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a tale of two cycles

Matt Kerr

Abstract We discuss two approaches to the computation of transcendental
invariants of indecomposable algebraic K1 classes. Both the construction of
the classes and the evaluation of the regulator map are based on the ellip-
tic fibration structure on the family of K3 surfaces. The first computation
involves a Tauberian lemma, while the second produces a “Maass form with
two poles”.
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By a seminal result of Chen and Lewis [CL], one already knows that (for fixed
lattice L) on a very general L-polarized K3 surface X, the indecomposable
K1-classes proliferate like loaves and fishes to span H1,1

tr (X,R) under the
real regulator map. However, things in general are not settled for ever: the
literature lacks a large class of concrete, nontrivial examples occurring in
modular families (with the possible exception of Collino’s examples obtained
by degenerating the Ceresa cycle [Co]1). The most natural source of such
examples should be cycles supported on singular fibers of Kodaira type In≥1
in torically-induced or Weierstrass-type internal fibrations. In this paper we
consider two families of higher Chow cycles of this type, and investigate
properties of the transcendental functions produced by the real regulator
map (and a variant reviewed in §1).

Department of Mathematics, Campus Box 1146, Washington University in St. Louis, St.
Louis, MO, 63130, USA; e-mail: matkerr@math.wustl.edu
1 Though presented on Jacobians of genus 2 curves, these can be transferred (using a
correspondence) to the corresponding family of Kummer K3 surfaces.
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The first cycle is on the family of H ⊕ E8 ⊕ E8 ⊕ 〈−12〉-polarized Kum-
mer K3’s studied by Beukers, Peters and Stienstra [BP, Pe, PS], which is
parametrized by Γ1(6)+6\H. By representing it as a family of toric hyper-
surfaces, one may produce an elliptic structure by restricting a fibration of
the ambient toric Fano threefold constructed by appropriately “slicing” its
reflexive polytope [AKMS, Ro]. In the spirit of mirror symmetry, we perform
a power series computation of the transcendental regulator for our cycle (§2,
with a technical detail resolved in §4). For our second example, we revisit the
computation of [CDKL] for the Clingher-Doran M := H⊕E8⊕E8-polarized
2-parameter family of K3’s, and prove the results (partially described there)
relating the real regulator to higher Green’s functions and the thesis of A.
Mellit [Me].

While neither wise nor foolish, nor meriting any superlative degree of com-
parison, we hope these constructions lead to something far, far better (or
just more general). The author would also like to thank Chuck Doran, James
Lewis, Greg Pearlstein, Duco van Straten, and Stefan Müller-Stach for dis-
cussions related to this paper, and to acknowledge partial support from NSF
Standard Grant DMS-1068974. We are especially grateful to Adrian Clingher
for supplying Remark 3.8.

1 Real and transcendental regulators

We shall introduce only the groups and maps we require; for a more general
treatment of cycle maps see Lewis’s lectures in this volume [Le] (or §1 of
[DK]). Let X be a smooth K3 surface over C, and consider the abelian group
of “empty rational equivalences”

K̃1(X) :=

 (finite sums)∑
qj .(fj , Dj)

∣∣∣∣ qj ∈ Q, Dj ⊂ X curves, fj ∈ C(D̃j)∗;
and

∑
qj(ıj)∗((fj)) = 0


〈(f,D) + (g,D)− (fg,D)〉

where ıj : D̃j → X is the composition of the inclusion of the curve with its
desingularization. Algebraic K1 is the quotient by Tame symbols

K1(X) := K̃1(X)
/
Tame{K2(C(X))},

with Q-coefficients understood (here and throughout). There is a “formal”
(but always zero) fundamental class map

cl : K1(X)→ Hg2,1(X) := F 2H3(X,C) ∩H3(X,Q) = {0}

which is “computed” by sending
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Z =
∑

qj .(fj , Dj) 7−→
{

ΩZ := 1
2πi
∑
qj(ıj)∗ dfjfj ∈ F 2D3(X)

TZ :=
∑
qj(ıj)∗(f−1

j (R−)) ∈ Z3
top(X)

.

Vanishing of Hg2,1(X) implies the existence of a (2, 0) current and piecewise
C∞ chain

Ξ ∈ F 2D2(X)
Γ ∈ C2

top(X)

}
such that

{
ΩZ = dΞ
TZ = ∂Γ

.

The Abel-Jacobi map

AJ : K1(X)→ J2,1(X) := H2(X,C)
H2,0(X,C)⊕H2(X,Q)

∼=
{F 1H2(X,C)}∨

H2(X,Q)

is the basic invariant, and a special case of the arithmetic Bloch-Beilinson
conjecture says it should be injective. Writing log−(·) for the (discontinuous)
branch with imaginary part ∈ (−π, π] (thought of as a 0-current), and δ(·)
for the current of integration over a chain, AJ is induced by

Z 7−→ R̃Z := 1
2πi

∑
qj(ıj)∗ log−(fj)︸ ︷︷ ︸
RZ

−Ξ + δΓ ∈ D2(X).

To spell this out, evaluating the R̃Z against a d-closed smooth test form
ω ∈ F 1A2(X) gives

AJ(Z)(ω) = 1
2πi

∑
qj

ˆ
D̃j

(log−(fj))ı∗jω +
ˆ
Γ

ω,

where Γ is defined “up to a cycle”.
Now the group which interests us is the indecomposables

K ind
1 (X) := K1(X) /image (C∗ ⊗Div(X)) ,

and it is conjecturally detected by

AJ : K ind
1 (X)→

{
F 1H2

tr(X,C)
}∨/

Htr
2 (X,Q).

Since AJ is hard to compute, one tends instead to compute one of two “quo-
tients”. The so-called transcendental regulator

Ψ : K ind
1 (X)→

{
Ω2(X)

}∨/ image
{
Htr

2 (X,Q)
}

is given (on ω2,0 ∈ Ω2(X)) by

Ψ(Z)(ω2,0) =
ˆ
Γ

ω2,0.
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Since image{Htr
2 (X,Q)} is intractable for fixed X (except for Picard rank

20), this is primarily of use variationally: if Xt is a family of K3 surfaces over
a Zariski open U ⊂ P1, carrying

• an algebraic family of cycles Zt ∈ K ind
1 (Xt),

• a smoothly varying (but possibly multivalued) family of chains Γt as above,
and

• an algebraically family of holomorphic forms ωt ∈ Ω2(Xt) with Picard-
Fuchs operator Dω

PF annihilating its periods,

then
Dω

PF

ˆ
Γt

ωt ∈ C(t)

is an invariant of {Zt} [DM, Thm. 3.2]. We will compute this “inhomogeneous
term” for the cycle in §2, with a small caveat (cf. Remark 2.6).

