
NOTES ON THE REPRESENTATION THEORY OF SL2(R)
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Abstract. Introductory notes with a view toward recent work on auto-
morphic cohomology, covering: (1) finite-dimensional irreducible represen-
tations; (2) parabolic induction and principal series representations; (3)
Eisenstein series; (4) modular forms; (5) cuspidal automorphic forms; and
(6) automorphic cohomology. The two appendices treat supplementary top-
ics: (I) L2(SL2(R)) and discrete series representations; and (II) Poincaré
series.

Introduction

What follows is an expanded writeup of my talks at the NSF/CBMS work-
shop on “Hodge Theory, Complex Geometry, and Representation Theory”
(Fort Worth, TX, June 18-22, 2012). Two major themes of this meeting were:

(a) the use of representation theory to study the complex geometry and auto-
morphic cohomology of arithmetic quotients Γ\D = Γ\G(R)/H of generalized
period domains (arising from Hodge theory); and

(b) the use of arithmetic geometry of such quotients Γ\D – particularly non-
algebraic ones – to attack the Langlands program for automorphic represen-
tations.

From either perspective, a central role is played by the decomposition of the
space ◦A(G,Γ) of cuspidal automorphic forms into irreducible submodules, and
the computation of certain Lie algebra cohomology groups of these submod-
ules. This connection was described at length in the lectures of P. Griffiths at
the workshop, and is exploited in [Ca, GGK, Ke] for Sp4, SU(2, 1), and groups
of higher rank.

Though the portion of automorphic representation theory involved is rela-
tively small, and (so far) limited to the archimedean setting, it is challenging
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2 MATT KERR

for a researcher starting from the Hodge-theoretic side to build the required
intuition, particularly for the concrete computations underlying the abstract
classification results. These notes are intended to help with that process, by
telling the whole story in the simplest nontrivial case (i.e., SL2), starting with
finite-dimensional representations (§1) and modular forms (§4) and showing
how infinite-dimensional (§2) and automorphic (§5) representations grow out
of them. (After §2, the discussion is limited to the discrete and principal
spherical series.) We explain how Maass forms (§5) and Eisenstein series (§3)
enter, and continue with a discussion (§6) of n-cohomology (which, while sim-
ple, may be particularly useful). This is the material which was treated in my
CBMS lectures. The two appendices (§§7-8) explain an alternative approach
to discrete series representations via L2(G), and how this story ultimately gets
related back to that in §5.

We have chosen to concentrate on developing the material in what we hope
is an intuitive and approachable manner, rather than on technical precision
and completeness (for which the reader may may consult the many excellent
references). Nontrivial but straightforward exercises are included in every
section, to engage the reader in some of the computations. These notes are
based in part on a set which was prepared by the author as a warm up to
the joint writing of [GGK] with Griffiths and Green. That set, which is in
some ways more extensive and contains solutions to many of the exercises, is
available upon request.

Remark. As suggested by the title, and in the interest of keeping the abstrac-
tion in these notes to a minimum, we have suppressed any discussion of auto-
morphic forms on the adele group SL2(A). The reader should be aware that
what are here called “automorphic representations” are only the archimedean
components thereof.

Acknowledgments: We thank Phillip Griffiths for his comments on an earlier
version of these notes, Wushi Goldring for a helpful conversation, the anony-
mous referee for corrections, and the NSF for partial support under the aegis
of Standard Grant DMS-1068974.
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1. Irreducible representations of sl2

Definition 1.1. A Lie algebra (over a field F) is a vector space g (over F) with
an antisymmetric bilinear form [ , ] : g× g→ g satisfying the Jacobi identity

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

Example 1.2. (a) For any vector space V , take g := End(V ) and [x, y] :=
xy − yx.

(b) Inside End(R2), we have

sl2,R := 〈Y,N+, N−〉 :=
〈 1 0

0 −1

 ,
 0 1

0 0

 ,
 0 0

1 0

〉

with [Y,N±] = ±2N± and [N+, N−] = Y .

Definition 1.3. A representation (V, ρ) of g is an F-linear map g
ρ→ End(V )

such that
ρ([x, y]) = [ρ(x), ρ(y)].

(i.e., a morphism of F-Lie algebras).

Exercise 1.4. Check that the Jacobi identity implies that

ad : g→ End(g)

x 7→ [x, · ]

is a Lie algebra representation.

Example 1.5. Given a finite-dimensional matrix Lie group G (over R or C)
with identity idG, consider the tangent space g = Lie(G) := TidGG. Writing
Ψg ∈ Aut(G) for conjugation by g and Ad(g) := dΨg ∈ Aut(g), one defines
ad : g→ End(g) as the differential of Ad : G→ Aut(g). From eεxeεye−εxe−εy =
idG + ε2(xy − yx)+higher-order terms, it follows that [x, y] := (adx)(y) =
xy−yx, from which the Jacobi identity is immediate – making g a Lie algebra.
If G is connected and simply-connected, and V is finite-dimensional, then there



4 MATT KERR

is a one-to-one correspondence

(1.1) representations
ρ : g→ End(V )

exp(x)7→exp(ρ(x))
//

representations
(C∞ homomorphisms)

π : G→ GL(V )(dπ)idG

oo

Now the left-to-right part of (1.1) does not apply directly to SL2(R), which
(unlike, say, SL2(C)) is not simply connected. However, there is an easy “fix”:
any complex representation of sl2,R may be bootstrapped up to a representation
of sl2,C = sl2,R⊕i ·sl2,R. Applying (1.1) gives a representation of SL2(C) which
we may restrict to SL2(R), recovering a 1-to-1 correspondence between finite-
dimensional representations of sl2,R and SL2(R). Call this (1.1)*.

Let ρ : g = sl2,R → End(V ) be a Lie algebra representation. Diagonalizing
ρ(Y ) produces a decomposition

V =
⊕
j∈J

Vj :=
⊕
j∈J

Ej(ρ(Y ))

into eigenspaces called “weight spaces”; let n := max(J) be the highest weight
occurring.1 For v ∈ Vj, we have

Y (N+v) = N+(Y v︸︷︷︸
jv

) + [Y,N+]︸ ︷︷ ︸
2N+

v = (j + 2)N+v

and similarly Y (N−v) = (j − 2)N−v, which yields a picture

Y

N N
+−

Therefore, for v0 ∈ Vn, we must have N+v0 = 0, whereupon

N+N−v0 = [N+, N−]v0 + 0 = Y v0 = nv0,

N+N
2
−v0 = [N+, N−]︸ ︷︷ ︸

Y

N−v0 +N−N+N−v0︸ ︷︷ ︸
nv

= (n+ (n− 2))︸ ︷︷ ︸
2(n−1)

N−v0,

1a priori, the weights (i.e. eigenvalues) are ordered by real part; below it will become clear
that they are integers, at least in the finite-dimensional case.
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...

lead to the general formula

(1.2) N+N
k
−v0 = k(n− k + 1)Nk−1

− v0.

Now suppose (V, ρ) is irreducible. Then the images of our highest weight
vector v0 by powers of N+ and N− must span V . By virtue of (1.2), it is clear
that {Nk

−v0}k≥0 spans V , and thus that dim Vj = 1 (∀j ∈ J).
Further assuming dim V < ∞, we must have Nm

− v = 0 but Nm−1
− v 6= 0 for

some m ∈ N. From (1.2) it follows that m(n − m + 1) = 0, so n ≥ 0 and
m = n+1. This implies −n is the lowest weight and J = {−n,−n+2, . . . , n}:

n−2−n −n+2 n

This is the picture for all finite-dimensional irreducible representations of sl2,R
(and su(2)). Under (1.1)*, the corresponding irreducible representation of
G = SL2(R) is the nth symmetric power

(1.3) Wn := Symn(St)

of the two-dimensional standard representation.
If we allow dim V =∞, then we may have n < 0, and Nk

−v 6= 0 for all k ≥ 0:

nn−2

In case −n ∈ N, this picture and its reflection

−n+2−n

are related to the discrete series representations below. The bi-infinite ladder

which has no highest or lowest weight, will correspond to principal series
representations (in case the weights are even or odd integral). However, for
infinite-dimensional representations, (1.1)* does not apply. Our next task is to
construct infinite-dimensional sl2-representations with essentially these weight
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pictures,2 in such a way that it is clear that they come from (irreducible)
representations of G.

