Normal functions

over
 locally symmetric varieties ${ }^{1}$

Matt Kerr
(Washington University in St. Louis)

Steklov Institute, August 2, 2017
${ }^{1}$ joint work with Ryan Keast

§0. Motivations

A normal function is a section of a bundle of intermediate Jacobians (complex tori) associated to a variation of Hodge structure. They arise from a family of homologically trivial algebraic cycles on the fibers of a smooth proper morphism of varieties, and were first studied by Poincaré and Lefschetz for families of divisors on curves.

A locally symmetric variety (or Shimura variety ${ }^{2}$) is a quotient of a Hermitian symmetric domain by an arithmetic group. A basic example is furnished by

$$
\mathcal{A}_{g}=\operatorname{Sp}_{2 g}(\mathbb{Z}) \backslash \mathfrak{H}_{g}
$$

the moduli space of principally polarized abelian g-folds.

[^0](I) For $g>2$, the Ceresa cycle
$$
C^{+}-C^{-} \in Z_{1}(J(C))
$$
produces an interesting normal function, well-defined over a 2:1 cover of $\mathcal{M}_{g} \subset \mathcal{A}_{g}$ (or over $\mathcal{M}_{g}(\ell)$ for $\ell \geq 3$).

Another example is given by the Fano cycle

$$
F^{+}-F^{-} \in Z_{2}\left(J\binom{\text { cubic }}{3 \text {-fold }}\right),
$$

and lives over a cover of the intermediate Jacobian locus in \mathcal{A}_{5}.

Can we find more such examples?
(II) According to the Oort Conjecture, $\overline{\mathcal{M}_{g}}$ should contain no Shimura varieties of positive dimension for $g \gg 0$.

This suggests that the list of locally symmetric varieties over (a finite cover of) which one has normal functions might be finite.

Is this true?
(III) The Green-Voisin theorem states that for a very general smooth hypersurface $X \subset \mathbb{P}^{2 m}(m \geq 2)$ of degree $d \geq 2+\frac{4}{m-1}$, the image of the Abel-Jacobi map

$$
A J: C H^{m}(X) \rightarrow J^{m}(X)
$$

is torsion.

We would like analogous examples for abelian varieties of PEL type, and other families of varieties parametrized by locally symmetric varieties.
(IV) Let X be a very general principally-polarized complex abelian threefold, E / \mathbb{C} a very general elliptic curve, and ℓ any prime number.

A recent result of Totaro states that:
(i) $\left|\mathrm{CH}^{2}(X) / \ell\right|=\infty$; and
(ii) $\left|\mathrm{CH}^{2}(X \times E)[\ell]\right|=\infty$.

Are there other such families of varieties?
(V) Finally, one has the Friedman-Laza classification of Hermitian variations of Calabi-Yau-type Hodge structure of level three. (By definition, a Hermitian VHS lives over a locally symmetric variety.)

These should have normal functions - again, over a finite pullback. (Since $H^{g}(J(C))$ has C-Y type, the Ceresa normal function for $g=3$ falls under this aegis.)

Are they the only ones?

§1. Kostant's theorem

Begin with a complex semisimple Lie algebra \mathfrak{g} of rank n, acting on itself via $\operatorname{ad}(X)=[X, \cdot]$, with subalgebras
\(\mathfrak{g} \supset \underset{\substack{Boxel

moximal

solvable}}{\mathfrak{b}} \quad\)| Borel maximal |
| :---: | :---: | :---: |
| toral |

In terms of the 1-dimensional $\operatorname{ad}(\mathfrak{t})$-eigenspaces indexed by the roots $\Delta=\Delta(\mathfrak{g}, \mathfrak{t}) \subset \mathfrak{t}^{*}$, these are

$$
\mathfrak{t} \oplus\left(\bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}\right) \supset \mathfrak{t} \oplus\left(\bigoplus_{\alpha \in \Delta^{+}} \mathfrak{g}_{\alpha}\right) \supset \mathfrak{t}
$$

where $\Delta=\Delta^{+} \amalg \Delta^{-}\left(\Delta^{-}=-\Delta^{+}\right)$. Write \mathcal{R} for the (root) lattice generated by Δ.

The simple roots

$$
\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \subset \Delta^{+}=\mathbb{Z}_{\geq 0}\langle\Sigma\rangle \cap \Delta
$$

give a basis for \mathcal{R}, with the simple grading elements $\left\{S^{1}, \ldots, S^{n}\right\} \subset \mathfrak{t}$ as dual basis. The reflections w_{i} in σ_{i} generate the Weyl group $W=W(\mathfrak{g}, \mathfrak{t})$.

The fundamental weights $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\} \subset \mathfrak{t}^{*}$ generate the weight lattice $\Lambda \cong \mathrm{X}^{*}(T) \supseteq \mathcal{R}$, and span the dominant Weyl chamber $C=\mathbb{R}_{\geq 0}\left\langle\omega_{1}, \ldots, \omega_{n}\right\rangle$.

To relate them, note that the Killing form $B(X, Y):=$ $\operatorname{Tr}(\operatorname{ad} X \circ \operatorname{ad} Y)$ on \mathfrak{g} restricts to $\langle\rangle:, \Lambda \times \Lambda \rightarrow \mathbb{Z}$; then

$$
\left\langle\omega_{i}, \sigma_{j}\right\rangle=\frac{1}{2}\left\langle\sigma_{j}, \sigma_{j}\right\rangle \delta_{i j}
$$

We shall write $\left\{e_{i}\right\}$ for an orthonormal basis of $\mathfrak{t}_{\mathbb{R}}^{*} \cong \mathbb{R}^{n}$.