For the real regulator

r : K ind
1 (X)→

{
H1,1
tr (X,R)

}∨
,

which is really the imaginary part of AJ , the main difficulty is in producing
appropriate test forms. It is defined by

r(Z)(ωR) = <
{

2πi
ˆ
R̃Z ∧ ωR

}
=
∑

qi

ˆ
D̃j

log |fj |ı∗jωR,

on 2-forms ωR which must be smooth, real, d-closed, of pure type (1, 1), and
orthogonal to H1,1

alg . This approach is applied to a family of cycles in §3.
In both cases, the cycles of interest arise from an elliptic fibration of X

p ← 0,∞
X ⊃ D � P1

z

↓ ↓
P1 3 {t0}

with a nodal rational (Kodaira type I1) fiber. The class of (za, D) ∈ K ind
1 (X)

is independent of how we scale the coordinate z; it depends only on a. The
primitive class associated to such a fiber, defined up to sign, is the one
with |a| = 1. Note that its construction requires normalizing D, which can
have implications for its minimal field of definition (or its monodromy). It
has been known for a long time that similar constructions on In fibers in
modular elliptic surfaces have trivial class in K ind

1 , being in the Tame image
of Beilinson’s Eisenstein symbols [Be2]. More recent work of Asakura showed
that this is not so on elliptic “Tate surfaces” [As], but did not compute the
regulator. We defer to [CDKL] for further discussion of the context for these
computations; our personal interest lies in the novel relationships between
geometry and arithmetic they uncover through transcendental means.
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2 The Apéry family and an inhomogeneous
Picard-Fuchs equation

Our first “mathematical short story” begins with the Laurent polynomial

φ(u, v, w) := (u− 1)(v − 1)(w − 1)(1− u− v + uv − uvw)
uvw

and the toric threefold P∆ attached to its Newton polytope

∆

(whose singularity corresponding to the • shall not trouble us). The minimal
resolution Xt of the Zariski closure of {1−tφ = 0} in P∆ defines a K3 surface
for t /∈ {0, (

√
2 ± 1)4,∞} =: L, which has Picard rank 19 for general t and

is birational to the family considered in [Pe] (cf. [DK]). We shall work with
t 6= 0 small, for which the singular fibers of the internal elliptic fibration2

π : Xt → P1

(u,v,w) 7→ w

have Kodaira types

w = 0 1 ∞ w(t) 3 more near ∞
type I∗1 I5 I8 I1 3 more I1’s

More precisely, a computation shows that the I1 fibers occur at the solutions
of

0 = (t3)w4 +(3t2−2t3)w3 +(t3 +5t2 +3t)w2 +(−8t2−20t+1)w+(16t), (1)

all of which but

w(t) = −16tH(t) := −16t{1 + 20t+ 456t2 + 11280t3 + · · · }
2 In the setup of [AKMS], π is induced by slicing ∆ horizontally. This suggests a signif-
icant generalization of the computation carried out in this section. Also note that this
particular π has Mordell-Weil rank 1.
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are large (and asymptotic to −t−1 + 3e 2πi
3 jt−

2
3 + · · · for j = 0, 1, 2). With

our running assumption of “t small”, w is of course 1-to-1.
Remark 2.1. Globally speaking, (1) tells us how singular fibers swap and
collide; taking the fixed fibers into account, a resultant calculation shows
that all collisions occur for t ∈ L′ := L ∪

{
1, 27

40
}
.

On the family of K3 surfaces {Xt}, let ϕt represent a family of topological
2-cycles with class in H2

tr(Xt) and vanishing in homology at t = 0, where
Xt degenerates3 to X0 = P∆\(C∗)3. Its class is invariant about t = 0 and
unique up to scale; we fix this by saying that its image under the map Tube :
H2(Xt) → H3(P∆\Xt) is the class of the torus |u| = |v| = |w| = 1. We
shall also need relative vanishing cycles for the internal fibration. Similarly,
for w close to 1, we let ϕt,w denote a family of 1-cycles on the elliptic curves
Xt,w := π−1(w) vanishing in H1(Xt,1); and let it also denote the multivalued
family resulting from their topological continuation. The link between these
cycles is via the Lefschetz thimble

Φt,w0 :=
⋃

w∈−−→1.w0

ϕt,w ∈ C2
top(Xt),

which has monodromy Φt,w0 7→ Φt,w0 + ϕt as w0 goes about the unit circle
counterclockwise. (Here, “ϕt” is to be understood up to coboundary.) That
w0 is going around both 0 and w(t) is what is important here; that Xt,1 is
singular is not an issue. The monodromy is the same on circles of radius less
than 1 and ≥ w(t).

Let Zt ∈ K ind
1 (Xt) be the primitive class supported on Xt,w(t), and note

that Γt := Φt,w(t) bounds on TZt . Over P1\L′, the continuation of Zt has
significant monodromy, which can be eliminated by lifting to (the preimage
of P1\L′ in) a double-cover of the curve (1). However, as long as t remains
small, we need only that Zt has no monodromy about t = 0; one way to
see this is by a limiting argument, cf. Remark 2.5 below. For the family of
holomorphic 2-forms, take

ωt := 1
2πiResXt ω̂t := 1

2πiResXt

{
du
u ∧

dv
v ∧

dw
w

1− tφ(u, v, w)

}

and write also

ωt,w := 1
2πiResXt,w ω̂t,w := 1

2πiResXt,w

{
du
u ∧

dv
v

1− tφ(u, v, w)

}
.

Then we are aiming to compute
3 This degeneration is not semistable, which can be fixed by blowing up the components
of X0 at a few points; this need not trouble us.
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Ψ(Zt)(ωt) =
ˆ
Φt,w(t)

ωt = 1
2πi

ˆ w(t)

1

(ˆ
|u|=|v|=1

du
u ∧

dv
v

1− tφ(u, v, w)

)
dw

w

in terms of power series in t.
Fix real numbers 0 < η < α � 1. We will study the behavior of the

(singular, multivalued) functions

ν(t, t0) :=
ˆ
Φt,w(t0)

ωt , ν̃(t, t0) := ν(t, t0)− log(t0)
2πi

ˆ
ϕt

ωt

on the set

S := {|t| ≤ α+ η} × {α− η ≤ |t0| ≤ α+ η} ⊂ C2.

For fixed t, the previous remarks on Φt,w0 imply that ν̃ has no monodromy
in t0 about a circle of radius ≥ |t|. For fixed t0, ν̃ (or ν) has no monodromy
in t about circles of radius ≤ |t0|, while remaining finite as t→ 0; and so we
may write (uniquely)

ν̃(t, t0) =
∞∑
n=0

An(t0)tn for |t| < |t0|.

As w → w(t),
´
ϕt,w

ωt,w is asymptotic to (a constant multiple of) log(w −
w(t)), which translates to (w0−w(t)) log(w0−w(t))-type behavior for

´
Φt,w0

ωt

and thence to (t0 − t) log(t0 − t) for ν̃ (or ν). More precisely, we must have
on S

ν̃(t, t0) =
{

(t− t0) log
(
t

t0
− 1
)}

F0(t, t0) +G0(t, t0) (2)

and (therefore)

δtν̃(t, t0) = log
(
t

t0
− 1
)
F (t, t0) +G(t, t0) (3)

where F,G, F0, G0 ∈ O(S) and δt := t ∂∂t .
Clearly, the function we must compute is ν(t) := ν(t, t). By the above

formula, at least on the annulus A := {α− η ≤ |t0| ≤ α+ η}, ν̃(t) := ν̃(t, t)
is monodromy-free about 0.