Good general references on finite-dimensional representation theory include
[Kn1] and [FH].

2. Parabolic induction

For the remainder of these notes, G will denote SL2(R). By C∞C (G), we shall
mean the smooth complex-valued functions on G. Unless otherwise mentioned,
we consider G to act on φ ∈ C∞C (G) by right translation:

(2.1) (g0.φ) (g) := φ(gg0).

The goal of this section is to explicitly construct infinite-dimensional represen-
tations of G inside C∞C (G).

By applying Gram-Schmidt to its columns, any given g ∈ SL2(R) may be
written uniquely

g =
 √y x/

√
y

0 1/√y

 cos θ sin θ
− sin θ cos θ

 =: pτkθ =: gτ,θ

(with τ := x + iy) as the product of an upper triangular matrix with posi-
tive diagonal entries times an orthogonal matrix. This leads to the Iwasawa
decomposition

G = P︸︷︷︸
parabolic(
∗ ∗
0 ∗

)
· K︸︷︷︸

compact
= N︸︷︷︸

unipotent

· A ·M︸ ︷︷ ︸
Levi

·K,

where M = {±I} ∼= Z/2Z = P ∩K, by writing

±pτ =
 1 x

0 1

 √y 0
0 1/√y

 ±1 0
0 ±1

 .
A function φ ∈ C∞C (G) is called right K-finite if the rightK-translates {k.φ | k ∈
K} span a finite-dimensional vector space.

2In fact, Y will effectively be replaced by
(

0 1
−1 0

)
and the weights will be in i(2Z) or

i(2Z + 1), but otherwise the weight diagrams will be these.
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Let
σ : AM ∼= R∗ → C∗

be a (1-dimensional) complex representation of the Levi,

σ̃ : P → C∗

±pτ 7→ χε(±1) · yλ/2

denote its pullback (trivial on N , with λ ∈ C), and

∆P := Ad(·)|Lie(N) : P → C∗

±pτ 7→ y

the modular character. (Here χ is the nontrivial character on M , and ε = 0 or
1.)

Definition 2.1. The principal series representation induced from σ is

I±,λ := IP (σ) := IndGP (∆1/2
P σ̃︸ ︷︷ ︸
=σ̂

)

(2.2) :=

φ ∈ C∞C (G)

∣∣∣∣∣∣ φ(pg) = σ̂(p)φ(g),
φ right K-finite


(2.3)

∼=−→
restrict

f ∈ C∞C (K)

∣∣∣∣∣∣ f(±k) = χε(±1)f(k),
f right K-finite

 .
The “±” in the subscript is determined by (−1)ε.

Remark 2.2. (i) In fact I±,λ as just defined is only the underlying Harish-
Chandra ((g, K)-)module of a genuine representation of G. The latter is ob-
tained by removing the K-finite condition (which says that φ must be a finite
sum of K-eigenvectors). This larger space is closed under the action (2.1) of
G by right translation. The action of g resp. K (under which I±,λ is actually
closed) is the differential resp. restriction of this action.

(ii) In the definition, we “twist” by the square root of the modular character
in order that σ unitary (λ ∈ iR) imply IP (σ) unitary, and so that λ becomes
the so-called “Harish-Chandra parameter”.
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The reader who has not previously encountered Definition 2.1 may wonder
both why we have begun with induced representations and why their definition
takes the form (2.2). We can partially address the latter by noting that for fi-
nite groups, with (V, σ) a representation ofH ≤ G, the underlying vector space
of IndGH(σ) := V ⊗

H
C[G] consists of V -valued functions on H\G. For topolog-

ical groups, this naturally generalizes to sections of a vector bundle (of rank
dim V ), which is what (2.2) really is. More importantly, by Harish-Chandra’s
subquotient theorem, every irreducible representation of SL2(R) which is ad-
missible (i.e. having all dim Vj <∞) is a subquotient of some principal series
representation.

Turning to the computation of IP (σ), a basis for (2.3) is given by

fn(θ) := einθ with

 n even, if ε = 0
n odd, if ε = 1

.

Noting that
px0+iy0, · gx+iy,θ = g(xy0+x0)+iyy0,θ,

a basis for (2.2) is
φn(gx+iy,θ) := y

λ+1
2 fn(θ).

The correspondence between the two bases, or the two spaces more generally
(viz., φ←→ f), is given by multiplication by y λ+1

2 going one way, and evaluat-
ing at τ = i or dividing by y λ+1

2 going back. Notice that functions in (2.2) are
independent of x.) Using Remark 2.2(i) and gτ,θkφ = gτ,θ+φ, K acts via

(2.4) kφ.φn = einθφn.

We shall briefly discuss how to obtain a formula for the action of G (extend-
ing (2.4)) on the spaces (2.2)-(2.3) without the K-finite condition. Define τ̃
and θ̃ by

gτ,θ · gµ,φ =: gτ̃ ,θ̃,

so that
(gµ,φ.φ) (gτ,θ) = φ(gτ̃ ,θ̃)

and put
gµ,φ.f := gµ,φ.φ

y
λ+1

2
.
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(Here µ and φ are fixed.) In order to make this any more explicit, we need to
find τ̃ and θ̃. The idea for this is to consider the two projections

G � G/K ∼= H

gτ̃ ,θ̃ 7→ gτ̃ ,θ̃

 i

1

 =
 τ̃

1


and

G � P\G ∼= P1(R) ∼= S1

gτ̃ ,θ̃ 7→ [(0, 1)] .gτ̃ ,θ̃ =
[(
− sin θ̃, cos θ̃

)]
7→ 2θ̃

.

Exercise 2.3. (i) Compute that (gµ,φ.f) (θ) = =(µ)
λ+1

2

| cos θ−µ sin θ|λ+1 f(θ̃) by partially
carrying out this program.

(ii) Show 〈f1, f2〉 :=
´
S1 f1f2dθ is G-invariant if λ ∈ iR. Replacing the K-

finiteness by the obvious L2 condition in (2.3) therefore gives a unitary repre-
sentation of G.

(iii) Prove that dg := dx∧dy∧dθ
2πy2 is (both left and right) G-invariant.

What we are really after is the action of g by infinitesimal right translation:
given X ∈ g,

(LXφ)(g) := d

dt
φ(getX)

∣∣∣∣∣
t=0

.

Together with the action of K, this will give a (g, K)-module structure on

(2.2) hence (2.3). Since the eigenvalues of k = R
〈 0 −1

1 0

〉 are imaginary,

it will be convenient to extend C-linearly to the action of

gC = C 〈W,E+, E−〉 := C
〈 0 −i

i 0

 , 1
2

 1 i

i −1

 , 1
2

 1 −i
−i −1

〉

by defining Lie derivatives

LW := −iL( 0 1
−1 0

), LE± := 1
2L
(

1 0
0 −1

) ± i

2L
(

0 1
1 0

).
Note that [W,E±] = ±2E± and [E+, E−] = W .

To describe our approach to computing LXφ (forX ∈ sl2,R), begin by writing

gτ,θe
tX =: gτ̃ ,θ̃ = pτ̃ · kθ̃ =
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pτ ·
(

1 + t
ỹ′(0)
2y

(
1 0
0 −1

)
+ t

x̃′(0)
y

(
0 1
0 0

)
+ · · ·

)
·kθ·

(
1 + tθ̃′(0)

(
0 1
−1 0

)
+ · · ·

)

where τ̃ = x̃ + iỹ and θ̃ are considered as functions of t. Applying d
dt

and
evaluating at t = 0 gives gτ,θX =

ỹ′(0)
2y pτ

 1 0
0 −1

 kθ + x̃′(0)
y

pτ

 0 1
0 0

 kθ + θ̃′(0)pτkθ

 0 1
−1 0

 .
Taking the bottom two matrix entries alone gives(

−sin θ
√
y
,
cos θ
√
y

)
·X = ỹ′(0)

(
sin θ
2y3/2 ,−

cos θ
2y3/2

)
+ θ̃′(0)

(
−cos θ
√
y
,−sin θ
√
y

)
,

which enables us to solve for ỹ′(0) and θ̃′(0) once we fix X. The result is then
plugged into

(LXφ) (gτ,θ) = ∂φ

∂x
· x̃′(0) + ∂φ

∂y
· ỹ′(0) + ∂φ

∂θ
· θ̃′(0),

where for the functions we consider ∂f
∂x

= 0.
Applying the C-linear extension mentioned previously, we obtain for φ ∈(2.2)

(2.5) LWφ = −i∂φ
∂θ

, LE±φ = e±2iθ
{
y
∂φ

∂y
∓ i

2
∂φ

∂θ

}
,

which induces operations on (2.3); in particular, we get

(2.6) LW f = nfn , LE±fn = λ± n+ 1
2 fn±2.

