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ABSTRACT. We review an assortment of candidate Bloch-Beilinson
filtrations on CHy(X) (for X smooth projective), together with
Hodge-theoretic invariants defined on their graded pieces. A large
array of applications is given, especially to detecting nontrivial 0-
cycles and the behavior of said invariants with respect to families.
Ample background is provided, including many of the theorems
and conjectures that have shaped the passage from classical to
modern invariants.
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1. INTRODUCTION

A driving force behind modern algebraic geometry has been the no-
tion that certain topological, analytic or arithmetic invariants on a
projective algebraic variety X should be represented or explained by
algebraically defined objects “on X.” So for example the HC (Hodge
Conjecture) says that the rational (p,p) classes of X should be gener-
ated (modulo torsion) by the fundamental classes of its codimension-p
subvarieties. Or for X defined over a number field, the Beilinson con-
jectures predict that special values of its L-functions should be com-
putable by (determinants of) regulator images of elements in algebraic
K-groups of X. These images ultimately boil down to integrals of al-
gebraic differential forms (on X') over subsets of X bounded or cut out
by algebraic equations.

In both instances, one has to get a handle on invariants of certain
algebraic cycles — whether algebraic K-theory elements or linear com-
binations of subvarieties of X — and the study of such cycles modulo
a suitable equivalence relation becomes a natural pursuit.

Zero-cycles — Q-linear combinations of (zero-dimensional) points on
X — are the simplest kind of algebraic cycles, and their study modulo
rational equivalence is a rich area with many beautiful results (and un-
resolved conjectures). Historically, the first example is Abel’s theorem,
which links an algebraic question (when is a degree-0 divisor on an
algebraic curve the divisor of a rational function?) with a transcenden-
tal invariant (the image of the divisor in the Jacobian, which involves
integration along paths connecting the points).

For O-cycles on varieties of dimension > 1, on the other hand, re-
cent work has concentrated on the influence of the field of definition
on their rational equivalence-classes. This paper is about new tech-
niques and Hodge-theoretic invariants — e.g. higher cycle-classes and
higher Abel-Jacobi classes — that reflect this influence, and about in-
teresting examples of cycles they detect. It draws on work of Asakura,
Bloch, Green, Griffiths, Lewis, M. Saito, S. Saito, Voevodsky, Voisin
and others (and some of our own).

We offer some theorems (with proofs) about 0O-cycles on products
of curves and complete intersections, and a discussion of infinitesi-
mal/topological invariants for “higher normal functions” arising from
the invariants. A brisk review of background material is included, as
this is rapidly becoming basic algebraic geometry and we believe it
should be accessible.
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2. PRELIMINARIES

2.1. Cycles and Rational Equivalence. Even for complex algebraic
geometers, a smooth (complex) projective variety X is ultimately cut
out by homogeneous polynomials with coefficients belonging to some
field L C C finitely generated over QQ; hence we may consider the
underlying variety /L with structure map X — Spec(L). If K D L we
write X := X(1) X1 Spec(K) for the base change, and throughout the
paper d = dim(X).

All cycle groups and cohomology groups are taken modulo torsion;
so the algebraic cycle group ZP(Xg) = Z;_,(Xk) denotes rational
linear combinations of irreducible subvarieties of X, defined /K and
of codimension p. Hence a 0-cycle Z € Zy(X[) is (after base-change
to K) of the form Y ¢;z;, with ¢; € Q and z; having coordinates in
K, and such that 3" ¢;z; is invariant under the action of Gal(K/K) on
X(K). For example, on the affine line {/3} + {—/3} — 5{1} is [the
base-change to Q of] a 0-cycle defined /Q, but 2{+/3} —2{—+/3} is not.

We say two cycles 2y, 2, € ZP(Xk) are rationally equivalent if
(roughly speaking) one can get from Z; to Z; in a rationally parametrized
family W:

(simplest case:

W has one irreducible component.)

More precisely, let 7x (resp.mp1) : X x P! — X (resp.P!) be the pro-
jections; then

rat rat defn

Z1 =2y (orZ;,— 2, =0)
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IWe ZP(X x ]P)}K) such that
WX*[W(XX{O})—W(XX{OO})] :Zl—Z2

3 Yi— Y, sk €X irreducible codim. p — 1, > Lszlz(}h) tEa’% .
fi € K(Y;)* rational functions {Ji) = 21 5.
(Here Y; denotes a normalization of Y:.) In the first definition, W

may be reducible; so it changes nothing to replace P! by a chain of
P'’s. On the other hand, if one replaces P' by a chain of curves of

—

1
arbitrary genera, one has algebraic equivalence Z; E Z,. Finally, a
codimension-p cycle is homologous to zero iff on X it is the boundary
of a topological chain of real dimension 2d — 2p + 1,
AT € Cof 5, (X2, Q) 5.8, T = 2, — 25,

hom defn

ZlEZQ

or equivalently if its fundamental class (§2.2) vanishes.
Clearly 20 — £ 0 — "Z"0. For 0O-cycles on a curve (d = 1),

the second definition gives Z 20 — Z-= (f) for f € K(X)*. If
X is a surface (d = 2), a rational equivalence between 2 points may
look as follows:

where e.g. 1 (i) says f; has a zero of order 2. (Since we work modulo

torsion [i.e. ®Q|, 2p — 2¢ 20 = D = q.) Also, for O-cycles in
h 1
general, =" and 2 are the same.

The object of study will be Chow groups of cycles /K modulo ratio-
nal equivalences defined /K,
ZP(Xk)

rat :
(=)k
(We also write C HP(X k), especially when X is replaced by something
like Y x S so that it is clear that K applies to the whole product.) One

consequence of working modulo torsion is that CH?(Xg) — CHP(X¢),
4
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so one does not have to worry about the field of definition of the 2
When clarity is at stake (only), we have written (Z) € CH*(X) for

T m 1
the Z-class of a cycle Z € Z*(X); classes of cycles e (resp. zECT’)O are
written C'Hy,,, (resp. C'H.).

t,
Our goal is to detect 0-cycles/ = in the kernel of the Albanese map;
since the invariants make heavy use of Hodge theory we review next
what we need.

2.2. Hodge Structures. A HS (Hodge Structure) of weight m is a
finite-dimensional Q-vector space H, together with a descending filtra-
tion ['* on Hc 1= H ®q C satisfying for each i F'He @ F—it1He =
He = FOHc. Writing H o "= FiHe N F"He, we get a Hodge de-
composition He = @, _ mH”q A Q-subspace G C H is a subHS iff

Gc = ®,,,_.(Gc NHP9), and a Q-linear transformation H 2 is a

morphism of HS iff over C it takes the form &HP?¢ ®Z" @/HP4 (relative
to a pair of C-bases subordinate to the resp. Hodge decompositions).
Intersections and sums of subHS are subHS, as are the image and
kernel of a morphism of HS; quotients (e.g., H/G) have a natural HS
(Hc/ Gc =
®, .., H"9/GP9), as do tensor products and duals (of HS). We deﬁne

FhH(Q) := largest subHS of H(g) contained in FiHen H)

and note that for m > 25 equality does not in general hold. One also
has the Tate HS Q(—d), of pure type (d,d) and weight 2d.

From geometry comes a large assortment of examples. For X smooth
projective, set H™(X) := HZ (X, (((fm),@), and identify H™(X,C) =
H™ {T(Xe, Q%n), d} — H™ {T(Xc, FIQ%), d} = FIH™(X,C) us-
ing C°-forms (de Rham cohomology). By the Hodge theorem H’(X)
is a HS; we also see that H??(X,C) is represented by C*°-forms of
type (p,q) (modulo coboundaries). Associated to an algebraic cycle
Z € ZP(X) one has the fundamental class

[Z] € H¥(X)NFPH*?(X,C) =: Hg"(X)

defined by the functional {[,(-)} € {H**?(X,C)}"; and Q[Z] C
H??(X) is a (Tate) subHS. Write H;’;(X) for the span of all such
classes. If X =Y; x Y, then H™(X) = o, _ H"(Y1) ® H*(Y;) as HS,
and [Z] has Kiinneth components [Z]; € H*7'(Y;) ® H*(Y;) summing
to [Z]; again Q[Z]; is a subHS.

A polarization of a HS H is a choice of bilinear form @ : HxH — Q

(symmetric for m even, skew for m odd) which after tensoring with C
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obeys the Hodge-Riemann bilinear relations. Polarized HS are semi-
simple in the sense that given G C H subHS, G+ is a HS and H =
G @ G*; so for example exact sequences (with polarized middle term)
split. For X smooth projective, H™(X) has a natural polarization
(using the Lefschetz decomposition and the hyperplane class); hence
H™(X) and its subHS’s are semisimple.

From above we have Hfffg(X) C HgP(X); there is a large bank
deposit waiting for whomever proves the equality [HC(p, X)| in gen-
eral. The Generalized Hodge Conjecture GHC(j, m, X) predicts that
F/H™(X) = N/H™X), where N* is the descending filtration by
coniveau (i.e., codimension of support); clearly HC(p, X) is GHC(p, 2p, X).
(Note that N7 C F/ always holds.) Now let [H] € H?(X) be the class
of a hyperplane section; a consequence of the Hard Lefschetz theorem
is that U[H]* : H*{(X) — H%(X) is an = This is clearly also in-
duced by an algebraic correspondence (cycle) on X x X; the Lefschetz
standard conjecture (of Grothendieck) says the inverse is |algebraic-
|cycle-induced (for all ¢). In this paper, we will write HLC(X') (Hard
Lefschetz conjecture) for the apparently stronger statement that (for
each i) there exists a cycle inducing (U[H]"))™' : H(X) — HI(X)
and also inducing the zero-map in all other degrees. In fact, they are
equivalent by [KI|; and clearly HLC(X) is implied by HC(d, X x X).

2.3. Jacobians. Next assume H is of weight 2p — 1, and define the
Jacobian

[— HC
T = e 7y

Injective or surjective morphisms, direct sums, and quotients of HS
(as well as commuting diagrams) induce the same behavior in the
corresponding Jacobians. We write JP(H?* (X)) =: JP(X). (In
the same way one can define for "H of weight 2p the Hodge group
Hg?("H) = "H N FP("Hc), so that HgP(H*(X)) = HgP(X).) Note
that if H = KY ® Q(—d) as HS then Jr(H) = ETK”

im(Kq))¥
Given Z € Z! (X)) and H C H* }(X) (subHS)(vzfe may construct
an element in J*(H) as follows. Let 07'Z € C300, .1 (X, Q) be a fixed
choice of chain bounding on Z, and assume H and K C H*-%+1(X)
are dual under the perfect pairing H?~1(X)® H*~%#+1(X) — Q(—d).
Since Z has complex dimension d — p, [,_,;da = fza =0if a €

D(X, FErHQ3%). Thus { [, ,,(-)} gives a well-defined functional
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on
ker(d) C T(X, Fd-p+1Q3d 2+l)

Fd—p+1H2d—2p+1(X C) ~
im {d - T(X, Fd-pr1 Q3 %) num}

Y

which we may restrict to F'“ P Kc. Varying now the choice of 0712
(by topological cycles) changes the functional by rational functionals;
hence we still get a well-defined result in J?(H), the Abel-Jacobi class
AJx(Z) if H = H¥1(X).

2.4. Deligne cohomology. For our cycle maps we will use Deligne
(co)homology, which for X projective one may define (by [J4]) as co-
homology of a complex:

Hp(X,Q())) =

HY{CyP, (X, (2rV-1YQ) @' (X, FI'DY) &' (X,'D¥ "), D}
where? D(T, Q, K) = (=0;0pl, —d[Y], d[K]—Q+6r). In particular, one
has the exact sequence

0 — JP(X) — HF(X,Q(p)) — Hg"(X) — 0.

A mixed Hodge structure (MHS) is a Q-vector space H with an
ascending (weight) filtration W, plus a descending F'* on Hc, such
that GrlV'H together with the induced F* on (GrlVH)c is a weight
m HS. If Y is smooth quasiprojective, H"(Y’) has a natural MHS with
W, 1 H"(Y) = {0} and W, H*(Y) = im { H"(Y) — H"(Y)} =: H"(Y)
for any smooth compactification Y (see [K2, sec. 3]). For Y a good
compactification (Y \ Y = D a normal-crossings divisor), one may
interpret W, ; H™(Y) in terms of forms with log poles along D locally
no worse than dlogz, A --- A dlogz, (for D = U{z; = 0} locally), see
|GS].

We will have extensive use for the following basic computations:

Homy,(Q(—p),H) = Wy, HN FPWy,Hc,
WapHe
Ext! —p),H) = P .
X MHS (@( p) ) FPWQPH(C +W2pH(Q)
One notes that if H is pure of weight 2p — 1 (i.e., a HS) then
Ext! (Q(—p),H) = JP(H), and using this (together with the Euxt

MHS

here “num” denotes numerator.
2Dt denotes the sheaf of i-currents, a local section of which is a bounded linear
functional on local sections of C*° (2d — i)-forms. Integration over topological
(2d —i)-chains ' € C5oP (X, Q) includes them as “delta functions” or € T'(X, D).
7



long-exact sequence associated to 0 — Wy, — Wy, — Grgg — 0)
one shows that

im { Bzt (Q(-p), H""'(Y)) — Ext,  (Q(—p), H* 1(Y))} =
Ext! (Q(—p), ﬁ(Y))/ im {HomMHS (Q(—p), GrggHm’_l(Y))} .

MHS
This quotient reflects the fact that in generalizing the construction of
classes in Jacobians (§2.3) to the quasiprojective case, one needs to
mod out essentially by all classes of cycles supported on (Y \ Y)!

To appropriately generalize Deligne cohomology to Y, we need to
take the weight filtration into account by using absolute Hodge coho-
mology Hj,(Y,Q(-)) (see (§5.5.2), or [L1] for a more conceptual ex-
planation). While this reduces to Deligne if Y is projective, it isn’t as
obvious how to define it without passing to the derived category (owing
to the difficulty of controlling poles of currents). Now set

HP(Y,Q(p) :==im {HZ(Y,Q(p)) — HF (Y, Q(p))};

once more the image is independent of the choice of smooth compacti-
fication YV (see [K2, sec. 4]). One gets two exact sequences

0 = Bty (Q(=p), H* 1Y) — H;J (Y,Q(p)) — Homyyg (Q(=p), H*(Y))— 0

L

Ext} (Q(*P%&(Y)) . H—%P()/) Q(p)) — HOT)’LMHS (Q(—p),H2p(Y))—’ 0

0 N MHS
Homy e (Q(—p),Gri¥ H2P=1(Y))

where we note that the right hand term is just Hg?(H*(Y)).

3. FROM CLASSICAL INVARIANTS TO THE BLOCH-BEILINSON
CONJECTURES
3.1. Cycle-class and Albanese. Take Z € ZP(X) as above (in this

section K plays no role), and assume Z = (: then IW € ZP(X x IP’}(C)
with irreducible components {W;}, such that

z = Zm {m" ({0}~ {oh) }
(Here e.g. W)’/(NV" = 7mx O LWi, with i W — W, C X x P! the
normalization.) Setting I' = Y. m", {Wpll (oo.O)}, for 0.0 a path

hom

on P! (such as R™), gives OI' = Z and Z 0. Thus (using Stokes’s
theorem) the fundamental (or cycle-) class mduces a well-defined map

cly : CH”(XK) Hogerx).



For O-cycles this is deg : CHy(X) — H?¥(X) = Q sending >_ ¢;2; —
>4

Above we showed how to obtain a map from {ker([-]) C Z?(Xk)} =

ZP o (Xk) Uy JP(X), by integration over an arbitrary chain 9-'Z

bounding on Z. Choosing now 9~'Z := T (still assuming Z = 0) and
w e ker(d) CT (X, Fd_f”“Q%?;QpH) ,wehave [Lw = fo(l ST W,
Generically fibers of I/A\jZ — P! have dimension d — p; so intuitively
(m4"). (which integrates fiberwise) eats up (d—p) each of dz’s and dZ’s,
and the integrand is d-closed of type (1,0) on P! (hence d-closed). Now
the push-forward a priori gives us a current, but a regularity lemma for
0 shows it is C*°. So J-closed + C* = holomorphic, which makes
the integrand zero since Q' (P') = {0}, and thus AJx(Z) =0 € JP(X).
We have shown AJx is well-defined modulo réat; this is Griffiths’s Abel-
Jacobi map

AJX : CHﬁom(XK) - JP(X)
(e.g., see [Gr]). For O-cycles this is often called the Albanese, Alb :

1 \Y2 .
CH™(X) — %, sending e.g. Z=p—q {w — fqu} ’

The Deligne cycle-class map
cp : OHP(Xk) — Hy (X2", Q(p))

sends Z to the D-cohomology class of ((277\/—_1)7’Zt0p, 0z, 0) in the
complex at the beginning of (§2.4). It allows one to write ¢/ and AJ
“in one piece” (in the sense of the short exact sequence). For Y smooth
quasiprojective one has a corresponding ¢y to Hff and a diagram (with
Y smooth)

CH?(Y) 2 HZ (Y, Q(p))

A\

OHp(Y) ﬂi H’}z-[p(Y(C7 Q(p))a

hence a (very useful) map
cp: CH(Y) — Hp'(Ye, Q(p))-
3.2. Inadequacy of the classical invariants. Now we want to ask

how good a job, in the case of O-cycles, our two maps clx and Alby (or

just ¢p) do in detecting = _classes.
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Abel’s Theorem. X¢ a curve =—> Albx is an isomorphism.
For d =1, a great job; but for d > 1, miserable in general:

Theorem (Voisin, [V1]). Let X¢ C P? be a smooth projective (hy-
per)surface, very general® of degree D > 7. Then no 2 points on X are
rationally equivalent.

