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§0. Motivations
A normal function is a section of a bundle of intermediate
Jacobians (complex tori) associated to a variation of Hodge
structure. They arise from a family of homologically trivial
algebraic cycles on the fibers of a smooth proper morphism of
varieties, and were first studied by Poincaré and Lefschetz for
families of divisors on curves.

A locally symmetric variety (or Shimura variety2) is a quotient
of a Hermitian symmetric domain by an arithmetic group. A
basic example is furnished by

Ag = Sp2g (Z)\Hg ,

the moduli space of principally polarized abelian g-folds.
2In this talk, what we shall mean by “Shimura variety” is a connected

component of an ShK (G ,X ), not the inverse limit of the ShK (G ,X ).



(I) For g > 2, the Ceresa cycle

C+ − C− ∈ Z1(J(C))

produces an interesting normal function, well-defined over a
2:1 cover ofMg ⊂ Ag (or overMg (`) for ` ≥ 3).

Another example is given by the Fano cycle

F+ − F− ∈ Z2
(
J
(

cubic
3-fold

))
,

and lives over a cover of the intermediate Jacobian locus in
A5.

Can we find more such examples?



(II) According to the Oort Conjecture,Mg should contain no
Shimura varieties of positive dimension for g � 0.

This suggests that the list of locally symmetric varieties over
(a finite cover of) which one has normal functions might be
finite.

Is this true?



(III) The Green-Voisin theorem states that for a very general
smooth hypersurface X ⊂ P2m (m ≥ 2) of degree
d ≥ 2 + 4

m−1 , the image of the Abel-Jacobi map

AJ : CHm(X )→ Jm(X )

is torsion.

We would like analogous examples for abelian varieties of PEL
type, and other families of varieties parametrized by locally
symmetric varieties.



(IV) Let X be a very general principally-polarized complex
abelian threefold, E/C a very general elliptic curve, and ` any
prime number.

A recent result of Totaro states that:
(i) |CH2(X )/`| =∞ ; and
(ii) |CH2(X × E )[`]| =∞.

Are there other such families of varieties?



(V) Finally, one has the Friedman-Laza classification of
Hermitian variations of Calabi-Yau-type Hodge structure of
level three. (By definition, a Hermitian VHS lives over a
locally symmetric variety.)

These should have normal functions – again, over a finite
pullback. (Since Hg (J(C)) has C-Y type, the Ceresa normal
function for g = 3 falls under this aegis.)

Are they the only ones?



§1. Kostant’s theorem
Begin with a complex semisimple Lie algebra g of rank n,
acting on itself via ad(X ) = [X , · ], with subalgebras

g ⊃ b ⊃ t.
Borel Cartan
maximal
solvable

maximal
toral

In terms of the 1-dimensional ad(t)-eigenspaces indexed by the
roots ∆ = ∆(g, t) ⊂ t∗, these are

t⊕

⊕
α∈∆

gα

 ⊃ t⊕

 ⊕
α∈∆+

gα

 ⊃ t,

where ∆ = ∆+ q∆− (∆− = −∆+). Write R for the (root)
lattice generated by ∆.



The simple roots

Σ = {σ1, . . . , σn} ⊂ ∆+ = Z≥0〈Σ〉 ∩∆

give a basis for R, with the simple grading elements
{S1, . . . , Sn} ⊂ t as dual basis. The reflections wi in σi
generate the Weyl group W = W (g, t).

The fundamental weights Ω = {ω1, . . . , ωn} ⊂ t∗ generate the
weight lattice Λ ∼= X∗(T ) ⊇ R, and span the dominant Weyl
chamber C = R≥0〈ω1, . . . , ωn〉.

To relate them, note that the Killing form B(X ,Y ) :=
Tr(adX ◦ adY ) on g restricts to 〈 , 〉 : Λ× Λ→ Z; then

〈ωi , σj〉 = 1
2〈σj , σj〉δij .

We shall write {ei} for an orthonormal basis of t∗R ∼= Rn.



Example
(g = sp4)

σ1 = e1 − e2, σ2 = 2e2

ω1 = e1, ω2 = e1 + e2 2
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According to the Theorem of the Highest Weight, we have a
bijective correspondence

finite-dim
irreps of g

Borel-Weil
�

highest weight

dominant integral
weights λ ∈ C ∩ Λ

V λ λ = ∑miωi (mi ≥ 0).

