) after possibly conjugating K0

f ; the point is that this map is nonzero for

some component of XK0
f

over X(Γ) ⊂ XKf , and we may assume it is X(Γ0).
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There remains, however, a loose end: we do not know for which (if any) Γ one
has H1(X(Γ), L−ρ) 6= {0}, without which (IV.F.1) has no content. Since L−ρ =
F(−1,−1) on D, and F(a,b)|Z ∼= OP1(a + b) on the compact KR-orbit Z ∼= P1 ⊂ D,

we have L−ρ|Z ∼= O(−2) which implies H0(D,L−ρ) = {0}. By the same argument
as in the proof of (IV.B.6), we therefore have

H1(X(Γ), L−ρ) ∼=
(
H1(D,L−ρ)

)Γ
.

It also seems plausible, but it has not yet been verified, that for sufficiently small
Γ this has nontrivial Γ-invariants.

Appendix to section IV.F:
Geometric construction of K-types and discussion of totally degenerate

limits of discrete series

In the proof of theorem (IV.F.1) Carayol used the explicit “formula construc-
tions” [JW] of certain limits of discrete series, including the totally degenerate limit
of discrete series (TDLDS) for SU(2, 1). In this appendix we shall give a geometric
description of the K-types which, in particular, will “explain” the patterns in the
diagrams given in step 2 in the proof of Carayol’s result. We note that the general
construction of TDLDS’s via induced representations is given in [CK]. In a future
work we shall discuss how the geometric construction below may be extended to
give a (gC,K)-module and how this in turn relates to that in [CK] through the
intermediate steps of Beilinson-Bernstein localization [BB] and the duality theorem
of [HMSW].25

We shall first do the construction of the dual Harish-Chandra module to the
TDLDS V0 = (0,C). For this we shall use the Harish-Chandra module associated to
the group H1(D,L−ρ) is the Harish-Chandra module associated to V0. For µ such
that µ+ρ is anti-dominant, this is due to Schmid [Schm1]. In a conversation with
the second author he has explained that this result also holds for the TDLDS.26

We consider the GR-module H1(D,L−ρ) and shall use the method explained in
the appendix to section (IV.D) to expand this group about the maximal compact
subvariety Z ∼= P1 in D. Specifically, we consider the K-invariant filtration

F kH1(D,L−ρ) = image{H1(D, IkZ ⊗L−ρ)→ H1(D,Lρ)}

with associated graded K-module

(A.IV.F.1) ⊕
n=0

H1(Z,L−ρ ⊗ Symn Ň)

where N = NZ/D is the normal bundle of Z in D. Here K = U(2) ⊂ SU(2, 1),

Z = K/T = KC/BK

where BK = B ∩KC, and in Proposition (A.IV.F.6) below we shall determine N
as a KC-homogeneous vector bundle.

25In this regard we especially recommend the lecture notes [Schm3] as well as [Schm4] for

heuristic discussion of the duality theorem.
26We will see that these Harish-Chandra modules have the same K-type.
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For reference we recall the root diagram of SU(2, 1)

s
s s+

−α2 = e∗2 − e∗3

+ s� α1 = e∗2 − e∗1

s
+

α1 + α2 = e∗3 − e∗1sα2 = e∗3 − e∗2

where the positive roots giving the Weyl chamber corresponding to the non-classical
complex structure on D are labelled with a +. The maximal torus of SU(2, 1) is

TS =


e

2πiθ1

e2πiθ2

e2πiθ3

 : θ1 + θ2 + θ3 ≡ 0 modZ


and the maximal torus of

K =

(
A 0

0 detA−1

)
: A ∈ U(2)

is

TK =

(
e2πiθ1

e2πiθ2

)
.

The lattice of T and TK corresponds to the weight lattice spanned by{
e∗3 − e∗1 = −2e∗1 − e∗2
e∗3 − e∗2 = −2e∗2 − e∗1 .