Now H'Y(X) =0 = QYX) =0 = Albyx = 0, and thus cannot
detect [p — q|(#£ 0) € CHP°™(X). Fakhruddin (in [Fa]) has generalized
this; the following is one case of his result:

Theorem (Fakhruddin). Given integers d > 2, n > 2; then for D
sufficiently large, a generic degree D hypersurface X¢ C P! has the
following property: the classes of any n distinct points in C'Hy(X) are
linearly independent. (Voisin: d =2, n = 2.)

Here is another instance of nonvanishing of ker(Alby):

Theorem (Bloch, [B1]): Let A% be a d-dimensional abelian variety.
The group law induces a Pontryagin product “*” on cycles, and

[ =0fori>d
CHémm(Ad)*Z )
#0 fori <d

But already C Ho™(A%)*? C ker(Alb) (in fact =) by the “parallelogram
law”: say

o o— -3 e+

oe — oe — o o+ «—- eo—

Then choosing 0~ Z as indicated (dotted arrows) and w € Q(A%),
f8712 w = 0 by cancellation.
The following result offers a partial “explanation” of the Albanese

kernel: it’s not just the 1-forms that control 2 of cycles.

Mumford’s Theorem (|Mu]). Let X¢ be a smooth projective surface
(d = 2) with Q*(X) # 0. Then ker(Alb) C CHE™(X) is “infinite-

dimensional”.

Remark 3.1. (i) Roitman (|R1]) generalized this to d > 2: one has the
same result if Q'(X) # 0 for any ¢ > 1. Also see [L2| for proofs of both.

(ii) “Infinite-dimensionality” means ker(Alb) “cannot be parametrized
by a finite-dimensional algebraic variety” — concretely, this comes from

3i.e., of maximal transcendence degree in the parameter space
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increasing without bound the number of points z; involved in O-cycles
Z = )Y ¢;z. This gives us as many parameters as we like, and the
key is that rational equivalence (i.e., the dimension of the subspace of

relations) doesn’t keep up.
hom

(iii) This theorem and Griffiths’s result that = and % are different
for higher-dimensional (not 0-)cycles have motivated vast quantities of
research aimed at understanding structure / producing examples for
well over 3 decades.

Together with Mumford, the following “converse” suggests that Q%(X)
(or more accurately, H*(X)/F}' H*(X)) “controls” the Albanese kernel.

Bloch Conjecture (|B2]). Let X¢ be a smooth projective surface
with 0*(X)
= (0. Then ker(Alb) = 0.

More generally, for d(= dim(X)) > 2 this should hold if Q*(X) = 0 for
1< <d.

Example 3.2. Bloch-Kas-Lieberman (|[BKL]) proved BC for surfaces
of Kodaira dimension x < 2.

Example 3.3. Consider a smooth hypersurface Xy C P of degree
D < d+1. Thendeg(Ky) = D—d—2 < 0 = Q4X) = H(Ky) = 0;
also, Q(X) =0 for 1 < i < d by the Lefschetz hyperplane theorem.

Theorem (Roitman, [R2]). For X as just described, C HE*™(X) = 0
(any two points are r%t)

That is, the BC holds for projective hypersurfaces (in fact, complete
intersections) of low degree. We refer to [L3] (or [R2|, [L2]) for a full
proof, but explain things for the case 1 < D < d (for simplicity leaving
out D = d+1). For any point p € X (C), the set of lines on X through p
is described (in terms of local affine coordinates about p) as a complete
intersection of multidegree (1,2,...,D) in P?; since D < d this is
nonempty. So take individual lines L,, L, C X through any given p, g;

since H2(P4+1) = Q and CHM™(P4+1) = {0}, L, = L, on P4!. That
is, 3 surfaces Y; C P4™! and F; € C(Y;)* with >, (i(F;) = L,— L,. (We
may also arrange that the Y; and Y; NY; intersect X properly; e.g. a

chain of 3 P?’s will suffice.) Restricting this rational equivalence to X
we get curves C; := XNY; C X and f; € C(C;)* with [0 h%t] STUL(f) =

ZlePj — Zle Q; where P; € L,, Q); € L,. Obviously P; = p and
11



Q; = ¢, s0D-p= D-q. In fact, CHM™(X)[= CHX8(X)] is divisible
and so Roitman’s result holds without going modulo torsion. Here is
an oversimplified picture with only one Y;:

3.3. Albanese kernel and transcendence degree (Part I). It is
instructive to consider the form of the cycles (in ker(Alb)) guaranteed
by (Roitman’s generalization of) Mumford in case X¢ has a model /Q.
The first clue is given by:

Bloch-Beilinson Conjecture: Let X (smooth projective) be defined
/Q. Then

cp 1 CHP(Xg) — HE(X&, Q(p))
(or equivalently, AJ : CHY (X g) — JP(X)) is injective.

hom
Remark 3.4. Here one can replace Q by a number field, bearing in
mind that in this paper C'H is taken modulo torsion. Otherwise the
statement is false: for example, Murre and Ramakrishnan (|[MR]) have
shown that for any prime p there exists an elliptic curve F over a
number field k£ and points P, Q € E(k) such that (P,Q) — (0,Q) —
(P,0) + (0,0) € ker(Alb) C CHE*™(E x E;) is p-torsion.

For 0-cycles, C Hbom™(X /) consists of ) g;z; with coordinates of all z;

in Q. If BBC holds, any such cycle in ker(Alb) is = 0. So if H;(X) =
0 (e.g. for X(c) simply connected), then Albx = 0 and BBC =
C'Hé‘om(X/Q) = 0. Hence BBC implies that on a projective complete
intersection (or K3, or CY) defined /Q, any 2 points € X (Q) are
rationally equivalent. This does not contradict Voisin’s result because

there X is not defined /Q (hence doesn’t even have Q-points).
12
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The flip side of this is that according to BBC, ker(Alb) C CH™(X¢)
(for X defined /Q) is generated by cycles whose “minimal field of defi-
nition” K C C has trdeg(K/Q) > 1. (We simply call this the transcen-
dence degree of the cycle; here we are only considering X with a model
/Q because otherwise all cycles on X have trdeg /g > 1.) Towrite down
such cycles, we first describe the “very general” points we require in a
broader context that will be used in our discussion of spreads below.

3.4. Interlude on points. Let S/Q be smooth projective, and choose
some affine Zariski open subset S;/Q. The embedding Q[S,] — Q(Sy) =
Q(S) of the (affine) coordinate ring into its function field induces a
morphism Spec Q(S) — Spec Q[Sy]. Composing this with the inclu-
sion Sy C S yields a morphism Spec Q(S) — S which we call p,, the
“generic point” of S. There are two totally different ways to get “points”
on Sc¢ out of this.

(1). Set pi := py xg SpecC (i.e. Spec C(S) — Sc), the generic point
of Sc. We approximate both generic points by shrinking S as follows:
formally write ns := lim¢/ (limit over ¢//Q C S affine Zariski open)
and 7§ := limUc (limit still over U defined /Q; Uc is just U xg C).
The limit has practical meaning only under some functor §, usually
contravariant (like H*, Hy,, CH*) so that g(ngc]) = lim F(Ucy). (We
note in particular that direct limits are exact in the category of abelian
groups.) The reason for introducing the n’s is two-fold. On the one
hand, C H* cannot distinguish between p, (i.e., pullback to Spec Q(S))
and 7s; e.g. for X/Q, CH*(X X ns,g) = lim CH*(X x Ujg) =
CH*(X x SpecQ(S) g) = CH*(X g(s))- But unlike p, 7§ is a limit
of analytic spaces (on which one can do Hodge theory); so one has
singular and absolute Hodge cohomology groups, e.g. Hj,(nS, Q(-)) :=
lim H3, (U, Q(-)). One can take the limit of the MHS’s on the H™(U)
to produce W, and F* on H™(ns), and in particular

H™(S)

H™(ns) := Wy H™ (15) = im {H’“<8> - @Hm(u)} = NH(S)

is a very important (finite-dimensional) HS.

ev

(2). Given an embedding Q(8)= K C C which restricts to the “iden-
tity” on Q, set p := py Xy Spec C. What we mean by this slight abuse

of notation is illustrated by the following pair of diagrams:
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Q(S) ~——Q[S)] SpecQ(S) “— 8 CS

induces
ev _—

ev

C C[S] Spec C —2— (Sp)e € Sc

where ev is (the unique lift of ev) chosen to make the first square
commute. This is quite different from (1) in that p is 0-dimensional
(over C) and a geometric point. Now the restriction of ev to Q[Sy] C
C[S,] factors through Q(S), hence through Q[i4] for any affine open
U C Sy defined /Q. It follows that for all such U, p factors through
all Uc(=U xg C) C Sc. That is, p is in the complement of all (hence
countably many) proper subvarieties defined /Q. We express this by
saying p € ns(C), or that p € S(C) is very general,* or of maximal
transcendence degree (as its affine coordinates [in Sy| generate over
Q a field of transcendence degree dim(S)). Of course, in the above
construction, p is really defined /K.

3.5. Albanese kernel and transcendence degree (Part IT). Here
now are some ‘“canonical” examples of 0-cycles in ker(Alby) for X
defined /Q. Let C;/Q (j = 1,...,d) be curves of positive genera,
and select base points o; € C;(Q); set X = C; x --+ x Cg. Take
p; € C;(C) very general and “algebraically independent” in the sense
that pyx- - -xpg € X(C) is very general. Finally, let W; € CH}™(C; )
(for each j) be such that AJe,(W;) # 0in J'(C;). (We emphasize once
more that for us torsion is zero in cycles and classes; in particular J is
the rational Jacobian.)

Theorem 3.5. For each { > 2, the 0-cycles

(A): (p1 —01) X -+ X (pr— 0g) X 0g11 X -+ X 0g,

(B) : (p1—01) X -+ X (D1 — 0p—1) X Wy X 0p41 X -+ X 0g
give nonzero classes in ker(Alb) C CHM™(X¢).

Remark 3.6. (i) For obvious reasons we call (A) “/-box” (e.g., for
¢ =d=2itis (p1,p2) — (p1,02) — (01,p2) + (01,02)); the respective
transcendence degrees of (A) and (B) are clearly ¢ and ¢ — 1. (A) is
well-known, while (B) follows for n = ¢ = 2 from [RS| and in general
from [K1] (see Theorem 6.1 below).

4“general” is not the term we want here, as this denotes a point in the complement
of only a finite union of Zariski closed subsets.
14



(ii) Any abelian variety A? is covered by such a product of curves,
and cycles of the above two types (A) and (B) project to nontrivial
elements of C H}™(A%)** from the Bloch theorem.

(iii) A simple example of (B) with d = ¢ = 2 is with the C; both el-
liptic curves E;/Q, P € E1(C) very general, and Q € E,(Q) of infinite
rank. Taking W = (Q) — (0), we get ((P) — (0)) x ((Q) — (0)) ¥ 0

(in the sense of this paper, i.e. modulo torsion).

— +
(0,Q) @,Qf

E
(0,0) (P,0) :

We will investigate cycles of the form e.g. (p; — 01) X (p1 — 01) on
rat

C; x C; in §6.2 below. On the other hand, W; x W, “should” be = 0
since it is in ker(Alb)NC'H*™ (Cy xCy5), though this is only conjectural
— even if C; and Cy are elliptic curves.

Finally, Griffiths-Green-Paranjape [GGP| found an interesting ex-
ample for any smooth projective surface X/Q with Q?(X) # 0. If
H{(X) =0, here is how this works: take a Lefschetz pencil of X, which
we write PL & § B X (P is a blow-up) with C, := P (h~'()) C X
for t € P!. For each t let p; € X denote the inclusion of a very general

point € C;(C), and o € X(Q) lie in the base locus. Then for some

to € PH(Q), 0 r%t pt, — o0 is a nontrivial cycle of transcendence degree
1in the Albanese kernel. We will generalize this example in §7.3 below.

X//_\

py C, (defined / Q)
pt °

o

3.6. Bloch-Beilinson filtration and Chow-Kiinneth decompo-
sition. For O-cycles on a surface X (whether defined /Q or not), cl

(or deg) maps to H*(X), and AJ (or Alb) to J*(X) — which involves
15



H3(X). Since ker(Alb) (which is conjecturally generated by cycles of
trdeg,q > 1) seems to depend on part of H*(X), we expect any invari-
ant for it should involve H?(X).

More generally, for X smooth projective (defined over a subfield of
C), Bloch and Beilinson independently predicted a filtration Fjp on
CHP(Xc) with graded pieces Grj, CHP(Xc) (a) generated by cycles
of trdeg,5 > i —1 and (b) completely described by invariants involving
H?»7(X) (and no other H?(X)). To be precise:

Definition 3.7. A Bloch-Beilinson filtration (BBF) is a (conjectural)
system of descending filtrations on all Chow groups of smooth pro-
jective varieties /C. It must respect the intersection product (in the
sense Fi,CHP - F4,CH? C Fi/CHP*) and morphisms induced by
correspondences ((I') € CHP~9T4x(Y x X) = (I'), FigCHI(Y) C
FiaCHP(X)). One also demands FyzCHP = CHP, F*CHP = {0} for
¢ sufficiently large, FRgCH? = CH{ ., and FigCH? C ker(AJ) (with
FggCHP N CHy, = ker(AJ) N CHy,).

But these last two (at least, the C’s) are really part of a larger de-
mand corresponding to (b) above. For its statement, [Ax] € H?¥x (X x
X) must have “algebraic Kiinneth components” — that is, there must
exist algebraic cycles Ax; (or A(2dx — 7, 7)) on X x X with [Ax ] =
[Ax]; € H*x~3(X)® H’(X). The last requirement for F (essentially

V1,7 € Z) is then that the action of <AXJ~> on Gry, CHP(X) must

be dy,_; ; times the identity, independent of the choice of {Ax ;}. If we
assume the HLC («<=HC), not only do such {Ax ;} exist; they also may
be chosen, for j < p, to be supported on W x X with codimy (W) >

dx —p— 1. For ¢ > p, this yields <Ax,gp_i> = 0, hence

GT%BB CHP(X)

*

Gri, (CHP = 0; and so Fly'CHP(X) = 0.
Remark. The definition comes from [J4].

Now, one can put multiplicative (hence ring) structures on C' Hx (X x
X), Hfféx (X xX) by AoB :=m3, (m]5(A)-m54(B)) (using the 3 obvious
projections X x X x X — X x X); this corresponds to composing endo-

morphisms of CH*(X), H*(X) induced by correspondences. Under o,

the Kiinneth components {[A X,j]} are orthogonal idempotents in (still

assuming HLC) Hfféx (X x X) summing to [Ax]; but the correspond-

ing statements on the C H%x (X x X)-level are much stronger, and false

for the {<AX]>} as we have described them. However, if 3y ezists
16



as described above, then C’H,ij‘m(X x X) becomes a nilpotent ideal® in
CH™* (X x X). Tt follows (cf. [J1], [L2]) that lifts {Ax;} from the

quotient % = Hgéx (X x X) to CH¥* (X x X) can be chosen

hom
so as to preserve the desired relations: (i) {(Ax;),} are orthogonal
rat

idempotents® under o, (ii) Ax = Y, Ay, and (iii) [Ax ;] = [Ax]; as
above.

Definition 3.8. A collection of cycles {AXJ}?d:)é C Z%(X x X)
with properties (i)-(iii), is called a Chow-Kiinneth decomposition (of
Ay), terminology due to Murre. We shall call it also good (for our
purposes with O-cycles) if {(Ax7j>*}j<dx act as 0 on CHy(X) and

{ker (Ax 24y ), € CHo(X)} = CH™(X).
With a little more work the above discussion yields:

Proposition 3.9. HLC + 3 of Fpy = 3 (V X) of good C-K de-
composition satisfying moreover (Ax ;). Id.

_ S
Gri, s CHP(X) 2p—i,j

However, one can construct good C-K decompositions directly (with
no assumptions) for X a curve, surface, abelian variety, complete in-
tersection, or arbitrary product of these.

4. HIGHER CYCLE- AND AJ-CLASSES

4.1. Spreads. We are about to study several actual filtrations on Chow
groups, each of which gives a Bloch-Beilinson filtration under some con-
jectural conditions. For the construction of many of these, the following
idea is crucial.

Let K C C be finitely generated /Q. Then using a transcendence
basis, one constructs (e.g., see [K1] Lemma 1(a)) S/Q smooth projec-

tive and a very general point sy € S(C) such that ev,, : Q(S) > K
(in fact, so € S(K)).

Assume first that X is defined /Q and Z € ZP(Xk). Changing co-
efficients of Z’s defining (homogeneous) equations from K to Q(S), we
have Z, := Z X1 Spec Q(S) € Z*(X,g(s))- Now rational functions
(in Q(S)) have denominators; we may clear these (nonuniquely; this
introduces ambiguities) to yield bihomogeneous equations cutting out

3 € Z°(X x 83). Owing to the ambiguities the = _class of 3 is not
well-defined, in contrast to that of its restriction 3 € Z7(X x nsqg)-

5Tt is known that CH :fg( (X x X) is nilpotent; this clearly follows from §6.2 below.

busually written {m;} in the literature, but we avoid this notation.

17



(In particular, one may freely modify 3 by cycles supported on X x D,
for D C S an arbitrary divisor defined /Q.) We refer to 3 and 3 as
the Q-spread and complete Q-spread of Z; clever choices of the latter
play a role in proofs.

Once one has spread out, going back is easy: tensor everything with
K and pull back (restrict) along the inclusion X = X x {so} — X xns.

As we can spread and restrict rational equivalences {(Y;, f;)} too, Z =

rat

0 < 3=0.

Now, different very general points s € S(C) correspond to different
embeddings ev, : Q(S) — C respecting Q. So if we tensor everything
with C and set Z, := 3|XX{8}, letting s vary shows how the original
cycle deforms in X as its defining equations’ coefficients change along

with evy(Q(S)) =: K.