Example

$\left(\mathfrak{g}=\mathfrak{s p}_{4}\right)$

$$
\begin{array}{r}
\sigma_{1}=e_{1}-e_{2}, \sigma_{2}=2 e_{2} \\
\omega_{1}=e_{1}, \omega_{2}=e_{1}+e_{2}
\end{array}
$$

According to the Theorem of the Highest Weight, we have a bijective correspondence

Given $w \in W, \lambda \in \Lambda$, set

$$
w \cdot \lambda:=w(\lambda+\rho)-\rho,
$$

where

$$
\rho:=\frac{1}{2} \sum_{\delta \in \Delta^{+}} \delta=\sum \omega_{i}
$$

Example

$$
\left(\mathfrak{g}=\mathfrak{s p}_{4}, \lambda=\omega_{1}+\omega_{2}\right)
$$

Weight diagram for V^{λ}, the irrep with highest weight λ :

Note that $V^{\lambda} \subset V^{\omega_{1}} \otimes V^{\omega_{2}}=s t \otimes\left(\wedge^{2} s t\right)$, where "st" denotes the standard representation.

Fix $\mathrm{E} \in \mathfrak{t}$ such that $\frac{1}{2} \mathrm{E}\left(\sigma_{i}\right) \in \mathbb{Z}_{\leq 0}(\forall i)$, and write

$$
\mathfrak{g}=\oplus_{j \in \mathbb{Z}} \mathfrak{g}^{j,-j}
$$

for the decomposition into ad(E)-eigenspaces (with eigenvalue $2 j$ on $\mathfrak{g}^{j,-j}$). For the corresponding decompositions of representations V of \mathfrak{g}, see below.

Writing $\mathfrak{n}=\oplus_{j<0} \mathfrak{g}^{j,-j}$ and $\mathfrak{p}=\oplus_{j \geq 0} \mathfrak{g}^{j,-j}$, we have $\mathfrak{g}=\mathfrak{n} \oplus \mathfrak{p}$ and $\Delta(\mathfrak{n}) \subset \Delta^{+}$.

Example
$\left(\mathfrak{g}=\mathfrak{s p}_{4}, \mathrm{E}=-2 \mathrm{~S}^{2}\right)$

Set $\mathfrak{g}^{0,0}=: \mathfrak{g}^{0}, \Delta_{0}=\Delta\left(\mathfrak{g}^{0}, \mathfrak{t}\right)$, and $\Delta_{0}^{+}=\Delta_{0} \cap \Delta^{+}$. Put V_{0}^{ξ} for the irreps of \mathfrak{g}^{0}, and $W_{0}=W\left(\mathfrak{g}^{0}, \mathfrak{t}\right)$. The set

$$
W^{0}:=\left\{w \in W \mid w\left(\Delta^{+}\right) \supseteq \Delta_{0}^{+}\right\}
$$

gives the minimal-length representatives, of length

$$
|w|:=\left|w\left(\Delta^{+}\right) \cap \Delta^{-}\right|
$$

of the right cosets $W_{0} \backslash W$. Write $W^{0}(j) \subset W^{0}$ for the elements of length j.

Finally, recall that Lie algebra cohomology $H^{k}\left(\mathfrak{n}, V^{\lambda}\right)$ is the $k^{\text {th }}$ cohomology of the complex

$$
V^{\lambda} \rightarrow \mathfrak{n}^{\vee} \otimes V^{\lambda} \rightarrow \wedge^{2} \mathfrak{n}^{\vee} \otimes V^{\lambda} \rightarrow \cdots
$$

from which it inherits an action of \mathfrak{g}^{0}.

Theorem (Kostant, 1961)

$$
H^{k}\left(\mathfrak{n}, V^{\lambda}\right) \underset{\mathfrak{g}^{0} \text {-modules }}{\cong} \oplus_{w \in W^{0}(k)} V_{0}^{w \cdot \lambda}
$$

Example

$\left(\mathfrak{g}=\mathfrak{s p}_{4}, \mathrm{E}=-2 \mathrm{~S}^{2}, \lambda=\omega_{1}+\omega_{2}, k=1\right)$
To apply Kostant, note that $\mathfrak{g}^{0}=\mathfrak{g l}_{2}$ and $W^{0}(1)=\left\{w_{2}\right\}$, with w_{2} sending $\omega_{1} \mapsto \omega_{1}$ and $\omega_{2} \mapsto 2 \omega_{1}-\omega_{2}$.

We find $w_{2} \cdot \lambda=w_{2}(\lambda+\rho)-\rho=$ $5 \omega_{1}-3 \omega_{2}$, so $H^{1}\left(\mathfrak{n}, V^{\lambda}\right)$ is the irred. $\mathfrak{g l}_{2}$-module $V_{0}^{5 \omega_{1}-3 \omega_{2}}$ with weights circled in blue.

§2. Homogeneous variations of Hodge structure

 Let $\mathfrak{g}_{\mathbb{R}}$ be a (noncompact) real form of \mathfrak{g}, containing a compact Cartan subalgebra $\mathfrak{t}_{\mathbb{R}}$. We have the decomposition$$
\Delta=\Delta_{c} \amalg \Delta_{n}
$$

into compact and noncompact roots, and will assume that the grading element E satisfies

$$
\frac{1}{2} \mathrm{E}\left(\Delta_{c}\right) \subset 2 \mathbb{Z}, \quad \frac{1}{2} \mathrm{E}\left(\Delta_{n}\right) \subset 2 \mathbb{Z}+1 .
$$

The (finite-dimensional) irreps of $\mathfrak{g}_{\mathbb{R}}$ take the form $\left(d \rho_{\lambda}, \tilde{V}^{\lambda}\right)$, with

$$
\tilde{V}_{\mathbb{C}}^{\lambda}=\left\{\begin{array} { c }
{ V ^ { \lambda } } \\
{ V ^ { \lambda } \oplus V ^ { \tau (\lambda) } }
\end{array} \left\{\begin{array}{l}
\tau(\lambda) \neq \lambda \quad \text { "real case" } \\
\tau(\lambda)=\lambda \quad \text { "quaternionic case" }
\end{array}\right.\right.
$$

where $V^{\tau(\lambda)}=\overline{V^{\lambda}}$ and $\tau=-w_{0}$ (for $w_{0} \in W$ the longest element). The "complex case" occurs only for $A_{n}, D_{\text {odd }}, E_{6}$ and in this talk will be partially suppressed.

