Pick’s Theorem — What'’s the Big Deal?

John E. MCCarthy

1 INTRODUCTION

In 1916, Georg Pick considered the following problem. Suppose that you
are given points Aq,..., Ay in the unit disk of the complex plane (we shall
denote the disk by D); and suppose, too, that you are given complex num-
bers wy,...,wy. Does there exist a holomorphic function ¢ : D — D that
interpolates, i.e., satisfies

Pick completely answered the question [8].!

Theorem 1 A necessary and sufficient condition for the existence of a holo-
morphic function ¢ : D — D satisfying the interpolation conditions (1) is that
the self-adjoint N-by-N matrix
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be positive semi-definite. Moreover, ¢ is unique if and only if the Pick matrix
(2) is singular, say of rank M < N; in this event, ¢ is a rational function
that is an M-to-1 cover of D.

It is obvious that one can always find some holomorphic function on I that
interpolates ( e.g., a polynomial); the restriction is whether a function can
be found whose range is contained in I. Let us rephrase this. Let H* (D)

! Actually Pick considered the problem of interpolating w;’s in the right half-plane with
a function of positive real part on ID. But because the right half-plane and unit disk are
conformally equivalent, solving one problem solves the other.



denote the space of bounded holomorphic functions on D, and define a norm
on H*(D) by
6]l gem) = sup|d(z)].
z2€D

Then Pick’s problem is equivalent to the following:

(IP) Among all bounded functions ¢ that satisfy the interpolation condi-
tion (1), what is the infimum of the H*®(D)-norms?

Of course, finding the infimum is computationally harder than answering
the question of whether the infimum is less than or equal to some fixed value,
but mathematically the problems are equivalent. By a standard compactness
argument (what a complex analyst would call a normal family argument), the
infimum in (IP) will be attained. By rescaling, we can assume this infimum
is 1, and then the Pick matrix (2) cannot be strictly positive definite (for if it
were, it would remain so if all the w;’s were increased by some factor slightly
bigger than one, which would mean by the first part of Pick’s theorem that
the infimum in (IP) was actually less than 1 to start with). The second part
of Pick’s theorem then says that the extremal function is unique, and is a
constant times a Blaschke product, i.e., it has the form

Mo G
QS(Z) = CE 1_ EZZZ
for some constant ¢ and some points (i, ...,y in D. For any fixed ¢ in D,
the function il
"vb(z) = 1_ 5

is an automorphism of D, and thus maps the boundary 0D to 0D. It is called
a Blaschke factor (with zero at (). A product of Blaschke factors therefore
has modulus one everywhere on 0D, and indeed all rational holomorphic
functions on D that have modulus one everywhere on 0D must be a finite
product of Blaschke factors times a constant of modulus one. Thus extremal
functions, which are constrained to have modulus less than or equal to |c|
everywhere, must have modulus identically |c| on OD.

Because of the First World War, Rolf Nevanlinna in Finland was unaware
of Pick’s result, even though it was published in Mathematische Annalen. He
considered the same problem in [6], and analyzed it using an idea of Issai
Schur [10], [11], resulting in a different characterization. In 1929 Nevanlinna
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gave a parametrization of all solutions in the nonunique case [7]. Since then,
this type of problem has been called Pick interpolation or Nevanlinna-Pick
interpolation.

A search of MathSciNet reveals that in the last decade alone, over 300
articles have been written on Pick interpolation. Why so much interest in a
problem that was completely solved so long ago that almost everyone would
deem it classical??

The purpose of this article is to explain why the problem comes up in
engineering, and what the modern® approach to it is.

2 CONTROL THEORY

In control theory, one studies some physical system, called a plant, that has
an input and an output. The plant could be the steering mechanism of a boat,
with the input the signal from either a human at the wheel or an autopilot,
and the output the directions to the engines and rudder. Or it could be
a thermostat in a house, with input the temperature at various points in
the house, and output instructions to the heating and cooling systems. In
practice, one does not pay too much attention to the internal workings of the
plant. One just assumes that, either by knowledge of the plant’s construction
or by experimental measurement, one knows how the plant responds to the
input signals.
A basic system is therefore just a plant, which we treat as a black box:

Figure 1: The original system

2 A result is called classical if it was proved before the speaker went to graduate school.
Not to be confused with classic, a result that the speaker has improved upon.
3The only approach the speaker really understands.



