Solutions to Second Midterm

1. The integers \mathbb{Z} form a countable set. The one-to-one correspondence between \mathbb{N} and \mathbb{Z} is:

 $f: \mathbb{Z} \to \mathbb{N}$

 $f(j) = 2j$ if $j > 0$

 $f(j) = -2j + 1$ if $j \leq 0$.

2. Assume to the contrary that S is countable. Then we have an enumeration:

 S^1, S^2, S^3, \ldots

 S^1, S^2, S^3, \ldots
This is an exhaustive list of all sequences of 0s and 1s. Now define
\[t_1 = \begin{cases} 0 & \text{if } s_1 = 1 \\ 1 & \text{if } s_1 = 0 \end{cases} \]
\[t_2 = \begin{cases} 0 & \text{if } s_2 = 1 \\ 1 & \text{if } s_2 = 0 \end{cases} \]
\[t_3 = \begin{cases} 0 & \text{if } s_3 = 1 \\ 1 & \text{if } s_3 = 0 \end{cases} \]
and so forth. Then \(T = \langle t_1, t_2, t_3, \ldots \rangle \) is a sequence of 0s and 1s. That is not in the enumeration, so \(S \) is uncountable.

3. Let \(p \) be any polynomial. Then \(p \) has the same degree as \(p \). So the relation is reflexive.

If \(p, q \) are polynomials and \(p \) has the same degree as \(q \), then \(q \) has the same degree as \(p \). So the relation is symmetric.

If \(p, q, r \) are polynomials and (i) \(p \) has the same degree as \(q \) and (ii) \(q \) has the same degree as \(r \), then clearly \(p \) has the same degree as \(r \). So the relation is transitive, hence it is an
equivalence relation. The equivalence classes are, for each nonnegative integer k, the collection

$$\mathcal{P}_k = \{ \text{all polynomials of degree } k \}.$$

4. If $(a, b) \in S$ then $a + b = a + b$ so $(a, b) \sim (a, b)$ and the relation is reflexive.

If $(a, b) \in S$, $(c, d) \in S$ and $(a, b) \sim (c, d)$ then $a + d = b + c$ so $c + b = d + a$. Thus $(c, d) \sim (a, b)$. Hence the relation is symmetric.

If (a, b), (c, d), (e, f) are in S and $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$ then

$$a + d = b + c$$

$$c + f = d + e$$

Adding gives

$$a + d + c + f = b + c + d + e$$

Cancelling c and d from both sides yields

$$a + f = b + e$$

So $(a, b) \sim (e, f)$ and the relation is transitive.
b) Suppose that $(a_1, a_2) \sim (z_1^*, a_2^*), \text{ and } (b_1, b_2) \sim (b_1^*, b_2^*)$.

Then we know that

1. $a_1 + a_2 = z_1 + a_2^* \Rightarrow a_1 + a_2 = z_1 + a_2^*$
2. $b_1 + b_2 = b_1 + b_1^*$

We need to see that

3. $(a_1, a_2) + (b_1, b_2) \sim (z_1^*, a_2^*) + (b_1^*, b_2^*)$
 \[= (z_1 + a_2^* + b_1 + b_2^*)
 \[= (z_1 + b_1 + a_2 + b_2^*)
 \[= (z_1 + b_1 + a_2 + b_2^*) = (z_1 + b_1 + a_2 + b_1^*)

Adding (1) and (2) together yields (3).

Adding (1) and (2) together yields (3).

So addition is indeed well defined.

The number system is the integers \mathbb{Z}.

c) The number system is the integers \mathbb{Z}.

d) We define multiplication by

$$(z_1, a_2) \cdot (b_1, b_2) = (z_1 b_2 + z_2 b_1, a_2 b_1 + z_2 b_2).$$
5. a) A set $S \subseteq \mathbb{R}$ has an upper bound if there is a real number M such that $s \leq M$ for all $s \in S$.

b) A set $S \subseteq \mathbb{R}$ has a least upper bound m if m is an upper bound for S and there is no other upper bound n for S such that $m < n$.

c) The set $\{x \in \mathbb{R} : x^2 < 2\}$ has 3 as an upper bound, but there is no real least upper bound.

d) The real number \mathbb{R} is a ordered field that contains \mathbb{Q} and such that every set with an upper bound has a least upper bound.

6. The complex numbers are $\mathbb{R} \times \mathbb{R}$ equipped with the arithmetic operations:

\[(a,b) + (c,d) = (a+c, b+d)\]
\[(a,b) - (c,d) = (a-c, b-d)\]
The pair $(0, 1)$ plays the role of i.

Observe that

$$(0, 1) \cdot (0, 1) = (0 \cdot 0 - 1 \cdot 1, 0 \cdot 1 + 1 \cdot 0) = (-1, 0) = -1,$$

so $i^2 = -1$.

7. a) A field is a set F equipped with operations of addition $(+)$ and multiplication (\cdot). Both these operations are commutative and associative.

There are clear field axioms.

b) eleven.

c) There are two: addition and multiplication.

d) If $x \in F$ then there is an element $-x \in F$ such that $x + (-x) = 0$.

e) If $y \in F$, $y \neq 0$, then there is an element $y^{-1} \in F$ such that $y \cdot y^{-1} = 1$.
8. A relation R on sets S and T is a function if
 a) For each $s \in S$ there is a $t \in T$ such that $(s, t) \in R$.
 b) If (s, t_1) and (s, t_2) are in R then $t_1 = t_2$.

9. a) This is not one-to-one because $f(-1) = f(1)$. It is not onto because $f(x) \neq -5$.
 b) This is one-to-one because each real number has a unique cube root.
 c) This is onto because every value between -1 and 1 inclusive is assumed by sine. It is not one-to-one because $\sin x = 5 \sin 2x$.
 d) This is not onto because T^{-1} does not assume the value 0. It is increasing.
 \[\frac{d}{dx} \left(T^{-1} \right) = \frac{1}{12x^2} > 0 \]
10. a) \(\mathbb{R} \) is uncountable.
\[
\phi : \mathbb{R} \to \mathbb{R} \times \mathbb{Z}
\]
\[
x \mapsto (x, 0)
\]
is one-to-one. So \(\mathbb{R} \times \mathbb{Z} \) is uncountable.

b) \(\mathbb{Z} \) is countable, \(\mathbb{N} \) is countable, so \(\mathbb{N} \times \mathbb{N} \) is countable. The union of two countable sets is countable. Thus \(\mathbb{Z} \cup (\mathbb{N} \times \mathbb{N}) \) is countable.

c) \((\mathbb{R} \times \mathbb{R}) \cap (\mathbb{C} \times \mathbb{Z}) = (\mathbb{R} \times \mathbb{Z}) \).
This is uncountable by part (a).

d) \(\mathbb{C} \) is uncountable,
\[
\psi : \mathbb{C} \to \mathbb{C} \times \mathbb{C} \times \mathbb{N}
\]
\[
z \mapsto (z, 0, 0)
\]
is injective, so \(\mathbb{C} \times \mathbb{C} \times \mathbb{N} \) is uncountable.
EXTRA CREDIT: We may identify this set with the set of all sequences of indices.
This is uncountable by Cantor diagonalization.