We also assume that $\mathrm{E}(\lambda) \in 2 \mathbb{Z}+1$, so that the decomposition

$$
\tilde{V}_{\mathbb{C}}^{\lambda}=\oplus_{p \in \mathbb{Z}}\left(\tilde{V}^{\lambda}\right)^{p,-p-1}
$$

into $(2 p+1)-d \rho_{\lambda}(\mathrm{E})$-eigenspaces defines a (real) Hodge structure of weight (-1) and level $-\mathrm{E}(\lambda)$ on \tilde{V}^{λ}.

By our assumptions on E, this Hodge structure is polarized by the unique (up to scale) \mathfrak{g}-invariant alternating form

$$
Q: \tilde{V}^{\lambda} \times \tilde{V}^{\lambda} \rightarrow \mathbb{R}
$$

that is, we have $\sqrt{-1}^{2 p+1} Q(v, \bar{v})>0$ for $v \in\left(\tilde{V}^{\lambda}\right) \backslash\{0\}$.

Now take G to be a semisimple \mathbb{Q}-algebraic group of Hermitian type, such that $G_{\mathbb{R}}$ contains a compact $\operatorname{Cartan} T_{\mathbb{R}}$. Choose a co-character

$$
\chi_{0}: \mathbb{G}_{m, \mathbb{C}} \rightarrow T_{\mathbb{C}}
$$

so that $\mathrm{E}:=\chi_{0}^{\prime}(1)$ satisfies $\mathrm{E}\left(\Delta_{c}\right)=0, \mathrm{E}\left(\Delta_{n}\right)=\{ \pm 2\}$. That is, the $\operatorname{ad}(E)$ (Hodge) decomposition on $\mathfrak{g}_{\mathbb{C}}$ takes the form

$$
\mathfrak{g}_{\mathbb{C}}=\mathfrak{g}^{-1,1} \oplus \mathfrak{g}^{0,0} \oplus \mathfrak{g}^{1,-1}
$$

Then $\Delta_{n} \cap \Sigma=\left\{\sigma_{I}\right\}$ is a special simple root, i.e. $\lambda_{\mathrm{ad}}=\sigma_{\mathrm{I}}+\sum_{j \neq \mathrm{I}} m_{j} \sigma_{j}$, and

$$
\mathrm{E}\left(\sigma_{j}\right)=-2 \delta_{\mathrm{I} j}
$$

In this way, the choice of I (from amongst the special nodes on the Dynkin diagram) determines the real form $G_{\mathbb{R}}$ of $G_{\mathbb{C}}$.

The $\rho_{\lambda} \circ \chi_{0}$ resp. Ad $\circ \chi_{0}$ eigenspaces recover the (compatible) Hodge decompositions on $\tilde{V}_{\mathbb{C}}^{\lambda}$ resp. $\mathfrak{g}_{\mathbb{C}}$. To vary them, compose

$$
\varphi_{0}: \mathbb{G}_{m} \xrightarrow{\nmid} T_{\mathbb{C}} \hookrightarrow G_{\mathbb{C}}
$$

and take the orbit under conjugation

$$
D:=G(\mathbb{R}) \cdot \varphi_{0} \cong G(\mathbb{R}) / \overbrace{G^{0}(\mathbb{R})}^{\text {of } \varphi_{0}} .
$$

This is a Hermitian symmetric domain of $\operatorname{dim}_{\mathbb{C}} D=\operatorname{dim} \mathfrak{g}^{-1,1}$. Taking $\Gamma \leq G(\mathbb{Z})$ torsion-free of finite index, the quotient

$$
\mathrm{X}:=\Gamma \backslash D
$$

is a quasi-projective (locally symmetric) variety by Baily-Borel. Example $\left(\mathfrak{g}=s p_{4}\right)$

The only choice is $\mathrm{I}=2$, which gives $\mathrm{E}=-2 \mathrm{~S}^{2}$ as above, and $D=\mathfrak{H}_{2}$ (of dimension 3). Taking $\Gamma=S p_{4}(\mathbb{Z})$ gives $\mathrm{X}=\mathcal{A}_{2}$.