Given w ∈ W , λ ∈ Λ, set

w · λ := w(λ + ρ)− ρ,

where
ρ := 1

2
∑
δ∈∆+

δ =
∑

ωi .



Example
(g = sp4, λ = ω1 + ω2)

Weight diagram for V λ, the irrep with highest weight λ:

= 1−diml weight spaces" "

σ

σ

1

ω

2

λ

ω

C

1

2

λof V

Note that V λ ⊂ V ω1 ⊗ V ω2 = st⊗ (∧2st), where “st” denotes
the standard representation.



Fix E ∈ t such that 1
2E(σi) ∈ Z≤0 (∀i), and write

g = ⊕j∈Zg
j,−j

for the decomposition into ad(E)-eigenspaces (with eigenvalue
2j on gj,−j). For the corresponding decompositions of
representations V of g, see below.

Writing n = ⊕j<0g
j,−j and p = ⊕j≥0g

j,−j , we have g = n⊕ p
and ∆(n) ⊂ ∆+.

Example
(g = sp4, E = −2S2)
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n



Set g0,0 =: g0, ∆0 = ∆(g0, t), and ∆+
0 = ∆0 ∩∆+.

Put V ξ
0 for the irreps of g0, and W0 = W (g0, t). The set

W 0 :=
{
w ∈ W |w(∆+) ⊇ ∆+

0

}
gives the minimal-length representatives, of length

|w | := |w(∆+) ∩∆−|,

of the right cosets W0\W . Write W 0(j) ⊂ W 0 for the
elements of length j .

Finally, recall that Lie algebra cohomology Hk(n,V λ) is the
k th cohomology of the complex

V λ → n∨ ⊗ V λ → ∧2n∨ ⊗ V λ → · · · ,

from which it inherits an action of g0.



Theorem (Kostant, 1961)
Hk(n,V λ) ∼=

g0-modules
⊕w∈W 0(k)V w ·λ

0 .

Example
(g = sp4, E = −2S2, λ = ω1 + ω2, k = 1)

To apply Kostant, note that
g0 = gl2 and W 0(1) = {w2},
with w2 sending ω1 7→ ω1 and
ω2 7→ 2ω1 − ω2.

We find w2 ·λ = w2(λ+ρ)−ρ =
5ω1 − 3ω2, so H1(n,V λ) is
the irred. gl2-module V 5ω1−3ω2

0
with weights circled in blue.
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§2. Homogeneous variations of Hodge structure
Let gR be a (noncompact) real form of g, containing a
compact Cartan subalgebra tR. We have the decomposition

∆ = ∆c q∆n

into compact and noncompact roots, and will assume that the
grading element E satisfies

1
2E(∆c) ⊂ 2Z , 1

2E(∆n) ⊂ 2Z + 1.

The (finite-dimensional) irreps of gR take the form (dρλ, Ṽ λ),
with

Ṽ λ
C =


V λ “real case”

V λ ⊕ V τ(λ)
{
τ(λ) 6= λ “complex case”
τ(λ) = λ “quaternionic case”

,

where V τ(λ) = V λ and τ = −w0 (for w0 ∈ W the longest
element). The “complex case” occurs only for An, Dodd, E6
and in this talk will be partially suppressed.



We also assume that E(λ) ∈ 2Z+1, so that the decomposition

Ṽ λ
C = ⊕p∈Z

(
Ṽ λ
)p,−p−1

into (2p + 1)-dρλ(E)-eigenspaces defines a (real) Hodge
structure of weight (−1) and level −E(λ) on Ṽ λ.

By our assumptions on E, this Hodge structure is polarized by
the unique (up to scale) g-invariant alternating form

Q : Ṽ λ × Ṽ λ → R;

that is, we have
√
−12p+1Q(v , v̄) > 0 for v ∈

(
Ṽ λ
)
\{0}.



Now take G to be a semisimple Q-algebraic group of
Hermitian type, such that GR contains a compact Cartan TR.
Choose a co-character

χ0 : Gm,C → TC

so that E := χ′0(1) satisfies E(∆c) = 0, E(∆n) = {±2}. That
is, the ad(E ) (Hodge) decomposition on gC takes the form

gC = g−1,1 ⊕ g0,0 ⊕ g1,−1.

Then ∆n ∩ Σ = {σI} is a special simple root, i.e.
λad = σI +∑

j 6=I mjσj , and

E(σj) = −2δIj .

In this way, the choice of I (from amongst the special nodes
on the Dynkin diagram) determines the real form GR of GC.