(Details are left to the reader.) The LE± are commonly referred to as “raising
and lowering operators”.

Remark 2.4. From the (g, K)-module structure described by (2.6), we can im-
mediately recover the inducing parameter λ. More generally, given an arbitrary
irreducible representation of G inside C∞(G), it is less immediately obvious
how to determine which I±,λ it “belongs” to. We need an operator which com-
mutes with all LX , i.e. in Z(g) – the center of the universal enveloping algebra
– which may be regarded as comprising the left-invariant differential operators
on G.
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Exercise 2.5. Define the Casimir operator

Ω := −1
4 (LW )2 + 1

2LW − LE+LE− .

(a) Check, using [LX ,LY ] = L[X,Y ], that [Ω,LE± ] = 0 = [Ω,LW ].
(b) Show that for φ = y

λ+1
2 f, we have Ωφ = 1

4(1 − λ2)φ. Hence, applied to
any vector in our irreducible representation, Ω recovers λ up to sign.

Here are two concrete illustrations of induced representations and their sub-
quotients.

Example 2.6. (λ = 0) From (2.6), we may read off the action of E± on
I+,0 = IP (1)

−3/2

f f ff−2 0 2 4
1/2

−1/2 1/2

−1/2

3/2

and I−,0 = IP (χ)

+

f f ff
−3 −1 1 3

1

0

0

1

−1

−1

D
0 0

D
−

Clearly I+,0 is irreducible, with Casimir eigenvalue 1
4 ; such representations

arise in connection with Maass forms as we shall see later. On the other hand,
the picture shows that I−,0 splits into a direct sum D−0 ⊕D+

0 ; the summands
underlie the two limits of discrete series for SL2(R).

Example 2.7. (λ = n − 1 ∈ Z+, ± = parity of n) Applying (2.6) to I±,n−1

gives

n−1

f

D
+

n−1

fn n+2f−n+2 f n−2

n−2
W

ff −n

n−1
D

−

−n−2

(as quotient)

n−1

0

0

in which the irreducible submodules D+
n−1 and D−n−1 underlie discrete series

and the quotient I±,n−1
/
D+
n−1 ⊕D−n−1 is the finite-dimensional representation

Wn−2 in (1.3). For λ ∈ Z−, the reverse situation occurs.
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In all other cases, I±,λ is irreducible, and this produces all irreducible admis-
sible (g, K)-modules. We have also showed (by construction) that they each
have a “globalization” to an irredicble representation of G. This globaliza-
tion is not unique,3 but a unitary one is unique when it exists. The following
representations are unitarizable:

• trivial (1-dimensional quotient of I+,1) – obvious;
• spherical unitary principal series P+(ν) := I+,iν (ν ∈ R) – clear from
Exercise 2.3(ii);
• non-spherical unitary principal series P−(ν) := I−,iν (ν ∈ R∗) – ditto;
• limits of discrete series D−0 , D+

0 – ditto (since they lie in I−,0);
• discrete series D+

k , D
−
k (k ∈ Z+) – will arise inside a larger unitary

representation in §5;
• complementary series I+,λ (0 < |λ| < 1) – we will not treat these.

Finally, we should mention that there is some redundancy in our classification
of induced representations (hence of irreducible representations). Let w =(

0 1
−1 0

)
, which we can think of as representing the nontrivial element of the

Weyl group of the pair (G,K). Define a map J : C∞(N\G)→ C∞(N\G) by

(Jφ)(gx+iy,θ) :=
ˆ
x0∈R

φ(wgx0+iy,θ)dx0.

Exercise 2.8. Check that
(i) J intertwines4 the action of G (on the right), and
(ii) J(I±,λ) ⊂ I±,−λ (ignoring the K-finite restriction).
(iii) By computing Jφn, show that unless λ ∈ Z with parity opposite to the

“±”, J : I±,λ → I±,−λ is nonzero hence an isomorphism.

Good general references for admissible representations include [Kn2], [Wa],
and [Vo].

3. Eisenstein series

Let Γ := SL2(Z). In this section we shall sketch one way in which the dis-
crete series arise as (archimedean components of) automorphic representations,
3For instance, we can remove the K-finite condition or (if λ ∈ iR) replace it by an L2-
condition.
4i.e. commutes with: we are showing this is a morphism of representations
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i.e. as submodules of the space of automorphic forms on G

(3.1) A(G,Γ) :=

Φ ∈ C∞(Γ\G)

∣∣∣∣∣∣ |Φ| of polynomial growth in y,
Φ right K-finite, Ω-finite


which is a (g, K)-module under (infinitesimal) right translation. This will not
yet prove that the D±k are unitarizable, which will require the complemen-
tary perspective taken in §5 where (allowing more general Γ) we impose rapid
decrease (rather than polynomial growth) at the cusps.

Consider, for ` even, the functions

φλ,`(gτ,θ) := y
λ+1

2 ei`θ ∈ C∞(±N\G) ⊂ C∞(±ΓN\G),

where ΓN =
(

1 Z
0 1

)
. To get into C∞(Γ\G), we will need to average over

(equivalently)

±ΓN\Γ = [(0, 1)].Γ = P1(Q)

±ΓN

γ︷ ︸︸ ︷(
a b

p q

)
7→ [(p, q)] 7→ q

p
= κ

cosets relatively
prime pairs

rational
boundary

points

.

Writing γgτ,θ =: gτ̃ ,θ̃, we have

τ̃ = γ 〈τ〉 := aτ + b

pτ + q
, ỹ = Im(γ 〈τ〉) = y

|pτ + q|2
.

Exercise 3.1. Show that θ̃ = θ − arctan
(

y
x+κ

)
and thus that e2iθ̃ = e2iθ pτ̄+q

pτ+q .

We can now carry out the average, defining “Eisenstein series” on Γ\G by

Eλ,`(gτ,θ) :=
∑

±ΓN .γ∈±Γn\Γ
φλ,`(γgτ,θ)

=
∑

gcd(p,q)=1
ỹ
λ+1

2 f`(θ̃)

= y
λ+1

2 ei`θ
∑

gcd(p,q)=1

1
|pτ + q|λ+1

(
pτ̄ + q

pτ + q

) `
2

.

As a function of λ, this is evidently absolutely convergent (uniformly on com-
pact sets) for <(λ) > 1. Assume λ is not an even integer. Then writing
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ζ̃(λ + 1) = ∑
k∈Z\{0}

1
kλ+1 , (kp, kq) = (m,n), and ∑′

m,n∈Z2 := ∑
m,n∈Z2\{(0,0)},

the last displayed expression

(3.2) = y
`
2 ei`θ

 1
ζ̃(λ+ 1)

′∑
m,n∈Z2

y
λ−`+1

2

(mτ + n)λ+`+1
2 (mτ̄ + n)λ−`+1

2


=: y `2 ei`θEλ,`(τ).

Example 3.2. We recover holomorphic Eisenstein series of weight 2j on the
upper half plane as a special case:

E2j−1,2j(τ) = 1
2ζ(2j)

′∑
m,n

1
(mτ + n)2j .

A basic result is that we may meromorphically continue (in λ, fixing gτ,θ)
to obtain Eisenstein series for “most” <(λ) ≤ 1; poles occur at λ = 1 and (as
(3.2) suggests) for λ any critical zero of the Riemann zeta function. Observing
that the averaging map φ 7→ E is right G-equivariant, we conclude the

Theorem 3.3. {Eλ,`}`∈2Z gives a copy of I+,λ ⊂ A(G,Γ) for “most” λ.

Remark 3.4. Notice in particular the distinguished role played by the holo-
morphic Eisenstein series in the copy of D+

2j−1: it is the lowest-weight vector.
Before further discussing automorphic representations, we shall give a brief
review of holomorphic modular forms, as they play this role quite generally
for copies of holomorphic discrete series in A(G,Γ).