X

0 n5

)

Clearly, spreading out exchanges field-theoretic information for addi-
tional geometric structure. That extra structure means that cy(3) is
going to capture more information than cp(Z), and this is what the
Lewis, M. Saito, and Griffiths-Green filtrations all capitalize on.

Example 4.1. X/Q, Z = p € X(C) very general —> S = X and
(we can choose) 3 = Ax € Z4X x X q).

Example 4.2. Consider a smooth curve Y/Q on a surface X/Q, o €
Y(Q) and p € Y(C) very general; of course, p has a model /K (C C)
st. K = Q(Y). We write ¢ : Y < X and define Z := 1,(p — o)
Zbom(X ). Taking S = Y, we can choose 3 = I,(Ay — Y x {o})
ZX X xY)wherel: Y XY — X xVY,

S
S

18



p )o( nY

Now, so far we have only considered the case where “X does not
spread”. If X does not have a model /Q, it sits in something that does;
and one constructs the Q-spread X(—~ 7s) of X just as one did 3.
One can always choose X to be smooth, but not 7 : X — S (which
we note is of relative dimension d). So in general Z has Q-spreads
3 € 72°(X/Q) « ZP(X/Q) > 3. (As above 3 is defined modulo the
addition of cycles supported on 7~'(D), for any codim-1 D5 C S.)
We always refer to 771U C S) as Xy, so Xs = X and X,; = X; we
write X, for 77!(s). Of course, if on the other hand X is defined /Q,

the (Q-)spread of Xx is X = X X 7s.

4.2. Lewis filtration. We will work with this for the remainder of the

paper.
By identifying formally X and lim7~' (i) (as we did above for s

and lim/), we obtain a composition
b

~

CHP(X)x) — CH?(X,5) — Hp(X,Q(p))

spread cp

which we denote by 1. Lewis [L1]| puts a Leray filtration £* (induced
by 7) on H_%p(%(c, Q(p)) with graded pieces

(A1) 0— Gri'Jo(%) "5 GriHE (Xe, Q(p) & GriHg" (%) — 0
where

GriHg? (%) i= Homyys (Q(=p), Wy, H' (ns, R*'7.Q))
19



and

_ Batl, (Q(=p), Wop i H' ! (ns, R 'm.Q)
im Hom,yy,s (Q(—p), Gryy H#~1(X,Q))

The notational abuse taking place here (e.g., Gry H*~'(X,Q) on its
own is not finite-dimensional) refers as usual to the obvious limits. We
define the Lewis filtration

LIOH (X i) = o7 (LY (X, Qp))
and for Z € L'CHP the i*" higher cycle-class
Ai(Z) = o (Grig(2)) = s (Grioen(3)) = [3]
If the latter vanishes, we can define an (i — 1)** higher AJ class
ATEE) = (AT
by demanding that 3;_; of it gives Griy)(Z2) = Gricep(3)."

We may summarize our invariants in a chart

LY D> £V D L2 D> L3 D

Griﬁ_lJ_p(%) :

— [AT(3)o | [AJB) | [AT(3)]

(which mimics that in [GG1] although the invariants there are only
verifiably the same if HC holds). Here

[3]0 S HOmMHS (@(_p)a HO(US,R%?T*@)) = ng(X>

identifies with [Z], while if [3]o = [3]; = 0 then [AJ(3)]o essentially
identifies with AJ(Z) (or more precisely, with a flat normal function);
certainly £2 C ker(AJ). Writing t = trdeg(K/Q) = dim(S), we have
(mostly from [L1]) these facts:
Proposition 4.3. (a) GriCH?(Xg) =0 ifk > p ork >t + 1. One
may replace Grk by L* provided cp is injective.

(b) If X has algebraic Kinneth components, then L°® satisfies the
second paragraph of Defn. 3.7.

"Note that by writing
i LCHP(Xk) — Griy HY (X,Q(p))

for the map Z — Griiy(Z), one trivially expresses £°® [= ker(t,_1)] as a filtration
by kernels of successive maps.
20



Here (b) comes from the fact that in (4.1) only R*~‘w,Q appears,
while (a) follows from the hard and weak Lefschetz theorems (respec-
tively). Weak Lefschetz also implies [3];+1 = 0; however [AJ(3)];
(hence GrH'C' HP) need not vanish. In connection with (a) one makes
the following Bloch-Beilinson-type conjecture for quasiprojective vari-
eties:

Conjecture (BBCY). For Y/Qsmooth quasiprojective, cp : CH?(Y)5) —
HE (Y, Q(p)) is injective.

Lewis ([L1]) deduces BBC? from a conjecture of Jannsen ([J2]); one
can also prove (with some work) that it follows from BBC+HC.

Now taking a limit over K C C f.g. /Q (and using CH?(X) —
CHP?(Xc) and the corresponding limit of S’s) we obtain filtrations and
maps

di: L'CHY(Xc) — ling GriHp (X, Q(p)).

While we prefer to work /K (and without this extra limit) in what
follows, this gives a candidate Bloch-Beilinson filtration.

Theorem (Lewis, [L1]). HLC+BBC? — L*® is a BBF.

If BBCY holds then the above invariants (see chart) completely describe
CHP(Xk), and in particular [3], and [AJ(3)]; describe ker(Alb) for 0-
cycles on a surface/Q.* For computing these, we can use cp(3) =
im(cp(3)) for a convenient choice of 3.

Proposition 4.4. If Z € L'CHP(Xg) then [3); is the image of [3]
under the projection

Hg" (H?(X)) - Hg" (Grp H* (X)) = GrHg"(X).

Here Gri. H*(X) = Wa,H'(ns, R?*~'1,Q) is justifiable by [Ar].
According to Propositions 4.4 and 4.3(a), if [3]o = [3i = ---
[3], = 0, then [3] projects to 0 in HgP(H?*'(X)) (one says [3] = 0).

It follows (using [De, Cor. 8.2.8]) that for some divisor D/ C S, [3]

comes from a class in HgP~'(H*2(Xp)). Assuming HC, this is the
class of a cycle, by whose image (in X, supported on Xp) we may
modify our choice of 3 to get [3] = 0. In specific cases (like those in
§6), one may be able to explicitly construct (without HC) a complete

5 . . h . .
spread 3 which is =" 0. Here is the reason we want this property:

81t is worth noting that £? = ker(Alb) holds for O-cycles if X (of any dimension)
is defined /Q, see [K2].
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Proposition 4.5. Suppose Z € L'CHP(X) has a homologically triv-
ial complete Q-spread 3. Then [AJ(3)]; is the image of AJx(3) under
the projection

TP (HPTHX)) = J7(Gri  H2 (X)) — Gri T2 (X).
If X is defined /Q then we get simplifications: X = X x ns and
(taking p = d(= dim(X)) for 0-cycles)
GTZHgd(X X 775) = HomMHS (@(_d)v E(%) ® H2d_i(X))

= HOmMHS (HZ(X)> E(US)) — Homc (QZ(X)v QZ(S)) )
we write [3] for [3];’s induced Hom’s. Moreover,

i1 7 Bty (Q=d), H (ns) © H*7'(X))
e T NS) = e o (QU—d), Grl¥ H = (5) & HP (X))

H2d—i(X) )

Fg—iﬂsz—i(X) ’

where ¢ is worked out in [K2, sec. 12]; we define AJy ' (Z2)" =
[AJ(3)]iy =& ([AT(3)]i-1) -

Here then is how to compute the invariants for 0-cycles:

Corollary 4.6. Let X/Q and Z € L'CHy(Xg); then
(a) [3]; is the image of the Kinneth component [3]; € H*'(X) ®
H(S), hence [3]} is the composition of [3]F with e.g. H'(S) — H'(ns).

(b) If in addition 3 hom 0, then [AJ(3)]i" is the projected image of

{/813(')} e (FH{H"H(S,C) @ H'(X, C)})v/periods

>~ J4(H™HS) ® H*7/(X)), under the obvious projection of HS.

¢ .
5 (H’_l(ns) ®

Example 4.7. Recall the case d = ¢ = 2 of Thm. 3.5(A), the cycle
Z = (p1 —o1) X (p2 — 02) € ker(Alb) C CHE™(Cy x Coyi) where
Ci, C/Q and K =2 Q(C; x Co). In fact this lives in £2, see §5.1. Noting
that X = C; x C, = S, we need only check that [3]5: Q*(X) — Q*(S)
is nontrivial. This follows from the fact that the spread of (pi,p2) is
Ac,xc, (which induces the identity on Q?), while the spreads of the
other points of Z induce the zero map. Here the connection between
Q?(X) and the Albanese kernel is quite plain! The other cases of Thm.
3.5(A) are dealt with similarly.
22



4.3. Definition of reduced higher AJ maps. Continue to assume
X is defined /Q. At times it is too difficult to compute even [AJ(3)]",
fully; instead one can make use of the following quotient. Writing D
for divisors/Q C S, we can define

T (Sea) := (co)im{ lim H*(S,D) — H*(S) § .
D

H.(ns) := (co)im ¢ lim H,(S\ D) — H.(S) ¢ ;

D
the latter are homology classes on & which can be moved to avoid any
divisor. The former is a (pure weight) HS.

S ; v
By restricting functionals {F“rl <H2t—i+1(8rel, C)® A %’C))} —»

{W(&el, C)® F'H'(X, (C)}V o {@(n& Q) ® F'H'(X, C)}v ,

we induce a map

Je (L‘l(ns) ® %) — Homa <h(ns,@% %)

and the image of [A.J(3)]" , is denoted [AJ(3)];—1. Assuming 3 b 0,
recall that [AJ(3)]", (as a functional) is induced by [, 913 Applying
this to a class [y] ® w for w € Q(X), [y] € Hi_1(ns,Q) [with [§] €
H?=+1(8,q, C) its Poincaré dual], gives

/ YNANw = / w =: /w,
o-13 mx{ (@ 13)n(rxX)} r

where I' is a topological i-chain bounding on 3.(y) :=7x {3 N (y x X)}.°
Now let {w} = {wF} ek € QY(X) denote a basis; evaluating function-

~

als on it gives a map Q(X)Y — CIKI, and we write Ay, for the evy,,-
eviw}

image of

im{H;(X,Q)}. Then the vector ([, w") rex does not change modulo

90ne can ensure this intersection is proper by moving 7 in its homology class on
S. The easiest way to do this is to choose a divisor D C S sufficiently “large” that
the restriction of 3 to X x (S '\ D) has relative dimension 0 over S\ D, and move
v to avoid D. (This is possible because [v] € H;—1(ns,Q); of course, sometimes D

can be chosen empty, as in example 4.2 above.)
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Ay (= periods) if we choose a different I' bounding on 3.(v) (pro-
vided we use the same I" for all w*). We have proved the following:

Proposition 4.8. Given Z € L'CHy(X) with nullhomologous com-
plete spread 3, v € H;_1(ns,Q) and I' € CP(X, Q) with T = 3.(~),

[AJ(3)]i—1(7) evaluates to (. wk)keK € CKI/ Ay on a basis {w}.

The fr w* are called membrane integrals; for i = 2 this once again

makes the connection between r%t of cycles and holomorphic 2-forms
quite clear. We also note that Ay, C CIKl is a rational lattice of
dimension at least 2|K]|.

Example 4.9. In the situation of Ex. 4.2 (assume H!(X) = 0), the
membrane integrals are simply over chains C X bounding loops C Y

These { fF wg’o)} are related to extensions of MHS.

Remark 4.10. (a) We can interpret [3];—; as corresponding to an ele-
ment of Homg (Hi_l(ng, Q), Hi1(X, @)), and thus deduce existence

of the membrane I" (hence the membrane integrals) from vanishing of
[3)i-1 (true for Z € £%) rather than [3].

(b) With some work (see [K2|), one may furthermore relax the extra
condition in Proposition 4.8 from [3] = 0 to only [3]; = 0. This is
a vast improvement, because it says the reduced invariants [AJ(3)]i—1
are computable by membrane integrals whenever they are defined —
hence under weaker conditions than allow [A.J (3)]5?2 to be computed
by Griffiths’s prescription fa,13(~). This is needed to deal with the
n-box cycles of §6.3 for n > 2.

5. ADDITIONAL FILTRATIONS AND INVARIANTS

In this section we will study a few other “candidates” for Fgg. We
are more interested in what one can do with them as is, than with the

fact that under reasonable conjectural conditions they all coincide.
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5.1. Murre filtration'®. Assume X (defined / any subfield of C)
is such that Ax has a good Chow-Kiinneth decomposition. Writing

AZ, = 2 (0<)j<a Dx,j and AL, = 2 bej(<ad) Dxj, We set
FyCHy(X) :=im (AL, ;) =ker (AL, ) .

Note that F\,CHy = CH}™, F}CH, C ker(Alb), Fi'CH, = {0},
and (Ax;), ) = 02d—,j - Id. This latter property does not

necessarily hold for arbitrary algebraic Kiinneth components A x,j (re-
quired of a BBF), but if Fj3; exists then one easily shows Fy, must
coincide with it. Under the assumptions of HLC+BBCY, L* gives such
a filtration, so then £* = F},. Without such assumptions, always
F3, € L*, and conveniently <A‘§2d_¢>* gives a projection to Fj;.

Gr, CHo(X

Example: products of curves. For one curve C with a base point
o0, set AC”Q =C X {0}, AC,O = {O} X C, AC,l = Ac — AC7O — AQQ. If
X =Cyx---xC, (sod=n), write o : (C;xCy)x---x(C,xCp) — XxX
for the obvious permutation of factors; then

cAxj= Y Agy XX Ac,,
Jitetin=j
yields a good C-K decomposition of Ay. We can obtain an alternate
description of the resulting F}, as follows. Let =I' denote the set of
strictly increasing functions ¢ : {1,...,i} < {1,...,n} and (for each
€€ En) write m, : X —» X, := Ce(l) X oo X Ce(z')- Set, FQCH()(X) =

2

CHy(X) and for 1 <i <n+ 1 define
FiCHy(X) = [ ker(m.,) C CHy(X).
€€eE? |
Clearly F"'CHy = {0}, and in fact Ft = Fy,(C L*).

Choosing base points o; € C; (implicit already in the above), we
may also define inclusions ¢, : X, — X. |For ¢ € Zf the trivial map

) — {1,...,n}, m. is the structure map and ¢. incudes Spec C — X as
(01,..-,0n).] Then we can write the projections (AZ,, ;) to the F
as follows:
i—1
P2y =2+ (1) [ Y (eom).2
=0 ecED

for Z € Zy(X). To write it in a more attractive way, define Boz"(Z) :=
P"(Z) so that e.g. for Z one point we have Boz™{(p1,...,pn)} =

10We caution that this is not quite Murre’s conjectural filtration (unless conjec-
tures or further hypotheses on the {Ax ;} are assumed), see [M].
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(p1 — 01) X +++ X (pp — 0n). (For n = 2 this is just Box*(pi,ps) =
(p1,p2) = (P1,02) — (01,p2) + (01,02).) Then

i—1
Pl2)=2-) Y iBox(n2).

) — =n
7=0 ee=]

To be clear: we shall only take “Box’” of a cycle defined on a product
of 7 curves.

5.2. S. Saito filtration. The form of this filtration (we use the version
in [LS]) precludes discussion exclusively for 0-cycles. Let Sm =category
of smooth projective varieties /C, and define inductively V X € Sm, p €
N: FQCH?(X) := CH?(X),

FHCHN(X) == Y > im{(I), : F{CH(Y) — CH"(X)},
YeSm T
g€eN

where the sum is over all ' € ZP~4+x (Y x X) for which [['], : H* (V) —
H?P7(X) is the zero map.

Proposition 5.1. (i) F$ C L°.

(i) If there exists a C-K decomposition of Ax then im(Ax ;). C
FLOCHP(X)Vj <2p—i.

(i1i) In addition to the decomposition, if one assumes BBC? then
Fe=rCe

Proof. |arbitrary codimension]

(i) Inductively assume F§ C £ for all X, p; then fix X, p and let
(Z) € FGP'CHP(X). Thatis, Z =T W forI' € ZP9Hix(Y x X), W €
Z9(Y) all defined / some K f.g. /Q, and (W) € FgCH(Y). Spreading
out X, Y, W, T, Z over the same S, the spread I' € ZP=1tdx (P x5 X)
induces'! a map [['? : H_%q@],@(q)) — H_%p(%,@(p)) respecting L°.
So w(W) € LHY (D, Qla) = ¥(2) = [J7v(W) € L and (using
Lewis’s description of the Gr Hp) Gri(Z) = (Griﬁ [f]f) Pp(W) = 0.

(ii) For Z € CHP?(X), one inductively assumes for i < 2p — j
that (Ax;), Z € FLCHP(X) and uses the definition of F§ to show
(Ax;), Z € F&'. Namely, taking Y = X, T' = Ay, we have 0 =
[Axjlop—i ¢ HPHX) —  HP(X) (since j #
2p —1i) and (Ax;), (Ax;), Z2 = (Ax,), Z, done.

Hyusing cup product with ¢p(T') together with the (essentially fiberwise) pull-

backs and pushforwards along X xs92) — X, 2 resp. In particular, pushforward is
OK because fibers are compact.
26



(iii) If 2 € L'CHP(X) then by part (ii), > o (Ax;), Z €
F&[C L7]; but restricting Z — 37 ., (Ax ), Z (iteratively for k =
i,i+1, ..., p) to Grk yields Grk (Z — (Ax2p—k), Z) which is zero (by
property of £*). Hence, Z = > _._, (Ax;), Z mod LP*!, which
by BBCY is zero; and so Z € F§. O

Having set the conjectural merry-go-round into motion, we give it
one more push:

Corollary 5.2. (i) If a good C-K decomposition (hence Fy;) exists for
Ax, then Fy; C F¢ (on CHy(X)).
(ii) BBC'+HLC = (3 F% and) F2, = F3 = L°.