Lemma 2.2. ν̃(t) extends to a holomorphic function on the disk D := {|t| <
α+ η}, and so is representable by power series on A, viz.

ν̃(t) =
∞∑
m=0

νmt
m.
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Proof. Since the family {Zt} extends to a (global algebraic) higher Chow
cycle on a cover of the total space ∪t∈P1\L′Xt, the associated higher normal
function is admissible on D\{0}. (See for example [BPS].) One easily deduces
(as in the proof of Prop. 5.28 in [SZ]) that its period ν(t), and hence ν̃(t), is of
the form

∑
a,q fa,q(t)ta logq(t) on D\{0}, where a ∈ Q ∩ [0, 1), q ∈ Z≥0, and

fa,q ∈ O(D). Any function of this form with no monodromy is in O(D). ut

The proof of the following key “Tauberian lemma” is deferred to §4:

Lemma 2.3.
∑∞
n=0 An(t)tn converges uniformly on {|t| = α}, to ν̃(t).

The computations below will show (without using Lemma 2.3!) that the
An are given by Laurent series on A with poles of order n. Assuming this,
we may apply Cauchy’s theorem and Lemma 2.3 to obtain

νm = 1
2π

ˆ
|t|=α

ν̃(t)
tm+1 dt = lim

N→∞

ˆ
|t|=α

∑N
n=0 An(t)tn

tm+1 dt

= lim
N→∞

N∑
n=0

[An(t)tn]m =
∞∑
n=0

[An(t)tn]m

=
∞∑
n=0

[An(t)]m−n , (4)

where [·]m takes themth power series coefficient. (Notice that a corollary here
is that the last sum itself is convergent.) This will justify the rearrangements
we perform below.

Fix w0 ∈ D̄∗1 (i.e. 0 < |w0| ≤ 1), and assume t 6= 0 is “sufficiently small”.
Then we have

ˆ
Φt,w0

ωt = 2πi
ˆ w0

1

(
1

(2πi)2

ˆ
|u|=|v|=1

dlogu ∧ dlogv
1− tφ(u, v, w)

)
dw

w
=

2πi
ˆ w0

1

∑
n≥0

tn(w − 1)n

wn

[ (u− 1)n(v − 1)n(1− u− v + uv − uvw)n

unvn

]
(0,0)

dw

w

where [·](0) takes the coefficient of u0v0, which in this case equals

n∑
k=0

(−w)n−k
(
n

k

)(
n+ k

n

)2
.

With this substitution, the above integral

= 2πi
∞∑
n=0

n∑
k=0

(−1)n−k
(
n

k

)(
n+ k

k

)2
tn
ˆ w0

1

(w − 1)n

wk+1 dw
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= 2πi
∞∑
n=0

tn
n∑

k, ` = 0
k 6= `

(−1)`−k
(
n

k

)(
n

`

)(
n+ k

n

)2
w`−k0 − 1
`− k

+ 2πi logw0

∞∑
n=0

tn
n∑
k=0

(
n

k

)2(
n+ k

n

)2

in which we recognize the sum in the second term as
∑∞
n=0 t

n[φn](0) =
1

(2πi)2

´
ϕλ
ωt.

Having carried out this calculation, the result can be continued in t to |t| <
|w−1(w0)| as

´
Φt,w0

ωt is holomorphic there. We conclude that for (t, t0) ∈ S
with |t| < |t0|,

ν̃(t, t0)
2πi = 1

2πi

ˆ
Φt,w(t0)

ωt −
log t0
(2πi)2

ˆ
ϕt

ωt

=
∞∑
n=0


∑ n

k, ` = 0
k 6= `

(
n
k

)(
n
`

)(
n+k
n

)2 16`−kt`−k0 H(t0)`−k−(−1)`−k
`−k

+
∑n
k=0

(
n
k

)2(n+k
n

)2 log(−16H(t0))

 tn,

and the term in braces is our 1
2πiAn(t0) from above. Interpreting powers

and log of H(t0) as power series in t0, the claim below Lemma 2.3 is now
verified. We may summarize what has been proved by saying that ν̃(t) may
be computed by substituting t0 = t in the last sum and rearranging by power
of t. Each coefficient becomes an infinite series (due to the terms with k > `)
whose convergence is nontrivial and guaranteed by the preceding argument,
as is the convergence of the resulting power series for small t. See Remark
2.6 below for the precise domain of convergence.

Performing this computation – that is, applying (4) – we find the first few
power series coefficients:

ν0

2πi = log 16−
∑
n≥1

(2n
n

)2
16nn ,

ν1

2πi = 22 + 5 log 16− 20
∑
n≥2

(2n
n

)2
16n(n− 1) ,

ν2

2πi = 1703
4 + 73 log 16− 8

∑
n≥3

(2n
n

)2
16n

259n2 − 258n+ 64
(n− 2)(2n− 1)2 .

In particular, we recognize4 the first of these as 8
πG, where G is Catalan’s

constant
∑
k≥0

(−1)k
(2k+1)2 ; one naturally wonders if the others hold arithmetic

4 cf. (for example) [DK, (6.15)ff]
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interest. The sought-for function is, of course,

ν(t)
2πi =

∑
m≥0

νm
2πit

m + log t
(2πi)2

ˆ
ϕt

ωt.

The log term can be removed by tweaking our choice of Γ by a cycle (and
hence ν by a period); this will simplify the computation with DPF. Using
results from [Pe], one can compute the periods of integral cycles ϕ, ξ, η (sent
by monodromy about t = 0 to ϕ, ξ − 12ϕ, η + ξ − 6ϕ resp.) to be

ˆ
ϕt

ωt = (2πi)2{1 + 5t+ 73t2 + 1445t3 + · · · },

ˆ
ξt

ωt = −12 log t
2πi

ˆ
ϕt

ωt + (2πi){−144t− 2520t2 − · · · },

ˆ
ηt

ωt = 6 log2 t

(2πi)2

ˆ
ϕt

ωt + log t
2πi

ˆ
ϕξ

ωt − 864t2 − 25920t3 − · · · ,

the coefficients in the first of which are just [φn](0). Replacing Γt by Γ̂t :=
Γt + 1

12ξt, changes
ν

2πi to

ν̂(t)
2πi = ν(t)

2πi + 1
12

1
2πi

ˆ
ξt

ωt = A+Bt+ · · ·

where A = ν0
2πi , B = ν1

2πi − 12.
Using [op. cit.], one finds that the Picard-Fuchs operator killing periods of

ωt is

Dω
PF = (t2 − 34t+ 1)δ3

t + 2t(t− 17)δ2
t + 3t(t− 9)δt + t(t− 5).