We shall use discrete time for convenience, so the input is a sequence
{un}, in the vector space C", with energy > >0 ||u,|/?, where for any
vector £ = (21, %, ...,%,) in C" we define ||z|* = |12 + |z2* + ... + |z,]?.
(In a continuous time model, the input would be a C"-valued function u(t);
we assume we measure this only at discrete times of separation h, and then
Uy, is just the value of u(nh).) The output is a sequence {y,,}5°, in C*. For
the time being, let us take r = s = 1.

The Plant. The plant P is assumed to have the following four properties:

(C) Causality (up, =0Vn<k=y,=0Vn<k)
(T'I) Time Invariance (Shift input — shift output)

(S) Stability (energy doesn’t increase indefinitely)
(L) Linearity (M

The first three assumptions are all physically reasonable. (C) says that
when no signal is coming in, the output is zero. (TI) says that, if the input
(wo, U1, U, . . .) produces output (yo,y1, Yo, - - -), then the input (0, ug, uy,...)
will produce output (0,yo,y1,--.)- (S) says that there is some constant M
(often not larger than 1) such that for any input the energy of the output is
no greater than M times the energy of the input.

Linearity (L) is the big deal. Locally, all (differentiable) systems are
linear—this is the basic insight of differential calculus. But the region of
linearity is much greater than one has a right to expect.

Fundamental Principle of Engineering. Toke any black box Plant, as in
Figure 1. Then its behaviour is linear over all normal* inputs. Moreover, if
the input signal is sin(wt), the output is Asin(wt + c).

Obviously, we are over-generalizing. Transistors and many other objects
are essentially nonlinear. Nevertheless, for most systems, it is an experimen-
tal fact that the principle holds. This can partly be explained mathematically
by the realization that a collection of masses connected by damped springs,
or an RCI electrical circuit, can be modelled as a system of second order
linear ODE’s. One does not need to know the details of the configuration
of such a system to know that its behavior will be linear, and that it will
be frequency preserving. So by measuring its response to a range of sig-

4A normal input is roughly one that is not so strong that it damages the plant, nor so
weak that it is below the sensitivity of the plant.



nals of varying frequencies, one can predict its response to an input that is
synthesized from these frequencies.

The z-transform. The z-transform sends the sequence {u,} to the
analytic function @ whose Taylor coefficients at 0 are the terms u,:

7 Aup}ly = u(z) = Z Un2". (3)

If u = {u,} has finite energy (i.e., Y  |u,[> < 00), then @(z) = >0 uy2"
is analytic in the unit disk, and its energy is given by

1 o ~ 102 : = 2n 2
OSSI:EI o ). |t(re™)|"dé 11}1} ;r [wn | (4)
The space of analytic functions @ in D for which (4) is finite is called the
Hardy space, and it forms a Hilbert space with (4) as the square of the norm.
The Hardy space is denoted by H?2.

After identifying sequences with the functions that are their z-transforms,
the correspondence P : 4 — ¢ of input to output defines a linear operator
from H? to H?. Assumption (S) means that P is bounded (which, for linear
operators, is the same as being continuous). Suppose P : 1 — ¢. Then by
(C), (TI), and (L), for any polynomial p we have

P :pw— ¢p.
By continuity, P is then multiplication by ¢ on all of H2.
What can we say about ||P||, the operator norm of P, in terms of ¢? As

1 27 ] ]
IP|? = sup sup - |b(re®) f(re”)|de), (5)

[|F]] g2 <1 0<r<1 2T 0

we find immediately that
IP|| < sup|¢(2)]. (6)
z€D

We actually have equality in (6). Indeed, suppose that the left-hand side is
1 (we can achieve this by scaling). Then, taking f = 1 in (5), we have

1> PP

1 2 ]
= sup - |p(re’®)[*"de. (7)

o<r<1 2T J



If the supremum of |¢(z)| were greater than 1, then there would be a set
of length 6 > 0 where |¢| > 1 + . Then (7) would be bounded below by
5 (14 €)?"d, which tends to infinity with n.