Taking $G_{\mathbb{C}}$ to be simple, and varying the choice of root system and special node, we get the classification of irreducible Hermitian symmetric domains: ${ }^{3}$

D	$\left(\mathcal{R}, \sigma_{\mathrm{I}}\right)$	$G(\mathbb{R})$
$\mathrm{I}_{p, n-p+1}$	$\left(A_{n \geq 2}, \sigma_{p}\right)$	$\operatorname{SU(p,n-p+1)}$
$\mathrm{II}_{n \geq 4}$	$\left(D_{n}, \sigma_{n}\right)$	$\operatorname{Spin}(2 n)$
$\mathrm{III}_{n \geq 1}$	$\left(C_{n}, \sigma_{n}\right)$	$\operatorname{Sp}(2 n, \mathbb{R})$
$\mathrm{IV}_{2 n-1 \geq 7}$	$\left(B_{n}, \sigma_{1}\right)$	$\operatorname{Spin}(2,2 n-1)$
$\mathrm{IV}_{2 n-2 \geq 6}$	$\left(D_{n}, \sigma_{1}\right)$	$\operatorname{Spin}(2,2 n-2)$
EIII	$\left(E_{6}, \sigma_{1}\right)$	$E_{6(-14)}$
EVII	$\left(E_{7}, \sigma_{7}\right)$	$E_{7(-25)}$

The example above is $\mathrm{III}_{2}\left(\cong \mathfrak{H}_{2}\right)$.
${ }^{3}$ In the table, we take for each $G(\mathbb{R})$ the simply-connected form.

Now fix

- a locally symmetric variety $\mathrm{X}=\Gamma \backslash D=\Gamma \backslash G(\mathbb{R}) / G^{0}(\mathbb{R})$,
- a point $\left\{\varphi_{0}: \mathbb{G}_{m} \rightarrow G_{\mathbb{C}}\right\} \in D$,
- a symplectic or orthogonal \mathbb{Q}-vector space (V, Q), and
- a \mathbb{Q}-linear representation $\rho: G \rightarrow \operatorname{Aut}(V, Q)$
such that $\rho \circ \varphi_{0}$ is a Hodge structure on V polarized by Q. Then the $\left\{\rho \circ g \varphi_{0} g^{-1}\right\}_{g \in G(\mathbb{R})}$ give a variation of Hodge structure over X with geometric monodromy (and derived Mumford-Tate) group G. ${ }^{4}$ We shall call this an (irreducible) Hermitian (\mathbb{R}_{-})VHS, and the construction yields bijections

| irreducible
 Hermitian
 $\mathbb{R}-\mathrm{VHS} / \mathrm{X}$ |
| :---: | | finite-dim. |
| :---: |
| irreps of |
| $G(\mathbb{R})$ |$. \rightleftarrows$| $\frac{\left\{\begin{array}{c}\text { dominant } \\ \text { integral } \lambda\end{array}\right\}}{\langle\tau\rangle}$ |
| :---: |

[^1]
Examples

(1) $V=\mathfrak{g}, Q=-B \rightsquigarrow$ "adjoint VHS " of weight 0 and level 2 .
(2) $V=\tilde{V}^{\lambda}, \mathrm{E}(\lambda)$ odd, Q alternate $\rightsquigarrow \mathrm{VHS} \tilde{\mathcal{V}}^{\lambda}$ of weight -1 :

- If $\lambda=\tau(\lambda)$, then $\tilde{\mathcal{V}}^{\lambda}$ has level $-E(\lambda)$.
- $\tilde{\mathcal{V}}^{\lambda}$ is a priori an $\mathbb{R}-\mathrm{VHS}$, but in cases of interest will be defined over \mathbb{Q} (or we can obtain this by Weil restriction).
(3) Specific examples of (2):
- $H^{1}\binom{$ abelian }{ family }$:-\mathrm{E}(\lambda)=1\left(\Longrightarrow \lambda=\omega_{i}\right.$ for some $\left.i\right)$
- Calabi-Yau VHS: $\tilde{\mathcal{V}}^{k \omega_{I}}(k \geq 1)$
- running example: $\mathcal{V}^{\omega_{1}+\omega_{2}} \subset H^{1}(A) \otimes H^{2}(A)$ (weight 3)

§3. Infinitesimal normal functions

Let \mathcal{V} be a $\mathbb{Q}-$ PVHS 5 of weight -1 over a complex manifold S, with underlying (flat) local system \mathbb{V} and associated intermediate Jacobian bundle $J(\mathcal{V})$. Form the complexes

$$
\begin{gathered}
C^{\bullet}:=\mathcal{V} \xrightarrow{\nabla} \Omega_{S}^{1} \otimes \mathcal{V} \xrightarrow{\nabla} \Omega_{S}^{2} \otimes \mathcal{V} \xrightarrow{\nabla} \cdots \\
F^{p} C^{\bullet}:=\mathcal{F}^{p} \mathcal{V} \xrightarrow{\nabla} \Omega_{S}^{1} \otimes \mathcal{F}^{p-1} \mathcal{V} \xrightarrow{\nabla} \Omega_{S}^{2} \otimes \mathcal{F}^{p-2} \mathcal{V} \xrightarrow{\nabla} \cdots \\
G r_{F}^{p} C^{\bullet}:=G r_{\mathcal{F}}^{p} \mathcal{V} \xrightarrow{\bar{\square}} \Omega_{S}^{1} \otimes G r_{\mathcal{F}}^{p-1} \mathcal{V} \xrightarrow{\bar{\longrightarrow}} \Omega_{S}^{2} \otimes G r_{\mathcal{F}}^{p-2} \mathcal{V} \xrightarrow{\bar{\longrightarrow}} \cdots
\end{gathered}
$$

of sheaves on S, noting that $\bar{\nabla}$ is \mathcal{O}_{S}-linear, and the exact sequence

$$
0 \rightarrow F^{0} C^{\bullet} \oplus \mathbb{V} \rightarrow C^{\bullet} \rightarrow \frac{C^{\bullet}}{F^{0} C^{\bullet} \oplus \mathbb{V}} \rightarrow 0,
$$

noting that the hypercohomology sheaf $\mathcal{H}^{0}\left(\frac{C^{\bullet}}{F^{\circ} C \bullet \oplus \mathbb{V}}\right)=: \mathcal{J}_{\text {hor }}^{\mathbb{Q}}$ is the sheaf of quasi-horizontal sections of $J(\mathcal{V})$.
${ }^{5} \mathcal{V}$ also denotes the sheaf of sections of the corr. vector bundle