Applied to our “higher normal function”, this gives(
Dω

PF
ν

2πi =
)
Dω

PF
ν̂

2πi = (B − 5A) t+ h.o.t.

where

B − 5A = 10 + 5
∑
n≥1

(2n
n

)2
16nn − 20

∑
n≥2

(2n
n

)2
16n(n− 1)

= 10 + 5
∑
n≥1

(2n
n

)2
16nn(2n+ 2) > 0.

So ν̂ is not a period, and we conclude

Theorem 2.4. For very general t, (the continuation of) Zt has nontrivial
class in Kind

1 (Xt), detected by the transcendental regulator.
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Remark 2.5. The I1 fiber Xt,w(t) supporting Zt limits, as t→ 0, to the nodal
rational curve Y = {16uv = (u − 1)2(v − 1)2 , w = 0} ⊂ X0. It follows that
Xt,w(t) admits a normalization over C[[t]], justifying the statement that Zt
has no monodromy about 0.

In fact, Zt itself limits to a class Z0 ∈ H2
M(X0,Q(3)) in motivic cohomol-

ogy, and one can use this give an alternative proof of Zt’s nontriviality. More
precisely, in the sense of [DK, sec. 6] Z0 belongs to W−2H

2
M(X0,Q(3)) ∼=

CH2(Spec(C), 3) ∼= K ind
3 (C) with AJ map to C/Q(2). Now the tangent vec-

tors of Y at the singularity (u, v) = (−1,−1) have slopes ±i, which implies
that Y admits a normalization – and hence that Z0 is defined – over Q(i)
(but not Q). By Beilinson’s variant of Borel’s theorem (cf. [Be1, Ne], and
especially [DK, Prop. 6.2]) AJ of any cycle in K ind

3 (Q(i)) has imaginary part
a rational multiple of G.

With our choices above, AJ(Z0) must match up with limt→0 ν̂(t) (cf. [DK,
Prop. 6.3]). In a different guise, AJ(Z0) has been computed in [Ke, sec. 4]5
and comes out to exactly 16iG. This proves immediately that ν̂ cannot have
been a period, and satisfyingly explains the presence of 8

πG = 16iG
2πi as the

leading coefficient above.
Note that the computational method really requires little more than know-

ing φ, w(t), and DPF, and is likely to work in greater generality than the
approach outlined in the last Remark. For instance, uncovering Z0 in general
could require a nontrivial moving lemma calculation, and even here we did
not discover Z0 until the presence of G in ν̂0 suggested it.
Remark 2.6. Because there are no collisions of internal singular fibers until
t0 = (

√
2 − 1)4, Zt remains well-defined and ν̂(t) = Ψ(Zt)(ωt) monodromy-

and pole-free on Dt0 . Since Zt (hence ν̂) has monodromy about t0, this is
precisely the radius of convergence of

∑
νmt

m.
The monodromy of {Zt} means that the “inhomogeneous term” Dω

PFν̂ is
algebraic rather than rational in t. It becomes single-valued upon pullback
to the double cover of (1) which makes {Zt} globally well-defined (so that
monodromy of the pullback of ν̂ is by periods alone). It was pointed out by
D. van Straten that the curve (1) is in fact rational; it is not known whether
this is so for the double cover.

3 M -polarized K3 surfaces and a higher Green’s
function

The cycle whose real regulator we shall study appeared in §6 of [CDKL],
and we shall preface our second tale with a review of that construction,
5 where G is incorrectly identified as a transcendental number; that is the conjecture, but
its irrationality is still unproven. This has no bearing on nontriviality of 16iG modulo
Q(2).
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starting with a brief summary of material from [CD]. Let Eλ, for each
λ ∈ P1\{0, 1,∞}, denote the Legendre elliptic curve {y2 = x(x− 1)(x− λ)}.
Given (a, b) ∈ C2, the minimal resolution of{

Y 2Z − (4u3 − 3au− b)W 2Z − 1
2Z

2W − 1
2W

3 = 0
}
⊂ P2

[Y :Z:W ] × P1
u

defines a K3 surface Xa,b of Shioda-Inose type: that is, its Hodge structure
H2
tr(Xa,b) is integrally isomorphic to H2

tr(Eλ1 × Eλ2) for certain Legendre
parameters λ1, λ2. It turns out that these must satisfy j(λ1)j(λ2) = a3,
j(λ1) + j(λ2) = a3 − b2 + 1. The natural Weierstrass fibration θ : Xa,b → P1

u

has an I∗12 singular fiber over u = ∞, which gives the generic Picard rank
18. However, for a K3 we must have deg(θ∗ωXa,b/P1) = 2, which implies the
presence (for generic a, b) of 6 additional singular fibers, each of type I1. Our
cycle Za,b ∈ K ind

1 (Xa,b) will be the primitive class supported on one of these,
ignoring for the moment which one, as well as issues of sign and monodromy.

One of the achievements of [CD] was an explicit correspondence inducing
the isomorphism of Hodge structures above. To produce this, notice that the
I∗12 embeds a D+

16 lattice in H2(Xa,b,Z). This implies the existence of two
sections of θ with 2-torsion difference, translating by which gives a Nikulin
involution N . This involution has a fixed point (the node) on each I1 and
2 fixed points on the I∗12, from which one deduces that that the minimal
resolution of Xa,b/N has one I∗6 and 6 I2 fibers. This Kummer surface, which
we denote Kλ1,λ2 , fits into a diagram of the form

K̃′′λ1,λ2

π2

yyyy

π1

"" ""

K̃′λ1,λ2

π′1

||||

π′2

## ##
Eλ1 × Eλ2

2:1

/(-id)×2

%% %%

K
resolve
}}}}

resolve
!! !!

ρ

����

Xa,b

��

2:1

/N

{{{{
Ǩ′′λ1,λ2

Ǩ′λ1,λ2

P1 P1∼=
κ

oo

(5)

– where for the moment we think of (a, b) and (λ1, λ2) as fixed and very
general. Explicitly, Kλ1,λ2 can be given as the minimal resolution of Ǩλ1,λ2 :={

U2X1X2 = (X1 − V )(X1 − λ1V )(X2 − V )(X2 − λ2V )
}
⊂ P3

[X1:X2:U :V ],
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and the elliptic fibration ρ by [
∑2
i=1

(
−X

2
i

λi
+ λi+1

λi
XiV

)
− V 2 : X1X2], in

terms of which the I2 fibers lie over 1, 1
λ1
, 1
λ2
, 1
λ1λ2

, λ1λ2+1
λ1λ2

, λ1+λ2
λ1λ2

and the I∗6
fiber over ∞.

The cycle Za,b is taken to lie on the I1 fiber over κ−1(1). With the aid of
the diagram

1π π π π’ ’1 2

CC

C

C C Z

D

D

θ (1)

(ξ,   )

z z

z z

1 2

1 2

1 2

1 2 |     |a,b

1

1

2

−1

5 ODP

1 OQP

genus 6

contract
one

(( ) ,id)id
2

w/coord.
w/coord.

w/coord. w/coord.

