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Chapter 1 Introductory Topics I: Algebra

1.1

1. (a) True (b) False. −5 is smaller than −3, so on the number line it is to the left of −3. (See Fig. 1.1.1
in the book.) (c) False. −13 is an integer, but not a natural number. (d) True. Any natural number is
rational. For example 5 = 5/1. (e) False, since 3.1415 = 31415/10000, the quotient of two integers.
(f) False. Counterexample:

√
2+ (−√2) = 0. (g) True. (h) True.

1.3

9. (a) (2t−1)(t2−2t+1) = 2t (t2−2t+1)−(t2−2t+1) = 2t3−4t2+2t−t2+2t−1 = 2t3−5t2+4t−1
(b) (a + 1)2 + (a − 1)2 − 2(a + 1)(a − 1) = a2 + 2a + 1+ a2 − 2a + 1− 2a2 + 2 = 4
(c) (x + y + z)2 = (x + y + z)(x + y + z) = x(x + y + z) + y(x + y + z) + z(x + y + z) =
x2 + xy + xz+ yx + y2 + yz+ zx + zy + z2 = x2 + y2 + z2 + 2xy + 2xz+ 2yz (d) (x − y − z)2 =
(x−y−z)(x−y−z) = x2−xy−xz−xy+y2−yz−xz−yz+z2, so (x+y+z)2−(x−y−z)2 = 4xy+4xz

13. (a) a2+4ab+4b2 = (a+2b)2 using the first quadratic identity. (d) 9z2−16w2 = (3z−4w)(3z+4w),
according to the difference-of-squares formula. (e) − 1

5x2 + 2xy − 5y2 = − 1
5 (x2 − 10xy + 25y2) =

− 1
5 (x − 5y)2 (f) a4 − b4 = (a2 − b2)(a2 + b2), using the difference-of-squares formula. Since

a2 − b2 = (a − b)(a + b), the answer in the book follows.

1.4

5. (a)
1

x − 2
− 1

x + 2
= x + 2

(x − 2)(x + 2)
− x − 2

(x + 2)(x − 2)
= x + 2− x + 2

(x − 2)(x + 2)
= 4

x2 − 4

(b) Since 4x + 2 = 2(2x + 1) and 4x2 − 1 = (2x + 1)(2x − 1), the LCD is 2(2x + 1)(2x − 1). Then

6x + 25

4x + 2
− 6x2 + x − 2

4x2 − 1
= (6x + 25)(2x − 1)− 2(6x2 + x − 2)

2(2x + 1)(2x − 1)
= 21(2x − 1)

2(2x + 1)(2x − 1)
= 21

2(2x + 1)

(c)
18b2

a2 − 9b2
− a

a + 3b
+ 2 = 18b2 − a(a − 3b)+ 2(a2 − 9b2)

(a + 3b)(a − 3b)
= a(a + 3b)

(a + 3b)(a − 3b)
= a

a − 3b

(d)
1

8ab
− 1

8b(a + 2)
+ 1

b(a2 − 4)
= a2 − 4− a(a − 2)+ 8a

8ab(a2 − 4)
= 2(5a − 2)

8ab(a2 − 4)
= 5a − 2

4ab(a2 − 4)

(e)
2t − t2

t + 2
·
(

5t

t − 2
− 2t

t − 2

)
= t (2− t)

t + 2
· 3t

t − 2
= −t (t − 2)

t + 2
· 3t

t − 2
= −3t2

t + 2

(f)
a
(
1− 1

2a

)
0.25

= a − 1
2

1
4

= 4a − 2, so 2− a
(
1− 1

2a

)
0.25

= 2− (4a − 2) = 4− 4a = 4(1− a)

6. (a)
2

x
+ 1

x + 1
− 3 = 2(x + 1)+ x − 3x(x + 1)

x(x + 1)
= 2− 3x2

x(x + 1)

(b)
t

2t + 1
− t

2t − 1
= t (2t − 1)− t (2t + 1)

(2t + 1)(2t − 1)
= −2t

4t2 − 1

(c)
3x

x + 2
− 4x

2− x
− 2x − 1

(x − 2)(x + 2)
= 3x(x − 2)+ 4x(x + 2)− (2x − 1)

(x − 2)(x + 2)
= 7x2 + 1

x2 − 4
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2 C H A P T E R 1 I N T R O D U C T O R Y T O P I C S I : A L G E B R A

(d)

1

x
+ 1

y

1

xy

=

(
1

x
+ 1

y

)
xy

1

xy
· xy

= y + x

1
= x + y (e)

1

x2
− 1

y2

1

x2
+ 1

y2

=

(
1

x2
− 1

y2

)
· x2y2

(
1

x2
+ 1

y2

)
· x2y2

= y2 − x2

x2 + y2

(f) Multiply the numerator and the denominator by xy. Then the fraction reduces to
a(y − x)

a(y + x)
= y − x

y + x
.