From α1 = e∗2 − e∗1 = compact root and{
(e∗2 − e∗1,−2e∗1 − e∗2) = 1

(e∗2 − e∗1,−2e∗2 − e∗1) = −1

we infer that

(A.IV.F.2)

{
L−2e∗1−e∗2

∣∣
Z

= O(1)

L−2e∗2−e∗1

∣∣
Z

= O(−1) .

If we think of TK = R2/Z2 where R2 has coordinates (θ1, θ2), then the weights
e∗1, e

∗
2 restrict to tK to give {

〈e∗1, (θ1, θ2)〉 = θ1

〈e∗2, (θ1, θ2)〉 = θ2 .

We write this in shorthand as

e∗1 ↔ θ1, e∗2 ↔ θ2 .
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Then

(A.IV.F.3)

{
e∗3 − e∗2 ↔ −2θ2 − θ1

e∗3 − e∗1 ↔ −2θ1 − θ2

which gives
1
2 (e∗2 − e∗1)↔ 1

2 (θ2 − θ1) .

Thus, over Z = U(2)/TK we have

(A.IV.F.4) OZ(1) = L 1
2 (θ2−θ1) .

For the U(2)-homogeneous bundle δ given by the character det, we have27

(A.IV.F.5) δ = Lθ1+θ2 .

Denoting by
δ(n) = δ ⊗ OZ(n)

the indicated KC-homogenous line bundle over Z we then have the

(A.IV.F..6) Proposition. For the normal bundle N to Z in D we have the
isomorphism of KC-homogeneous vector bundles

N ∼= δ−3/2(1)⊕ δ3/2(1) .

Proof. Setting nK = n ∩ kC and n+
K = n+ ∩ kC, we have{

nK = CXe∗1−e∗2
n+/n+

K
∼= CXe∗3−e∗1 ⊕ CXe∗1−e∗3 ,

so that nK acts trivially on n+/n+
K . Thus, as a KC-homogeneous bundle

N ∼= Le∗3−e∗1
∣∣
Z
⊕ Le∗2−e∗3

∣∣
Z

∼= L−2θ1−θ2 ⊕ L2θ2+θ1 .

But {
−2θ1 − θ2 = −3

2 (θ1 + θ2) + 1
2 (θ2 − θ1)

2θ2 + θ1 = 3
2 (θ1 + θ2) + 1

2 (θ2 − θ1)

and the result follows from (A.IV.F.4) and (A.IV.F.5). �

Since L−ρ
∣∣
Z
∼= OZ(−2) we have the

(A.IV.F..7) Corollary. As U(2)-homogeneous bundles over Z we have

L−ρ
∣∣
Z
⊗ Symn Ň ∼= ⊕

05p5n
δ3/2(n−2p)(−n− 2) .

The pattern is

n = 0 O(−2)

n = 1 δ3/2(−3)⊕ δ−3/2(−3)

n = 2 δ6/2(−4)⊕ O(−4)⊕ δ−6/2(−4)

n = 3 δ9/2(−5)⊕ δ1/2(−5)⊕ δ−1/2(−5)⊕ δ−4/2(−5) .

In the notation of step (iii), the dual of the H1(Z, δ3/2(n−2p)(−n−2))’s, 0 5 p 5 n,
is ⊕
p+q=n

Sp+q(q − p).

27δ is trivial as a holomorphic, but not U(2)-homogeneous, line bundle.
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Turning to the classical case we let BK = B ∩KC and we have the

(A.IV.F..8) Proposition. As a KC-homogeneous bundle the normal bundle N ′

of Z ′ ⊂ D′ is given by
N = δ−1 ⊗ Ě

where E is the KC-homogeneous vector bundle given by the restriction to BK of the
standard representation on W ∼= C2 of U(2)C ∼= GL(2,C).