2

of curves (rational except for D1 and Ď1) in the top half of (5), we may
construct classes inK ind

1 of Kλ1,λ2 and Eλ1×Eλ2 with the same real regulator
class as Za,b. Indeed, noting that

(π′2)∗
{

(C̃1, z̃1) + (C2, z2)
}

= Za,b,

we can set

Zλ1,λ2 := (π′1)∗
{

(C̃1, z̃1) + (C2, z2)
}
≡ 1

2(π1)∗
{

(D1, z1 ◦ ξ) + (C2, z
2
2)
}

and Wλ1,λ2 := 1
2 (π2)∗

{
(D1, z1 ◦ ξ) + (C2, z

2
2)
}
. Explicit normalization of C1

(or rather its image Č1 in Ǩλ1,λ2) shows that Zλ1,λ2 has ± monodromy in
accordance with

√
λ1(λ2−1)
(λ1−1)λ2

. Note that this function is constant on the diag-
onal.

For our test form, we now let6

ωR,λ := <
{
dx1

y1
∧
(
dx2

y2

)}
∈ A1,1(Eλ1 × Eλ2).

The maps πi, π′i are isomorphisms on H2
tr,Q, and we denote also by [ωR]K,

[ωR]X two more classes, in H1,1
tr,R of Kλ1,λ2 resp. Xa,b, such that all three agree

under pullback to K̃λ1,λ2 , K̃′λ1,λ2
. Since AJ commutes with pushforward, we

have r(Za,b) {[ωR]X} = r(Zλ1,λ2) {[ωR]K} = r(Wλ1,λ2)(ωR) =

6 we will usually drop the subscript λ



14 M. Kerr

R(λ1, λ2) := 1
2

ˆ
D1

(log |z1 ◦ ξ|)π∗2 ı∗Ď1
ωR = 1

2

ˆ
C1

log |z1|ξ∗{ı∗D1
π∗2ωR}︸ ︷︷ ︸

∈D1,1(C1)

. (6)

At this point, it is convenient to specialize to the Picard rank 19 locus λ1 =
λ2 =: λ, along which the collisions of singular fibers do not affect ρ−1(1); this
eliminates the monodromy in Z, hence that in R. Writing z = x + iy = reiφ,
the computation of (6) carried out in [CDKL] specializes to

R(λ) := R(λ, λ) = −4|λ+ 1|<
ˆ
P1

z log
∣∣∣∣z + i

z− i

∣∣∣∣ Pλ(z)Qλ(z)
|Sλ(z)| dz ∧ dz̄ (7)

where 
Pλ(z) := (λ2 − λ− 1)z4 + 2z2 + (λ3 − λ2 − 2λ+ 1)
Qλ(z) := (λ3 − λ2 − 2λ+ 1)z4 + 2z2 + (λ2 − λ− 1)
Sλ(z) := (z2 − λ)(1− λz2)(z2 + 1)

(
z2 − (1 + λ− λ2)

)
×

×
(
(1 + λ− λ2)z2 − 1

) (
z4 + (λ3 − 3λ)z2 + 1

)
.

An analytic argument [op. cit.] is required to show that limλ→1R(λ, λ) agrees
with7

R(1) = −16
ˆ
P1

log
∣∣∣ z+i

z−i

∣∣∣ r sinφ

|z2 + 1||z2 − 1|2 dx dy < 0, (8)

whereupon we have

Theorem 3.1. For very general (a, b) resp. (λ1, λ2), (the continuation of)
Za,b resp. Zλ1,λ2 , Wλ1,λ2 is real-regulator indecomposable.

We now turn to the magnificent properties of the function R. More pre-
cisely, writing

f(λ) := i

ˆ
Eλ

dx

y
∧
(
dx

y

)
, ηλ := ωR,λ

f(λ) ∈ A
1,1
R (Eλ × Eλ),

and λ : Γ (2)\H
∼=→ P1\{0, 1,∞} for the classical elliptic modular function, we

will study
Ψ(τ) := R(λ(τ))

f(λ(τ)) = r
(
Wλ(τ)

) (
ηλ(τ)

)
for τ ∈ H. As pointed out to the author by C. Doran, some of the general
results below have also appeared in A. Mellit’s thesis [Me]; we expect that a
simple exposition of these matters is nevertheless of value.

Denote by E π→ H the family of elliptic curves with fibers π−1(τ) =
C/Z 〈1, τ〉, by E(2) π(2)

→ H its fiber-product with itself, and by EU resp. E(2)
U

the restrictions to an analytic open neighborhood U in any fundamental do-
7 since

∣∣log
∣∣ z+i

z−i

∣∣∣∣ < C
∣∣z2 − 1

∣∣ for z near ±1, this clearly converges.
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main for a congruence subgroup Γ ⊂ SL2(Z). Let Y denote a (complex-
) analytic family of K̃1-cycles on the fibres of π(2). We may regard this
as an “analytic higher Chow cycle” on E(2)

U – that is, as a formal sum∑
qi.(Fi,Si) of surfaces paired with meromorphic functions Fi on their ana-

lytic desingularizations, with sum of divisors
∑
qi(Fi) = 0 in E(2)

U . Therefore,
rY :=

∑
qi log |Fi|δSi makes sense as a (1, 1) normal current on E(2)

U , of inter-
section type with respect to the fibers; likewise for the closed (2, 1) current
Ω′Y := (2πiΩY =)

∑
qi
dFi
Fi
δSi .

Write τ = X + iY. Let z = x + iy resp. z1, z2 be the usual coordinates
(modulo Z〈1, τ〉) on fibers of π resp. π(2). By abuse of notation, we have

ητ := dz1 ∧ dz̄2 + dz̄1 ∧ dz2

4Y (9)

which is in general Γ -invariant, and in case Γ = Γ (2) matches up with the
form ηλ(τ) under the isomorphism (π(2))−1(τ) ∼= (Eλ(τ))×2. We shall denote
by Hk

π(2) , Hp,qπ(2) the C∞ relative cohomology sheaves on U , and by L• the
Leray filtration on C∞ forms Ak(E(2)

U ). Calling α ∈ LaAk(E(2)
U ) π(2)-closed if

dα ∈ La+1, we have natural maps

[ ]{a}U : LaAm(E(2)
U )π(2)-cl −→ Aa(U ;Hm−a

π(2) )

to cohomology-sheaf valued forms.

Lemma 3.2. There exists a smooth form η̃ ∈ A1,1(E(2)
U ) pulling back to ητ

on fibers, and satisfying:
(i) [∂η̃]{1}U ∈ A0,1(U ;H2,0

π(2));
(ii) [∂̄η̃]{1}U ∈ A1,0(U ;H0,2

π(2)); and
(iii) ∂̄∂η̃ = 1

2Y 2 η̃ ∧ dτ ∧ dτ̄ .