The $J(\mathcal{V})$-valued normal functions over S are defined by admissible NF

$$
\mathbb{H}^{0}\left(S, \frac{C^{\bullet}}{F^{0} C^{\bullet} \oplus \mathbb{V}}\right)=\Gamma\left(S, \mathcal{J}_{\text {hor }}^{\mathbb{Q}}\right)=: \operatorname{NF}_{S}(\mathcal{V}) \supset \overbrace{\operatorname{ANF}_{S}(\mathcal{V})},
$$

where admissibility is a technical condition which is always met for normal functions arising from algebraic cycles. The infinitesimal and topological invariants are defined by

$$
\operatorname{ANF}_{s}(\mathcal{V}) \underset{=:(\delta,[\mathrm{ld})}{\substack{\text { conn. hom. }}} \mathbb{H}^{1}\left(F^{0} C^{\bullet} \oplus \mathbb{V}\right)
$$

where the connecting homomorphism arises from our exact sequence.

Proposition

Assume $H^{0}(S, \mathbb{V})=\{0\}$. Then [•] is injective.

Sketch: Any $\nu \in \operatorname{ANF}_{S}(\mathcal{V})$ is equivalent to an extension

$$
(*) \quad 0 \rightarrow \mathcal{V} \rightarrow \tilde{\mathcal{V}} \rightarrow \mathbb{Q}(0)_{S} \rightarrow 0
$$

of AVMHS. If

$$
[\nu]=0 \in H^{1}(S, \mathbb{V}) \cong E x t_{\pi_{1}(S)}^{1}\left(\mathbb{Q}_{s}, \mathbb{V}\right)
$$

then $\tilde{\mathbb{V}} \cong \mathbb{V} \oplus \mathbb{Q}$. Applying the assumption, $H^{0}(S, \tilde{\mathbb{V}})=\mathbb{Q}$; by the Theorem of the Fixed Part, this underlies a (constant) sub-AVMHS of $\tilde{\mathcal{V}}$. Since it is of rank 1 , it can only be of type $(0,0)$, splitting $(*)$ and rendering $\nu=0 . \square$

Corollary

If $\mathcal{V} \rightarrow \mathrm{X}=\Gamma \backslash G(\mathbb{R}) / G^{0}(\mathbb{R})$ is a Hermitian VHS (with no trivial components) and $\mathrm{rk}_{\mathbb{Q}} G>1$, then

$$
\operatorname{ANF}_{U}(\mathcal{V})=\{0\}
$$

for any Zariski open $U \subset$ X.

Sketch: Since $H^{0}(X, \mathbb{V})=\{0\}$, this follows from

- extendability: $\operatorname{ANF}_{U}(\mathcal{V})=\operatorname{ANF}_{X}(\mathcal{V})$
- Raghunathan (1967): $\{0\}=H^{1}(\Gamma, V)\left(=H^{1}(X, \mathbb{V})\right)$ which implies $[\nu]=0 . \square$

So we have to look at étale neighborhoods $\mathcal{T} \xrightarrow{3} \mathrm{X}$, which after all is expected in light of the Ceresa cycle.

$$
\text { If } \mathcal{H}_{\nabla}^{0}\left(F^{0} C^{\bullet}\right)=\{0\}, \text { then } \operatorname{NF}_{S}(\mathcal{V}) \stackrel{\delta}{\hookrightarrow} \Gamma\left(S, \mathcal{H}_{\nabla}^{1}\left(F^{0} C^{\bullet}\right)\right)
$$

Sketch: By the assumption, it suffices to show that $\mathrm{NF}_{S}(\mathcal{V})$ injects into $\mathbb{H}^{1}\left(F^{0} C^{\bullet}\right)$, which is true if $\mathbb{H}^{0}\left(C^{\bullet} / \mathbb{V}\right)$ vanishes. By the Theorem of the Fixed Part, the assumption also implies $H^{0}(S, \mathbb{V})=\{0\}$. But $\mathbb{H}^{0}\left(C^{\bullet} / \mathbb{V}\right)=H^{0}(S, \mathbb{V}) \otimes \mathbb{C} / \mathbb{Q}$. \square

Let $\mathcal{H}^{k}(j):=\mathcal{H}_{\vec{\nabla}}^{k}\left(G r_{F}^{j} C^{\bullet}\right)$. Since

$$
\mathcal{E}_{1}^{p, q}:=\left\{\begin{array}{cc}
\mathcal{H}^{p+q}(p), & p \geq 0 \\
0 & p<0
\end{array} \Longrightarrow \mathcal{H}_{\nabla}^{*}\left(F^{0} C^{\bullet}\right)\right.
$$

we have the

Corollary

Assume $\mathcal{H}^{0}(j)$ and $\mathcal{H}^{1}(j)$ vanish for $j \geq 0$. Then $\operatorname{ANF}_{\mathcal{T}}\left(\jmath^{*} \mathcal{V}\right)=\{0\}$ for all $\mathcal{T} \xrightarrow{\jmath} S$ étale.