For a much more general perspective on Eisenstein series, see §5 of [Ga].

4. Modular forms

To start off a bit more generally, let Γ ≤ SL2(Z) be any arithmetic subgroup,
i.e. one that is commensurable with some congruence subgroup5

Γ(N) := ker {SL2(Z)→ SL2(Z/NZ)} .

For f ∈ O(H) and γ ∈
(

a b

c d

)
∈ SL2(Z), write

f |kγ(τ) := f(γ〈τ〉)
(cτ + d)k .

5If N = 1, Γ(N) is defined to be SL2(Z).
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Exercise 4.1. Verify that (f |kγ)|kη = f |kγη.

Definition 4.2. f belongs to the space Mk(Γ) [resp. Sk(Γ)] of modular
[resp. cusp] forms of weight k and level Γ, iff (i) f ≡ f |kγ (∀γ ∈ Γ) and
(ii) limτ→i∞(f |kγ)(τ) is finite [resp. 0] (∀γ ∈ SL2(Z)).

The definition has the following geometric interpretation. Let

E ⊃ Eτ = C/Z〈1, τ〉
↓ ↓
H 3 τ

be the universal elliptic curve, with Γ acting via

γ.(τ, u) :=
(
γ〈τ〉, u

cτ + d

)
.

Exercise 4.3. Check this action is well-defined.

Assuming Γ is neat,6 we may obtain a universal family of elliptic curves with
level structure Γ by

EΓ := Γ\E p−→ Γ\H =: YΓ.

Its kth fiber self-product admits a compactification

EkΓ → YΓ

∩ ∩
EkΓ → YΓ

due to Shokurov [Sh]. Noting that on E we have

(4.1) γ∗du = du

cτ + d
, γ∗dτ = (cτ + d)a− (aτ + b)c

(cτ + d)2 dτ = dτ

(cτ + d)2 ,

and with some more delicate work “at the boundary”, one deduces the

Proposition 4.4. For f ∈ O(H), the form f(τ)dτ ∧ du1 ∧ · · · ∧ duk descends
to Ωk+1(EkΓ)〈log EkΓ\EkΓ〉 [resp. Ωk+1(Ek+1

Γ )] if and only if f ∈ Mk+2(Γ) [resp.
Sk+2(Γ)].

6i.e. the eigenvalues of its elements generate a torsion-free subgroup of C∗. In particular,
for Γ(N) to be neat we must have N ≥ 4, so when N = 1, 2, 3 more care is required in
constructing the family and compactification.
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We will not use this interpretation until §6, so for simplicity we shall until
then take Γ = SL2(Z) (though of course the results will all generalize). In
Definition 4.2, (i) becomes

(4.2)

 f(τ + 1) = f(τ)
f(− 1

τ
) = τ kf(τ)

,

the first line of which implies

f(τ) = F (e2πiτ︸ ︷︷ ︸
=:q

) =
∑
n∈Z

anq
n;

(ii) then simply says

(4.3) an = 0 for n < 0 [resp. n ≤ 0].

Note that Γ 3 −id =⇒ there are no modular forms of odd weight.

Example 4.5. Let k ≥ 4 be an even integer; then

(4.4) Ek(τ) := 1
2ζ(k)

∑ ′
m,n∈Z2

1
(mτ + n)k ∈Mk(Γ).

A Mittag-Leffler computation shows that

(4.5) Ek(τ) = 1− 2k
Bk

∑
n≥1

σk−1(n)qn,

where σk−1(n) := ∑{
m > 0
m|n

mk−1. From the special cases E4 = 1 + 240q +

2160q2+· · · ∈M4(Γ) and E6 = 1−504q−16632q2−· · · ∈M6(Γ), one constructs
the modular discriminant

∆(τ) := E3
4 − E2

6
1728 = q − 24q2 + · · · ∈ S12(Γ)

of Weierstrass.

Exercise 4.6. Check (4.4), either by directly verifying (4.2)-(4.3), or by using
the fact that it equals Ek−1,k from (3.2).

Example 4.7. Define the Dedekind eta function

η(τ) := q
1
24
∏
`≥1

(1− q`) ∈ O(H).
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Clearly η24 is invariant under τ 7→ τ + 1, while residue theory gives that
η(− 1

τ
)24 = τ 12η(τ)24; it follows that η24 = q + · · · ∈ S12(Γ).

Now on P1 ∼= Γ\H, the local coordinate w at 0 [resp. 1, ∞] looks like
(τ − i)2 [resp. (τ − ζ3)3, q]; so dτ becomes essentially dw/

√
w [resp. dw/w 2

3 ,
dw/w]. Therefore f ∈ M2k(Γ) is equivalent to fdτ⊗k descending to a section
of OP1(−2k +

⌊
k
2

⌋
[0] +

⌊
2k
3

⌋
[1] + k[∞]) (for S2k(Γ), replace the coefficient of

[∞] by k − 1). This gives the

Proposition 4.8. For k ≥ 2, dimM2k(Γ) = dimS2k(Γ)+1 =
⌊
k
2

⌋
+
⌊

2k
3

⌋
−k+1.

Example 4.9. (a) dimS12(Γ) = 1 =⇒ η24 = ∆
(b) dimM8 = 1 =⇒ E2

4 = E8 =⇒
n−1∑
m=1

σ3(m)σ3(n−m) = σ7(n)− σ3(n)
120

for every n.

One can also show that the ring ⊕k≥0Mk(Γ) = C[E4, E6]. A good introduc-
tory reference on modular forms is [Za].

5. Cuspidal automorphic forms

Let G, Γ, dg, etc. be as above, continuing to assume for simplicity that
Γ = SL2(Z) so that there is only one cusp. Denote by ◦L2(Γ\G) the L2-
closure (with respect to Haar measure dg) ofΦ ∈ L2(Γ\G)

∣∣∣∣∣∣
ˆ 1

0
Φ
 1 x

0 1

 g
 dx = 0 (∀g ∈ G)

 .
This is a unitary representation under the action of G by right translation

(π(g0).Φ)(g) := Φ(gg0).

The irreducible subrepresentations are therefore unitary, and we are interested
in which ones appear (and with what multiplicity). By a result in represen-
tation theory, they occur discretely, so that there are countably many, and
◦L2(Γ\G) is their Hilbert direct sum.

It will be convenient to study a slightly smaller space:



18 MATT KERR

Definition 5.1. The cuspidal automorphic forms
◦A(G,Γ) := A(G,Γ) ∩ ◦L2(Γ\G)

are the smooth, Ω- and K-finite vectors in ◦L2(Γ\G); infinitesimal right trans-
lation endows them with a (g, K)-module structure.

In fact, ◦A(G,Γ) is the algebraic direct sum of the underlying Harish-
Chandra modules of the irreducible summands of ◦L2(Γ\G). Our first step
in analyzing the decomposition is to convert automorphic forms to smooth
functions on H. Now ◦A(G,Γ) is the direct sum of its K-types

◦Am(G,Γ) :=
{

Φ ∈ ◦A(G,Γ)
∣∣∣π(kθ)Φ = eimθΦ

}
,

and we define (for each m ∈ Z)

◦C∞m (H,Γ) :=


f ∈ C∞(H)

∣∣∣∣∣∣∣∣∣∣∣

• f |mγ = f for every γ ∈ Γ
•
´

Γ\H |f |
2ym−2dx ∧ dy <∞

•
´ 1

0 f(x+ iy)dx = 0 ∀y ∈ R+

• f is ωm-finite


,

where
ωm := −y2

(
∂2
x + ∂2

y

)
︸ ︷︷ ︸

∆

+ 2imy∂τ̄ + m

2

(
1− m

2

)
.

Proposition 5.2. For each m, the map f [m] : ◦Am(G,Γ)→◦ C∞m (H,Γ) defined
by

(5.1) f
[m]
Φ (τ) := y−

m
2 Φ(pτ ),

is an isomorphism.

Proof. (Sketch) The main idea is to write down an inverse map

Φ[m] : ◦C∞m (H,Γ)→ ◦Am(G,Γ),

namely

(5.2) Φ[m]
f (gτ,θ) := eimθy

m
2 f(τ).