Proof. Consider the C∞ uniformization F : U × (C/Z〈1, i〉)
∼=−→ EU given by

F (τ, w) := (τ,<(w) + τ=(w)). According to the easy pullback computation

F ∗
(
dz − y

=(τ)dτ
)

= <(dw) + τ=(dw),

d̃z := dz − y
=(τ)dτ ∈ A1,0(EU ) is smooth and well-defined on EU (whereas

“dz” is not), while pulling back to dz on fibers. We compute

d(d̃z) = dz̄ − dz
τ − τ̄

∧ dτ + z − z̄
(τ − τ̄)2 dτ ∧ dτ̄ ,

from which it follows that

∂(d̃z) = d̃z ∧ dτ
τ̄ − τ

, ∂̄(d̃z) = dz̄ ∧ dτ
τ − τ̄

+ z − z̄
(τ − τ̄)2 dτ ∧ dτ̄ = d̃z ∧ dτ

τ − τ̄
,
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and then (by conjugation) ∂(d̃z) = d̃z∧dτ̄
τ̄−τ .

Swtiching to E(2)
U , since

η̃ := i

2
d̃z1 ∧ d̃z2 + d̃z1 ∧ d̃z2

τ − τ̄

pulls back to ητ on fibers, it is vertically closed. More concretely, we easily
compute

∂η̃ = i
d̃z1 ∧ d̃z2

(τ − τ̄)2 ∧ dτ̄ , ∂̄η̃ = −i d̃z1 ∧ d̃z2

(τ − τ̄)2 ∧ dτ,

which gives (i)-(ii) . At this point, (iii) is easy and left to the reader. ut

The next few Lemmas deduce properties of the function

Υ (τ) := R(Yτ )(ητ ) = π
(2)
∗ (rY ∧ η̃)

on U ; of course, we have the case Y = W|U and Υ = Ψ |U (and Γ = Γ (2)) in
mind.

Lemma 3.3. We have ∆hypΥ = −2Υ , where

∆hyp := −Y 2∆ = −4Y 2 ∂

∂τ̄

∂

∂τ

is the hyperbolic Laplacian.

Proof. We shall use the fact that the pairing

π
(2)
∗ : D1,1(E(2)

U )π(2)-cl ⊗ L1A1,2(E(2)
U )π(2)-cl −→ D0,1(U)

factors, via [ ]{0}U ⊗[ ]{1}U , through D0(U ;H1,1
π(2))⊗A0,1(U ;H1,1

π(2)). In particular,
any components of type A1,0(U ;H0,2

π(2)) in the right-hand factor are killed. (A
similar observation applies to L1A2,1(E(2)

U )π(2)-cl.) Moreover, rY belongs to
the left-hand factor, with d[rY] = 1

2Ω
′
Y + 1

2Ω
′
Y.

From Lemma 3.2(ii), we have

∂̄Υ = ∂̄π
(2)
∗ (rY ∧ η̃) = π

(2)
∗

(
1
2Ω
′
Y ∧ η̃

)
+ π

(2)
∗
(
rY ∧ ∂̄η̃

)
= 1

2π
(2)
∗

(
Ω′Y ∧ η̃

)
.

Since ∂[Ω′Y] = 0,

∂∂̄Υ = −1
2π

(2)
∗

(
Ω′Y ∧ ∂η̃

)
= π

(2)
∗
(
rY ∧ ∂̄∂η̃

)
− π(2)
∗
(
∂̄[rY ∧ ∂η̃]

)
which by Lemma 3.2(i),(iii)
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= π
(2)
∗
(
rY ∧ ∂̄∂η̃

)
= 1

2Y 2π
(2)
∗ (rY ∧ η̃) dτ ∧ dτ̄ = Υ

2Y 2 dτ ∧ dτ̄ .

ut

Lemma 3.4. Let τ0 ∈ U be a CM point (i.e. quadratic irrationality), so
that π−1(τ0) is a CM elliptic curve. Assume that Yτ0 is defined over Q̄.
Then Υ (τ0) is of the form

∑
Q̄ log Q̄ (i.e., is a sum of algebraic multiples of

logarithms of algebraic numbers).

Proof. On (π(2))−1(τ0) =: E0 × E0, write D1 = E0 × {0}, D2 = {0} × E0,
D3 = ∆E0 , and D4 for the graph of multiplication by τ0. The presence of D4
makes H1,1(E0×E0), and thus [ητ0 ], algebraic. In fact, a simple computation
shows that

ητ0 ≡ α1δD1 + α2δD2 + α3δD3 + α4δD4

in H1,1, with α1 := 1−X0
2Y0

, α2 := |τ0|2−X0
2Y0

, α3 := X0
2Y0

, α4 := − 1
2 (all obviously

in Q(=(τ0))). We may assume (by Bloch’s moving lemma [Bl]) that Yτ0 =∑
i(gi, Di) withDi and gi Q̄-rational, and such thatDi intersectsDj properly

(with multiplicities all 1) away from |(gi)|. This yields immediately Υ (τ0) =

r(Yτ0)(ητ0) =
∑
i

4∑
j=1

αj

ˆ
Di

log |gi|δDj

=
∑
i,j

∑
p∈Di∩Dj

αj log |gi(p)|,

with gi(p) ∈ Q̄. ut

Next, we allow Y to fail to be a cycle over a point τ̂ ∈ U ; that is, suppose
that the 1-cycle C :=

∑
qi(Fi) is supported on

(
π(2))−1 (τ̂). We say Y is

singular at τ̂ .

Lemma 3.5. If τ̂ is a CM point, then either (i) Υ is smooth at τ̂ or (ii)
Υ ∼ c log |τ − τ̂ | as τ → τ̂ , for some c ∈ Q(=(τ̂))∗. If τ̂ is not a CM point,
then the singularity is apparent; that is, Υ remains smooth at τ̂ .

Proof. Since
∑
qi
´
Si,τ |ητ | is bounded by a constant and Fi|τ depends al-

gebraically on τ , Υ (τ) =
∑
qi
´
Si,τ (log |Fi|τ |)ητ (resp. ∂Υ∂τ̄ ) is bounded by a

multiple of log |τ − τ̂ | (resp. 1
τ−τ̂ ). As in the proof of Lemma 3.3, we have

∂̄Υ = 1
2π

(2)
∗

(
Ω′Y ∧ η̃

)
, but ∂[ΩY] = −2πiδC instead of 0. Hence

∂∂̄Υ = −1
2π

(2)
∗

(
Ω′Y ∧ ∂η̃

)
− 2πi

2 π
(2)
∗ (δC ∧ η̃)

= Υ

2Y 2 dτ ∧ dτ̄ − πicδ{τ̂},
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where c :=
´
C ητ̂ belongs to Q(=(τ̂)) by the proof of Lemma 3.4 if τ̂ is CM.

From ∆hyp (Υ − c log |τ − τ̂ |) = −2Υ it now follows that Υ−c log |τ−τ̂ |
log |τ−τ̂ | → 0.