5.3. Mumford-Griffiths invariants. We now show how to define in-
variants on the Gr}}s which together carry the same information as
the cl' on the Gr%.. This will involve putting a Leray filtration on
H24( X, Q;Ed). (These invariants are really the only established way for
computing when X is not defined /Q and hence spreads along with Z.)

As in §4 we let X, S be smooth projective /Q with 7 : X5 — S
proper, and let Y = (S\ D) C S (affine Zariski open) be such that
7|y, is smooth (the singular fibers are contained in Xp). Define a
Leray filtration for forms on X,

EkQ;id = im {W*Q]Z, ® Q;id_k[—k] — di}
so that Grﬁﬁgd =m0 ® Q;ic/l;{k[—k], also set EkH*(%u,Q;id) =
im {]I—]I* (%, EkQ;Eid) — H* (X, Q;id)} . Standard formal nonsense us-
ing the H*-long-exact sequences associated to 0 — L1 — £F —

Gr%k — 0 (for each k) leads to a spectral sequence computing
GriHI*+* (X, Q;Eid) = EJF. This is

BiF = W (%, Gri!) = W (%, 70" 0 00

k j >d—k
= H (U, O o im0 )
where d; : E?* — E?**1 s induced by V (the Gauss-Manin connec-
tion). (The last equality comes from the Leray s.s. for X, — U and

observing that since U is affine and Qf, @ R/ W*Q;i%k are coherent, all

H™>%s vanish.) Writing'? F*H%  for RO *Q?{i[;ua we conclude that

2More generally, one writes H%  for RO, Q% = (RP7.C) @ Qu, HY Juo for
R, Q. (Also note: Hg(s means the same thing as H}% /u')
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(5.1)  Grim (xy, 05") = HE {1 (U, 9 0 FHE) b

Next, consider the composition ¢y, :

Hom s (Q—d), H*(%u, Q) < FUH*(%y,,C) = H* (X, 05" {log Xp))
— B (%, 9%).

One can show that this is independent of the choice of good compactifi-

cation X of X, and functorial for restrictions from I/ to U, C Y. Hence
it makes sense in the limit over &/ C S, and we may now consider ®:

CHy(Xx) S CH X g) = Hom, (Q(—d), H*(X,Q)) 2 H2(x, Q)

(where as before X = lim 7~ '(U) = X,). An argument exactly like
u

that for Prop. 5.1(ii) above, shows
Theorem 5.3. = (FLCHy) C L'H?*, hence 3 a map
®; 1 FLCHo(Xk) — HEA{T (ns, Qs @ FI*HE) } = VI (X/ns).

Remark 5.4. The notation V.J " (due to S. Saito) suggests that we
think of these ®; as infinitesimal invariants of higher normal functions

of some kind (an analogous point of view will be considered below in
§7). Accordingly, ®;(Z) will be denoted §;3.

The question arises as to whether ¢;3 and [3]; record the same in-
formation for each i, or equivalently (see [LS|) whether ®; may be
defined on L'C'Hy. The problem is that it is not clear that ¢, maps
L' on FUH*(%,,C) to £ on HX(Xy, Q7), owing to the lack of a de
Rham-theoretic description'® of the first £'. However, from the work
of Lewis-Saito (op. cit.) [(i)] and the author (unpublished) [(ii)] one
has the following partial results:

BBWithout something of this sort, L£/FYH?4(%X,,C) (the group to which
[-] takes the spread of a cycle in L‘CHg) is just LTH(Xy,Q%,) N
im {HQd(ngd (log %D>)—>H2d(f{u,§2;€u)}. Assuming X 5 S is log-D-
regular, one can prove (using techniques from [P]) that the EJ*-term of a spec-

tral sequence computing H* (i, Q;Ed (log 3€D>) [~ FYH?¥(Xy,C) forx = 2d] is
HF* (S, Q% (log D) ® ij*Qggf* <1og(%D/D)>) but proving E; = E or that Fu
yields Gr}. seems difficult.
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Proposition 5.5. ® (L!CHy(X)) C LTH* (%, Q;Zd>, hence one can

define ®; on L', in case either

(i) X = S can be chosen to be smooth (no singular fibers in the
compactified family), or

(i) H°(Q) =0 for 0 <i < d.

Remark 5.6. Lewis has reduced the general case to HC, a conjecture
of Zucker-Brylinski, and a conjecture about morphisms of MHS in-
volving intersection cohomology; this is still a vast improvement over

HC+BBC™.

Example 5.7. for (i): X/Q so that X = X x S, though applicability
is not limited to this.

for (ii): X a smooth complete intersection, K3 surface, C'Y 3-fold,
etc. (defined / any field).

It is instructive to work out the target of ®; for ¥ = X x S: the con-
nection V is just differentiation along S and since Hj_ {I'(ns, %)} =
o (7757 C)7
VIH(X xns/ns) = H'(ns) ® FITH*(X) = H'(ns) @ H* 7' (X).
So in this case §;3 and [3]; are precisely the same thing.

Now we refine the maps ®; in a couple of different directions (the
second in the next section).

The first “refinement” requires a momentary switching of gears, since
up to this point all sheaf (hyper)cohomologies have been computed with
respect to the analytic topology. Working in the Q-Zariski topology,
one has the “dlog” (or El Zein) cycle-class map on CH®(X 5) which we

compose with the spread to get ®%7/Q . CHy(Xg) — H%ﬁr/Q(%, Qgé)

(See LS|, |G1].) An argument practically identical to the one above,
yields a Leray filtration on H2? _ and maps from FECHy(Xxk) to

Zar/Q
GriHZ;, o, Which is

k 0 * 2d—k o>d—x
(52) HV {HZar/@ (778’ Qﬁs/@ ® R 71-*Q%/US )}

= H (’75 + HY za/ {st/@ ® FPHy (X / ns)}>

Here the first 2 comes from I-acyclicity of 7s in the Q-Zariski topology.

Now H°(ns, ) = oo = Qe (Kihler differentials where

ev

Q(ns) — K), while in the algebraic context X,, = X X¢v—1Spec Q(ns),
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ns = Spec Q(ns) = Spec K. Hence we have maps

(I)iZa,r . FéCHO(XK) — sz ( ;(/Q & Fd—OH]%‘%{—Z(XK/K)>

= VJ"(Xg/K)

(here V = “arithmetic” Gauss-Manin connection), which factor the ®;
by mapping (5.2) — limg(5.1). This is just the restriction from the

Zariski to the analytic site; one conjectures it is injective. The ®3" are
called Mumford-Griffiths invariants, since (in the limit over K C C)
they pick up the information used in the proof of Mumford/Roitman,
while also being a form of generalization of Griffiths’s infinitesimal in-
variant.

5.4. Green-Voisin invariants and applications. On the other hand,

the I'-acyclic objects in the analytic topology are balls. To make a ball

avoid any D/Q C S (hence live “in” 7)s), we take a limit over balls con-

taining a very general point sy € S(C), and obtain local invariants'*
O3 : FiCHy(Xk) — lim I (B, Hy {Qs @ F© HY ')

B3sg

The important point is that the cohomology sheaves HL may be fil-
tered and graded by using the fiberwise Hodge filtration (on H?X?ls_z).
Specifically, one has a spectral sequence (defined to be 0 for m < 0)
with

gf’m(l) — H%—i—m{ :S‘® H?{—L—m—o,d—m—z’—&—o}

and 4™ (i) =: GrivHS™ {Q"S ®.7:d_’H§gs_i}; but it does not always
(for dim(X) > 1, X not defined /Q) degenerate at & or even &,.
(However, noting that d; sends 5f’m — Ef_jﬂmﬂ , we always have
ELO(i) € £°(i).) Likewise, we warn that while V(= dy) may be com-
puted fiberwise (by cupping with a Kodaira-Spencer class), the higher
d;>1’s cannot.

Since each B is acyclic and the (co)limit is exact, we denote the limit
by B and obtain iteratively (form=0,1,...,1)

:(_m)

lim T (B, H: {5 @ F7HE}) b O ker (Egm—l>> ="

B3sg

HMone can actually replace the r.h.s. by I'(ns,- -+ ) but this will no longer be true

for the (™ that follows.
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e}

lim T (B, E5m™(5)) = Gy J (xB/B),

and define (IDEm) to be the composition
. E(m)o an . A~
(@)™ (ker Z"7V) = FUECH(Xi) T Griv* (X/B)

write ™ (Z) = 6"™3 for the corresponding Green-Voisin invariants.
(These are, for example, essentially defined in |G2| from the VHS point
of view.)

The reason for further “chopping up” the 4;3 like this is for greater
computability, esp. of 5§0)3, by e.g. polynomial algebra. For exam-
ple, if X = {F({#;}) = 0} is a very general degree-D hypersuurface in
P! and Z € L7 = FiCHy(X), 63 € (B, £2°(d)) where £M(d) =

QdeHy? : _ _
W dualizes to ker {/\d 9‘15- X H;l(’i) — /\d ! 9‘15- & H;l(s,llérllm}
ker {/\d SP @ RP~42 4, AHSP @ RﬁD_d_Q} , where S® and R} =
Se / ({g—;}) are polynomial and Jacobian rings (in the {z;}) graded
by homogeneous degree, and v involves polynomial multiplication.

Voisin’s result (§3.2) on rational inequivalence of points p, ¢ on a very

1

general surface X () C P? (d = 2) comes from showing 53 £ 0 for

. . . QZeMY
Z = p—q. Roughly speaking, the image of 3 in = S__Xs

———~| isidenti-
1 1,1
(QkeHy!) o

RN
Xsg

K3|SO 2~ C induced by the spreads of p and ¢q. As a vector bundle,
Qame) . (=V — X,,) is very ample for D > 7 (this is the techni-

50
cal part and involves the sort of polynomial algebra just described);

hence the natural map P(VV) — P (HO(X Q) XSO)V) is injec-

S0

tive. Since p, ¢ plainly yield elements of V¥ lying over different points
of X, (hence different in PV") and mapping resp. to p., g, these lat-
ter are independent as desired. Fakhruddin elegantly generalized this
approach to d > 2 and essentially shows 5&0) 3 # 0 (for Z any Q-linear
degree-0 combination of the n points in question).

Below in §6.2 we will study “general” cycles in ker(Alb) C C'Hy(C x
C,c) where C is defined /Q (i.e., “special”), but there is the following
result for a “special” cycle on the self-product of a general curve. Write

K, for the canonical divisor and ¢* : C = A¢ — C x C.
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Theorem (Griffiths-Green, [GG2]). Let C be general of genus g >
4; then

Zx, = Ko x Ko — (29 — 218K 2% 0
in CH(C x C).

Once again the proof shows 550)3 # 0. Since Griffiths and Green use
Schiffer variations to spread out C x C, an explicit local computation
replaces polynomial algebra.

We conclude with an example to demonstrate the entry of the higher
differentials in the spectral sequence £-™(i). As a reference point, first
consider curves Cy, Co /Q with o; € C; (Q) pi € C;(C) very general (and
such that p; x ps € C; x Cy(C) is too). Then p; — o; =: Z; each have
0 7é 5%0)32 S F(B, Qél (%9 HO’I(CZ')), while (pl — 01) X (pg — 02) = Z
has spread 31 X 32 =: 3 with essentially [0 #] 5%0)31 ® 550)32 = 5%0)3 €
['(B, Q2 0, ® H*?(C; x Cy)). (Note that the V’s are 0 as the C; do not
spread. The d,’s actually are not zero — &£, (2) and £5°(2) are 0 —
but this does not affect £°(2).)

Now we replace the C by two general elliptic curves. Write £\ =
=2 -Dz-N} 2 = P}, for the fibers of the Legendre family
£ = U C Al (omit smgular ﬁbers) Fix 2o € PY(Q) \ {0,1,00} and
choose continuously in A a lift gy € X' (w); this will force us to pass
to a double cover of Legendre, & — Y. Write Q = Usezlan} and
ox = (0,0) € Ey, O = U glor}. Take A1, Ay to be algebraically
independent transcendental numbers.

Then 2y, = q», — 0y, € CHy(Ey, ) (i = 1,2) have the same spread
33=3,=90—-0on g, which yields a normal function v € F(U jgl/u)
defined by v(\) = AJg, (gx — 0x). As this is 2-torsion for A = z but
not elsewhere, it is nontrivial; by a monodromy argument with Picard-
Lefschetz, it cannot be flat. Hence its infinitesimal invariant, which is

013; €l (ﬁ M), must be nonzero. However 5§0)3i =0
(OM®F1HS/M)

because V : Hg/~ — Ql~ ® H%/lg is surjective, hence 0 # 551)31- €
r(B, o, @ni, =& ))

Now the spread of Z = Z,, x 2, is 3 = 31 x 32 (self-product) on

Z/{xl/{xé'xé' and one expectsO—d(OB 5(1 3, 07&5(1 3 ®5(1 3y =

53 € (B, £%2(2)). However, £22(2) is not 0Z ~ ®Hzog/u ; but a

quotient; moreover, Z = 0, hence 552)3 = 0. The rational equivalence is
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direct: let B (the bielliptic curve) denote the normalization of E), Xp1,
E\, C B\, x E\, and ¢ : B — E), x E),, be the composition. Then
clearly «(B) 3 (q1, ¢2) and (01, 02); let t(0) = (01, 02) and ¢(q) = (q1, ¢2)-
Define I1: B x B — E), x E), by I1(b,0') = (m1(¢(b)), m2(e(b'))), and
note that IL. {(¢,¢) — (0,¢) — (¢,0) +(0,0)} = Z. But B is genus 2,
hence hyperelliptic, and so by Beauville-Voisin (see §6.2 below) the

cycle in brackets is =0, o
Write X = E x &, S =U xU. We conclude that the higher differen-

tials — maps from ker {Q}g ® Hié(;s 5 Q% ® H;}S} and

ker {ker {Qé ® Hi{}s -2 ® Hgﬁs} S H;}S}

to Q% ® Hi’?s (or a quotient of this in the latter case) — must hit the

class of 552)3 locally, though this looks like a hard computation to do
explicitly.

5.5. Other filtrations. We finish with a brief description of 3 addi-
tional filtrations obtained by taking the inverse image of a filtration
under a cycle map of some kind.

(i) Raskind ([Ra]). This served as the original motivation for [L1].
Assume X/K, K finitely generated /Q (not Q). By work of Jannsen
[J3], the Hochschild-Serre spectral sequence for continuous étale coho-
mology

E3(d) = Higy (Gal(K/K), Hy(Xg, Qu(d))) = HER(X, Qu(d))

degenerates at F,. Pulling back the resulting filtration by his cycle
map CHy(X) — H2L (X,Qq(d)) gives F5 and one has “higher (-adic

AJ” maps from Grf,, to E} 2d_i(d). Clearly Fp, D Fg; this is equality
if HLC holds and Jannsen’s cycle map is injective.

For the remaining filtrations, assume for simplicity that X is defined
over a number field k, with cycles /K f.g. /k.

(ii) M. Saito ([mS]). By means of various categories of realizations
M, one can put a variety of [hopefully not!| different filtrations F},
on CH*(Xk). The idea is once again to pull back a suitable Leray
filtration along the composition of spreading out (/k) and taking some
kind of Deligne (or absolute Hodge) class. For example, F} . would
just be £°. One always has F§ C F};,.

We are interested (for §7.3 below) in M = M,, whose objects con-
sist roughly of MHS (w./ polarizable Gr}’’s) and Q,-vector spaces with

continuous Gal(k/k)-action, together with comparison isomorphisms
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(under which polarizations and Galois action must be compatible). Co-
homology H*(X/k,Q) € M, is then defined using H*(X¢) for the MHS
and H}(Xj, Q) for the Qp-v.s.

Saito defines Deligne cohomology'® for M, e.g. for our purposes!

HE (X x Uk, Q(d)) := Ext}y, (Q(—d), K3,(X x U/k))

6

where D’ M is the bounded derived category and K%, is a complex of
M-objects with H*(K$,) = H(X x U/k,Q). This is computed by a
spectral sequence ESY = Euxt) (Q(—d), H/(X x U/k)), in the sense
that there is an increasing filtration £* on H3l,, with Grl = EJ,%.
(For j > 2 this is known to be zero for M = MHS but not M,.)

Moreover, one has a Leray filtration £, (with respect to X xU = U)
on whose graded pieces one can put a similar filtration £°* so that
|writing H*(-) for H*(-/k, Q)]
GreGry, HEL (X xU/k, Q(d)) — Homp (Q(—d), H(U) ® H*7'(X))
GreGry HE (X xU[k, Q(d)) — Eaxt), (Q(—d), [W;]H'(U) @ H*7*(X))

. H2d—z’ (X)

— Ea}t}v( (Q(—d), H 1(2/{) ® W)
and for j > 2, GriGre. s asubquotient of Ext), (Q(—d), H7(U) ® H*7(X))
(again, zero for M = MHS but not M,).

Finally, we take the limit over &/ C S and pull £, back by the cycle
map CH(](XK) = CHd(X X 7]8/k> — h_II)lu H%?M(X XZ/{//{Z, @(d)) to get
Fry. As there are “forgetful” maps'’ from the graded pieces of H\,
to those of H%?MHS), F3, C L£* on CHy; if HC+BBCY hold then they
are equal.

(iii) Griffiths-Green (|GG1]). This filtration is closest in spirit to
L*. (Indeed, our presentation of the latter, including some notation, is
influenced by [GG1].) In the construction of §4.2, instead of filtering
H2Y(X x ns,Q(d)), filter HX(X x S,Q(d)) by L% (Leray for X x S —

S), and pull this back to CHY(X x S)5). We say (Z) € CHYXk)

I5for M = MHS this is really absolute Hodge cohomology.

1635 usual U[C 8] affine Zar. op.