Accordingly, we shall say that \mathcal{V} has an INF (infinitesimal normal function) if

$$
\mathcal{H}^{1}(j) \neq 0 \text { for some } j \geq 0 .
$$

Exercise: Any VHS of level 1, or level 3 CY type, has an INF.
Notice that this property makes sense for \mathbb{R} - or even \mathbb{C}-VHS (i.e. a varying Hodge flag plus \mathbb{C}-local system). So consider a Hermitian \mathbb{C}-VHS $\mathcal{V}_{\mathbb{C}}^{\lambda} \rightarrow \mathrm{X}=\Gamma \backslash D$ of weight -1 ($\mathrm{E}(\lambda)$ odd). To compute $\mathcal{H}_{\lambda}^{*=0,1}(j)$, fix $\varphi_{0} \in D$ and set

$$
\begin{aligned}
W^{0}(k, j) & :=\left\{w \in W^{0}(k) \left\lvert\, \frac{1}{2}(\mathrm{E}(w \cdot \lambda)-1)=j\right.\right\} \\
& =\left\{\begin{array}{l|l}
w \in W & \begin{array}{c}
w\left(\Delta^{+}\right) \supseteq \Delta_{0}^{+},|w|=k, \\
\text { and } \mathrm{E}(w \cdot \lambda)=2 j+1
\end{array}
\end{array}\right\}
\end{aligned}
$$

Proposition (K-K)

For any $k,\left.\mathcal{H}_{\lambda}^{k}(j)\right|_{\varphi_{0}} \cong \oplus_{w \in W^{0}(k, j)} V_{0}^{w-\lambda}$.

Sketch: Step 1 Commutativity of

implies $\oplus_{j} \mathcal{H}^{k}(j) \cong H^{k}\left(\mathfrak{n}, V^{\lambda}\right)$.
Step 2 Given $X^{*} \in \mathfrak{n}^{\vee}, v \in\left(V^{\lambda}\right)^{j-1,-j}$, the E-eigenvalues of (e.g. $k=1$)
$X^{*}, v, X^{*} \otimes v$ are $2,2 j-1,2 j+1$ respectively. So $\operatorname{im}\left\{\left.\mathcal{H}^{1}(j)\right|_{\varphi_{0}} \hookrightarrow H^{1}\left(\mathfrak{n}, V^{\lambda}\right)\right\}=\bigoplus \quad H^{1}\left(\mathfrak{n}, V^{\lambda}\right)_{\xi}$
which by Kostant

$$
\mathrm{E}(\xi)=2 \dot{\xi} \in \hat{1}+1\}
$$

$$
=\bigoplus_{\xi:(\xi)=2 j+1}\left(\oplus_{w \in W^{0}(1)} V_{0}^{w \cdot \lambda}\right)_{\xi} .
$$

Now use the fact that E is constant on each V_{0}^{μ}.

We turn to the consequences of the Proposition.
First, since $\mathrm{E}(\lambda)<0$, we have $\frac{1}{2}(\mathrm{E}(\mathrm{id} \cdot \lambda)-1)<0$ (and of course $\left.W^{0}(0)=\{\mathrm{id}\}\right)$; so $\mathcal{H}_{\lambda}^{0}(j)=\{0\}(\forall j \geq 0)$.

Next, recalling that our choice of X implies a choice of σ_{I}, it turns out that $W^{0}(1)=\left\{w_{\mathrm{I}}\right\}$. This leads to the

Corollary (K-K)

Assume that $\lambda=\tau(\lambda)$. Then $\tilde{\mathcal{V}}^{\lambda}$ has an INF
\Longleftrightarrow $\mu(\lambda):=\frac{1}{2}\left(\mathrm{E}\left(w_{\mathrm{I}} \cdot \lambda\right)-1\right) \geq 0$.

Example

($\mathfrak{g}=\mathfrak{s p}_{4}, \mathrm{I}=2, \lambda=\omega_{1}+\omega_{2}$) From previous Examples, we have $w_{2} \cdot \lambda=5 \omega_{1}-3 \omega_{2}, \mathrm{E}\left(\omega_{1}\right)=-1, \mathrm{E}\left(\omega_{2}\right)=-2$

$$
\Longrightarrow \frac{1}{2}\left(\mathrm{E}\left(w_{2} \cdot \lambda\right)-1\right)=\frac{1}{2}(-5+6-1)=0
$$

and \tilde{V}^{λ} has an INF. In fact, $\mu(\lambda)=0 \Longrightarrow H^{1}\left(X, \tilde{V}^{\lambda}\right)$ is pure of type $(0,0)$.

Theorem (K-K)

For D of tube type (and level $\left(\tilde{\mathcal{V}}^{\lambda}\right)>1$), we have a complete classification, where $a \in \mathbb{Z}_{+}$is arbitrary:

D	INF pairs (D, λ)
$\mathrm{I}_{p, p}(p \geq 2)$	$\left(\mathrm{I}_{2,2},\left\{\begin{array}{c}\omega_{3} \\ \omega_{1}\end{array}\right\}+a \omega_{2}\right),\left(\mathrm{I}_{3,3}, \omega_{3}\right)^{*}$
$\mathrm{II}_{2 m \geq 4}$	$\left(\mathrm{II}_{4}, \omega_{1}+a\left\{\begin{array}{c}\omega_{3} \\ \omega_{4}\end{array}\right\}\right),\left(\mathrm{II}_{6}, \omega_{6}\right)^{*}$
$\mathrm{III}_{n \geq 1}$	$\left(\mathrm{III}_{1},(2 a+1) \omega_{1}\right)^{*},\left(\mathrm{III}_{2}, \omega_{1}+a \omega_{2}\right),\left(\mathrm{III}_{3}, \omega_{3}\right)^{*}$
$\mathrm{IV}_{2 n-1 \geq 5}$	$\left(\mathrm{IV}_{2 n-1}, a \omega_{1}+\omega_{n}\right)$
$\mathrm{IV}_{2 n-2 \geq 6}$	$\left(\mathrm{IV}_{2 n-2}, a \omega_{1}+\left\{\begin{array}{c}\omega_{n-1} \\ \omega_{n}\end{array}\right\}\right)$
EVII	$\left(\mathrm{EVII}, \omega_{7}\right)^{*}$

The starred items correspond to VHS (over X) of CY type. The case III_{n} was analyzed previously by Nori, and $\left(\mathrm{III}_{3}, \omega_{3}\right)$ corresponds to the Ceresa cycle on \mathcal{A}_{3}. Note that the type IV domains yield two infinite families of examples.