The ρλ ◦χ0 resp. Ad ◦χ0 eigenspaces recover the (compatible)
Hodge decompositions on Ṽ λ

C resp. gC.To vary them, compose
ϕ0 : Gm

χ0→ TC ↪→ GC

and take the orbit under conjugation

D := G(R).ϕ0 ∼= G(R)/

centralizer
of ϕ0︷ ︸︸ ︷

G0(R) .
This is a Hermitian symmetric domain of dimC D = dim g−1,1.
Taking Γ ≤ G(Z) torsion-free of finite index, the quotient

X := Γ \ D
is a quasi-projective (locally symmetric) variety by Baily-Borel.
Example (g = sp4)

The only choice is I = 2, which
gives E = −2S2 as above, and
D = H2 (of dimension 3). Tak-
ing Γ = Sp4(Z) gives X = A2.

1,−1

σ

σ

1

2

g g g−1,1 0,0



Taking GC to be simple, and varying the choice of root system
and special node, we get the classification of irreducible
Hermitian symmetric domains:3

D (R, σI) G(R)
Ip,n−p+1 (An≥2, σp) SU(p, n-p + 1)
IIn≥4 (Dn, σn) Spin∗(2n)
IIIn≥1 (Cn, σn) Sp(2n,R)

IV2n−1≥7 (Bn, σ1) Spin(2, 2n-1)
IV2n−2≥6 (Dn, σ1) Spin(2, 2n-2)
EIII (E6, σ1) E6(−14)
EVII (E7, σ7) E7(−25)

The example above is III2(∼= H2).

3In the table, we take for each G(R) the simply-connected form.



Now fix
I a locally symmetric variety X = Γ\D = Γ\G(R)/G0(R),
I a point {ϕ0 : Gm → GC} ∈ D,
I a symplectic or orthogonal Q-vector space (V ,Q), and
I a Q-linear representation ρ : G → Aut(V ,Q)

such that ρ ◦ ϕ0 is a Hodge structure on V polarized by Q.
Then the {ρ ◦ gϕ0g−1}g∈G(R) give a variation of Hodge
structure over X with geometric monodromy (and derived
Mumford-Tate) group G .4 We shall call this an (irreducible)
Hermitian (R-)VHS, and the construction yields bijections

irreducible
Hermitian
R-VHS/X

�
finite-dim.
irreps of

G(R)
�

{
dominant
integral λ

}
〈τ〉

4or a finite-group quotient thereof



Examples
(1) V = g, Q = −B  “adjoint VHS” of weight 0 and level 2.

(2) V = Ṽ λ, E(λ) odd, Q alternate  VHS Ṽλ of weight -1:
• If λ = τ(λ), then Ṽλ has level −E(λ).
• Ṽλ is a priori an R-VHS, but in cases
of interest will be defined over Q (or we
can obtain this by Weil restriction).

(3) Specific examples of (2):
• H1( abelian

family ): −E(λ) = 1 ( =⇒ λ = ωi for some i)
• Calabi-Yau VHS: ṼkωI (k ≥ 1)
• running example: Vω1+ω2 ⊂ H1(A)⊗ H2(A) (weight 3)



§3. Infinitesimal normal functions
Let V be a Q-PVHS5 of weight −1 over a complex manifold
S, with underlying (flat) local system V and associated
intermediate Jacobian bundle J(V). Form the complexes

C • := V ∇→ Ω1
S ⊗ V

∇→ Ω2
S ⊗ V

∇→ · · ·

F pC • := FpV ∇→ Ω1
S ⊗Fp−1V ∇→ Ω2

S ⊗Fp−2V ∇→ · · ·

Grp
FC • := Grp

FV
∇̄→ Ω1

S ⊗ Grp−1
F V ∇̄→ Ω2

S ⊗ Grp−2
F V ∇̄→ · · ·

of sheaves on S, noting that ∇̄ is OS-linear, and the exact
sequence

0→ F 0C • ⊕ V→ C • → C •
F 0C • ⊕ V

→ 0,

noting that the hypercohomology sheaf H0
(

C•
F 0C•⊕V

)
=: J Q

hor
is the sheaf of quasi-horizontal sections of J(V).