170ne caveat here is that F/(H*(X)) in the category of M-objects (F} always
means the maximal subobject contained in F7) may not map (under the forgetful
functor My, — MHS) to F,ﬂ(H *(X)) in the category of MHS, but to something
between this and N7(H*(X)) (which is the same for both categories). Of course,
this is no problem if you assume GHC, but we don’t. However, this issue can be
safely ignored in §7.3.
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belings to F iff it has a choice of complete spread 3 with (3) €
L5CHYX x Syg) [ cp(3) € LEHE.
A priori this is a stronger condition than £’ on the cycle Z. Under

Hp'(X x 8,Q(d)) — Hp'(X x ns,Q(d)),

one easily shows £°* (on HZ%) is the image of L% (on HZ), but L%

is not the preimage of £°*. Hence (for cycles) 3 € Ly = 3/l
but not the other way around. However, if we assume the HC (only!),
F&e = L* (on cycles Z4(Xg)) by the argument in [mS, sec. 1.6].

6. ZERO-CYCLES ON PRODUCTS OF VARIETIES

We want to investigate the behavior of our invariants with respect
to products of 0-cycles, considered on the product of the varieties on
which they lie individually. The resulting cycles are called exterior
products; this is clearly a well-defined operation on the level of Chow
groups.

In the three subsections that follow, we consider the following cases:

(1) cycles Z = Z; x Z5 such that 3 = 31 X 35 — the spread respects
the product structure. In this case we can essentially take “products”
of higher invariants of Z; and Z; to get higher invariants of Z, and we
have some quite general nonvanishing results.

(2) self-products Z x Z (and higher powers) of O-cycles, especially for
Z a divisor on a curve.

(3) 0-cycles on a product of curves whose spreads wildly disrespect the
product structure.

The first section contains no proofs, as they are like more complicated
versions of the proof of Asakura’s result in §6.2 and appear in |K1]|;
stating the results is complicated enough anyway. A fourth subsection
explains a situation similar to (3) for certain relative cycles.

6.1. Products of algebraically independent cycles. Let Y7, Y5 be
smooth projective /Q of respective dimensions di, dy and let K C C
be finitely generated /Q of trdeg. j. Take

(a) V € LICH((Y1 k) such that a complete spread T € Z4(Y; x S)
induces a nonzero map 7 (Y;) — Q/(S),
(b) W e CH§*™(Y3)g) such that 0 # AJy, (W) € J?(Y3).

Then from [K1] one has the following.
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Theorem 6.1. Z =V x W %t 0 in CHy(Y1 x Yo,k); in particular,
[AT(3)]{" # 0.
Example 6.2. This immediately justifies Thm. 3.5(B), by taking
V=(p1—o1)x X (pr1—0r1) [dy =j=10-1],
and W:WEXOE_HX"'XOd [dgzd—g—i-l]

Remark 6.3. (i) For O-cycles, the Theorem generalizes a result of Rosen-
schon and M. Saito ([RS]) which gives the special case d; = 1(=
7). (This includes the ((P) — (O)) x ({(Q) — (0)) example of Remark
3.6(iii).) Note that in this case, one can replace (a) by the simpler
statement that (V) belongs to CH{™(Y;,c) and is not defined /Q.
(That is, no cycle rationally equivalent to V is defined /Q.)

(ii) The ((P) — (0)) x ({Q) — (O)) cycle can be used (|[K2]) to con-
struct explicit O-cycles of trdeg. 1 in ker(Alb) on any special Kummer
(K3) surface. In §8.2 we will show how to use the case dy =2, dy = 1

to construct O-cycles in £L3C' H, on CY 3-folds arising from the Borcea-
Voisin construction.

To generalize this even further, we define (for all 1 < jy < dy)
SEL AR L ER=L(S,y) @ H2 27 (Yy) ) =
largest subHS of H271(S,) ® H*®2772(Y,) lying in
ker (H”71(S,, C) @ H*»77(Y,,C) — H?71%(S,,C) @ H?7>%(Y,,C)) .
This contains
NIHj2—1(82) ® H2d2—j2 (}/2) + Hj2_1(82) ® Fg2_j2+1H2d2_j2 (}/2)’
so one has a projection

” <Hj2‘1(n52) . szz—jz(yz)) B i (Hj2—1(82> 2 H2d2—j2(y2>>

da—jat1 1,do—jat1
th J2 SF}E 2—j2+1)

and we define [AJ(3)] _, := E([AJ(3)]},_,) . One can show that the

J2—1
cycles constructed by Theorem 6.1 have nontrivial [AJ(3)]7
Now take (subfields of C) K;, K, f.g. /Q and

(a) V € LMCHy(Yy/x,) with i (V) #0,
(b) W € L7*CHy(Yak,) with either
(i) cl2 (W) #0 OR
(i) AJEIOV)r £ 0 and el (W) = -+ =2 (W) = 0.

Set K = Q(K, K5), the field generated by K, and K, over Q — this is
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the natural field of definition of the product V x W. For the “algebraic
independence” requirement (to force the spread of V x W to be U x 20),
we demand trdeg o (K) = trdeg,q (K1) + trdeg (/). Then from [K1]
we have:

Theorem 6.4. Assume the GHC; then 0/ = VX W €
L3R CHy (Y1 X Ya/k). In particular, when (i) holds, cBL %2 (VX W) #
0; while if (i) holds, AJQ%&;I(V x W) () =£ 0.

This, then, is the sense in which invariants “multiply” nontrivially.
The theorem is obviously false without the independence requirement,
e.g. for self-products (V =W, K = K; = K,) — see the Beauville-
Voisin theorem below.

6.2. Self-products of cycles. In this subsection we prove two results
(approximate converses of one another) on the “symmetric square” of a
divisor p — o on a curve, concluding with a brief treatment of its higher
“powers”. As above, denote by K the canonical divisor of C.

Theorem (Beauville-Voisin, [BV]). Let o, p be two points on a

rat

smooth hyperelliptic curve C/C of genus g > 1, with (29 — 2)o = K¢
in CHy(C). Then Z :=(p—o0) x (p—o0) 2 0in CHy(C x C).

Proof. The assumption implies 0o € C(C) is Weierstrass, hence a ram-

ification point of the (intrinsic) canonical map ¢ : C ‘%’ PHC P91
Writing o : C — C for the corresponding involution, we set f(z) :=
% and F' := foyp, and note (F') = p+o0(p) —2- 0. Hence (and this
is worth drawing for oneself)

(tac). (F) + (1opxc), (%) + (tpixe), (F) + (textony), (%) -

2-{(p,p) = (0,p) = (p,0) + (0,0)} = 2-Z
shows that (always modulo torsion) Z =0. U

In addition, this result holds vacuously if C is a general curve of genus
g > 3; that is, there cannot exist w € Q'(C) with (w) = (29 — 2) - o.
Indeed, for such a curve all Weierstrass points are normal, hence cannot
have 2g — 1 as a gap value. (This is false for arbitrary nonhyperelliptic
curves.)

Before giving the “converse”, a beautiful theorem due to Asakura,
we digress briefly on AJ maps. Consider Y;, Y, smooth projective of
dimensions dy, dy, di1+dy =: d, and let II; : Y; xY5 — Y, be the natural
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projections (i = 1,2). Take V € CH?P(Y}) and 3 € CH} (Y1 x Y3).
The restriction of functionals

[FAPH 2204y, Y, €)Y — {FEPH(QV] @ HY (Y, €)Y

SAFPHY (Y., C)}
is well-defined modulo periods, hence induces
pry, : JP(Y) x Ys) — J2(Y5).
To describe this map on 3, let 9-*3 bea bounding chain and restrict the

functional [, .5 to QV] @ F'H'(Y3,C). If & € F(Qdy}f’ 4=P) represents
[V] and w € Q(Y3), then

/ I3y NIjw = / Hw = / w.
o-13 (0-13)N(VxY2) 5 {(0-13)N(Vx¥2)}

Noting that 9 (II; {(07'3) N (V x Y2)}) =L, {3 N (V x Y2)} =: 3.V,
we may write this [, 5 ), w; it follows that

pry (AJyixv,(3)) = Alby, (3.V) -

Using this we now prove:

Theorem (Asakura, [As]). Let C be a smooth projective curve /Q,

with p € C(C) very general and o € C(Q). Then (29 — 2)0?%t K¢ in
CHo(Cjg) = Z:=(p—0)x(p—o) ?Et 0 in CHy(C x C/c); more
precisely, [AJ(3)]" # 0.

Proof. We first construct a choice of complete Q-spread 3 € Z2(C x C x

C /Q) for Z. Write P;, P;; and ¢;, ¢;; for projections and inclusions, e.g.
t13 1 CxC — CxCxC sends (q1,q2) — (q1,0,q2) and Poz : CxCxC —

C x C sends (q1,q2,q3) — (g2, q3)- Set A[g’} ={(Q,Q,Q)|Q € C} and
3= A7 = 2Ac — P Ac — BN+ 110+ 2C + 3¢

and note that 3N ({p} x C x C) = (p,p) — (0,p) — (p,0) + (0,0) = Z.
Moreover (Pa3). : H*(CxCxC)® — H*(C xC)®? is an isomorphism'®

while (Py3),3 =0, so 3 hom 0.
Consider the commuting diagram of Jacobians

183, denotes the n'™symmetric group
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J2(H3(C xCxC)) —=J* (H'(C)® H*(C x C)) — J* (Hl(C) ® %55?5)@

\ L

J2 ({Hl(c)®3}63)( — J2 (Hl(c)®3)

Prp

J2(H'(C)®3)

J2(H'(C)®FH{H(C)®2})

where the composition in the top row sends AJexcxc(3) to [AJ(3)]Y,
which we must show nonzero. By the diagram, this is accomplished if
we have

(prp o prgs)(AJ(3)) # 0. The remainder of the proof therefore pro-
ceeds in 2 steps: we show first (i) that 0 # pry;(AJ(3)) € im(Z), then
(ii) that prp o Z is injective.

We apply the discussion preceding this theorem with Y; = C x C,
Yo =C,and V = A¢c — {0} x C = C x {0} € CH*(C x C). As the
Kiinneth components [V], € H°(C) ® H?(C) and [V]; € H*(C) @ H°(C)
are zero, [V] = [V]; and Q[V] ® H'(C) is a subHS of H'(C)®3. Hence
pry, : J2(C x C x C) — JY(C) factors through prg,; so if Albe(3*V) # 0
then prgs(AJ(3)) # 0. Indeed, we have'

3-PLY = AP (A x €)= (A x {0}) - (A¢ x ©)
_ —(LAEYS])*KC + (LACX{O})*KC,

and applying (Ps). gives 3*V = —K¢+ (29 —2)o. Since Kcr%t (29—2)o,
AJe(37V) # 0.
Moreover, S3 operates on CH?*(C x C x C) and J?((H'(C)®?)

);
and since 3 € (CH2(C xCxC))®, we have [0 #]prg(4J(3)) €
(J2 (H'(C)#3)} ™ = J2 ({Hl(C)®3}63) and (i) is verified.

Injectivity of the bottom composition will follow from the fact that
{H'(©)**}** n H'(C)® F {H'(C)*?} = {0}.

These are Q-vector spaces. Given a basis {w;} C Q!(C), an element

of Fyy {H'(C)**} may be written uniquely as ), w; ® a; + 3, 0; ® o

9This uses the following self-intersection formula adapted from [Fu, pp. 59,

J A
103]: let ¢ denote the composition C — A¢ < C x C. Then j5* (N(ac)/cxc)) =

(FTexe) /Te = Te, and 80 t*1y (C) = ¢1(Te) N{C) = —c1(Ke) N{C), which is to say
the negative of the canonical divisor (which we write —K¢).
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for a; € HYY(C,C), a; € H*!(C,C). For coefficients (hence periods)
in Q, the element must be fixed under conjugation, hence a; = &;. An
element of H'(C) @ FH{H'(C)®?} thus takes the form?

Y wiowed+Y wienRat+y Hiew e+ @iew;® 6
i3 4,3 4,3 4,3

If the last line is invariant under S3 then, applying (12) and switching
7 and 7, it must equal

Y wiOwRa+Y wieHF+Y Rw Oty BEZ; 06
%7 2,7 %7 2,7

But if a; = 3; then they lie in H° N H%! = {0}. O

Remark 6.5. It would be interesting to see whether any similar results
can be proved (using intersection theory) if we replace C by X of higher
dimension. The generalization would not be straightforward, however.
If X is a smooth projective surface with H'(X) = H3*(X) = 0, the

cycle analogous to Z in Asakura’s theorem is 2 () if BBC? holds. This

is because an exactly analogous choice of 3 on X x X x X gives 3 hom ).
and then necessarily AJ(3) = 0 since H" (X x X x X) = 0. For X a K3,

Beauville-Voisin (|[BV]) have actually proved 2 Z0if 240 = e (Tx),

but it should be true for any choice of 0 € X(Q).

Next we ask what happens if we take higher self-products (p — 0) x
X (p—o0)onC x---xC? Here is a vanishing result (like the B-V
theorem above).

Theorem ([Vo]*'). Let C be a smooth projective curve /C with Z €

CH™(C). Then the n-fold self-product Z*" 2 0in CHy(C*™) for
n>g+1.

Remark. One should note immediately that Z here is not limited to
cycles of transcendence degree 1 (like p — o above) on curves defined
/Q. For that situation one expects a much stronger result, namely

(p—o0)" = 0forn >3 (regardless of g). Indeed, if BBCY holds then

cycles of trdeg. 1 in L3CHy(C*™) are =0 (see Prop. 4.3(a)); while
from §5.1 (p —0)*™ € F}CHy C L"CH,.

20in fact (applying complex conjugation again) «; = 3;, but we don’t need this.
21C. Voisin has pointed out that this is really due to Bloch [B1]. Indeed, it
follows easily from the Theorem quoted in §3.2 above (take A = J*(C)). Note also
that Voevodsky arrives at the weaker lower bound n > 2g.
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Proof. First let n be arbitrary, and write [py, ..., p,] for the image of
(p1, ..., pn) under the standard map & : C*® — S"C onto the n'®
symmetric product. Let o € C be a choice of base point and define

& : S*C — JY(C) by [p1,...,pr] — Ade (Zpi—k-o) ,

F: 8"C — S"C by [p1, -y D] = [Py Pr1,0];

denote the induced maps on C'Hy by o, &, . Next, writing W
for a lift of W € Zo(S*C) to Zo(C**) and Symy = 35> ,cq, 0« €

End (Zo(C**)) (and referring to §5.1 for P, Boz*) we define
B CHy(S"C) — CHy(C*™) by Symy, {PL"‘”VV},
b: CHy(S""'C) — CHo(C*™Y) by
b(W) = Sym,_; {PL"_”W} = Symyu_1 {Box"‘l(W)} :

Finally, let ¢; : C*"~! < C*" be the inclusion putting {0} in the j*
coordinate and 7; : C*™ — C*"~! be the projection forgetting that
coordinate; and define

WD : CH(C") = CHy(C*) by 1D0W) == = 3 (1) W,

7l : CHy(C*™) — CHo(C*™") by alD(W) := ) "(m)). V.
j—1
We summarize these maps in the diagram

o B
(FQOH()(an))G" - CHO(an) CHo(S"C) (FgfchO(an))Gn

P
CHo(J'(C)) v BONIPIC

En—1

CH()(S"710) bE (F2710H0(6X7L71))6n71.

Clearly &,_1 = &,0y. While 1Wor® is not the identity, (7;).0(t;)s = 9y
on (FQ_IC’HO(CX"_l))6”71 — 7 0V = identity there. Tt is also
easy to see that f oy = W o b, and applying 7" on the left yields
Mo B o~y = b. Moreover, the top composition is just the obvious
inclusion, and ™Mo Boaol =0. Since the 2 _class of Zx" belongs to

(FQC’HO(CX”))gn, it is obviously trivial if 3 o a0 I is itself zero.
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This is precisely what happens when we take n > g + 1. Indeed,
we claim in this case that &, and &,_;, hence 7, are isomorphisms.?
Assuming this, we can apply 7' oa oI on the right to o~y = W o b,
obtaining

foaol = 1Moboytoaol.

On the other hand, applying y"! o« oI on the right and 'Y on the left
tob=n"o (G o~y gives

Woboyloaol =M orMopoaocl =Moo =0,

and we are done modulo our claim.

Recall that &, is surjective for k > g, with generic fiber P*~9. Indeed,
all its fibers are rational: given z € J'(C), pick any [q1,...,q] €
&1 (x); then £ Y(z) X PHO(C, O(qi +- - -+q1)) = PM for some M > k—
g. (These facts follow from Jacobi inversion and Riemann-Roch.) For
k = g, one obtains that £, is birational; hence &, is an isomorphism.??
For k = g + 1, one notes that im{y : S9C — SY9"C} meets every
fiber of égﬂ, so any point of S97IC is 2 t0a point of im(¥), hence ~y
is surjective; and since £;11 0y = £, v is injective. Thus £, is an
isomorphism; repeating this argument shows &, is an isomorphism for
k > ¢ as claimed. O

This theorem has the exciting corollary that all cycles algebraically

equivalent to 0 are “nilpotent” modulo = Tosee this, let Y € CHY8(X).
Then there exist ); € CH,,,1(X x C;) and p;, ¢; € C; |[=curve of genus
gil st Y =32, (Vi(pi) — Vi), where Yi(c) := mx (Vi 0 ({c} x X))

for ¢ € C;. For each i one considers the map

On : CHo(C™™) — CHpon(X™T)

1 X X ey Y(ep) X x Yey)
xn rat

induced by Y*". Since ¢, {(p — q)*"} = (V(p) — y(q))X” and (p — ¢)" =
0forn > g+1, the terms of the ), are nilpotent [i.e. (Vi(p;) — yi(qi))x(giﬂ)

rat

0]. It follows easily that Y {9 +D} = 0

rat

Corollary 6.6. All degree-0 zero-cycles are nilpotent.

22Voevodsky uses the classical fact that (essentially by Riemann-Roch) S*C &
JY(C) is a projective bundle for k > 2g — 1, to see this for n > 2g.