Thus, as a holomorphic vector bundle

E ∼= OZ ⊕ OZ

is holomorphically trivial, as is N .28

Proof. From the diagram

s�
e∗1 − e∗2

s s
+ s�

s
++

←−
e∗3 − e∗1se∗3 − e∗2

we see that Xe∗1−e∗2 ∈ n′K acts on n
′+/n

′+
K by the arrow. Thus using (A.IV.F.3)

N = L−2θ1−2θ2 ⊗ E
∼= L−θ2−θ2 ⊗ Ě
= δ−1 ⊗ Ě . �

(A.IV.F..9) Corollary. As U(2)-homogeneous bundles over Z ′,

L′−2ρ′

∣∣
Z′
⊗ Symn Ň ′ ∼= OZ′(−2)⊗ δn ⊗ SymnE .

The picture is

n = 0 O(−2)

n = 1 δ ⊗ W̌ (−2)

n = 2 δ2 ⊗ Sym2 W̌ (−2)

which gives the pattern (i) in step 2 above.

Remark. It is interesting to note that the difference in patterns in the K-types
as pictured in step 2 is explained geometrically by the difference in the normal
bundles to the maximal compact subvariety

• N = δ−3/2(1)⊕ δ3/2(1) non-classical case

• N ′ = δ−1 ⊗ Ě classical case

28Geometrically this is clear, since in the holomorphic fibration D′ → H of D′ over an Hermitian
symmetric domain, Z is the inverse image of a point x ∈ H and N → Z is holomorphically the

trivial bundle Z × TxH.
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where δ = “det” and E is the trivial bundle whose global sections are the standard
U(2)-module. The following picture explains the crucial sign change in the power
of δ3/2

s
s s

+

+,+′

s�
s

+,+′+′
s

ss× δ3/2

Here the positive roots for D are labelled + and those for D′ are labelled +′ and
the determinant bundle is on the negative vertical axis. For D′ both non-compact
roots have a negative inner product with δ3/2, while for D there is one positive and
one negative inner product.

Discussion of totally degenerate limits of discrete series (TDLDS’s). The pur-
pose of this concluding sub-section is to comment on several aspects of TDLDS’s.
We begin by discussing the

(A.IV.F..10) Analogy between TDLDS’s and special divisors of degree g− 1 on an
algebraic curve of genus g.

In this discussion we will let X = Γ\D where D is a homogeneous complex
manifold GR/T and Γ is a co-compact discrete group acting freely on D; we will
eventually specialize to the cases GR = SL2(R), SU(2, 1) and Sp(4). We will also
denote by Y a compact Riemann surface of genus g.

There is an analogy between limits of discrete series (LDS’s)
whose Harish-Chandra modules are represented by an Hq(D,Lµ)
where µ + ρ is singular and by special divisors represented by
classes on Hp(Y,L) where degL = g − 1.

An elementary observation is that

(A.IV.F..11) In both cases the sheaf Euler characteristic is zero.

In the algebraic curve case this follows from the Riemann-Roch theorem. For
X as above we first note that trivially from the Borel-Weil-Bott theorem the sheaf
Euler characteristic of Lµ → GC/B is zero. By the Hirzebruch-Riemann-Roch
theorem this Euler characteristic is given by an integral over GC/B of an invariant
polynomial in the Chern forms, an expression that when pulled back to GC is a
polynomial in the Maurer-Cartan forms. If µ+ρ is singular this polynomial vanishes.
By the Atiyah-Singer extension of the Hirzebruch-Riemann-Roch theorem and the
Hirzebruch proportionality principle, the sheaf Euler characteristic of Lµ → X is
given by integrating over X a polynomial in the Chern classes whose pullback to
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GR is, up to a sign, given by the same polynomial as that for the Maurer-Cartan
forms on GC.29 �

Corollary. We cannot have that just one Hq(X,Lµ) 6= 0.

A further observation is

TDLDS correspond to special divisors given by theta charac-
teristics.