5V also denotes the sheaf of sections of the corr. vector bundle



The J(V)-valued normal functions over S are defined by

H0
(
S, C•

F 0C•⊕V

)
= Γ

(
S,J Q

hor

)
=: NFS(V) ⊃

admissible NF︷ ︸︸ ︷
ANFS(V) ,

where admissibility is a technical condition which is always met
for normal functions arising from algebraic cycles. The
infinitesimal and topological invariants are defined by

ANFS(V)
=:(δ,[·])

**

conn. hom. // H1(F 0C • ⊕ V)
edge. hom.
��

Γ(S,H1
∇(F 0C •))⊕ H1(S,V),

where the connecting homomorphism arises from our exact
sequence.



Proposition
Assume H0(S,V) = {0}. Then [·] is injective.

Sketch: Any ν ∈ ANFS(V) is equivalent to an extension

(∗) 0→ V → Ṽ → Q(0)S → 0

of AVMHS. If

[ν] = 0 ∈ H1(S,V) ∼= Ext1
π1(S)(QS ,V),

then Ṽ ∼= V⊕Q. Applying the assumption, H0(S, Ṽ) = Q; by
the Theorem of the Fixed Part, this underlies a (constant)
sub-AVMHS of Ṽ . Since it is of rank 1, it can only be of type
(0, 0), splitting (∗) and rendering ν = 0. �



Corollary
If V → X = Γ \ G(R)/G0(R) is a Hermitian VHS (with
no trivial components) and rkQG > 1, then

ANFU(V) = {0}
for any Zariski open U ⊂ X.

Sketch: Since H0(X,V) = {0}, this follows from
I extendability: ANFU(V) = ANFX(V)
I Raghunathan (1967): {0} = H1(Γ,V ) (= H1(X,V))

which implies [ν] = 0. �

So we have to look at étale neighborhoods T → X, which
after all is expected in light of the Ceresa cycle.



Proposition

If H0
∇(F 0C •) = {0}, then NFS(V) δ

↪→ Γ(S,H1
∇(F 0C •)).

Sketch: By the assumption, it suffices to show that NFS(V)
injects into H1(F 0C •), which is true if H0(C •/V) vanishes. By
the Theorem of the Fixed Part, the assumption also implies
H0(S,V) = {0}. But H0(C •/V) = H0(S,V)⊗ C/Q. �

Let Hk(j) := Hk
∇̄(Gr j

FC •). Since

Ep,q
1 :=

{
Hp+q(p), p ≥ 0

0 p < 0 =⇒ H∗∇(F 0C •),

we have the
Corollary
Assume H0(j) and H1(j) vanish for j ≥ 0. Then
ANFT (∗V) = {0} for all T → S étale.



Accordingly, we shall say that V has an INF (infinitesimal
normal function) if

H1(j) 6= 0 for some j ≥ 0.
Exercise: Any VHS of level 1, or level 3 CY type, has an INF.

Notice that this property makes sense for R- or even C-VHS
(i.e. a varying Hodge flag plus C-local system). So consider a
Hermitian C-VHS VλC → X = Γ\D of weight −1 (E(λ) odd).
To compute H∗=0,1

λ (j), fix ϕ0 ∈ D and set

W 0(k , j) :=
{
w ∈ W 0(k) | 1

2(E(w · λ)− 1) = j
}

=
{
w ∈ W

∣∣∣∣∣ w(∆+) ⊇ ∆+
0 , |w | = k,

and E(w · λ) = 2j + 1

}

Proposition (K-K)
For any k , Hk

λ(j)|ϕ0
∼= ⊕w∈W 0(k,j)V w ·λ

0 .



Sketch: Step 1 Commutativity of

Vλ //
n∨ ⊗ Vλ // ∧2n∨ ⊗ Vλ // · · ·

(
⊕j Gr j

FV
)
|ϕ0

⊕j ∇̄// (Ω1
D ⊗ (⊕j Gr j

FV)
)
|ϕ0

⊕j ∇̄ // (Ω2
D ⊗ (⊕j Gr j

FV)
)
|ϕ0

// · · ·

implies ⊕jHk(j) ∼= Hk(n,V λ).

Step 2
(e.g. k=1)

Given X ∗ ∈ n∨, v ∈ (V λ)j−1,−j , the E-eigenvalues of

X ∗, v ,X ∗ ⊗ v are 2, 2j − 1, 2j + 1 respectively. So
im{H1(j)|ϕ0 ↪→ H1(n,V λ)} =

⊕
ξ ∈ Λ

E(ξ) = 2j + 1

}H1(n,V λ)ξ

which by Kostant
=

⊕
ξ: E(ξ)=2j+1

(
⊕w∈W 0(1)V w ·λ

0

)
ξ
.