Z3For this implication see the argument in [V4], §11.1.1 (p. 310), which is stated
for surfaces but valid also for higher-dimensional varieties (e.g., see also [L2], pf. of
13.3).
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Voevodsky [Vo| also outlines an argument to the effect that extending

1 num
the nilpotence statement from cycles 20 to cycles =" 0 would amount
to proving the Bloch conjecture. The same argument also appeared
in Voisin’s paper [V3]. Kimura ([Ki, sec. 7|) picks up this theme

and proves nilpotence of cycles = (and BC) for varieties of “finite
dimensional” Chow motives. This includes (smooth) varieties covered
by a product of curves (and the proof of this utilizes once again the
classical fact regarding S"=2971C — J'(C) used in [Vo]).

6.3. Correspondence cycles. If X =C; x --- x C, /Q (here n = d)
then we may consider O-cycles of the form Z = Box"(pi,...,p,) for
pe € C¢(C); we have automatically Z € F} C L*"CHy(Cy X -+ - X Cp ).
Thus, to be detectably nontrivial, Z must not be defined over a field of
transcendence degree less than (n—1) over Q. The interesting situation
is therefore where Sy, C C; X - - x C, is a (possibly singular) (n —1)-
dimensional subvariety, and P = (p1,...,p,) is the inclusion of a very
general point Py € §y(C), so that the spread B of P is the graph of a
desingularization S - Sy C X as a subvariety of S x X. We write in
an obvious notation 3 := Box%(B).

A technique for detecting such O-cycles Z is developed in [K2, sec.
14], by writing an explicit Q"(X)Y-valued (n — 1)-current

3 = Y pexw’]Y @ RE on S. Integrating R3 on topological cycles
v € im{limp H,,1(S\ D) — H,,—1(S)} then computes [AJ(3)],—1 €

Hom (Hn 1(ns, Q), ﬁ), i.e. as vectors € CIKI (f,y R’g)kEK =

(Jrw") ek modulo Ag,y.* Remarkably, in case n = 2 (only) [ Rj
reduces to an iterated integral, so it is in this case that we review the
construction.

Henceforth Sy C C; x C; = X are defined /Q with o, € C,(Q),
Py € 8(C) is very general with image (p,p2) € X(C), and Z =
(pl — 01> X (p2 — OQ) S £2CH0(XK) where K = (8)

24We note that dim(S) =n—1 = [3], =0 = [AJ(3)],_, is defined and
computed by the membrane integrals of Proposition 4. 8 For n > 2 it is not clear
(without HC) how to modify 3 over D C S to get 3 O so this uses Remark
4.10(b); for n = 2, see below.
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Z is called an “Sy-” or “correspondence-" 0-cycle on C; x Co; in fact, we
have already encountered the diagonal 0-cycle on C x C (Sp = A¢) and
the bielliptic O-cycle on E; x Ey (S = B). Note that since [3]o = [3]1 =
[3]2 = 0 (ie. [3] =0 in H%(ns x C; x C2,Q)), [3] € HX(S x C; x Co)
comes from a class in H2({Q} x C; x C3). As this must also be a ra-
tional (1, 1) class, Lefschetz (1, 1) says that it is the class of a cycle on
{Q} x C; x Cy. If we modify 3 = Bor(B) by subtracting off this cycle,

then the new 3 hozm 0.
Let {a7}j=1...24,» {&7} be dual bases of H,(C,, Q) based at o, resp. o,
while avoiding 0} resp. or; and take D, := C \ U, |4]| as fundamental

.....

functions zf = foz wf on Dy (Wthh are 0 at og), or equ1valently 0-

currents on C; with “branch cuts” at the {a]}. One has in particular
izt = wf = 3% (fg k) -0
Write k = (ki,kq), K = {1,. ..,gl} x {1,...,92} so that the basis

{wk} C QNX) takes the form {wi" A w5} kyyek; also denote the
pullbacks of z, w, a, & to S no differently. Then from [K2]

291

R§M™ = 2wl =3 < / w’fl) %28,y € 'DN(S).
=1 \Jed

Now assume Sy 3 (01,05) =: o and also write o for a point on S

mapping to it. Choose 7 to pass through o (and such that v N 64{1 N

& =0 Vi1, j2) and let ¢ : [0,1] — v C S be a parametrization with
©(0) = 0. Define the iterated integral

[eeo= [ ([ s)en

for any «, 3 € Q'(S). (A priori this is only an invariant of the homo-

topy class of v € m(S;0).) We claim that [ R(k1 k2) = [,ow Mo Wb
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on the nose; to check this we drop the k;,ky and write R = 2wy —
> (faj w1> 23 - 045~ Pulling this back to v gives

(6.1) nwr — Y Z (/ )Zz(q).a{q}.

I geddny

Denote the path along v from ¢ to o by ¢.6; on this path let %, be the
continuous function with dZ; = wy and Z3(0) = 0. Then we can take d

of the O-current
_ Z Z ( / ) 2 0as

J qeA] Ny
to obtain
+Z Z (/ )52@)5(1_ Z Z (/ ) 7o (W25
J o gealny J pealny

adding this to (6.1) yields

Zl—z Z (W1>5(r0> Wy =—: 21'(4)2

J pedjﬂ'y

where 2 is continuous except at o [essentially (Z, 0 ¢)(z) = [; ¢*wi].
Along 7 this is cohomologous to (6.1) by construction, so

/R:/él'u&:/ W1 O Wy
¥ v ¥;0

Theorem 6.7. Let Sp;5 C C1 X Cy be a curve passing through o =
(01,03) € (C1 x C2)(Q) with very general point (p1,p2), and set Z =
(p1,p2) — (P1,02) — (01, p2) + (01, 02) € L2CH((Cy X Coyc). Then for~y €

Hi(S,Q), [AJ(3)]1(7) evaluates to (f Wkt o Wk e (C\KI/A{ y

as desired.

)(k1 ka)eK
on the basis {w} = {wi* A w§?}, where 7 is any closed path > o and

hom

= 7.

Example: the Fermat 0-cycle. Specializing to C; = C; = F an
elliptic curve, we write Q!(E) = C (dz) so that w = dz; A dz, generates
O?(E x E). If we take E to have CM, then H*(E x E) = H3 & HZ as

alg

HS where H2.(E x E,C) = H** @& H%?; this has the effect of making

w’s periods A, C C yield an honest 2-dimensional rational lattice.
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Setting £ = {v? = 1 — u'} with 0 = (0,1)[= (u,v)] and dz = 15 2

4b v ?
where b = fol \/%, we have in fact A,y = Q(1,4). Hence if S,

Z, v are as in Thm. 6.7, [AJ(3)]1(7) is computed by the number
fﬁ;oﬂfdz omsdz € C/Q(1,1) (integration on S). (It seems remarkable
that the iterated integral is well-defined modulo Q (1,4) on homology
classes.)

For S we shall take the Fermat curve § = {z* + y* = 1}, embedded

in ExE by (1, m2) where 7y (2, y) = ( 1\;%@ iv wlz>, T (2, y) = (~y, 902);

note o = (1,0) € S maps to 0; X 05 € E x E. We shall also make use of
a third map m3(z,y) = (:v y?). Writing v; = 7fdz we have v, = %%
where ¥ = /2b = fo = t4 vy = “’”y‘ix, vy = 452 zx. These span
Q4(3), and so ¢ — ([? VZ>Z 10,3 induces a map = JI(S) factoring

(71,2, m3) 1 § — E x E x E, hence an isogeny J'(§) & E x E x E.
The computation that follows is almost exactly the same as the one

done in [H|: taking v = path (on §) from o = (1,0) — (0, z) (7,0) —

(0,1) — (1,0), we use the automorphism o(z,y) = (7%, L) to get

/ 1/101/2:/ V30V1:2(1+i)/ Vs 01y
;0 O—(’Y); (07_i) (071)0

Y1—4) dx 1 dx
— 91+ =
(1+1) /0 1b m 2 (1 — z4)3/4

L_dt dt
0 \/1 7 (1- t4)3/4

2]0 \/1 74 fo 1 t4 3/4

Unfortunately, it appears to be unknown whether « is irrational; but

=k €eR/Q C C/Q(1,1).

we can verify the Fermat 0-cycle Z r%t 0 by other means and so k ¢ Q
would be implied by BBCY.

Bloch has proved (in [B3|, using the /-adic Abel-Jacobi map) the
algebraic inequivalence of A.J,(§) and its mirror image A.J, ()~ as 1-
cycles in J'(F). Using the isogeny p and exploiting symmetries of the

image of § in E1) X Eo) X E(3 ) one first deduces that Box? By (im(F ;f 0

there, then that it cannot be E (a fortiori %) to a cycle supported on
Ey x Ey x{pts. € E3}. Consequently the spread 3 of the Fermat 0-cycle

2, which maps to Box?, (im(§)) via By x By x § "5 By x By x Es,

cannot be = to a cycle supported over a divisor/Q in §; and so Z %t 0.
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6.4. Regulators and relative 0-cycles. There is one product of
“curves” for which one can completely describe the Chow group of 0-
cycles and the higher AJ maps. This is the n-fold self-product of the
relative curve (P',{0,00}), which one may think of intuitively (only)
as P! with {0} and {oo} attached — a degenerate elliptic curve. We
give just the barest summary of the most striking result and refer the

reader to [K2] and [K3]| for full details (minus relative %t, a discussion
of which for these problems is in [K4]).

Set X" := (P!,{0,00})*", or equivalently for our purposes,
(P",Ui_o{z = 0}) (which one can think of as a degenerate CY n-

fold). On X} (L C C) let {ay,...,a,} represent the relative = class
of B(ay,...,a,) = ({a1) — (1)) x -+ x ({a,) — (1)). We make the ad
hoc definition

LPCHy(X}) == {{a1,...,a,} | a; € L* (Vi)},

and observe that this gives Milnor K-theory K (L) by a result of
Totaro (|To]). )
Now assume L is finitely generated /Q of trdeg < n, so that one has

~

Q(S) — L for some smooth projective S/Q of dimension < n. There

is a map
R: KM(Q(S)) — H"(ns,C/Q(n))

called the Milnor regulator; one defines R{fi,..., f,} to be the coho-
mology class of the (n — 1)-current

n

> (=) @ny/=1) og f; dlog fi1 A - -Adog a0 pt gyt vy

i=1

on 7s. Obviously one can consider the composition

L'CHy(X}) = KM (L) 2= KM(Q(S)) = B (ns,C/Q(n)).

On the other hand, to try computing a higher AJ class for Z =
B(ay,...,ay,), one would spread this out to 3¢y = B(fi,...,f.) on
(P', {0, 00})*" x {4 C S} by taking f; := ev~1(a;). (Each component

of 3 looks like the graph of n functions over &.) One can then show

that 3 hom 0 and obtain a generalized AJ class for 3, by integrating

forms dlogz; A --- A dlogz, A wy over a limit of chains bounding (in
the limit) on 3. This boils down, by explicit computation and Hodge

theory, to integration of the above current over topological cycles on
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S. That is, the above composition gives the right generalization? of
AJ;‘l, and one would conjecture it is injective.

As a sanity check, one can try out n = 1: R{f} = logf €
H%ns,C/Q(1)) = C/(27/—1)Q, where (since dim(S) = 0) really
f = a € Q*. The composition sends ({a) — (1)) + loga; so we ex-
pect that for > ¢ =0, > ¢; (o) £ (mod torsion) <= (Ila?)" =1
for some N € Z*. Since on (P!, {0, 00})g, rational equivalence is gen-
erated by divisors of functions F' € Q(P!)* with F(0) = F(c0) = 1,
this is indeed the case.

7. BEHAVIOR OF HIGHER ABEL-JACOBI CLASSES IN FAMILIES

7.1. Topological invariants for higher normal functions. Given
a smooth family of d-dimensional projective varieties X;; — U [C S]
over an affine base, with 3 € Z%(Xy) such that Z, := 3|x, hom 0
(Vs € U), one can define the normal function vs € T'(U, jacelu/u) by
v3(s) = Alby,(Z,) € J4X,). Using the connecting homomorphism §

associated to the exact sequence 0 — H;‘Z_ﬂb(@ — Hggj/b / F dHQx‘i_/b —

j;éu qu — 0, one obtains the topological invariant ov3 € H LU, ngi_/zlx,(@)
of the normal function. In terms of the notation of §4.2, v is the
family {[AJ(3|x.)]o} while dv5 is essentially [3];; so [3]; # 0 =
{[AJ(3]x.)]o} # 0 and [3]; is an invariant of the family.

Below we will generalize this to show (for ¢ > 2) [3]; may be viewed
(in some cases) as an invariant of a family of (i — 1)*-higher-AJ classes.
First we explain (partly following [K1|) how such a family appears in
terms of spreads and field extensions. Let K /L be a transcendental
extension of subfields of C finitely generated /Q. Then there exist

S/Q with sy € S(C) such that ev,, : Q(S) — K, and M/Q with
p: S — M such that ev,,) : Q(M) = L; write po = p(so) €

M(C). We get a foliation of S by subvarieties S, := p~ () & S of
dimension trdeg(/K/L) =:t > 1, and note that S, is defined /L with

~

L(S,,) — K. Finally, it is clear that p makes sense in the limit as
evso

a map 7ns — N we shall denote this by p. Note that since this is

a limit of affines over an affine base with ¢-dimensional affine fibers,

R™*p.Q = 0. If m = dim M then Leray for p yields H"™™(ns) =

25This result was the original motivation for introducing the reduced higher A.J

maps of §4.3 and the currents Rz in §6.3 computing them.
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Next consider X/K and Z € ZP(X/K); then one has the Q-spread

3 € Z°(%/Q) with X = ns as above. But we don’t have to spread
clear on down to Q. Write ng, = limV [V C S, affine Zar. op.

— IM .
/Q(n)]=ns NS, and X, := 7 *(ns,) — X. Then we can consider
instead the (partial) L-spread 3,, € Z¥(X,, /), which is nothing other
than 77 (3) (e, 3N X,). We write L 5, F/® for the £* and 1

defined on ZP(X) in §4.2 above; one can set up an analogous picture
for the partial spread with invariants

Ui/t (Ll ) CHY (X i) — [Gre) HY (X, QUp)).

(Here the £ on H}Y comes from Leray for X,,, — 1, .) One has ¢*/F =
T o WK/, 7 (L*) € L°, hence L35 € L)y, on CHP(Xk). Thus if

Z € Ll oCHP(Xx) has v /"(2) # 0, then trivially v,/%(2) # 0. Tt
is a version of the converse that we shall be discussing.

Now the points € 1a(C) correspond to embeddings ev,, : Q(M) —
C (with image =: Q(yz)), while the points s € 7g, (C) correspond to em-
beddings Q(S) — C which are ev, on [p*]Q(M). Having said this, for
t # o, 3, is the partial Q(u)-spread of Z; € CHP(X,/qs) for any
s € ng,(C). Thus we may speak of {3,},cm(c) as a family of partial
spreads, even if they are not all partial spreads of Z = Z,.

So suppose that Z € E’('K/@)CHO(XK) and choose L (or equiva-
lently M) so that t[= trdeg(K/L)] = i — 1. Clearly for each g,
[3,)i = 0 as dim(S,) =t < 4, and so the “higher normal function”

V[Bi_l] (p) :==[AJ(3,)]i—1 is defined. (Note that for = po this is essen-
tially 1"/"(Z); for general p, it is equivalent to ¥ >"/@W (Z,) where
5 €1, (C))

Expectation:
(*%)ig1 : [3]li #0 = the function 1/‘[32_1} is nonzero
(onnr(C)) for some choice of L.

That is, [3]; should be an invariant of I/g_l}, its “topological invariant”;
this gives a hint for the proof — that a connecting homomorphism ¢ is
involved.

Proposition 7.1. Ezxpectation (for all i) is (a) true if X is a surface
with a model /L, and (b) true modulo GHC if X is of higher dimension
with model /Q.

49



Remark 7.2. In the first instance, the Q-spread X — S is a fiber prod-
uct ) X \ S for some family I — M; hence X is constant along fibers
of § — M.

We prove the second statement (b); the first follows from a similar ar-
gument together with the fact that H*U,FyH3, o) =
H*(U, M3, ) N FYH*(U, M, ) foralld © S st Xy — U s
smooth.

Proof. Observe first that we may essentially reduce to the case where

(s =)

trdeg(K/Q) = i. Choose a very general (s — i)-fold hyperplane section
So C S; this will be defined over Ly[C K| such that trdeg(K/Lg) = i.
By affine weak Lefschetz one deduces H'(ns) — H'(ns,), hence

Homyggs (Q(=d), H!(5) © H*7/(X) ) — Homyy (Q(—d), H'(ns,) © H*7/(X))

and so [3]; #0 = [30]i # 0 (where 3¢ := 3 - (X x1s,)). A trivial
modification of the argument below (with 3¢, Sy, Lo replacing 3, S, Q

and M of dimension s — i + 1) then gives the desired conclusion for

trdeg 1
any L such that Ly, C L C K.

So assume dimS = i, [3]; # 0, and choose any L C K with
trdeg(L/Q) = 1(= dim M); we prove {[AJ(3,)]"",} # 0. We will re-

quire the following notation for sheaves of MHS over na: H'

ns/nM Q~
R~ 1p*Q, H;S}nM R~1p.C®0,,,, with H'~' denoting lowest weight;
and HXQ (resp. HX ) denotes the constant sheaf % (resp.