8. (a) 1
4 − 1

5 = 5
20 − 4

20 = 1
20 , so

( 1
4 − 1

5

)−2 = ( 1
20

)−2 = 202 = 400

(b) n− n

1− 1

n

= n− n · n(
1− 1

n

)
· n
= n− n2

n− 1
= n(n− 1)− n2

n− 1
= −n

n− 1

(c) If u = xp−q , then
1

1+ xp−q
+ 1

1+ xq−p
= 1

1+ u
+ 1

1+ 1/u
= 1

1+ u
+ u

1+ u
= 1

(d)

(
1

x − 1
+ 1

x2 − 1

)
(x2 − 1)(

x − 2

x + 1

)
(x2 − 1)

= x + 1+ 1

x3 − x − 2x + 2
= x + 2

(x + 2)(x2 − 2x + 1)
= 1

(x − 1)2

(e)
1

(x + h)2
− 1

x2
= x2 − (x + h)2

x2(x + h)2
= −2xh− h2

x2(x + h)2
, so

1

(x + h)2
− 1

x2

h
= −2x − h

x2(x + h)2

(f) Multiplying denominator and numerator by x2 − 1 = (x + 1)(x − 1) yields
10x2

5x(x − 1)
= 2x

x − 1

1.5

5. (Needs some hints.) Multiply the denominator and the numerator by: (a)
√

7 − √5 (b)
√

5 − √3
(c)
√

3+ 2 (d) x
√

y − y
√

x (e)
√

x + h+√x (f) 1−√x + 1

7. The answers will depend on the calculator you use.

12. (a) For x = 1 the left-hand side is 4 and the right-hand side is 2. (In fact, (2x)2 = 22x .) (b) Correct
because ap−q = ap/aq (c) Correct because a−p = 1/ap (d) For x = 1 it says 5 = 1/5, which is
absurd. (e) For x = y = 1, it says that a2 = 2a, which is usually wrong. (In fact, ax+y = axay .)
(f) 2

√
x · 2√y = 2

√
x+√y , not 2

√
xy .

1.6

4. (a) 2 <
3x + 1

2x + 4
has the same solutions as

3x + 1

2x + 4
− 2 > 0, or

3x + 1− 2(2x + 4)

2x + 4
> 0, or

−x − 7

2x + 4
> 0

A sign diagram reveals that the inequality is satisfied for −7 < x < −2. A serious error is to multiply
the inequality by 2x + 4, without assuming that 2x + 4 > 0. When multiplying with 2x + 4 when this
number is negative, the inequality sign must be reversed. (It might be a good idea to test the inequality
for some values of x. For example, for x = 0 it is not true. What about x = −5?)

(b) The inequality is equivalent to
120

n
− 3

4
≤ 0, i.e.

3(160− n)

4n
≤ 0. A sign diagram reveals that the

inequality is satisfied for n < 0 and for n ≥ 160. (Note that for n = 0 the inequality makes no sense.
For n = 160, we have equality.)
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C H A P T E R 1 I N T R O D U C T O R Y T O P I C S I : A L G E B R A 3

(c) Easy: g(g − 2) ≤ 0 etc. (d) Note that p2 − 4p + 4 = (p − 2)2, and the inequality reduces to
p + 1

(p − 2)2
≥ 0. The fraction makes no sense if p = 2. The conclusion follows.

(e) The inequality is equivalent to
−n− 2

n+ 4
− 2 ≥ 0, i.e.

−n− 2− 2n− 8

n+ 4
≥ 0, or

−3n− 10

n+ 4
≥ 0, etc.

(f) See the text and use a sign diagram. (Don’t cancel x2. If you do, x = 0 appears as a false solution.)

5. (a) Use a sign diagram. (b) The inequality is not satisfied for x = 1. If x �= 1, it is obviously satisfied
for x + 4 > 0, i.e. x > −4 (because (x − 1)2 is positive when x �= 1). (c) Use a sign diagram.
(d) The inequality is not satisfied for x = 1/5. If x �= 1/5, it is obviously satisfied for x < 1.
(e) Use a sign diagram. ((5x − 1)11 < 0 if x < 1/5, > 0 if x > 1/5.)