Given f ∈ C∞(H), indeed one has f [m]
Φ[m]
f

(τ) = y−
m
2 Φ[m]

f (pτ ) = f(τ), while for

Φ satisfying Φ(gτ,θ+θ0) = eimθΦ(gτ,θ), we obtain Φ[m]
f

[m]
Φ

(gτ,θ) = eimθy
m
2 f

[m]
Φ (τ) =
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eimθΦ(pτ ) = Φ(gτ,θ); however, there are still all the Γ-automorphy, L2, cuspi-
dal, and finiteness conditions to match up. We shall check the first of these:
note that the right-hand side of (5.2)

= eimθ
f(pτ 〈i〉)

(0i+ 1√
y
)m

= eimθ(f |mpτ )(i) =
(f |mpτ )(kθ〈i〉)

(−i sin θ + cos θ)m = (f |mpτ |
m
kθ

)(i)

so that

(5.3) Φ[m]
f (gτ,θ) = (f |mgτ,θ)(i),

and then

(f [m]
Φ |mγ )(τ) =

(f [m]
Φ |mγ |mpτ )(i)
y
m
2

(5.3)= y−
m
2 Φ[m]

f
[m]
Φ

(γpτ ) = y−
m
2 Φ(γpτ ).

Assuming Φ is left Γ-invariant, the last expression

= y−
m
2 Φ(pτ ) = f

[m]
Φ (τ)

as desired. �

Exercise 5.3. Check that the remaining conditions identify; in particular,
show (referring to Exercise 2.5) that

ωm = f [m] ◦ Ω ◦ Φ[m].

Remark 5.4. For m odd, ◦Am(G,Γ) = 0 since −I ∈ Γ =⇒ Φ(g) = Φ(−g) =
Φ(geiπ) = π(kπ)Φ(g) = −Φ(g).

The next step is to use the isomorphisms of Proposition 5.2 to explicitly
realize the (g, K)-module structure on ◦A(G,Γ), on the left-hand side of

◦C∞(H,Γ) :=
⊕
m∈Z

◦C∞m (H,Γ) ∼=
⊕
m∈Z

◦Am(G,Γ).

The formulas (2.5) for the action of the Lie derivatives were for functions on
G which are constant in x. Redoing the computation without this assumption
(to get the missing ∂x term) gives

(5.4) LW = −i∂θ, LE+ = e2iθ
{

2iy∂τ −
i

2∂θ
}
, LE− = e−2iθ

{
−2iy∂τ̄ + i

2∂θ
}



20 MATT KERR

for the action of g on ◦A(G,Γ); it is clear that LE± sends ◦Am(G,Γ) to
◦Am±2(G,Γ). To transfer these to ◦C∞(H,Γ), one defines

L
[m]
W := f [m] ◦ LW ◦ Φ[m] : ◦C∞m (H,Γ)→ ◦C∞m (H,Γ),

L
[m]
E± := f [m±2] ◦ LE± ◦ Φ[m] : ◦C∞m (H,Γ)→ ◦C∞m±2(H,Γ)

and computes that

(5.5) L
[m]
W = m, L

[m]
E− = −2iy2∂τ̄ , L

[m]
E+ = 2i∂τ + m

y
;

these then “paste together” to give operators LW , LE± on all of ◦C∞(H,Γ).

Exercise 5.5. Verify the formulas (5.4) and (5.5).

From the form of LE−we arrive at the first main result.

Theorem 5.6. The number of independent copies of D+
m−1 (m ≥ 2) in ◦A(G,Γ)

is zero for m odd and
⌊
m
4

⌋
+
⌊
m
3

⌋
− m

2 for m even.

Proof. We claim that

(5.6) Hom(g,K)(D+
m−1,

◦A(G,Γ)) ∼= Sm(Γ),

whereupon the result follows from taking dimensions on both sides. Indeed,
the left-hand side of (5.6) identifies with the space kerLE− ∩ ◦Am(G,Γ) ∼=
kerLE− ∩ ◦C∞m (H,Γ) of lowest-weight vectors in weight m. Since kerLE− =
ker ∂τ̄ is just the holomorphic functions, this identifies withf ∈ O(H)

∣∣∣∣∣∣ • f |mγ = f for all γ ∈ Γ
•
´ 1

0 (a0 + a1q + · · · )dx = 0

 ,
i.e. the cusp forms of weight m. �

Remark 5.7. (i) The number of copies of D−m−1 in ◦A(G,Γ) is the same, since
complex conjugation Φ 7→ Φ̄ inverts weights and LE± = LE∓ . On H, this is

◦C∞m (H,Γ)→ ◦C∞−m(H,Γ)

f 7−→ ymf.

(ii) An obvious corollary of the theorem is that the discrete series are unitary,
at least for those occurring with positive multiplicity (though this issue can be
eliminated by using more general Γ). See §7 for another approach.
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(iii) The identification (5.6) means that to each cusp form f is attached a
cuspidal automorphic representation πf . In the literature, the representation
is itself often referred to (in a standard abuse of notation) as a cusp form.

It remains to determine which “bi-infinite ladder” type irreducible repre-
sentations live inside ◦A(G,Γ). By Remark 5.4, these must pass through
◦A0(G,Γ); and we know that they must belong to the list of unitarizable rep-
resentations from §2. Now

◦C∞0 (H,Γ) =

f ∈ C
∞(Γ\H)

∣∣∣∣∣∣∣∣∣
•
´

Γ\H |f |
2 dx∧dy

y2 < 0
•
´ 1

0 f(x+ iy)dx = 0
• f is ω0-finite


=
⊕
ξ∈Ξ

◦C∞0 (H,Γ) ∩ ker{ω0 − ξ}

=:
⊕
ξ∈Ξ
Mξ,

where Ξ(⊂ C a priori) is some countable index set and ω0 = −y2∆ is the
hyperbolic Laplacian.

Definition 5.8. The elements ofMξ are the Maass cusp forms of eigenvalue
ξ.

A short computation using integration by parts

〈−y2∆f, f〉 =
ˆ

Γ\H
(−y2∆f)f̄ dx ∧ dy

y2 =
ˆ

Γ\H


∣∣∣∣∣∂f∂x

∣∣∣∣∣
2

+
∣∣∣∣∣∂f∂y

∣∣∣∣∣
2
 dx ∧ dy > 0

shows that ω0 is positive definite, so that Ξ ⊂ R+.
If I+,λ(∼= I+,−λ) is an irreducible representation occurring in ◦A(G,Γ), then

by Exercise 2.5 Ω operates as multiplication by 1
4(1−λ2) on it. It follows that

(5.7) Hom(g,K)(I+,λ,
◦A(G,Γ)) ∼=M 1

4 (1−λ2),

and ω0 > 0 then forces 1
4(1 − λ2) > 0. We have therefore either 0 < |λ| < 1

(and I+,λ in the complementary series) or λ ∈ iR (and I+,λ in the principal
spherical series). In fact, a result of Selberg says that for Γ = SL2(Z) (as we
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are assuming) Maass forms must have eigenvalue ξ ≥ 1
4 , eliminating the first

option.7 Writing λ = iν and taking dimensions in (5.7) gives the

Theorem 5.9. The number of independent copies of P+(ν) occurring in ◦A(G,Γ)
is given by dimM 1+ν2

4
.

In conclusion, ◦A(G,Γ) is the algebraic (countable) direct sum of (g, K)-
modules of type D+, D−, and P+ with multiplicities described by Theorems
5.6 and 5.9.

Remark 5.10. The Eisenstein series of §3 are a complement to this in the sense
that (a) they lie outside ◦A(G,Γ) (even in some cases A(G,Γ) ∩ L2) and (b)
λ varies continuously.

Some excellent introductory notes are [Ga] for automorphic forms and [Sc]
for discrete series. (In particular, Gan’s notes treat automorphic forms on
SL2(A).)

6. Cohomology

We now shall permit Γ ≤ SL2(Z) to be any arithmetic subgroup, so that
◦Am(G,Γ) can be nonzero for m odd, and limits of discrete series D±0 and
non-spherical unitary principal series I−,iν can occur. Write

g = k⊕ n⊕ n+ = C〈W 〉 ⊕ C〈E−〉 ⊕ C〈E+〉.

In general, the Lie algebra cohomology H∗(n, Vπ) of a representation (Vπ, π) of
G(= SL2(R)) with respect to n is cohomology of a complex

(6.1) 0→ Vπ
d→ n∨ ⊗ Vπ

d→
2∧
n∨ ⊗ Vπ

d→ · · · .