This is because for a TDLDS one has µ = −ρ and L−ρ = ω
1/2
X is a square root

of the canonical bundle, which for curves is the definition of a theta characteristic.
For SL2 this analogy is exact:

Example. Let V −n , n = 0,−1,−2, . . . be the Harish-Chandra module corre-
sponding to the discrete series (n = −1,−2, . . . ) or TDLDS (n = 0) with infinites-

imal character n and standard positive Weyl chamber Z=0 for SL2, and denote by
v−n ∈ Vn a generator. We also denote by V +

n , n = 0, 1, 2, . . . , the similar ones for the
opposite Weyl chamber. In this case X = Γ\H is a compact Riemann surface and,
denoting by Ln → X the line bundle associated to the weight n, we are interested
in the groups

Hq(X,L−1), q = 0, 1

where L−1 = ω
1/2
X . Then Kodaira-Serre duality is a non-degenerate pairing

(A.IV.F.12) H0(X,ω
1/2
X )⊗H1(X,ω

1/2
X )→ C .

From (IV.A.7) we have

Hq(X,L−1) ∼= ⊕Hq(n, V +
n )
⊕mπ(Γ)
1 ,

while H0(n, V −n )1 = (0) unless n = 0 and then

H0(n, V −0 )1 = Cv0 .

Similarly, H1(n, V −n )1 = 0 unless n = 0 and then

H1(n, V −0 ) ∼= Cv−0 ω
−α

where α = “2” is the positive root. The pairing (A.IV.F.12) is induced by

v0 ⊗ (v−0 ω
−α)→ c

∫
X

ωα ∧ ω−α

where
(√
−1
2

)
ωα ∧ ω−α is the volume form on X and the non-zero constant is

computed from
〈
hα, v

±
0

〉
.

Example. The case of Sp(4) has a similarity to SL2 = Sp(2) in that there
are two TDLDS’s Vk corresponding to H1(Dk, L−ρk) where k = 1, 2 and D1, D2

are representatives of the two non-classical complex structures on Sp(4)/T . The

29The sign is (−1)nc where nc is the number of positive, non-compact roots.
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pictures are

*

*

−ρ1

−ρ2

The K-type is obtained as in the SU(2, 1) case by expanding cohomology about
the maximal compact subvariety. Denoting by D one of the Dk’s and by Z =
U(2)/T ⊂ D the maximal compact subvariety, for W the standard U(2)-module
and W = U(2) ×T W the corresponding U(2)-homogeneous vector bundle over
Z ∼= P1, one has for the normal bundle N to Z ⊂ D that

N ∼= O(2)⊕W(1) .

Then h1(Z,N) = 0 and

dimH0(Z,N) = 7 .

Thus there are deformations of Z in D other than those arising from the cycle
space, a significant difference with the SU(2, 1) case (cf. [FHW], chapters 17 and
20). The geometry and TDLDS in this case will be taken up in the sequel to this
work.

We note that since L−ρ
∣∣
Z
∼= O(−3) and X is covered by images of deformations

of Z we have

h0(X,L−ρ) = h4(X,L−ρ) = 0 ,

and then
∑
q(−1)qhq(X,L−ρ) = 0 gives h2(X,L−ρ) = 0. Thus

h1(X,L−ρ) = h3(X,L−ρ)

are the only possible non-zero dimensions, from which we infer that

h1(n, V ∨)ρ = h3(n, V ∨)ρ ,

so again we have a situation reminiscent of special divisors on algebraic curves.
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SU(2, 1). Here it will be convenient to use α1 + α2, α1, −α2 as positive roots,
and then ρ = α1 and δ = − 1

3 (α1 + 2α2). For the normal bundle

N∨ ∼= OZ(L−(α1+α2)) ⊕ OZ(Lα2
)

I
3δ

Sym2N∨ ∼= OZ(L−2(α1+α2)) ⊕ OZ(L−α1
) ⊕ OZ(L2α2

)

I
3δ

I
3δ

...