Now use the fact that E is constant on each V µ
0 . �



We turn to the consequences of the Proposition.

First, since E(λ) < 0, we have 1
2(E(id · λ)− 1) < 0 (and of

course W 0(0) = {id}); so H0
λ(j) = {0} (∀j ≥ 0).

Next, recalling that our choice of X implies a choice of σI, it
turns out that W 0(1) = {wI}. This leads to the

Corollary (K-K)

Assume that λ = τ(λ). Then Ṽλ has an INF ⇐⇒
µ(λ) := 1

2 (E(wI · λ)− 1) ≥ 0.

Example
(g = sp4, I = 2, λ = ω1 + ω2) From previous Examples,
we have w2 · λ = 5ω1 − 3ω2, E(ω1) = −1, E(ω2) = −2

=⇒ 1
2 (E(w2 · λ)− 1) = 1

2(−5 + 6− 1) = 0

and Ṽ λ has an INF. In fact, µ(λ) = 0 =⇒ H1(X, Ṽλ) is
pure of type (0, 0).



Theorem (K-K)

For D of tube type (and level(Ṽλ)> 1), we have a com-
plete classification, where a ∈ Z+ is arbitrary:

D INF pairs (D, λ)
Ip,p (p ≥ 2) (I2,2, { ω3

ω1 }+ aω2), (I3,3, ω3)∗
II2m≥4 (II4, ω1 + a{ ω3

ω4 }), (II6, ω6)∗
IIIn≥1 (III1, (2a + 1)ω1)∗, (III2, ω1 + aω2), (III3, ω3)∗

IV2n−1≥5 (IV2n−1, aω1 + ωn)
IV2n−2≥6 (IV2n−2, aω1 + { ωn−1

ωn })
EVII (EVII, ω7)∗

The starred items correspond to VHS (over X) of CY type.
The case IIIn was analyzed previously by Nori, and (III3, ω3)
corresponds to the Ceresa cycle on A3. Note that the type IV
domains yield two infinite families of examples.



In the non-tube case, even to obtain the VHS appearing in the
cohomology of an abelian family, or VHS of CY type, we have
to generalize the Ṽλ construction via half-twists. Given an
irrep V λ of g and E ∈ t as before, let Ẽ = (E, 1) ∈ g⊕ C = g̃,
and define irreps V λ{a

2} of g̃ by taking

V λ{a
2}

p,−p−1 := (V λ)p+ a
2 ,−p−a

2−1

for the (2p + 1)-eigenspaces of Ẽ, and
Ṽ λ{a

2} := V λ{a
2} ⊕ V τ(λ){−a

2}
for the irreps of G̃(R) = U(1) · G(R). For Ip,n−p, we study the
VHS ṼλR{a

2} occurring in H∗ of k-Weil6 abelian n-folds A, i.e.
those with an imaginary quadratic field in End(A)Q, whose
eigenspaces H1

± ⊂ H1(A,C) have Hodge type (n−k
2 , n+k

2 ). We
also show that, for irreducible HSD of any type, the only
“minimal-level” C-Y Hermitian VHS with an INF have level 3.
(This includes examples over I1,n, I2,n, II5, and EIII.)

6Weil abelian varieties are the case k = 0 (corr. to tube domain Ip,p).



§4. Applications to algebraic cycles
Now the purpose of normal functions is to study algebraic
cycles. The injectivity of δ has the following consequence:

Lemma
Let π : X → S be a smooth proper family of varieties/C, V
the quotient of the VHS associated to R2p−1π∗Q(r) by its
maximal level-one sub-VHS. If V has H0(j) = {0} = H1(j)
for all j ≥ 0, then the reduced Abel-Jacobi map

AJp
Xs0

: Griffp(Xs0)→ Jp(Xs0)/Jalg

is zero for very general s0 ∈ S.

Conversely, one might pose the

Conjecture

IfH0(j) = {0} (∀j ≥ 0) andH1(0) 6= {0}, then for some
étale neighborhood T → S, IH1(T , ∗V) 6= {0}.



Together with the classification, the Lemma yields the
Theorem (Nori; K-K)
(i) AJ r = 0 (∀r) for a very general abelian, Weil-abelian
or quaternionic-abelian variety of dim > 3, 6 resp. 8.
(ii) AJ r = 0 for a very general k-Weil abelian n-fold
(with k ≤ n − 6) unless r ∈

[
n−k

2 , n+k
2 + 1

]
.

because these cases aren’t on the list. Should we get excited
about the cases that are?