If τ̂ is not CM, or if c = 0 above, then [C] extends to a section of H1,1
π(2),alg;

indeed, C =M· (π(2))−1(τ̂) for some surfaceM =
∑
q′iMi ⊂ E(2)

U . Subtract-
ing the decomposable cycle

∑
q′i.(τ − τ̂ ,Mi) from Y (and applying Bloch’s

moving lemma to make it properly intersect the fiber (π(2))−1(τ̂)) removes
the singularity without affecting Υ . ut

Finally, let Ē(2)
Γ

π̄→ X(Γ ) be Shokurov’s smooth compactification [Sh] of
the Kuga modular variety Γ\E(2) → Y (Γ ). (In case Γ = Γ (2), it has fibers
Eλ×Eλ for λ ∈ Y (Γ ).) Consider a (higher Chow) precycle ȲΓ =

∑
qi.(Fi,Si)

on Ē(2)
Γ , with “boundary”

∑
qi(Fi) supported on π̄−1(Ξ) for some finite set

Ξ ⊂ X(Γ ). Let ηΓ be the (nonholomorphic, real) section of the logarithmi-
cally extended Hodge bundle H1,1

π̄,e → X(Γ ) provided by (9). Asymptotics of
ΥΓ (x) := r(ȲΓ,x)(ηΓ,x) at points in Ξ ∩ Y (Γ ) are clear from Lemma 3.5, so
let κ ∈ X(Γ )\Y (Γ ) be a cusp (with local holomorphic coordinate q).

Lemma 3.6. (a) |ΥΓ | is bounded by a constant near κ. (b) If κ /∈ Ξ, then
this bound is improved to a constant multiple of 1

log |q| .

Proof. Assume for simplicity κ is unipotent, so that Ē(1)
Γ has a Néron N -

gon over q = 0. Writing ωq for a local generator of the extended relative
canonical sheaf, log |q|ηΓ,q = <(ωq,1 ∧ ω̄q,2) limits to a nonzero homology
class on π̄−1(κ). If κ /∈ Ξ, then r(ȲΓ ) restricts to a cohomology class on
π̄−1(κ), which pairs with the former to give a (finite) number. Dividing by
log |q| gives (b). For (a), the beginning of the proof of Lemma 3.5 shows that
when x ∈ Ξ, the bound is worse than that in (b) by a factor of log |q|. ut

For our purposes, a higher Green’s function G(τ) of weight 2k and level Γ
on H will be defined by the following properties:

• G is smooth and real-valued on H◦ := H\{Γ.τ̂} for some τ̂ ∈ H;
• G is Γ -invariant;
• ∆hypG = k(1− k)G (on H◦);
• G tends to zero at all cusps; and
• G(τ) ∼ c log |τ − τ̂ | (as τ → τ̂) for some c ∈ Q̄∗.

Uniqueness is clear given c, k, τ̂ , Γ : the difference of two distinct such func-
tions would be a Maass form with eigenvalue −2, which is impossible since
∆hyp is a positive definite operator. Existence is explained in [Me].

Under the conditions that τ̂ is CM and S2k(Γ ) = {0}, Gross and Zagier
[GZ] conjectured (roughly) that

for any CM point τ0, G(τ0) is of the form
∑

Q̄ log Q̄. (10)
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(Clearly, its validity is independent of c ∈ Q̄∗.) Mellit was able to prove this
for the case k = 2, τ̂ = i, Γ = PSL2(Z) using the above ideas together with
an explicit family of cycles. Noting that S4(Γ (2)) = {0}, λ(1 + i) = −1 and
λ( 1+i

2 ) = 2, our cycle leads to another case:

Theorem 3.7. Ψ is a Q̄-linear combination of two higher Green’s function of
weight 4 and level Γ (2) with τ̂ = 1+i and 1+i

2 ; moreover, it verifies conjecture
(10).

Proof. This follows from Lemmas 3.3-3.6, once we verify that W extends
to a cycle on Ē(2)

Γ \π̄−1({−1, 2}) π̄→ X(Γ )\{−1, 2}.8 Equivalently, we may
check this for Z on the (1-parameter) Kummer family, for which the following
analysis on the singular model Ǩλ,λ will suffice. Referring to (6) and (7), the
function on the nodal rational curve Č1 ⊂ Ǩλ,λ ⊂ P3 whose zero and pole
cancel at the node is z1 = z+i

z−i . By a computation in [CDKL], Č1 is a double
cover of a rational curve with parameter

u = 1− λz2

z2 − λ
, (11)

in terms of which its equation is

U2(u2 + λu+ 1)2 = V 2(u+ 1)2(u+ λ)(λu+ 1). (12)

We need to determine the values of λ for which (12) acquires a component
where z1 ≡ 0 or ∞ (⇔ z2 ≡ −1), i.e. where Ž := (z1, Č1) has boundary.

Inverting the parameter (11) to z2 = 1+λu
u+λ , this happens when λ = −1,

and also if (12) has a component with u ≡ −1, which occurs when λ = 2.
(In spite of singular fiber collisions or degeneration of the K3 at λ = 0, 1,∞,
the cycle extends.) It follows that Ž has boundary only at λ = −1, 2. In fact,
z1 limits to both 0 and ∞ on components of Č1 in each case, and so the
boundary cannot be corrected by adding a decomposable cycle. ut

So for example this shows that Ψ(ζ6) = R(ζ6)/f(ζ6) (made quite explicit
by (7)) satisfies (10). More generally, one might optimistically view (10) as
predicting (for each k, τ̂ , Γ as above) the existence of a family of indecompos-
ableK1-classes. The moral of this story is perhaps that (generalized) algebraic
cycles are far more ubiquitous, and useful, than the Hodge or Bloch-Beilinson
conjectures would suggest on their own.
Remark 3.8. In fact, we can say precisely what the linear combination in
Theorem 3.7 is. A computation by A. Clingher [Cl] shows that there is a
rational involution of the family {Kλ,λ}λ∈P1 over λ 7→ 1 − λ sending the al-
ternate fibration ρ 7→ 1−2λ+λ2ρ

(1−λ)2 (hence ρ−1(1) → ρ−1(1)) and restricting to

8 It is possible, but tedious, to instead check the asymptotics for Ψ at 0,±1, 2,∞ directly
from the formula (7), cf. the appendix to section 6 of [CDKL].



20 M. Kerr

the identity on K 1
2 ,

1
2
. Since the cycle family {Zλ,λ} is preserved by this invo-

lution, Ψ is invariant under λ↔ 1− λ, and so we get that the Q̄-coefficients
of log |λ+ 1| and log |λ− 2| in Ψ are equal.

4 Proof of the Tauberian lemma 2.3

Though we could not find this result in the literature, what follows makes
substantial use of ideas from [Ko]. We will give a fairly detailed proof, since
those working in cycles may not be familiar with this part of complex analysis.
We retain the notation of §2, with α fixed throughout.

Since F,G, F0, G0 are holomorphic on S, they are uniformly continuous
there, hence also in

S := {(t, t0) ∈ S ||t0| = α, |t| ≤ α} .