H2d i (X7(c
Ffll*”rl{num}

). Consider the diagram

,C,i

(/) CHo(Xx)

=

LICHY(X x s 3)

. {ATC I}

HomMHS (Q(—d)vifi(%) ® szii(X)) H° (77/\/17 EthHS(nM) (Q( ) HZS/WM Q ® HX Q ))
() s
i H24-i(X) i —F2d—i
H(US)®W H! (77M7ﬂnsl/nMy@®Hx,Q)
)
Leray for p
1 i1 H24—i(X) = i —2d—i
H (77M7R p*Q)®F:*i+1H2d—i H' (nM7H S/ @®HX Q)
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where GHC(1,4,§) = injectivity of () by [K1, Lemma II.2] and o
is induced by the short exact sequence

i— AF52d—1
HL @ Hx

i—1 —2d—1 =ns/mMm 1 i—1 2d—1
0= Hos/mnm.®Hxo — Fd(num) = Exlms (000 (Q(_d)’ Hos/mna ®Hxo ) -0

on Nam-
To complete the argument, one needs the {[AJ(3,)]"";} to be ob-

tained as quotients of A.J(3,) as in §4.2 (corollary 4.6). This holds if 3,
can be made "Z" 0, which follows from [[3,]o = --- = [3,]ic1 =0 =]

3, = provided one assumes [GHC = | HC for X. In this case,
the diagram then commutes because (quite generally) the topological
invariant of a (1-D) family of AJ classes (of cycles on a family of projec-
tive varieties over M affine) gives the fundamental class of the family of
cycles; we use this combined with the fiberwise Kiinneth decomposition
(for X x S,). The desired conclusion follows at once. O

We note that in case X is a surface (hence i = 2) defined /Q, no
conjectures need to be assumed: GHC(1, 2, S) is just Lefschetz(1, 1) for

S,and [3,]o =[3,1 =[3,): =0 = 3 B_uhozm 0 can be deduced from
Lefschetz (1,1) for X; see argument in §6.3.

7.2. Idle speculations on the Leray filtration. There is an inter-
esting relationship between the “expectation” above and a conjectural
description of the Leray filtration on H%(X,Q(d)) (and so ultimately
on CHY(Xk)). Always Leray is for 7 : X;; — U (or, in the limit,
X — 1s) unless otherwise indicated.

For ordinary cohomology a coarse description of Leray uses the fil-
tration on forms from §5.3,

L'H* (Xy,C) = im {H*(Xy, LQ%,,) — H* (X, Q%) = H*(Xy,C)}.

A more invariant version defined for (Q-coefficients uses the canonical
filtration 7<,, defined on a complex K* by

’ K7, j</
7o K7 = (kerd C K%), j={(
0, 7>

Writing K* for a m.-acyclic resolution of Q (by sheaves on Xy),

LTH*(Xy, Q) = im {H* (U, T<gg_im K®) — H** (U, 7.K°) = H*(Xy,Q)} .
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Finally, there is the following description due to Arapura [Ar]| (worked
out with Nori):

LTH* (%y,Q) = ()] ker {H* (X, Q) — H*(%y,Q)},

yeu

where the intersection is over (i — 2)-dimensional smooth subvarieties
VY C U defined /C. In the limit this becomes

£2‘1,~_I2d(%7 Q) _ ﬂ ker {[_[2d(%7 Q) _ H2d(%m_7@)}

TCS

where 7 must be very general (of dim. i —2) in S for the restriction
from 7s to n7 to make sense. (No rational function € Q(S)* restricts to

0on 7.) In terms of fields, if Q(S) = K C C is fixed, the choice of 7 C
ns is essentially equivalent to a choice of L C K s.t. trdeg(K/L) =
i — 2 (which gives M with S % M of rel. dim. i — 2) together with
another independent embedding L < C (which gives a choice of point
i € nm(C), hence fiber of p). Alternatively, one could choose freely
another complex embedding K of Q(S), then just choose L C K.

Does a similar description hold for lowest-weight absolute Hodge
cohomology, viz.

~

@ CEEEe@) @ N ker{H_%d(%@(@fiﬂ_%d(%w,@(d))},
TCS v.g.
(z’—2)-dirf’l.

at least for the image (H%d(%, Q(d))) of the cycle map cp? Modulo
S alg -

the following Christmas Wish we can show it is at least equivalent to
the Expectation above:

Conjecture (CW);: If Z e Eé;/@)CHd(X/K) with [3];-1 = 0 and
[AJ(3|7)]i—2 =0 € Grz_zJ_d(%nT) for all 7 C S v.g. of dim. (i — 2),
then [AJ(3)];_o = 0 € Gri2J4(X).

Remark 7.3. Tt is easy to see that under these circumstances [AJ(3)]", =
0, but the extra little bit seems nontrivial.

Proposition 7.4. (1) — (x);; and assuming (CW)<;, (¥)<; —>
(1)<
Proof. Consider the following five conditions on a cycle Z € CH%(Xk).

(A)it Z € Ll CHY(Xr);
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(B)iz ¥(2) € L'HF(X, Q(d));

(C)i V{T €8 v.g.(i —2)-dim’L}, I} ((2)) = 0 € HF'(X,, Q(d));
(D);: ‘V’{M/Q, p:S—> M rel. dim.i— 2} 0= {[AJ(3.)]i-2}penpm(©);
(E);: [3]i-1 =0 and [AJ(3)]i—2 = 0.

(Note that (D); and (E); require an auxiliary condition, for example

(A)i—1, in order to have meaning.) Clearly (A);, (B);, and (F)<; are
equivalent; while (C'); = (D); and (A);,_1 +(D); = (C); from the
above discussion. Since L'H(%,,,Q(d)) = 0 and Z; (L*) C L,
(B); = (C);; the converse (C); == (B); is the nontrivial
content of (£)*%. Trivially (A),_y + (E); = (D);; the reverse

(A)i_1 + (D); = (FE); is equivalent to (x); + (CW),.
So for the first statement let (1)*# be given; then (A);_; 4+ (D); —
N

(C); = (B); = (F); so (x); holds.

For the “converse”, inductively assume (*)<;—1 + (CW)<;y —
{(C)Si—l — (A)Si—l} + (ﬁ)zgllg_l‘ Then if ( ) (CW)§17 we have
(C)i = (O "= (D)< + (Dzir " (B)ey = (A)i +
(B);- L]

If it held, (#)*8 would offer an interesting interpretation of £* on
CHYXk). Let ¢ : K = K C C be any embedding of K (even if K
comes already equipped with one) that is the identity on Q, and LCK
be any subfield [> Q| with ¢ = trdeg(K /L) = i — 2. Write wﬁﬁ” for
the composition ¢&/L o *:

CHY(Xg) — CHY(Xg) —  CH Xy 0) — Hp'(X,,, Q(d));
L* part. sprd. cp
then ()¢ —
LCHY(Xk) = [ ker(wp!").
L f(,L
[t=i—2]

Note that the cp in the composition is not supposed to be injective
(unless L = Q).

7.3. Specialization to lower transcendence degree. We now de-
rive a powerful technique for producing 0-cycles with nontrivial higher

AJ invariant (due to [GGP] for surfaces and M. Saito [mS] in the
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general case). Here is the idea: given Z € L'CHy(X k) we can lift
its Q-spread 3 to 3 € C'Hd(%/@), and restrict along the inclusion
Ir: X7 — Xs = X (for T C S a smooth Q-subvariety) to obtain

_ 171 *
37 € CHYX7,5) — 37 € CHY X, 5) '— Zr € CHy(X)k,)

where 1 : Q(7T) = K7 [C C]. We call this a Kr-specialization of Z,
and it is not a well-defined operation (nor is X,,, a subvariety of X,
nor is there directly a map of function fields Q(S) — Q(7)). This is
in contrast to the much nicer situation (§§7.1 — 2) when 7 C § is very
general, because here 3N X,, makes no sense. Hence the lift from 3 to
3, which is not well-defined, plays an essential role in the passage from
3 to 37.

However, the map H*(ns) — H*(nr) is well-defined; consequently
so are the maps of invariants [-|; and [AJ(-)]%" for the specialization of
spreads from X to X,,,. In fact, using a version of affine weak Lefschetz,
one shows these are injective for j < dim(7) (cf. |[K1, Lemma 3|).
This of course does nothing for us unless e.g. both [3]; and [37]; are
defined, i.e. 3 and 37 belong to £ of CHy(X k) and CHy(X k)
(resp.). Even when X/Q, Z € L does not necessarily imply* Z; € £
— one needs the stronger condition cp(3) € LSHE(X x S, Q(d)),*
which may be obtained from cp(3) € L'HE(X xns,Q(d)) |« Z € L]
only after assuming HC (see [mS, sec. 1.6]). One “exception” would be
if Z = (Ax, 24-i), Z is the image of a Chow-Kiinneth component; then
choosing 3 with cp(3) € L% is trivial.

If one does assume HC, it is easy to specialize Z € L'CHy(X k)
with [3]; # 0 to a cycle Z7 of trdeg g (K1) = dim(7) = i with [37]; #
0. One has to go much deeper to find a transcendence-degree-(i — 1)
specialization (necessarily [37]; = 0) such that [AJ(37)]i"; # 0. This
is now our objective. Intuitively, we want a version of ()% with 7/Q
replacing 7 very general; unfortunately, in this case Z;  is not well-
defined. '

A better analogy is (*);+1, but with yg_l](,u) # 0 for some p €
M(Q), instead of 4 € M(C) very general. Here now is a precise
statement of what holds (where we take trdeg(K/k) = i since we have
some idea of how to specialize to this situation):

Proposition 7.5. Let X be defined over a number field k, Z € L'CHy(X)
with K = k(S) f.g.g of trdeg. i and [3]; # 0. Take a lift 3 €

26The difficulty here is with the full invariants [A.J(-)]; for j < i — 1 (as opposed
to the quotient indicated by “tr”) — it does not seem clear that [AJ(3)]; =0 =
[AJ(37)]; = 0.
275 denotes Leray for X x S — S
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CHYX x 8)1.) of 3 with cp(3) € L% (assuming HC), and a Lefschetz
pencil?® S L P} with fibers S, = p~'(u). Assume L* = Fy, (or
BB(C?) and the GHC. Then 3 p € PY(Q) s.t. [AJ(3,)]i—1 # 0, where

3, 1 the restriction to X x ng, of 3-(X x S,.). So we get a specialized
cycle Z, € L'CHy(X gs,)) \ L7 of trdeg. i — 1.

Proof. We work in the category (M =)M, unless otherwise stated, see
§5.5(i7) (and also |mS| for additional details in what follows).

Pick U C P} affine Zariski open and sufficiently small that Sy LU
has smooth fibers; let u € U(k). Set H = HY(X) & H?{(X)Y,
H = 200 o (H2200) Y D ing back along the struct hi
Hi="=F— = ( R ) ; pulling back along the structure morphism
U % Speck yields Hy := a*H, H, := a*H.

In M(U) we have by semisimplicity a decomposition

R™'p,Q = L' ® L” = variable @ constant

where H°(U,L') = 0 and W;H'(U, L") = WiH'(U) ® L}, = 0 (since
UcC IP’l). Hence one has noncanonically

HZ(SU) = HO(U> RZP*Q) ® Hl(U> L/) ©® Hl(U> L”)
and (using in addition that the fibers of p are (i — 1)-dimensional)
W H' (Sy) = W;H (U, L').

Moreover, the short exact sequence N (R p,Q)NL = N'L' - [/ —
L'JN'L' splits and H'(U,N'L') C F'HY(U, L)) =

(W;H'(Su))/ Fp = (W;H'(U, L'/N'L"))/ Fy .
Now W;H/F}! = H and so

(7.1) Homu (H, H(Sy)) = Homp (H, H'(U,L'/JN'L")).

For any object G € M(U) one has a spectral sequence®

By = Baxthy (H, H'(U,G)) = Extij{, (Hy, G),
and in particular an exact sequence
0 — Eutly (W, H(U,0)) — Eathyy) (Hy, §) —

28Here either S itself is suitably blown up or this is really S b A P}. It makes
no difference since we restrict immediately to open U C P}; in fact, the pencil need
not even be Lefschetz since all we use is that Sy 2 U is smooth projective.
29Grothendieck spectral sequence for derived functors of Hom Moy (Hy,—) =
Hompm,(H,T'(U,—)); Mg (U) is sheaves of M -objects.
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Hom (K, H'(U,G)) — Ext}, (H, H'(U,G)).
Applying this to G = L' /N'L’, with the observation H°(U, L'/N'L') =
0, gives

(72)  Homum (H, H'(U,L'/N'L)) = Eaty (Hy, L'/N'L) .

Referring to §5.5(i7), consider the following diagram

(7.3)
Hom (ﬂ, Hi(SU))

Hom (Q(—d), Hi(ns) ® sz_i(X)) — Hompm <Q(—d)7 H'(ns) ® %)

Homy g (Q(—d), Hi(ns) ® H2d—z‘(X)) —— Homy s <Q(—d), Hi(ns) ® %)

in the lower left corner of which lies [3];. Since we are assuming £ =
Fi,on CHy(Xx), Z has a class [3]M — [3]; (in the diagram); and since
we are assuming GHC, the horizontal arrows are injective. Since [3]; #

——~——

0 by hypothesis, we get a nonzero element [3]M € Homa(H, H (Sy)),
hence one in Ext), (Hy, L'/N'L') by (7.1) and (7.2).

The crucial step is that © € U(k) can be chosen so that the spe-
cialization of this nontrivial extension class to Ext),,(H, L, /N'L}) is
still nonzero.® (The fiber S, over u is a Q-member of the pencil.)
This is really a statement about the underlying /-adic structure of the

30Technical note: a priori one gets a nonzero specialized class only in
Exty,,(H, L},/(NTL"),), where (N'L),, may be a proper submodule of N'(L},).
The choice of i (see [mS, sec. 2.1]) allows N'(Lj,) to be extended to a sub-
sheaf L7 C L' on a finite cover of U. Repeating the arguments leading to
(7.1), (7.2) with L} replacing N'L' (as L} is likewise C F}L’) shows that
Euxty,, o (Hy, L'/NTL) 5 Euxty,, oy (Hy, L'/LY). One then argues that the im-
age of our extension class in the latter has nonzero specialization (at the same 1)
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M-objects, not the M HS: i.e., nontrivial extensions of /-adic sheaves
on U may be specialized to nontrivial extensions of (-adic Gal(k/k)
representations. This follows from the Hilbert irreducibility theorem,
see [m$S], [Te], [GGP] for details.

Now H'"'(ns,) is just the stalk of (R"™"'p,Q)/N" at pu, so L), /N'L),
is a sub-M-object, and

Ea;% (H, L, /NlL;) s Ex% (H, H(ns,))

H2-i(X) )

d—i+1
Fh

H2d—z’ (X) )
Fg_H—l
Let &, denote the ultimate (nonzero) image of our class in the last term.
Since we are assuming (G)HC, the specialized cycle Z, lies in £’, hence
(by the other assumption) F},; obviously [3,]; and [3,] are 0. There-
fore Z, has an invariant “[AJ(3,,)]M” in GréGriﬁMzH%‘fMl (X‘ x ns, /k, Q(d))
also mapping to &,. Hence [AJ(3,)]M # 0 and Z, ¢ F\}'. Using
our assumption on the filtrations once more (Fi;' = L), we get

Z, ¢ LY therefore [AJ(3,)]i-1 # 0. Without the assumption there
is no reason why this should be so! 0

~ Eatl, (@(—d>, H ™ (ns,) @

s Ext}vu (@(—d), Hi_l(nsu) &

Now suppose X/Q is a smooth (d-dimensional) complete intersection
in PV with a nontrivial holomorphic d-form. The diagonal Ay has
a Chow-Kiinneth decomposition /Q and the O-cycle Z = p — o, for
p € X(C) very general and 0/Q, satisfies Z = (Ax4), Z. Therefore
Z and any specializations (without using HC) lie in FSCHy(X ), a
fortiori in F{, and £? Furthermore, taking & = X, 3 induces a
nontrivial map Q°(X) — Q(S) and hence one need not use GHC to
get the nonzero classes on the right-hand side of the diagram (7.3). So
by the proof of Prop. (7.5) above, assuming no conjectures, we have
Z, ¢ ijjl. Taking N = d + r, we have proved the following

Theorem 7.6. [with no conjectural assumptions| Let X C P**" be a
smooth complete intersection defined /Q, of multidegree (D1, ..., D,)

with Y. D; > d+1r+1, and let 0o € X(Q). Then there exists a Q-
hyperplane section Y &4 X containing o, such that if ¢ € Y (C) is very
general then 1y (q) — o %t 0 in LCHy(Xc).

in Exty,, (K, L},/L} ,, = L, /N'L},). See the last 2 paragraphs of [mS, sec. 2.3] for
details.
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We emphasize that under the identification § = X, Y = §, and

Z, = ty(q¢) —o. (Moreover, S[+— &] L, P! is taken to be a pencil of
hyperplane sections with base locus containing o.) Incidentally, it is

obvious that ¢ — o?ét 0 on Y, since Q471(Y) # {0} and the spread of
q induces the identity Q¢ 1(Y) — Q?71(S,). So ¢ — o gives a nonzero
element of Gri'CHy(Y)c). What make things hard on X is that fact
that ty(q) — o is of trdeg. d — 1 and Q41(X) = {0}.

In the Proposition and Theorem the spread base S has been fibered
over a rational curve (unlike the M in §7.1); what if the curve (say, C)
is of positive genus? The only result in this direction takes S = S x C,
and is adapted from [LS]:

Theorem (Lewis): Let C, S, X be smooth projective /Q of resp.
dimensions 1, i —1, d. Take Z € L'CHy(Xk) to be a cycle (of trdeg. i)
with complete Q-spread 3 € CH*(C x S x X ) inducing a nontrivial
map Q'(X) — Q(C x S). Then there exists 7 € CH{*(C/g) s-t.
writing 3, = mexx {m3(7) - 3}, we have [AJ(3,)]"", # 0. Pulling 3,
back along the inclusion {so} x X — S x X for sy € S(C) v.g., we get
the specialized cycle Z, € L'CHy(X k,) \ L of trdeg. i — 1.