Thus we have proved:

Theorem 2 Under assumptions (C) — (L), the plant P is given by
P:aw— ¢u (8)
for some ¢ in H*®(D). Moreover

IPIl = sup|g(z)].
z€D

From here on, we shall adopt the standard notation of using the same letter
P for both the plant and the H*°(ID) function ¢ from (8).

The Compensator. Of course, real plants are subject to some unknown

noise e, whose effects are modulated by some other plant W (which we assume
is known), as depicted in Figure 2.

le

Figure 2:

So we introduce a feed-back loop and a compensator C, which we can
design. We end up with the system shown in Figure 2, with inputs u (the
signal) and e (the noise), and output y.



Figure 3:

Solving, we get
y=PC(u—1y)+We,

SO
y=(I+PC)"'PCu+ (I+PC) ' We. (9)

Internal stability. We assume that both P and W are stable ( i.e.,
after taking the z-transform, they correspond to multiplication by H*(D)
functions). We do not insist that C' be stable, but we do require internal
stability, meaning that the internal signals v, w, and x must have finite energy
when the inputs u and e do. Because

vo= yYy—u
= [I+PC)'PC—Iu+(I+PC)'We
= —(I+PC)y'PCu+ (I+PC)'We,
= Cuv,

r = Puw,

internal stability requires that (I + PC)~! and C(I + PC)~! be stable (since
P is already assumed stable and the product of stable plants is stable). The



identity
(I+PC)™t=1-P[C(I+ PC)™

means that internal stability is equivalent to requiring that

F := C(I+ PC)™" be stable. (10)

Model-matching problem. We would like to design the compensator
C to minimize the effect of the noise on the output. In view of (9), this
means that we want to minimize

1(Z+PC) W =]|I - PR)W]|.

The constraint, from (10), is that F lie in H*(D).
Let us make a very mild simplifying assumption: we assume that both P
and W are rational functions. Then they can be factored as

P = Pz'Poa
w = W W,.

Here, P; and W; are Blaschke products, with zeroes precisely at the zeroes
in the disk of P and W, respectively, and P, and W, are rational functions
that have no zeroes in the open unit disk. (The Blaschke product is called
the inner factor of the rational function, the other one is called the outer
factor. Hence the subscripts ¢ and 0.) We want to find

(x) = inf ||W — PFW||
(D)

FeH>®
= inf ||W0WZ - HPOFW0m||
= inf||W, — P(P,FW,)]|.

(The last equality comes from the maximum principle. The supremum of the
modulus of an analytic function on I is the limit of the suprema over circles
of radius r as r increases to 1. On these circles, the modulus of a Blaschke
product tends to 1.)

If neither P, nor W, has zeroes on the boundary of D, then as F' ranges
over H*(D), so does G := P,FW,. If one of the outer factors does have
a zero on the boundary, then the set of attainable G’s is still dense in an



appropriate topology (the weak-star topology—see [1] for a discussion). So
our problem reduces to finding

(x) = inf ||W,— PG|
GeH>=(D)

Let the zeroes of P; be Ay,..., Any. Then

{(W,— PG : G € H°(D)}
= {H € H*D) : H\y) = Wo(An), 1 <m < N}

Our problem thus translates into finding the function of smallest norm that
interpolates N given values—the Pick problem!

For simplicity, we worked in the scalar case. In practice, engineers care
about the matrix case, where the input w and output y are vectors—for
example, y could be the position and velocity of a ship, and u could be
the steering commands. A similar analysis of more complicated systems
yields the following problem, called the model-matching problem, which is
fundamental in control theory:

Model-matching Problem: Given matriz-valued H®(D) functions
Q, P, and W, find the analytic matriz-valued function F that minimizes

1Q = PFW |-

For a more detailed discussion of these problems, we refer the reader to
[3] and the references therein.

3 THE OPERATOR THEORY APPROACH.

Whilst Pick’s theorem can be proved using classical function theory (see, for
example, [5]), it can also be approached via operator theory on the Hardy
space H2. Although we shall again stick to the scalar case for simplicity, one
advantage of the operator theory approach is that it generalizes naturally to
the matrix-valued case.

Recall that H? is the Hilbert space of all functions f(z) = > 2, f(n)z"
that are analytic in D and have square-summable Taylor coefficients at the
origin. The inner product is given by

) = i)
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= hm—/ f(re®®)g(rei?)do

r, 1 2w

We proved in Section 2 that, if ¢ is in H*°(D), then the operator of multi-
plication by ¢, which we shall denote My, is a bounded operator on H? and
moreover

IMyllp2) = |6l

So Pick’s problem asks whether there exists a contractive multiplier satisfying
certain interpolation conditions.