(f)
3x − 1

x
> x + 3,

3x − 1

x
− (x + 3) > 0,

−(1+ x2)

x
> 0, so x < 0. (1+ x2 is always positive.)

(g)
x − 3

x + 3
> 2x − 1 or

x − 3

x + 3
− (2x − 1) < 0 or

−2x(x + 2)

x + 3
< 0. Then use a sign diagram.

(h) Use the hint and a sign diagram. (Actually, this problem and the next could be postponed to Section 2.3
if you have forgotten your high school algebra.) (i) Use the hint and a sign diagram.

Review Problems for Chapter 1

4. (a) (2x)4 = 24x4 = 16x4 (b) 2−1 − 4−1 = 1/2− 1/4 = 1/4, so (2−1 − 4−1)−1 = 4
(c) Cancel the common factor 4x2yz2. (d) −(−ab3)−3 = −(−1)−3a−3b−9 = a−3b−9, so

[−(−ab3)−3(a6b6)2]3 = [a−3b−9a12b12]3 = [a9b3]3 = a27b9 (e)
a5 · a3 · a−2

a−3 · a6
= a6

a3
= a3

(f)
[(x

2

)3 · 8

x−2

]−3 =
[ x3 · 8

8 · x−2

]−3 = (x5)−3 = x−15

8. All are straightforward, except (c), (g), and (h): (c)−√3
(√

3−√6
) = −3+√3

√
6 = −3+√3

√
3
√

2
= −3 + 3

√
2 (g) (1 + x + x2 + x3)(1 − x) = (1 + x + x2 + x3) − (1 + x + x2 + x3)x = 1 − x4

(h) (1+ x)4 = (1+ x)2(1+ x)2 = (1+ 2x + x2)(1+ 2x + x2) a.s.o.

11. (a) and (b) are easy. (c) ax+ay+2x+2y = ax+2x+ay+2y = (a+2)x+(a+2)y = (a+2)(x+y)

(d) 2x2− 5yz+ 10xz− xy = 2x2+ 10xz− (xy+ 5yz) = 2x(x+ 5z)− y(x+ 5z) = (2x− y)(x+ 5z)

(e) p2− q2+p− q = (p− q)(p+ q)+ (p− q) = (p− q)(p+ q+ 1) (f) See the answer in the book.

15. (a)
s

2s − 1
− s

2s + 1
= s(2s + 1)− s(2s − 1)

(2s − 1)(2s + 1)
= 2s

4s2 − 1

(b)
x

3− x
− 1− x

x + 3
− 24

x2 − 9
= −x(x + 3)− (1− x)(x − 3)− 24

(x − 3)(x + 3)
= −7(x + 3)

(x − 3)(x + 3)
= −7

x − 3

(c) Multiplying numerator and denominator by x2y2 yields,
y − x

y2 − x2
= y − x

(y − x)(y + x)
= 1

x + y

16. (a) Cancel the factor 25ab. (b) x2 − y2 = (x + y)(x − y). Cancel x + y. (c) The fraction can be

written
(2a − 3b)2

(2a − 3b)(2a + 3b)
= 2a − 3b

2a + 3b
. (d)

4x − x3

4− 4x + x2
= x(2− x)(2+ x)

(2− x)2
= x(2+ x)

2− x

© Knut Sydsæter, Arne Strøm, and Peter Hammond 2008
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Chapter 2 Introductory Topics II: Equations

2.1

3. (a) We note first that x = −3 and x = −4 both make the equation absurd. Multiplying the equation by
the common denominator, (x + 3)(x + 4), yields (x − 3)(x + 4) = (x + 3)(x − 4), and thus x = 0.
(b) Multiplying by the common denominator (x − 3)(x + 3) yields 3(x + 3) − 2(x − 3) = 9, from
which we get x = −6. (c) Multiplying by the common denominator 15x (assuming that x �= 0, yields
18x2 − 75 = 10x2 − 15x + 8x2, from which we get x = 5.

5. (a) Multiplying by the common denominator 12 yields 9y − 3− 4+ 4y + 24 = 36y, and so y = 17/23.
(b) Multiplying by 2x(x + 2) yields 8(x + 2) + 6x = 2(2x + 2) + 7x, from which we find x = −4.

(c) Multiplying the numerator and the denominator in the first fraction by 1−z, leads to
2− 2z− z

(1− z)(1+ z)
=

6

2z+ 1
. Multiplying by (1− z2)(2z+ 1) yields (2− 3z)(2z+ 1) = 6− 6z2, and so z = 4.