K acts by Ad on n (and of course also on Vπ) hence on (6.1) and H∗(n, Vπ).
In this case, (6.1) is simply

(6.2) 0 // Vπ
d // Hom(n, Vπ) //

evE− ∼=
��

0

Vπ

7The generalization of this to other choices of Γ, which is not known, is a version of the
Generalized Ramanujan Conjecture (cf. [Sa] for an even more general discussion).
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where for v ∈ Vπ
(dv)(E−) = E−.v,

and if Vπ is a subrepresentation of ◦A(G,Γ) then E−.v means LE−v. In any
case, (6.2) gives H0(n, Vπ) ∼= ker(E−) = space of lowest weight vectors

H1(n, Vπ) ∼= coker(E+) = space of highest weight vectors
.

For Vπ one of the irreducible representations we have classified, a quick look
at (2.6) shows that this can only be nonzero for discrete series and the two
limits of discrete series. More precisely, we have

Proposition 6.1. For Vπ an admissible irreducible representation of G,

H0(n, Vπ)k =

 C if k ≥ 1 and V = D+
k−1

0 otherwise
and

H1(n, Vπ)k =

 C if k ≤ 1 and V = D−1−k
0 otherwise

,

where the subscript indexes K-eigenspaces.

Remark 6.2. (a) Note that in the H1 case, n∨ contributes +2 to the K-type.
(b) The fact that only two representations have any cohomology in weight

k reflects a general result of Casselman and Osborne [CO].

Denoting the unitary dual of SL2(R) by Ĝ, we know that

(6.3) ◦A(G,Γ) =
⊕
π∈Ĝ

V ⊕mπ(Γ)
π ,

where only countably many of the mπ(Γ) are nonzero. From the foregoing, it
is clear that H∗(n, ◦A(G,Γ)) singles out DS and LDS representations inside
the cuspidal automorphic forms. To see the implications of this observation
for cohomology in the geometric setting, we assume (for simplicity) that Γ is
neat and reintroduce the elliptic modular surface EΓ

p→ YΓ of §4.
Writing ω := p∗Ω1

EΓ/YΓ
for its Hodge bundle, we see from (4.1) that ω has

formal K-type −1 and that the canonical bundle KYΓ
∼= ω⊗2. Now ω admits

a canonical extension ω̄ → Y Γ (compatible with taking tensor powers), with a
Hermitian metric of logarithmic growth along D := Y Γ\YΓ. Using Proposition
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4.4 we find that

Γ(YΓ, ω̄
⊗k) = Mk(Γ) and Γ(YΓ, ω̄

⊗k(−D)) = Sk(Γ);

in particular, we have

(6.4) KYΓ
= ω̄⊗2(−D).

We are now ready to introduce a “toy model” related to the spaces studied
in [GGK, sec. 4].

Definition 6.3. The cuspidal automorphic cohomology of YΓ is

S∗(YΓ, ω
⊗k) := ker

{
H∗(YΓ, ω̄

⊗k)→ H∗(D, ω̄⊗k|D)
}
.

This turns out to be equal to the L2 Dolbeault cohomology

H∗(2)(YΓ, ω
⊗k)

= H∗
{(∧ •n∨ ⊗A2(G,Γ)⊗ C−k

)K}
,

where ∧ •n∨ corresponds to antiholomorphic differentials in the Dolbeault com-
plex, K acts on C−k through the character e−ikθ, ( )K denotes K-invariants,
and A2 denotes L2 automorphic forms. Nothing is lost here by replacing the
latter by cuspidal forms,8 and so the last displayed expression

(6.5) = H∗(n, ◦A(G,Γ))k

=
⊕
π∈Ĝ

H∗(n, Vπ)⊕mπ(Γ)
k

using (6.3). By Proposition 6.1, H∗(n, Vπ)k is trivial or 1-dimensional. Rea-
soning as in the proof of Theorem 5.6 brings us to the essentially tautological
result

(6.6) S0(YΓ, ω
⊗m) = Hom(g,K)

(
D+
m−1,

◦A(G,Γ)
) ∼= Sm(Γ),

along with (noting 1− (2−m) = m− 1) the more interesting statement
(6.7)
S1(YΓ, KYΓ⊗(ω∨)⊗m) = S1(YΓ, ω

⊗2−m) = Hom(g,K)
(
D−m−1,

◦A(G,Γ)
) ∼=

c
Sm(Γ),

8One way to see this is that only discrete series representations contribute, and for each pair
D+

m−1 ⊕ D
−
m−1 in A2(G,Γ), the lowest weight vector for the D+

m−1 is an L2 holomorphic
automorphic form in the sense of [Bo] hence cuspidal by Cor. 7.10 of [op. cit.].
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where “∼=
c
” indicates a conjugate linear isomorphism.

Together, (6.6) and (6.7) lead to an “explicit” proof of Serre duality for YΓ.
Recalling dg = dx∧dy∧dθ

2πy2 , the positive-definite inner product

〈Φ1,Φ2〉 =
ˆ

Γ\G
Φ1Φ2dg

on ◦A(G,Γ) becomes the Petersson inner product

〈f1, f2〉m =
ˆ

Γ\H
f1f2y

mdx ∧ dy
y2

on Sm(Γ). Altogether, we get a composite isomorphism

(6.8) S0(YΓ, ω
⊗m)∨

SD
∼=

44
S0(YΓ, ω

⊗m)∼=
c

〈·,f〉m 7→f
oo

∼=
c

// S1(YΓ, KYΓ ⊗ (ω∨)⊗m)

recovering Serre duality in this case:

Exercise 6.4. Check S0(YΓ, L) = H0(YΓ, L(−D)) and S1(YΓ, L) = H1(YΓ, L);
then apply (6.4).

But in fact we have much more: on the level of representatives, the isomor-
phism (6.7) is given by complex conjugation

Sm(Γ) 3 f7→

eimθy
m
2 f = Φf ∈ D+

m−17→

c.c. ↓∼=
c

e−imθy−
m
2 (ymf̄) = Φf ∈ D−m−17→

S1(YΓ, KYΓ ⊗ (ω∨)⊗m) 3 ymf̄ dτ̄
y2 (⊗dτ)

(where we think of dτ̄
y2 as having formal weight +2). This does three things:

• makes “SD” (6.8) in some sense the identity map;
• gives us explicit representatives of S1(YΓ, · · · ); and
• anticipates a special case of the Penrose transforms used in [Ca, GGK,
Ke].9

9cf. §5 of [Ke] for example.
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Remark 6.5. If one takes instead n = C
〈 0 1

0 0

〉, Frobenius reciprocity

tells us that H∗(n, Vπ) is essentially always nonzero for admissible irreducible
representations Vπ, as it has to recover the original representation of the Levi
we induced from. While less interesting from our point of view, this observation
plays a crucial role in the classification of admissible representations (cf. for
example [Wa] or, for a shortcut, the very nice review [Co]).

Remark 6.6. In the more general setting of [GGK, sec. IV] where the analogue
of YΓ is non-algebraic, we cannot define S∗(· · · ) as in Definition 6.3. Hence
(6.5) itself becomes the definition of cuspidal automorphic cohomology; a chal-
lenging problem would be to find some kind of equivalent geometric definition,
perhaps via L2 cohomology, or – even better – in the context of the partial
compactifications [KU] of Kato and Usui.

7. Appendix I: L2(G) and the {D±m}

Discrete series are, by definition, the irreducible representations occurring
in the discrete spectrum of L2(G). This is obviously a more natural “proof”
of their unitaricity than the approach taken (for different reasons) in §5, so we
would be remiss not to briefly treat this story.

With G = SL2(R) and dg as above, L2(G) is the completion of{
φ ∈ C∞(G)

∣∣∣∣∣
ˆ
G

|φ|2dg <∞
}

;

G acts via π (right translation) and π̃ (left translation: (π̃(g0).φ)(g) := φ(g−1
0 g)).

Write
L2(G)m :=

{
φ ∈ L2(G)

∣∣∣π(kθ).φ = eimθφ
}
,

L2(G)n :=
{
φ ∈ L2(G)

∣∣∣π̃(kθ).φ = einθφ
}
,

L2(G)mn := L2(G)m ∩ L2(G)n
for the weight spaces of L2(G). We shall also be interested in the spaces

L2(H, µm) :=
{
f ∈ C∞(H)

∣∣∣∣∣
ˆ
H

|f|2dµm
}
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where dµm := ym−2dx ∧ dy, and L2
hol(H, µm) := ker(∂̄) ⊂ L2(H, µm), which

carry an action of G by
π̃m(g).f := f|mg−1 .