In the non-tube case, even to obtain the VHS appearing in the cohomology of an abelian family, or VHS of CY type, we have to generalize the $\tilde{\mathcal{V}}^{\lambda}$ construction via half-twists. Given an irrep V^{λ} of \mathfrak{g} and $E \in \mathfrak{t}$ as before, let $\tilde{E}=(E, 1) \in \mathfrak{g} \oplus \mathbb{C}=\tilde{\mathfrak{g}}$, and define irreps $V^{\lambda}\left\{\frac{a}{2}\right\}$ of $\tilde{\mathfrak{g}}$ by taking

$$
V^{\lambda}\left\{\frac{a}{2}\right\}^{p,-p-1}:=\left(V^{\lambda}\right)^{p+\frac{a}{2},-p-\frac{a}{2}-1}
$$

for the $(2 p+1)$-eigenspaces of \tilde{E}, and

$$
\tilde{V}^{\lambda}\left\{\frac{a}{2}\right\}:=V^{\lambda}\left\{\frac{a}{2}\right\} \oplus V^{\tau(\lambda)}\left\{-\frac{a}{2}\right\}
$$

for the irreps of $\tilde{G}(\mathbb{R})=U(1) \cdot G(\mathbb{R})$. For $\mathrm{I}_{p, n-p}$, we study the VHS $\tilde{\mathcal{V}}_{\mathbb{R}}^{\lambda}\left\{\frac{2}{2}\right\}$ occurring in H^{*} of k-Weil ${ }^{6}$ abelian n-folds A, i.e. those with an imaginary quadratic field in $\operatorname{End}(A)_{\mathbb{Q}}$, whose eigenspaces $H_{ \pm}^{1} \subset H^{1}(A, \mathbb{C})$ have Hodge type $\left(\frac{n-k}{2}, \frac{n+k}{2}\right)$. We also show that, for irreducible HSD of any type, the only "minimal-level" C-Y Hermitian VHS with an INF have level 3. (This includes examples over $\mathrm{I}_{1, n}, \mathrm{I}_{2, n}, \mathrm{II}_{5}$, and EIII.)

[^2]
$\S 4$. Applications to algebraic cycles

Now the purpose of normal functions is to study algebraic cycles. The injectivity of δ has the following consequence:

Lemma
Let $\pi: \mathcal{X} \rightarrow S$ be a smooth proper family of varieties $/ \mathbb{C}, \mathcal{V}$ the quotient of the VHS associated to $R^{2 p-1} \pi_{*} \mathbb{Q}(r)$ by its maximal level-one sub-VHS. If \mathcal{V} has $\mathcal{H}^{0}(j)=\{0\}=\mathcal{H}^{1}(j)$ for all $j \geq 0$, then the reduced Abel-Jacobi map

$$
\overline{A J}_{X_{s_{0}}}^{p}: \operatorname{Griff}^{P}\left(X_{s_{0}}\right) \rightarrow J^{p}\left(X_{s_{0}}\right) / J_{\mathrm{alg}}
$$

is zero for very general $s_{0} \in S$.
Conversely, one might pose the

Conjecture

If $\mathcal{H}^{0}(j)=\{0\}(\forall j \geq 0)$ and $\mathcal{H}^{1}(0) \neq\{0\}$, then for some étale neighborhood $\mathcal{T} \xrightarrow{\jmath} S, \operatorname{IH}^{1}\left(\mathcal{T}, \jmath^{*} \mathbb{V}\right) \neq\{0\}$.

Together with the classification, the Lemma yields the

Theorem (Nori; K-K)

(i) $\overline{A J}^{r}=0(\forall r)$ for a very general abelian, Weil-abelian or quaternionic-abelian variety of $\operatorname{dim}>3,6$ resp. 8 . (ii) $\overline{A J}^{r}=0$ for a very general k-Weil abelian n-fold (with $k \leq n-6$) unless $r \in\left[\frac{n-k}{2}, \frac{n+k}{2}+1\right]$.
because these cases aren't on the list. Should we get excited about the cases that are?

Proposition
Assuming the Conjecture, each tube-type INF pair (except for $\left.\left(\mathrm{III}_{1}, a \omega_{1}\right)\right)$ arises from a normal function - and if the HC holds, from a family of cycles.

The last slide suggests the question: what about the Weil 4and 6 -folds $\left(\mathrm{I}_{2,2}, \mathrm{I}_{3,3}\right)$, and quaternionic 8 -folds $\left(\mathrm{II}_{4}\right)$, is special? Just as all abelian 1 -, 2-, and 3 -folds are (up to isogeny) Jacobians,

- Weil 4- and 6-folds are all 3:1 Prym varieties, and
- quaternionic 8 -folds are all "quaternionic Pryms".
(A dimension count shows this can't be true in higher dims.)
A $k: 1$ Prym variety A is (an irreducible component of) the cokernel of an embedding $J(C) \hookrightarrow J(\tilde{C})$ associated to a $k: 1$ étale morphism $\tilde{C} \rightarrow C$ of (smooth, proper, connected) curves. The Prym-Ceresa 1 -cycle $Z_{\tilde{C} / C}$ on A is the push-forward of the Ceresa cycle on $J(\tilde{C})$.