Proposition

Assuming the Conjecture, each tube-type INF pair (ex-
cept for (III1, aω1)) arises from a normal function – and
if the HC holds, from a family of cycles.



The last slide suggests the question: what about the Weil 4-
and 6-folds (I2,2, I3,3), and quaternionic 8-folds (II4), is
special? Just as all abelian 1-, 2-, and 3-folds are (up to
isogeny) Jacobians,
I Weil 4- and 6-folds are all 3 : 1 Prym varieties, and
I quaternionic 8-folds are all “quaternionic Pryms”.

(A dimension count shows this can’t be true in higher dims.)
A k : 1 Prym variety A is (an irreducible component of) the
cokernel of an embedding J(C) ↪→ J(C̃) associated to a k : 1
étale morphism C̃ � C of (smooth, proper, connected)
curves. The Prym-Ceresa 1-cycle ZC̃/C on A is the
push-forward of the Ceresa cycle on J(C̃).

Proposition
For 2 : 1 Pryms, the Prym-Ceresa cycle is algebraically
equivalent to zero.



As a result, these cycles were overlooked for k > 2.
Proposition (K-K)
For the 3 : 1 Prym 6-folds associated to an étale cover
with gC = 4 and gC̃ = 10, AJ of the Prym-Ceresa cycle
yields an nontrivial admissible normal function ν, so that
δν recovers the INF in the case (I3,3, ω3).

Sketch: To see this, we can de-
generate to the picture shown,
where the subscript “0” means
“at the degenerate fiber”. Ac-
cordingly, we have

A0 = J(E )⊕⊕3
i=1 J(C ′i )

J(E )⊕ J(C ′)∆
.

cyclic

genus  3
3

3

1

3

1

3:1 etale

C

C

0

0

α



The main points in the argument are now:
I For general A, C〈ω, ω′〉 = H3,0(A)α ⊂ H3(A)αC = (Vω3)⊕2,

with each Vω3 of type (1, 9, 9, 1) and defined over Q.

I Upon degeneration, writing Ω1(J(C ′i )) = C〈ω1
i , ω

2
i , ω

3
i 〉,

ω pulls back to ∧3
j=1(ωj

1 + ζ3ω
j
2 + ζ̄3ω

j
3) ∈ Ω3(J(C̃0))α.

I The projection of C ′1
+ − C ′1

− = ∂Γ1 ∈ Z1(J(C ′1)) to A0
has
´

pr(Γ1) ω =
´

Γ1
ω1

1 ∧ ω2
1 ∧ ω3

1 /≡ 0 (i.e. not a period)
generically, by Ceresa’s result for C ′1.

I The degeneration of the Prym-Ceresa cycle is∑
πA(C ′i

+ − C ′i
−) = ∂Γ.

Since this is α-invariant,
´

Γ ω = 3
´

pr(Γ1) ω /≡ 0.

I So the image in the limit, hence generically, of the P-C
cycle is nonzero under J(H3(A)∨)� J((H3(A)α)∨). �



These 3:1 Pryms dominate a locally symmetric family A → X
of abelian varieties called Faber-Weil 6-folds.
Using Nori’s trick of pulling ZC̃/C and ν back under Hecke
correspondences, together with Raghunathan, we obtain (i) of:

Proposition

For a very general Faber-Weil 6-fold A/C and 2 ≤ r ≤ 5:
(i) Griffr (A) and im(AJ r

A) are countably ∞-dim’l; and
(ii) |CHr (A)/`| =∞ for all primes `.

Similar results are expected for each INF one is able to
geometrically realize, provided rkQG > 1 and Ṽλ is “abelian”.
Example
The INF (III2, ω1 + ω2) would correspond to Griff3(A× A),
for A a very general abelian surface. I am not aware of a
geometric realization.



To predict (or rule out) higher normal functions arising from
indecomposable higher cycles in K alg

n of our family, one can try
to classify INF pairs for Ṽλ of weight −1− n.
For tube domains, one obtains (with a ∈ Z+ arbitrary):

n = 1

(I2,2, aω2),(II4, aω4),(III1, 2aω1),(III2, aω2),(IVm≥5, aω1)

n ≥ 2

(III1, (2a + n − 3)ω1) (that’s it!)

For instance, K ind
1 of a K3 shows up as (IV19, ω1), but the

dearth of other cases is striking!



– Thank You –