The Szegdé kernel. For each )\ in D, define the function &y in H? by

n=0

I{I)\(Z) =

This is called the Szegd kernel. It is the reproducing kernel for H?, in the

following sense:
(f, k) Zf (A,

for every f in H2. Moreover, for every multiplier ¢, the function k, is an
eigenvector of the adjoint Mj:

Lemma 1 Let ¢ be in H®(D), and let A be a point in D. Then
M3k = 6(Vky. (11)
Proof: Let f be an arbitrary function in H2. Then

(f, MZky) = (of ky)
= 9NN
= (£, [6N)k]).

So the two sides of (11) have the same inner product with every element f
of H?, and therefore they must be equal. a

The necessity of Pick’s condition. Suppose that ¢ is a function in
the closed unit ball of H*°(D) that interpolates A; to w; as in (1). Then
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|Mj]| <1, so for any constants cy,...,cy we must have

N N N N
<M$(Zczk)\l),M;(ZC]k)\])> < <Zcik,\i,chkAj>. (12)
i=1 j=1 1=1 i=1

By (11),
M;k)\l = 'U_)zk)\l

Accordingly (12) becomes

N
> agi(1 = waw;)(ky,, k) > 0. (13)
2,j=1

Because .

kyx..ky) = ———
< Ais )\]> 1_)\1')\_7',

the positivity of (13) for all choices of scalars ¢; is precisely the statement
that the Pick matrix (2) be positive. Thus we have proved the necessity of
Pick’s condition in Theorem 1.

Sarason’s idea. By running the preceding argument backwards, the
assertion that the Pick matrix (2) is positive is seen to be equivalent to the
statement:

(A.) The linear operator R, defined on the N-dimensional subspace M of H?
spanned by the kernel functions ky;, 1 <1 < N, is a contraction.

The converse of Pick’s theorem is the assertion that, if (A.) holds, then

(B.) R extends to an operator Y on all of H? that is contractive and is the
adjoint of a multiplication operator.

There is a distinguished operator on H? called the unilateral shift and
denoted by S. It is defined by

[Sfl(z) = 2f(2),

so it shifts the Taylor coefficients of f to the right. (Notice that the definition
of (TT) is exactly that the plant commutes with the shift.) Its adjoint S* is
called the backward shift.

Donald Sarason observed in [9] that condition (A.) can be rephrased as
saying that R is a contraction on M that commutes with the restriction of S*
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to M, while condition (B.) asserts that R can be extended to a contraction
Y on H? that commutes with S*. Sarason proved the following theorem,
from which the sufficiency of Pick’s condition follows immediately.

Theorem 3 Let M be an invariant subspace for S*, and let R be an operator
on M that commutes with S*|y. Then there exists an operator Y on H? that
commutes with S*, has the same norm as R, and satisfies Y|y = R.

Sarason’s theorem was generalized by Bela Sz.-Nagy and Ciprian Foiag
to their celebrated commutant lifting theorem [12], [13]. This theorem says
roughly that Sarason’s Theorem 3 remains true if S* is replaced by the direct
sum of arbitrarily many copies of S*. From the commutant lifting theorem
one can derive not only matrix-valued versions of Pick’s theorem, but also
solutions to various other model-matching problems. See [2] for a discussion.

4 CONCLUSION

Pick’s problem is only a special case of the type of problems that arise in H*
control theory. However, it is both deep enough that solutions of the Pick
problem can often be generalized to solutions of other problems, and trans-
parent enough that one can find solutions to the Pick problem in different
ways.

Many variants on Pick’s problem are only partially solved. If one leaves
the unit disk and replaces the domain of the functions by some other set,
like an annulus or a polydisk, things get more complicated. See [1] for a
discussion of some known results of this type. If one changes the range, and
wants functions whose values all lie in an annulus, or in the intersection of
two disks, then the problem gets even harder. We refer to [4] for a discussion
of some of these problems.

Eighty-six years after its solution, Pick’s problem is still inspiring new
pure mathematics, and new applied mathematics!
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