Proposition
For 2: 1 Pryms, the Prym-Ceresa cycle is algebraically equivalent to zero.

As a result, these cycles were overlooked for $k>2$.

Proposition (K-K)

For the 3: 1 Prym 6-folds associated to an étale cover with $g_{C}=4$ and $g_{\tilde{c}}=10, A J$ of the Prym-Ceresa cycle yields an nontrivial admissible normal function ν, so that $\delta \nu$ recovers the INF in the case $\left(I_{3,3}, \omega_{3}\right)$.

Sketch: To see this, we can degenerate to the picture shown, where the subscript " 0 " means "at the degenerate fiber". Accordingly, we have

$$
A_{0}=\frac{J(E) \oplus \oplus_{i=1}^{3} J\left(C_{i}^{\prime}\right)}{J(E) \oplus J\left(C^{\prime}\right)_{\Delta}} .
$$

3:1 etale

C_{0}

The main points in the argument are now:

- For general $A, \mathbb{C}\left\langle\omega, \omega^{\prime}\right\rangle=H^{3,0}(A)^{\alpha} \subset H^{3}(A)_{\mathbb{C}}^{\alpha}=\left(\mathcal{V}^{\omega_{3}}\right)^{\oplus 2}$, with each $\mathcal{V}^{\omega_{3}}$ of type $(1,9,9,1)$ and defined over \mathbb{Q}.
- Upon degeneration, writing $\Omega^{1}\left(J\left(C_{i}^{\prime}\right)\right)=\mathbb{C}\left\langle\omega_{i}^{1}, \omega_{i}^{2}, \omega_{i}^{3}\right\rangle$, ω pulls back to $\wedge_{j=1}^{3}\left(\omega_{1}^{j}+\zeta_{3} \omega_{2}^{j}+\bar{\zeta}_{3} \omega_{3}^{j}\right) \in \Omega^{3}\left(J\left(\tilde{C}_{0}\right)\right)^{\alpha}$.
- The projection of $C_{1}^{\prime+}-C_{1}^{\prime-}=\partial \Gamma_{1} \in Z_{1}\left(J\left(C_{1}^{\prime}\right)\right)$ to A_{0} has $\int_{\operatorname{pr}\left(\Gamma_{1}\right)} \omega=\int_{\Gamma_{1}} \omega_{1}^{1} \wedge \omega_{1}^{2} \wedge \omega_{1}^{3} \not \equiv 0$ (i.e. not a period) generically, by Ceresa's result for C_{1}^{\prime}.
- The degeneration of the Prym-Ceresa cycle is

$$
\sum \pi_{A}\left(C_{i}^{\prime+}-C_{i}^{\prime-}\right)=\partial \Gamma
$$

Since this is α-invariant, $\int_{\Gamma} \omega=3 \int_{\operatorname{pr}\left(\Gamma_{1}\right)} \omega \not \equiv 0$.

- So the image in the limit, hence generically, of the P-C cycle is nonzero under $J\left(H^{3}(A)^{\vee}\right) \rightarrow J\left(\left(H^{3}(A)^{\alpha}\right)^{\vee}\right)$. \square

These 3:1 Pryms dominate a locally symmetric family $\mathcal{A} \rightarrow \mathrm{X}$ of abelian varieties called Faber-Weil 6-folds.

Using Nori's trick of pulling $Z_{\tilde{C} / C}$ and ν back under Hecke correspondences, together with Raghunathan, we obtain (i) of:

Proposition

For a very general Faber-Weil 6-fold A / \mathbb{C} and $2 \leq r \leq 5$: (i) $\operatorname{Griff}^{r}(A)$ and $\operatorname{im}\left(\overline{A J}_{A}^{r}\right)$ are countably ∞-dim'l; and
(ii) $\left|\mathrm{CH}^{r}(A) / \ell\right|=\infty$ for all primes ℓ.

Similar results are expected for each INF one is able to geometrically realize, provided $\mathrm{rk}_{\mathbb{Q}} G>1$ and $\tilde{\mathcal{V}}_{\lambda}$ is "abelian".

Example

The INF $\left(\mathrm{III}_{2}, \omega_{1}+\omega_{2}\right)$ would correspond to $\operatorname{Griff}^{3}(A \times A)$, for A a very general abelian surface. I am not aware of a geometric realization.

To predict (or rule out) higher normal functions arising from indecomposable higher cycles in $K_{n}^{\text {alg }}$ of our family, one can try to classify INF pairs for $\tilde{\mathcal{V}}^{\lambda}$ of weight $-1-n$.
For tube domains, one obtains (with $a \in \mathbb{Z}_{+}$arbitrary):

$$
\left(\mathrm{I}_{2,2}, a \omega_{2}\right),\left(\mathrm{II}_{4}, a \omega_{4}\right),\left(\mathrm{III}_{1}, 2 a \omega_{1}\right),\left(\mathrm{III}_{2}, a \omega_{2}\right),\left(\mathrm{IV}_{m \geq 5}, a \omega_{1}\right)
$$

$n \geq 2$
$\left(\mathrm{III}_{1},(2 a+n-3) \omega_{1}\right)$ (that's it!)
For instance, $K_{1}^{\text {ind }}$ of a $K 3$ shows up as $\left(\operatorname{IV}_{19}, \omega_{1}\right)$, but the dearth of other cases is striking!

- Thank You -

[^0]: ${ }^{2}$ In this talk, what we shall mean by "Shimura variety" is a connected

[^1]: ${ }^{4}$ or a finite-group quotient thereof

[^2]: ${ }^{6}$ Weil abelian varieties are the case $k=0$ (corr. to tube domain $I_{p, p}$.