The kth right end term is OZ(Lkα2
), and the terms to the left are successively

obtained by “⊗L3δ” for k + 1 steps. The K-type then has as its kth term the
U(2)-module

(IV.F.13)k
k
⊕
j=0

H1(Z,OZ(Lkα2+3jδ−α1
)) =:

k
⊕
j=0

W (k)(j) =: GrkV0

where W is the standard representation of SU(2), W (k) is the kth symmetric prod-
uct, and W (k)(j) = W (k) ⊗ (det j). This notation is different from that in step
2 above, but it is more convenient for displaying the picture of V0 in terms of its
K-type and for conceptualizing the n-cohomology calculations given below. The
picture of the weight diagram and the first few pictures of the GrkV0 are

x

x

x

x

x

x

x

x

x

x

x x

x

x

xx

x

x

α2

α1

δ
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* *

* *

*

* **

* **

* **

Gr0V

W (0)(0) = C

W (1)(0)

W (1)

W (2)(0)

W (2)(1)

W (2)(2)

* ***

* ***

* ***

* ***

W (3)(3)

W (3)(2)

W (3)(1)

W (3)(0)

Each ∗ represents a one-dimensional weight space for V0. The diagram (iii) in Step
2 is the overlay of these pictures, and the action of the negative root vectors is
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pictured by30

� @
@

@I

�
�

�	

X−α1

X−(α1−α2)

Xα2

In (IV.F.6) in Step 3 above, Carayol has used the detailed Johnson-Wallach
description of V0 to produce explicit generators of the groups Hq(n, V0)ρ. However,
as we have seen in examples using geometric considerations it may be relatively easy
to determine the K-type, and one may ask to what extent can the n-cohomology be
determined by the K-type? Interestingly, as we shall illustrate the better question
may be: does knowing the K-type and n-cohomology determine the Harish-Chandra
module?31 Specifically we shall show:

(A.IV.F..14) There is one free parameter in determining an action of gC on
3
⊕
k=0

(IV.F.13)k =: V
[3]
0 , and this parameter is uniquely specified by knowing that there

is a non-zero class in H1(n, V
[3]
0 )ρ that restricts to a generator of H1(nK ,C)ρ.32

For V0 = H1(D,L−ρ) there is such a class; viz., the class in H1(n, V0)ρ corre-
sponding to the class in H1(D,L−ρ) that restricts to a generator of H1(Z, ωZ). In

30There are two issues here: (i) From the K-type, how can one conclude that the action of n

is given by this diagram? (ii) Given the diagram, this only determines the action of n up to
scaling in the 1-dimensional weight spaces, and how can one determine these scalings? To address

these questions there is an additional piece of geometric information for the TDLDS that is not
present for other Harish-Chandra modules with the same K-type. Namely, for SU(2, 1) and setting

p = n+ ⊕ n, we have that the inclusion p ⊂ gC induces an isomorphism

p ∼= H0(Z,N).

Then the action of p on the K-type (IV.F.13)∞ is given by dualizing the cup-products

H0(Z,N)⊗H0(Z,Symk N ⊗ Lρ)→ H0(Z,Symk+1N ⊗ Lρ).

This statement requires explanation which will be given in a later work. The starting point is the

observation that the action of normal vector fields along Z shifts the filtration given by IkZ ⊗OZ

L−ρ ⊂ OZ(L−ρ) by at most one, so that the action of n on GrkV0 goes to Grk−1V0 ⊕Grk+1V0.
Weight considerations then give the above picture, and then a more detailed analysis is required

to determine the scalings.
31In this regard we call particular attention to the paper [Schm5].
32In the remark at the end of this section we shall explain what is meant by restricting a class in
H1(n, V0)ρ to H1(nK , V0)ρ.
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the second diagram the picture of this class is

H
HHH

HHH
HHH��

�
��

�
��

�
�s s

s

Manipulating these and similar diagrams pictorially is what lies behind the calcu-
lations we are about to give.