Exercise 7.1. Check that π̃m is unitary.

With f [m] and Φ[m] given by the formulas (5.1)-(5.2), we have isomorphisms
of representations

(7.1) (L2(H, µm), π̃m)
Φ[m]

∼=
--

(L2(G)m, π̃) .
f [m]

ll

since

Φ[m]
(π̃m(σ).f)(g) = Φ[m]

f|m
σ−1

(g) (5.3)= f|mσ−1|mg (i) = f|mσ−1g(i) = Φ[m]
f (σ−1g)

= (π̃(σ).Φ[m]
f )(g).

Let φ be a lowest weight vector for a copy of D+
m−1 in (L2(G), π). Consider

the diagram

(7.2) (L2(H, µm), π̃m)

=L[m]
E−−2iy2∂τ̄

��

Φ[m]

∼=
// (L2(G)m, π̃)

LE−
��

(L2(H, µm−2), π̃m−2) Φ[m−2]

∼=
// (L2(G)m−2, π̃)

which commutes essentially by (5.5) (and the fact that left and right trans-
lations commute). Since φ ∈ ker(LE−) ∩ L2(G)m, (7.2) makes it clear that
f

[m]
φ ∈ L2

hol(H, µm). Conversely, it is clear that given any f ∈ L2
hol(H, µm), Φ[m]

f

generates a copy of D+
m−1 in (L2(G), π). We claim that

Proposition 7.2. (L2
hol(H, µm), π̃m) ∼= D−m−1(∼= (D+

m−1)∗) for each m > 1.
(For m ≤ 1 it is zero.)

Assuming this, we have constructed an embedding ofD+
m−1⊗D−m−1 in L2(G),

which is bi-equivariant in the sense that π restricts to the action on D+
m−1 and

π̃ to the action on D−m−1. Going through a similar process for every D+
k and
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D−k , we recover the full discrete spectrum(⊕̂
m>1

D+
m−1⊗̂(D+

m−1)∗
)
⊕
(⊕̂
m>1

D−m−1⊗̂(D−m−1)∗
)

in L2(G).

Proof. To verify Proposition 7.2, it will suffice to show (for m ≥ 2) that

L2
hol(H, µm)k :=

{
f ∈ L2

hol(H, µm) | π̃m(kθ).f = eikθf
}

is 1-dimensional for k = −m,−m−2,−m−4, . . . and trivial otherwise. (Look
at the list of unitary representations of G.)

Indeed, writing ` = −k, we have

(7.3) f(k−1
θ 〈τ〉)

(τ sin θ + cos θ)m = e−i`θf(τ) (∀θ, τ)

hence in particular (noting k−1
θ 〈τ〉 = τ cos θ−sin θ

τ sin θ+cos θ =⇒ k−1
θ 〈i〉 = i)

f(i)
eimθ

= e−i`θf(i) (∀θ).

This leaves us with the two possibilities ` = m or f(i) = 0.
Consider the first case. If Q is the quotient of two holomorphic functions

satisfying (7.3) with ` = m, then

Q(k−1
θ 〈τ〉) = Q(τ) (∀θ),

which implies (by basic complex analysis) that Q is constant. Further, setting
fm,0(τ) := 1

(τ+i)m we have

fm,0|mk−1
θ

(τ) = 1(
τ cos θ−sin θ
τ sin θ+cos θ + i

)m
(τ sin θ + cos θ)m

= e−imθ

(τ + i)m .

Therefore, fm,0 is the generator of L2
hol(H, µm)−m if the latter is nonzero.

Turning to the second case, suppose f(i) = 0 (and ` possibly different from
m). Then F (τ) := f(τ)

fm,0(τ) satisfies

F (k−1
θ 〈τ〉) = e−i(`−m)θF (τ).
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This is only possible if F (τ) is a power of τ−i
τ+i . Since this function transforms

under k−1
θ by e−2iθ, `−m must also be even. So we define

(7.4) fm,α(τ) :=
(
τ − i
τ + i

)α 1
(τ + i)m .

It remains to consider the question of when fm,α is L2 with respect to dµm.
For fm,0, we have ˆ

H

ym−2

|τ + i|2m
dx ∧ dy <∞ ⇐⇒ m > 1,

so that L2
hol(H, µm) = {0} ⇐⇒ m ≤ 1. For fm,α,ˆ

H

∣∣∣∣τ − iτ + i

∣∣∣∣2α ym−2

|τ + i|2m
dx ∧ dy <∞ ⇐⇒ m > 1 and α > −1,

i.e. for our purposes m ≥ 2 and α ≥ 0. �

The proof gives at once the following

Corollary 7.3. For m ≥ 2, we have

L2
hol(H, µm) =

⊕̂
α≥0L

2
hol(H, µm)−(m+2α),

where the weight spaces on the RHS are 1-dimensional, with generator fm,α.

Exercise 7.4. (For readers who wish to check explicitly that the fm,α give a
basis for D−m−1.)

(a) Prove that composing Φ[m] with complex conjugation and inversion
Φ(g) 7→ Φ(g−1) gives an embedding

(
L2

hol(H, µm), π̃m
)
↪→ (L2(G), π).

(b) Show by explicit computation (using (5.4)) that LE+Φ[m]
fm,α

(g−1) = (m+
α)Φ[m]

fm,α+1(g−1) and LE−Φ[m]
fm,0(g−1).

Now set
φm,α,0(gτ,θ) := Φ[m]

fm,α
(gτ,θ) = eimθy

m
2

(τ − i)α

(τ + i)m+α

and

(7.5) φm,α,β :=
(
LE+

)β
φm,α,0

for all α, β ∈ Z≥0.
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Corollary 7.5. (7.5) gives a countable collection of copies of D+
m−1 in (L2(G), π)

indexed by α. More precisely, ̂span 〈{φm,α,β}β∈Z≥0

〉
is the unique copy in

L2(G)−(m+2α).

Example 7.6. To see what some of these functions are, write

fm,α,β := (LE+)βfm,α (= f [m+2β]φm,α,β).

Show that fm,0,β(τ) = (m+β−1)!
(m−1)!yβ

(τ̄+i)β
(τ+i)m+β . (You could also compute fm,α,1, in

which case you will see that they get ugly rather quickly.)

A nice reference for the L2 theory for SL2 specifically, which includes (unlike
these notes) a discussion of the continuous spectrum, is [Bo].

8. Appendix II: Poincaré series

The natural question at this point is whether we can link the story in §7 up
with that in §5: how do we pass from the {φm,α,β} to cuspidal automorphic
forms? The answer, as in the construction of Eisenstein series in §3, is found
in an averaging procedure. Again we take Γ := SL2(Z) for simplicity. Given a
complex-valued function φ on G, the associated Poincaré series is the function
on Γ\G defined by

Pφ :=
∑
γ∈Γ

π̃(γ)φ

(i.e. Pφ(g) := ∑
φ(γ−1g)), if this converges. We shall require some preliminary

results before applying this to the functions in §7.

Lemma 8.1. Assume φ is Z(g)-, left-K-, and right-K-finite, and belongs to
L1(G). Then:
(i) Pφ converges absolutely and uniformly on compact sets;
(ii) Pφ is bounded and smooth;
(iii) Pφ defines an automorphic form for Γ (cf. (3.1)); and
(iv) Pφ ∈ L1(Γ\G).

Proof. (Sketch10) (i) is a consequence of discreteness of Γ (essentially topol-
ogy); (iv) is because

´
Γ\G |Pφ|dg =

´
G
|φ|dg < ∞; and (assuming (ii)) (iii) is

10complete details may be found in [Bo], §§2, 6.1.
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trivial, as the sum doesn’t interfere with the assumed Z(g)- resp. right-K-
finiteness.