It is clear from §2 that ν̃ is (uniformly) continuous on S. Defining also

S0 :=
{

(t, t0) ∈ S
∣∣∣∣|t0| = α,

t

t0
∈ [0, 1]

}
,

we have S0 ⊂ S ⊂ S.
We work first on S0, writing t = βt0 (β ∈ [0, 1]) with t0 = αeiλ0 . Set

V (β, λ0) := ν̃
(
βαeiλ0 , αeiλ0

)
,

an(λ0) := An(αeiλ0)αneinλ0 , and sN (λ0) :=
∑N
n=0 an(λ0), so that V (β, λ0) =∑∞

n=0 an(λ0)βn for β ∈ [0, 1). We will show that as N →∞,

sN (λ0) converges uniformly to V (1, λ0) (13)

in λ0. On {|t| = α}, ν̃(t) = V (1, λ0) and
∑N
n=0 An(t)tn = sN (λ0), so (13) is

equivalent to Lemma 2.3.
The first step is to break this problem into three pieces ((i)-(iii) below).

Using9 1− βn ≤ n(1− β) for β ∈ [0, 1],

|sN (λ0)− V (β, λ0)| =

∣∣∣∣∣
N∑
n=1

an(λ0)(1− βn)−
∞∑

n=N+1
an(λ0)βn

∣∣∣∣∣
≤

N∑
n=1

n(1− β) |an(λ0)|+ 1
N

∞∑
n=N+1

n |an(λ0)|βn

9 To see this, examine the function (n− 1)− nβ + βn.
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≤ (1− β)
N∑
n=1
|nan(λ0)|+ 1

N(1− β) sup
n>N
|nan(λ0)| ,

and so∣∣∣∣sN (λ0)− V
(

1− 1
N
,λ0

)∣∣∣∣ ≤ 1
N

N∑
n=1
|nan(λ0)|+ sup

n>N
|nan(λ0)| .

Noting V (1, λ0) = ν̃
(
αeiλ0 , αeiλ0

)
, we therefore have the bound

|sN (λ0)− ν̃(t0, t0)|

≤
∣∣∣∣sN (λ0)− V

(
1− 1

N
,λ0

)∣∣∣∣+
∣∣∣∣V (1− 1

N
,λ0

)
− V (1− λ0)

∣∣∣∣
≤ 1
N

N∑
n=1
|nan(λ0)|︸ ︷︷ ︸
(i)

+ sup
n>N
|nan(λ0)|︸ ︷︷ ︸
(ii)

+
∣∣∣∣V (1− 1

N
,λ0

)
− V (1, λ0)

∣∣∣∣︸ ︷︷ ︸
(iii)

. (14)

To prove (13), we need to bound (i),(ii),(iii) uniformly in λ0 (by taking N
sufficiently large). In fact, (iii) is obvious by uniform continuity of V on S0,
and so we turn to (ii).

Now δtν̃(t, t0) =
∑∞
n=0 nAn(t0)tn in S for |t| < |t0|; moreover, for fixed

t0 with |t0| = α, the function δtν̃(t, t0) on {|t| = α} is both L1 and L2 (as
log, log2 are integrable). Working on S, with t = γt0 = βt0e

iλ = βαei(λ+λ0)

(|γ| ≤ 1), we now define

Vt(γ, λ0) := (δtν̃) (γαeiλo , αeiλ0),

which for |γ| < 1

=
∞∑
n=0

nan(λ0)γn.

By the Cauchy integral formula, for 0 < |β| < 1,

nAn(t0) = 1
2πi

ˆ
|t|=αβ

(δtν̃)(t, t0)
tn+1 dt

= 1
2πi

ˆ π

−π

(δtν̃)(βt0eiλ, t0)
(βαei(λ+λ0))n+1 iβαe

i(λ+λ0)dλ

= 1
2παnβneinλ0

ˆ π

−π
Vt
(
βeiλ, λ0

)
e−inλdλ. (15)

For fixed (small) ε > 0, the reader will readily verify that
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lim
β→1−

ˆ ε

−ε

∣∣log(eiλ − 1)− log(βeiλ − 1)
∣∣ dλ = 0.

In conjunction with (3), and the uniform continuity of Vt(γ, λ0) (in γ) on
{|γ| ≤ 1}\{arg(γ) ∈ (−ε, ε)}, this implies

lim
β→1−

ˆ π

−π

∣∣Vt(eiλ, λ0)− Vλ(βeiλ, λ0)
∣∣ dλ = 0.

Therefore, taking the limit of (15) as β → 1, we obtain

nan(λ0) = nAn(t0)αneinλ0 = 1
2π

ˆ π

−π
Vt
(
eiλ, λ0

)
e−inλdλ (16)

and then

nan(λ0 + δ)− nan(λ0) = 1
2π

ˆ π

−π

{
Vt
(
eiλ, λ0 + δ

)
− Vt

(
eiλ, λ0

)}
e−inλdλ

= 1
2π

ˆ π

−π

{
(δtν̃)

(
eiλ · αei(λ0+δ), αei(λ0+δ))− (δtν̃)

(
eiλ · αeiλ0 , αeiλ0

)}
e−inλdλ

=
1

2π

ˆ π
−π

{
log(eiλ − 1)

[
F

(
αei(λ0+λ+δ), αei(λ0+δ)

)
− F
(
αei(λ0+λ), αeiλ0

)]
+
[
G

(
αei(λ0+λ+δ), αei(λ0+δ)

)
− G
(
αei(λ0+λ), αeiλ0

)] }
e
−inλ

dλ.

By uniform continuity of F and G, the differences in square brackets can be
bounded < ε by taking δ sufficiently small. Together with L1 integrability
of log(eiλ − 1), this gives (uniform) continuity of an(λ0). Similar reasoning
shows that

´ π
−π

∣∣Vt(eiλ, λ0)
∣∣2 dλ is (uniformly) continuous in λ0.

As Vt(eiλ, λ0) is L2, Parseval gives

∞∑
n=0
|nan(λ0)|2 = 1

2π

ˆ π

−π

∣∣Vt(eiλ, λ0)
∣∣2 dλ.

The right-hand side minus the N th partial sums of the left yields a decreasing
sequence of continuous, non-negative functions limiting to 0 pointwise. A
standard argument using compactness of the circle shows this limit must be
uniform. This proves that

|nan(λ0)| → 0 uniformly in λ0,

which takes care of (14)(ii).
To treat (14)(i), let ε > 0 be given, and let N ∈ N be such that n ≥ N

=⇒ |nan(λ0)| < ε
2 (∀λ0). For all n ≤ N (and hence for all n), there exists

M ∈ N such that |nan(λ0)| ≤M . Now, taking m ≥ 2NM
ε , we have
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1
m

m∑
n=0
|nan(λ0)| ≤ ε

2 ·
1

NM

N∑
n=0
|nan(λ0)|+ 1

m

m∑
n=N+1

|nan(λ0)|

<
ε

2 + ε

2 = ε,

uniformly in λ0, which completes the proof.
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