For the calculations it is notationally more convenient to set Xij = Xe∗i−e∗j
with dual ωij .33 The bracket relations are

[Xij , Xjk] = Xik i 6= k

[Xij , Xji] = Hij

[Xij , Xkl] = 0 if j 6= k and i 6= l .

Here Hij acts by (i − j)Id on the (i, j) weight space (i, j). We are indexing the

weights of the maximal torus
{
g =

(
e2π
√
−1θ1

e2π
√
−1θ2

)}
of U(2) by (i, j) where

g(i, j) = e2π
√
−1(iθ1+jθ2)(i, j). With this notation

(A.IV.F.15) Xi
21X

j
13X

k
32 = k(−1,−2) + j(2, 1) + i(−1, 1) ,

meaning that the LHS acts on the weight space (p, q) by taking it to the weight
space obtained by adding to (p, q) the RHS. We let v0 be a generator of W (0)(0).
As an application of the Poincaré-Birkhoff-Witt theorem it may be shown that

(A.IV.F..16) The vectors Xi
21X

j
13X

k
32v0 : j, k = 0, j + k = i = 0 is a basis for the

Harish-Chandra module V0. Each spans a weight space given by (A.IV.F.15).

On may also prove that

(A.IV.F..17) (i) For any constant c, setting

(X13X31 +X23X32)v0 = cv0

the relations in su(2, 1) acting on V
[3]
0 are satisfied.

(ii) If

Φ = v0ω
12 + (X23v0)ω13 − (X31v0)ω32

then

dΦ = 0 ⇐⇒ c = 1 .

This is the case for Harish-Chandra module V0 as described by [JW].
(iii) The form Φ is the unique harmonic form in its cohomology class.

33The correspondence with the previous notation is
Xα2 = X32

X−α1 = X12

X−α1−α2 = X13 .
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The proof of (A.IV.F.17) is a calculation using (A.IV.F.15), (A.IV.F.16) and is
illustrated by the pictures

v0

(0, 0)

X12

(1, 2)→ (2, 1)

X23v0→X13v0

X12

(−2,−1)→ (−1,−2)

X31v0→X32v0

X12 X12 X12 X12

(2, 4)→ (3, 3)→ (4, 2) (−1, 1)→ (0, 0)→ (−1,−1) (−4,−2)→ (−3, 3)→ (−2,−4)

X2
23v0 → 2X23X13v0 → 2X2

13v0 X31X23v → (X13X31 −X23X32)v0 → −2X13X32v0 (similar to the left side)

‖ ‖ ‖
2X13X23v0 X23X31v0 − 2X32X13v0

It follows that

X13X31v0 = X31X13v0, X32X23v0 = X23X32v0

which leads to a relation

(X13X31 +X23X32)v0 = cv0 .

At this point the only unknown is the action of su(2, 1) on V
[3]
0 is the constant c.

Using the above one computes that

dΦ = (v0 − (X13X31 +X23X32)v0)ω13 ∧ ω32

which implies the assertion about when dΦ = 0.
The general condition that Φ = v0ω

12 + Aω13 + Bω32 be harmonic [EGW] is
the divergence-type relation

d∗Φ =: X21v0 +X31A+X23B = 0 .

Taking A = X23v0, B = −X31v0 and using X21v0 = 0 this condition is

0 = X31X23v0 −X23X31v0

= −X21v0

which is satisfied. �

Remark. Setting gC = kC ⊕ pC where pC = p+ ⊕ p− with p+ = ⊕
α∈Φ+

nc

gα the

direct sum of the positive, non-compact root spaces, and using the duality n∨ ∼= p+

given by the Cartan-Killing form, the Hochschild-Serre spectral sequence has the
picture

H1(nK , V0)ρ
d1 //

d2

,,YYYYYYYYYYYYYY H1(nK , V0 ⊗ p+)ρ
d1 // H1(nK , V0 ⊗ Λ2p+)ρ

H0(nK , V0)ρ // H0(nK , V0 ⊗ p+)ρ // H0(nK , V0 ⊗ Λ2p2)ρ.