The interesting bit is (ii). First, the smoothness is a consequence of being
Z(g)- and either left- or right-K-finite (via a regularity result). Moreover, as
a consequence of left-K-finiteness, one has an open neighborhood U ⊂ G of
idG satisfying Uγ ∩ Uσ = ∅ (∀ distinct γ, σ ∈ Γ), and α ∈ C∞c (G) supported
on U , such that the convolution α ∗ φ = φ. Hence (writing g̃ = γgh) we have

φ(γg) =
ˆ
G

α(γgh)φ(h−1)dh =
ˆ
G

α(g̃)φ(g̃−1γg)dg̃

=⇒ |φ(γg)| ≤ ‖α‖∞
ˆ
Uγg

|φ(h)|dh

=⇒
∑
γ∈Γ
|φ(γg)| ≤ ‖α‖∞

ˆ
G

|φ(h)|dh <∞

for every g ∈ G. �

Lemma 8.2. (i) Under the same assumptions as in Lemma 8.1,

β(g) :=
ˆ ∞
−∞

φ

 1 x

0 1

 g
 dx

is identically zero on G.
(ii) The same result holds with φ replaced by π̃(γ)φ for any γ ∈ Γ.

Proof. (Sketch) We will not need the left-K-finiteness. Since the other hy-
potheses are left-Γ-invariant, we need only prove (i) (following [Bo], §8.8).
By an argument similar to that in the proof of Lemma 8.1, these remaining
properties imply that φ is smooth and bounded; so β is at least well-defined.

As β is left-N -invariant and right-K-finite, it suffices to show β|A = 0, where
we recall

A =


 √y 0

0 1√
y

∣∣∣∣∣∣ y ∈ R+

 =


 et 0

0 e−t

∣∣∣∣∣∣ t ∈ R

 .
We have −2Ω|A = 2y2∂2

y = 1
2∂

2
t − ∂t, and so Z(g)-finiteness implies that

β|A is a sum of terms which are (a) annihilated by operators of the form(
1
2∂

2
t − ∂t − λ

)m
=: Dλ,m. Furthermore, the L1 hypothesis on φ implies that
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these terms are (b) integrable with respect to dy
y2 = −2e−2tdt; they are also (c)

smooth and bounded (essentially because φ is).
Now if s :=

√
1 + 2λ then the functions solving Dλ,m(·) = 0 are of the form P (t)et(1+s) +Q(t)et(1−s), s 6= 0

P (t)et, s = 0

with degP, degQ ≤ m. So (a) =⇒ β|A is of this form, while the boundedness
in (c) =⇒  <(s) = −1 and P,Q constant, s 6= 0

P ≡ 0, s = 0.

But
´∞
−∞ const. ·eitθ · dt

e2t
does not converge (contradicting (b)) unless, of course,

the constant is zero. �

Theorem 8.3. Under the assumptions in Lemma 8.1, Pφ ∈ ◦A(G,Γ).

Proof. ([Bo], §8.9) Lemma 8.1 says that Pφ ∈ A(G,Γ), so it remains to check
the cusp condition:

ˆ 1

0
Pφ

 1 x

0 1

 g
 dx =

ˆ
{N∩Γ}\N

∑
γ∈Γ

φ

γ−1

 1 x

0 1

 g
 dx

=
ˆ ∞
−∞

 ∑
γ∈{N∩Γ}\Γ

φ

γ−1

 1 x

0 1

 g
 dx

=
∑

γ∈{N∩Γ}\Γ

ˆ ∞
−∞

φ

γ−1

 1 x

0 1

 g
 dx

︸ ︷︷ ︸
†

.

By Lemma 8.2, † is zero for each γ. �

Now the {φm,α,β} are Z(g)-, left-K, and right-K-finite. They are L1 iffˆ
G

|φm,α,β|dg =
ˆ
G

∣∣∣ym+2β
2 ei(m+2β)θfm,α,β(τ)

∣∣∣ dx ∧ dy ∧ dθ2πy2

(8.1) =
ˆ
H

y
m
2 +β−2 |fm,α,β(τ)| dx ∧ dy
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is finite. For β = 0, (8.1) is

(8.2)
ˆ
H

y
m
2 −2

∣∣∣∣τ − iτ + i

∣∣∣∣α dx ∧ dy|τ + i|m
<

ˆ
H

y
m
2 −2 dx ∧ dy
|τ + i|m

.

Exercise 8.4. Check that the right-hand side of (8.2) is finite ⇐⇒ m ≥ 3.

Since infinitesimal right translation must preserve integrability, we have that
φm,α,β = LβE+φm,α,0 ∈ L

1(G) for m ≥ 3. Setting Pm,α,β := Pφm,α,β , we conclude
the

Corollary 8.5. The Poincaré series Pm,α,β belongs to ◦A(G,Γ) for every m ≥
3 and α, β ≥ 0.

We have had to do things this way because Poincaré series do not interact
well with the L2 condition.

The upshot is that P yields intertwining maps (for each m ≥ 3) from the
right regular sub-representations

({
ŝpan〈{φm,α,β}α,β≥0〉 ⊂ L2(G)

}
, π
)

= infinitely many copies
of D+

m−1

to the Casimir eigenspaces(
◦A(G,Γ)

[
m

2

(
1− m

2

)]+
, π

)
= finitely many copies

of D+
m−1

(where the “+” singles out the D+
m−1 isotypical component). Note that the

target space is (being generated by Lβ≥0
E+ ◦ Φ[m] of weight m cusp forms) ac-

tually trivial for m odd or less than 12, so in that case all the Poincaré series
vanish identically. (This seems rather difficult to check by hand!) Moreover, a
standard result is that these intertwining maps are surjective. We shall explain
one way to see this at the end.

Using the correspondence π̃m ←→ π̃ (under Φ[m] resp. f [m]), we may view
these maps on the level of functions on H. This yields intertwining mapsŝpan〈{fm,α,β}α,β≥0〉 ⊂

⊕̂
m≥0

L2(H, µm+2β)

 , π
 p

�

(
◦C∞m+2β(H,Γ)

[
m

2

(
1− m

2

)]
, π
)
,



34 MATT KERR

where p is computed on each summand by

pf :=
∑
γ∈Γ

π̃m+2β(γ).f,

i.e. pf(τ) = ∑
f |m+2β
γ−1 (τ) = ∑ f(γ−1〈τ〉)

(−cτ+a)m+2β (where γ =
(

a b

c d

)
). By the

absolute and uniform convergence on compact sets, we see that the fm,α,0 ∈
L2

hol(H, µm) must go to holomorphic functions. (This is also clear from the fact
that ◦C∞m (H,Γ)

[
m
2

(
1− m

2

)]
= Sm(Γ).) In fact, writing

Pm,α,β := pfm,α,β ,

we have in particular

Pm,α,0(τ) =
∑
γ∈Γ

fm,α (γ〈τ〉)
(cτ + d)m =

∑
γ∈Γ

((a− ic)τ + (b− id))α

((a+ ic)τ + (b+ id))α+m .

Corollary 8.6. The {Pm,α,0}α≥0 span11 Sm(Γ) for each m ≥ 3.

Computing further, we break the sum into two stages: first, writing Γ0 =
Γ ∩N , we set

Fm,α(τ) :=
∑
γ0∈Γ0

fm,α(γ0〈τ〉) =
∑
n∈Z

(τ + n− i)α

(τ + n+ i)m+α ;

then we average over cosets to obtain

Pm,α,0(τ) =
∑

γ∈Γ0\Γ

Fm,α(γ〈τ〉)
(cτ + d)m .

Exercise 8.7. Use complex analysis to show that

Fm,α(τ) = (−1)m−1
α∑
k=0

(2i)k
(
α
k

)
πm+k

(m+ k − 1)! cot(m+k−1)(π(τ + i)).

Compute the q-expansions of the cot(a)(z) := da

dza
cot(z).

A more classical approach to Poincaré series may be found in [Gu, Chap.
III] (and many other sources). This bypasses all the L1 business and writes

11Of course, these are zero for m < 12.
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down (for a ≥ 1 rather than12 α ≥ 0)

Qm,a(τ) :=
∑

γ∈Γ0\Γ

exp (2πiaγ〈τ〉)
(cτ + d)m .

That these span Sm(Γ) is seen rather easily using the Petersson inner product.

Exercise 8.8. Using Exercise 8.7 above, deduce that after replacing {qa =
exp(2πiaτ)}a≥1 by {Fm,α}α≥0, the result still spans the cusp forms; the sur-
jectivity statements for the intertwining maps above follow.

As was the case with §7, [Bo] is a good reference for (some of) the approach
we have taken here.
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