The crucial step in the proof (which plays the role of the Hilbert-
Terasoma argument) is the existence of a Q-point of infinite rank on
any abelian variety /Q of positive dimension, applied to a certain sub-
abelian-variety of CH{*™(C/g). A similar result for symmetric squares
of curves, together with the proof of this fact, can be found in [GGP].

8. APPLICATIONS TO CALABI-YAU VARIETIES

In this final section we further illustrate the use of theorems from
684, 6, and 7, on terrain probably quite familiar to readers of this vol-
ume. The results here are in the nature of straightforward corollaries
rather than profound new theorems.

For us a “CY n-fold” shall mean a smooth projective variety X (of

dimension n, defined over a subfield of C), such that X((Ca") has trivial
canonical bundle and H°(Q%) vanishes for 0 < k& < n. So all CY’s
(and also K3 surfaces) in this section are algebraic (in fact, they will
all be defined /Q). Our main purpose will be to construct 0-cycles
in ker(Alby) which are not rationally equivalent to zero, hence (as we

work ®Q) of infinite order in C'Hy(X¢).
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8.1. Projective complete intersections. Let X g C P"*" be smooth
of multidegree (Dy,...,D,), > D; =D =n+r+1. Thisis a CY n-
fold, a basic example being the Fermat quintic 3-fold in P*. The diago-

nal class [Ax] €
[H?"(X x X,Q) has algebraic Kiinneth components
0 j odd, #n
Ax, = SHY ' x Hy  j even =2i, #n in CHy(X x X ),
Ax — Zk;ﬁn Ax Jj=n

where (say) Hy := X N{z =0} N---N{z = 0}. Now let K be
finitely generated /Q and Z € CHM™(X ) [= L'CHy); then Proposi-

tion 4.3(b) implies that Z — Y., (Ax;) Z € L"CHo(Xx). But

HY ' Z=0forn >4, and so Z € L"CH,. Consequently, any differ-
ence of two points (say, of X (C)) already belongs to L"CH"(X¢).
For a cycle of transcendence degree n, take Z = p — o, where p €

X(C) is very general and o € X(Q). We can take as complete spread

3=Ax—{o} xXin X x(§ = X), and clearly [3]} : Q"(X) — Q*(S)
is nontrivial; hence [3], #0 = Z %t 0.
To obtain a cycle of transcendence degree n — 1, one considers a
pencil
prLxtx
of hyperplane sections with o € base-locus; write Y, := b(f~(p)) &

X, q € Y,(C) very general, 'Z, := (I!'(q) — o) € Zy(Xc) for any
p € PY(Q). One may think of these as “general” cycles on “special”
hyperplane sections. By theorem 7.6, there exists 1o € P*(Q) such that

"Z0 %t 0 (and under conjectural conditions, also [AJ('3,,)]n—1 # 0);
the theorem does not tell which g will suffice.

Cycles of transcendence degree n —2 in CH{°™ = L™ should, assum-
ing BBCY, be =) (modulo torsion!).

Clearly transcendence degree m — 1 is the interesting case; this is
what we seek now to extend to a different set of examples, specifically
for n = 3.

8.2. Borcea-Voisin threefolds. We first recall the construction (due
to [Bol, V2|), which will begin with two ingredients:

(I). an elliptic curve E/Q with o € E(Q), dz € Q'(E), and invo-
lution ¢ fixing 0. One has (*(dz) = —dz, fixed-point set FP(1) =

{4 2-torsion points} = E?, and E 5 (E/.) = P'. Write T for the
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m'-image of the torsion points of E relative to o (which all belong to
E(Q)), and Ty for m(E®).

(IT). a (smooth) K3 surface S/Q with w € Q*(S) and involution 7 with
J(w) = —w. One has C := F'P()) either empty or a disjoint union
of smooth curves (essentially clear from the fact that w is nowhere-
vanishing; see |Bol] for requirements on their genera). Quotienting

by the action of j yields a (branched) double cover S = (S/9) = R.
Plenty of exampes were tabulated by Nikulin (again see [Bol]); we just
mention a few:

(a). If C = O then S ™, R is an étale cover of an Enriques surface.
[Otherwise R is rational (birational to P?).]

(b). S T, P2 = R the double cover branched along a smooth sextic
(genus 10) curve (= C).

(c). Let S be the double cover of P? branched over 6 lines in general
position; this is singular over the lines’ 15 intersection points. Blowing

S up at these (and lifting the involution associated to S 2 P?) yields

S I R (S =K3, R rational with A(R) = 16) branched over 6
disjoint rational curves. If the 6 lines in P? were common tangents to
a conic @, then S is the Kummer surface®! associated to the Jacobian of
the (genus 2) double cover of () branched over the 6 points of tangency

([Be]).

(d). If E,, F5 are elliptic curves then (Fy x F3/{1, (12,15)}) =: S is
the (singular) 2-cover of P! x P! branched over 8 P'’s intersecting in
16 points; blowing these points up yields the Kummer surface S of

Ey x E5, with S ™. R branched over 8 disjoint rational curves (and
h*(R) = 18). Here 7 is induced from (z9,1) ~ (1,¢3) on S.

Now the involution (, 7) on Ex S has F P-set E?l xC, which is a disjoint
union of curves (e.g., 4 x 6 = 24 rational curves if S comes from case
(c) above). Under the quotient, F'P(t,7) becomes the singular set of
X = ExS/(t,7). All we use from the Borcea-Voisin construction is that
the blow-up of X along these curves gives a (smooth) CY 3-fold X/Q.
(In particular, dz A w is (¢, 7)*-invariant, so descends to € Q3(X).)

31Recall that given an abelian variety A of dimension 2 with involution o = —id,
the Kummer surface associated to A is the resolution of A/{1,0} obtained by
blowing up at the 16 singular points arising from the 2-torsion points of A.
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For any ¢ € P*(C)\ T}y, one has a diagram of analytic varieties /C:*

EXS\ XY= =S
0 /

B
R=S5/) Eft =P <———{}

In analogy to §8.1, we want to show the following

Claim. There exists u € P'(Q) such that (with ¢ € Y,(C) very gen-

eral, go € Y,(Q) any algebraic point) Z, := Z"(q — qo) %ﬁ 0on X.

Here Proposition 7.5 (i.e., in the form of a corollary like Theorem 7.6)
is no longer appropriate, and we shall use the Lewis result.

Since b~! is well-defined on ¢ ((E'\ E) x S), we have a map §\? :
(E\ EPYy xS — X. Let qo € S(Q) be any algebraic point (which
need not avoid C), and write 9;5 for the composite of 6\? with the
internal projection 7% : E x S — FE X {q} — E x S (restricted to
(E\ E®2) x S). The graphs of 6\2, 6, embed in (E \ E?) x § x X,
and taking their closures in &£ x S x X gives correspondences I', I';, €
Z3(E x S x X). Next take p € E(C), ¢ € S(C) very general and
algebraically independent; and consider Zy := (p,q) — (0,q) — (p, o) +

(0,q0) € L2CHy(E x S)c). Obviously (p) + (¢(p)) — 2(0) = 0; we also
need the following:

rat
Lemma. 575.((q) = (90)) = (¢) = (9) + (2(q)) — (5(g0)) = 0.
Proof. R is either an Enriques surface or a blow-up of P? (which re-
places points by rational curves). Clearly in the latter case any 2 points

are = on R; this holds also for Enriques by [BKL]. Apply this to 5(q)
and j(qo). O

32In particular f~'(¢) is smooth. If ¢ € P'(Q) then it is also a diagram of Q-
varieties. However if £[€ P!(C)] is not algebraic, the isomorphism S 2 f~1(¢) is not
defined over Q(¢) but over a degree-2 extension isomorphic to Q(E). In this case
one must specify whether Z¢ means the map S < X (with the degree-2 extension)
or f1(¢) — X, and for us it will be the former. So for ¢ € P!(C), ¢ € S(C) very
general (and algebraically independent in the sense that ¢ x ¢ € P! x S is very
general), the natural spread base S for Z5{q}[=general point on special fiber] is not
X but E x S (or a birationally equivalent variety). This is used implicitly below.
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rat

It clearly follows that Zy = (¢, 7).«20, hence that

=+

ra

Zy = 5 (20+(4,7)+20)

ra

{(p.a) = (P, q0) + ((p). () — ((p), 5(20))} = Z;.
By |L1, Thm. 1.2(iv)| the action of I' preserves £* and so
2 =125 = wl {mps(2) T} = I P(q — q0)
belongs to L*CHy(Xc). (Note 7(p) € PY(C) \ P*(Q).) A choice of
complete spread (for Z) is I' — I';) =: 3, and its action sends § to

dz A w. This shows Z%t 0 (a trdeg.-3 cycle).
To get our desired transcendence-degree-2 cycle, observe that Lewis’s
theorem (§7.3) now guarantees the existence of v € CH}™(E /) such
= . rat . rat .
that Z, := BV‘{q}XX is Z 0 (with [AJ(3,)]2 # 0). Up to =, v is of

the form (py) — (o) for some py € {E(Q) \ torsion}, and noting that
(qu)* =T, oml,

Zpyo = m {7E(po —0) - 75(q) - 3}
= I A{(po, @) — (0.0)} = (Tgo ) { (o, @) — (0, 9)}
= I {(po,9) — (0:9) — (Po, 90) + (0,0)} -
Using the above computation for Z, with py replacing p,
rat —~
Zp o BT (q—q), wherep = '(p) € P{(Q).

The claim is proved, and moreover AJ%(Z"(q — qo)) # 0. As in §8.1,
the proof doesn’t say which values of u suffice; this time we can do
better.

Theorem 8.1. For X/Q a Borcea-Voisin CY 3-fold (as described above),

-+
N = N =

take any algebraic point qo € S(Q) and any pu € P(Q)\ T, let g € S(C)
be very general. Then writing T" : S = f~Y(u) — X, Z := TH(q — qo)
gives a nontrivial (nontorsion) class in L3C Hy(Xc).

Proof. Let py be one of the two points in (7*)~!(u) € E(Q); (po) — (o)
is a nontorsion class. As above, Z € £3 follows by writing Z as the
I',-image of the cycle

25 = 5 {00, ) — (0, 0) + (1(p).(0)) — (o), (a0}

since this is

Z 2, = (p0,q) — (0,9) — (Po, o) + (0,q0) € L3CHY(E x S).
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Moreover, by Theorem 6.1 (with j =2, Y; = E, Y, =S5, W =py — o,
YV =q— q), one has Zy =W x Vr%t 0; hence Z()r%t 0. But then

0 (0.2) = 0" (0.{(po, q) — (po: 0)}) = 2Z;
implies b*ZI%t 0 on X; so Zr%t 0 on X, done. U

Now let Ey, F», and E3 be elliptic curves defined /Q (with origins o);
take S to be the Kummer of F3; x Fs3, and X to be the Borcea-Voisin
CY of £y x S. An alternate construction of X due to [Bo2| proceeds

as follows. Write © : F| x Fy X E3 — %ZXES —: X’ for the quotient
by the action of

‘/;1 = {(17 17 1)a (Lla L2, 1)7 (l’la ]-7 L3)7 (]-7 Lo, L3)} .
Now X’ is singular along the 48 rational curves O(FE; X EE X E?[?]),
@(EF} X By % E?Ez}), and @(EF] X EE X Ej3); blowing up first at the
O(FE; x Ef] X Egz]) then at the rest, yields X 2 X'.

Next we take points p, Q2, Q3 on E,, Es, Ej (resp.); assume either
(i) p is algebraic and @, Q3 are (alg. indep.) very general, OR

(il) Q2 or Q3 is algebraic and the other two are (alg. indep.) very
general.

Write ¢, qo for points mapping (under S — Q) to the images of (Q2, Q3),
(Q2,0) (resp.) under Ey x E3 — S. Then by Example 6.2 and explicit
rational equivalences one has on F; X Fy x FEjs:

0% 4Boa’(p, Q2. Q) Z Y 0. Bor*(p, Qz, Qa)

oeVy

rat

= Z o {(p, Q2, Q3) — (p, Qa, 0)}

o€Vy

= 0" (0.{(p, Q2, @3) — (p, Q2, 0)}).
This implies on X:

0% 0.{(p, @2 Q) — (b, @2, 0)} = BAT Vg~ )},
hence on X:
Z2:=TV(g-q) % 0.
In case (i) this is the cycle Z;.(, of Theorem 8.1 — a transcendence-
degree-2 cycle on an algebraic fiber of f, included into X. In case (ii),

Z is a transcendence-degree-1 cycle®® on a general fiber of f, included
into X.

33 e., the cycle has trdeg. 1 over the field of definition of the general fiber.
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Remark 8.2. A similar approach also yields nontrivial 0-cycles on the
(smooth) C'Y" 3-folds arising from the recent construction in [PR].

8.3. 0-cycles and differential characters. To conclude the section
we revisit the reduced higher A.J maps of §4.3 for X a C'Y n-fold defined
/Q, as there are some nice simplifications in this case. For one thing,
the basis {w} (for i = n) is replaced by a single form Q € Q™(X); and
so the period lattice is

A:im{[)gz Hn(X,Q)—>(C}.

Now assume K = Q(S) is finitely generated /Q of transcendence de-
gree n— 1, and note that Gr}Hg" (X xns) = 0 (as weak Lefschetz —
H"(S) = N*H"(S) = H"(ns) = 0). This means that AJ% ! is de-
fined directly on £"C' Hy(X k), and composing this with the projections
of §4.3 gives

8.1)  AJY: L'CHy(X k) — Homg (@(n& Q), (C/A) .

Using Proposition 4.8 and Remark 4.10(b) we may describe this as fol-
lows, for (Z) € L"CHy and [y] € H,—1(ns,Q) [C€ H,—1(S,Q)]. Choos-
ing a complete spread 3 € Z"(X x S)g) for Z, take Us C S Zariski
open such that 3‘ Xxlls has relative dimension 0 over U5. We may also
select a representative vy, of the class [y] € H,_1(S,Q) which is sup-
ported in Us. Then 7x{3 N (70 x X)} € Z,% (X, Q) is well-defined
and (since [3],,_1 = 0) a boundary, say = dI" (I" a topological n-chain).
One then sets

(8.2) A2 = /F Q € C/A,

which is independent of all choices.

A generalization of the Bloch conjecture says that the vanishing of
HO(Q) for 0 < i < n should imply GriCHy(X k) = 0 in that range.
So AJ% " should be defined already on C'HE™(X k). Moreover, un-
der the duality H"'(S,Q) = H, 1(S,Q)" induced by integration,
the dual of H, 1(ns,Q) (considered as subgroup of H, 1(S,Q)) is

H"1(S,Q)/N'*H"1(S,Q). So assuming the “GBC”, AJ% ' may be
written as a map
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H™1(S,C)
NTH(S,C) + H" (S, A)’

(8.3) CH™(X/k) —

Example. For the complete intersection CY’s considered in §8.1, we
know (without conjecture) that £L"C' Hy = C H{*™. Consider a smooth
Q- hyperplane section Y <5 X with ¢ € Y (C) very general, o € Y (Q);
take Z = 1Y (¢—o) (defined /K = Q(Y)), S =Y, and 3 essentially as in
Example 4.2. Then (as in Example 4.9) mx {31 (7 x X)} = vy (y) for

€ Z,®/(Y) with class [y] € H,_1(ny,Q), and AJY (2)y] = [ Q
where OI' = 1y (7). If any membrane integral of this form gives a
value not equal to a period of Q (an integral over a topological n-

cycle), then Z ?ét 0 on X. |[Note that since Y has a holomorphic form,
(H"Y(Y)/N') # 0; hence H, i(ny,Q) # 0.] However, nonvanish-
ing of such integrals may be hard to establish, as one typically has
dimg(A) > 2 (the exception being the case in which the subgroup
H™(X)® H*"(X) C H*(X,C) is [the complexification of| a subHS).

We have (so far) restricted to the case trdeg(K/Q) = n — 1; obvi-

ously trdeg < n — 1 makes AJ% ' = 0. On the other hand, a more
complicated picture arises in the event that trdeg > n — 1. It is
worked out in [K2| and we summarize pertinent details for the CY

case. Since Gr2Hg"(X x ns) no longer vanishes, AJ% ' is not de-
fined. Consequently, the C/A-valued functional v — fafl{g ) ) on
X *

(admissible) topological cycles (this is essentially the prescription from
(8.2)) no longer descends to (admissible) homology classes. Instead,
on a boundary 7 = JG on S, the functional evaluates (mod A) to
f;?‘,*g Q= fg{B*Q =:Qz}.3

This may be formalized as follows: replacing (8.1) is a map

(8.4) . L"CHo(X /i) — lim HB(S\ D, A{n})

-

(limit over divisors D C S defined /Q) also factoring through the map
Gri to GriHZ(X x ns,Q(n)); it sends Z to the above-described
functional. We do not define the right-hand side of (8.4), but simply
say that it sits in a short exact sequence

34Here 3* : Q"(X) — Q*(S) is the induced map of holomorphic forms (see [K2,
sec. 2|); this is the same as [3]} in §4.
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(8.5)
H"' (ns,C/A) 72 Hpy (S\ D, A{n}) °= F"H" (ns,C) N H" (ns, A)

and informally explain the terms. In the limit, the left-hand term (of
(8.5)) is just the right-hand side of (8.1) (or (8.3)). The right-hand
term (also in the limit) identifies with the subset

{oerse \ [oeavhie H,0,Q) } € 0°(5c).

The middle term may be interpreted as the space of “C/A-valued differ-
ential (n—1)-characters on S\ D”, or functionals § on Z'°? (S\ D) with

n—1
an associated holomorphic form @, (§) such that F(0G) = fg an(3)-
Hence, @, (}"(Z)) is precisely Qz.

We hope that such differential-geometric descriptions of higher cy-
cle maps (extended also beyond C'Hy(X) to all higher Chow groups
CHP(X,m)) will ultimately shed some light on the role played by al-
gebraic K-theory and motivic cohomology in the context of mirror
symmetry.
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