There is a map

H1(n, V0)ρ → (ker d1 ∩ ker d2) ⊂ H1(nK , V0)ρ ,

and this is the meaning of the restriction map.
We note that v0ω

12 gives a class in H1(nK , V0)ρ, and d1[v0ω
12] = 0 gives the

coefficients X23v0 and −X31v0 in the above expression for Φ. Then d2[Φ] = 0 is
equivalent to c = 1.
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The details of this and similar calculations will be given in a future work.

Summary. For the TDLDS for SU(2, 1)

• From geometric considerations we know the K-type ⊕
k

(IV.F.13)k;

• Also from geometric considerations we know that there is a form Φ rep-
resenting a class in H1(n, V0)ρ whose “restriction” to H1(nK ,C)ρ is rep-
resented by ω12;

• There is a non-zero class in H2(n, V0)ρ which under duality pairs non-
trivially with Ω; this class is represented by ω13 ∧ ω32.

Note added in proof. Schmid has given a proof that the Hochschild-Serre spec-
tral sequence degenerates at E1 in the cases

• su(2, 1) and Ep,q1 = Hq(nK ,∧pn+ ⊗ V0)ρ ⇒ Hp+q(n, V0)ρ for V the
TDLDS; and

• sp(4) and Ep,q1 = H1(nK ,∧pn+ ⊗ Vk)ρ ⇒ Hp+q(n, Vk)ρ for Vk, k = 1, 2,
the two TDLDS’s.

His argument, together with a discussion of further related results, will be given in
a future work.



Bibliography

[BE] R. Baston and M. Eastwood, The Penrose Transform: Its Interaction with Representa-

tion Theory, Clarendon Press, Oxford, 1989.
[BB] A. Beilinson and J. Bernstein, Localisation de g-modules, C. R. Acad. Sci. Paris 292

(1981), 15–18.

[Bor] A. Borel, Automorphic forms and automorphic representations, Proc. Symp. Pure Math.
33 (1979), part 1, 189–202.
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Birkhäuser, Boston, 2006.
[FL] R. Friedman and R. Laza, Semi-algebraic horizontal subvarieties of Calabi-Yau type.

arXiv:1109.5669

[Gi] S. Gindikin, Holomorphic language for ∂-cohomology and respresentations of real
semisimple Lie groups, in The Penrose Transform and Analytic Cohomology in Rep-

resentation Theory (South Hadley, MA, 1992), Comptemp. Math. 154, Amer. Math.

Soc., Providence, RI, 1993, pp. 103–115.
[GG] M. Green and P. Griffiths, Correspondence and cycle spaces: a result comparing their

cohomologies, to appear in A Celebration of Algebraic Geometry, Clay Math. Proc.,
volume published on the occasion of Joe Harris’s 60th birthday.

[GGK1] M. Green, P. Griffiths, and M. Kerr, Mumford-Tate Groups and Domains: Their Geome-

try and Arithmetic, Annals of Math. Studies 183, Princeton University Press, Princeton,

NJ, 2012.
[GGK2] , Hodge theory and representation theory, in Hodge Theory, Complex Geometry,

and Representation Theory (R. S. Doran, G. Friedman, and S. Nollett, eds.), Amer.
Math. Soc., Providence, RI, to appear.

143



144 BIBLIOGRAPHY

[Ha] M. Harris, Automorphic forms of ∂-cohomology type as coherent cohomology classes, J.

Diff. Geom. 32 (1990), 1–63.

[HL] M. Harris and J.-S. Li, A Lefschetz property for subvarieties of Shimura varieties, J. Alg.
Geom. 7 (1998), 77–122.

[Ho] R.-P. Holzapfel, The Ball and some Hilbert Problems, Birkhäuser, 1995.
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[Wu] G. Wüstholz, Algebraic groups, Hodge theory, and transcendence, Proc. ICM (1986),
476–483.