(d) Expanding the parentheses we get p

4 − 3
8 − 1

4 + p

12 − 1
3 + p

3 = − 1
3 . Multiplying by the common

denominator 24 gives an equation with the solution p = 15/16.

2.2

2. (a) Multiply both sides by abx to obtain b+a = 2abx. Hence, x = a + b

2ab
= a

2ab
+ b

2ab
= 1

2

(
1

a
+ 1

b

)
.

(b) Multiply the equation by cx + d to obtain ax + b = cAx + dA, or (a − cA)x = dA − b, and thus
x = (dA− b)/(a − cA). (c) Multiply the equation by x1/2 to obtain 1

2p = wx1/2, thus x1/2 = p/2w,
so, by squaring each side, x = p2/4w2. (d) Multiply each side by

√
1+ x to obtain 1+ x + ax = 0,

so x = −1/(1+ a). (e) x2 = b2/a2, so x = ±b/a. (f) We see immediately that x = 0.

4. (a) αx − a = βx − b ⇐⇒ (α − β)x = a − b, so x = (a − b)/(α − β).
(b) Squaring each side of

√
pq = 3q + 5 yields pq = (3q + 5)2, so p = (3q + 5)2/q.

(c) Y = 94+ 0.2(Y − (20+ 0.5Y )) = 94+ 0.2Y − 4− 0.1Y , so 0.9Y = 90, and then Y = 100.

(d) Raise each side to the 4th power: K2 1
2

r

w
K = Q4, so K3 = 2wQ4/r , and hence K = (2wQ4/r

)1/3
.

(e) Multiplying numerator and denominator in the left-hand fraction by 4K1/2L3/4, leads to 2L/K = r/w,

from which we get L = rK/2w. (f) Raise each side to the 4th power: 1
16p4K−1

(
1
2

r

w

)
= r4. It follows

that K−1 = 32r3w/p4, so K = 1
32p4r−3w−1.

5. (a)
1

s
= 1

t
− 1

T
= T − t

tT
, so s = tT

T − t
. (b)

√
KLM = B + αL, so KLM = (B + αL)2, and

so M = (B + αL)2/KL. (c) Multiplying each side by x − z yields, x − 2y + xz = 4xy − 4yz, or
(x+4y)z = 4xy−x+2y, and so z = (4xy−x+2y)/(x+4y). (d) V = C−CT/N , so CT/N = C−V

and thus T = N(1− V/C).

2.3

5. (a) See the answer in the book. (b) If the first natural number is n, then the next is n + 1, so the
requirement is that n2 + (n+ 1)2 = 13, which reduces to 2n2 + 2n− 12 = 0, i.e. n2 + n− 6 = 0. This
second-order equation has the solutions n = −3 and n = 2, so the two numbers are 2 and 3. (If we asked
for integer solutions, we would have −3 and −2 in addition.)
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C H A P T E R 2 I N T R O D U C T O R Y T O P I C S I I : E Q U A T I O N S 5

(c) If the shortest side is x, the other is x + 14, so according to Pythagoras’ Theorem (see page 633
and draw a picture), x2 + (x + 14)2 = (34)2, or x2 + 14x − 480 = 0. The solutions are x = 16 and
x = −30, so the shortest side is 16 cm and the longest is 30 cm. (d) If the usual driving speed is x

km/h and the usual time spent is t hours, then xt = 80. 16 minutes is 16/60 = 4/15 hours, so driving at
the speed x + 10 for t − 4/15 hours gives (x + 10)(t − 4/15) = 80. From the first equation, t = 80/x.
Inserting this into the second equation, we get (x + 10)(80/x − 4/15) = 80. Rearranging, we obtain
x2 + 10x − 3000 = 0, whose positive solution is x = 50. So his usual driving speed is 50 km/h.

2.4
4. (a) If the two numbers are x and y, then x + y = 52 and x − y = 26. Adding the two equations gives

2x = 78, so x = 39, and then y = 52 − 39 = 13. (b) Let the cost of one chair be $x and the cost of
one table $y. Then 5x + 20y = 1800 and 2x + 3y = 420. Solving this system yields x = 120, y = 60.
(c) Units produced of B: x. Then x + 1

2x = 3
2x units are produced of A, and 300 · 3

2x + 200x = 13 000,
or 650x = 13 000, so x = 20. Thus, 30 of quality A and 20 of quality B should be produced.
(d) If she invests $x at 15 % and $y at 20 %, then x + y = 1500 and 0.15x + 0.2y = 275. The solution
is x = 8000 and y = 2000.

2.5
2. (a) The numerator 5+ x2 is never 0, so there are no solutions. (b) The equation is obviously equivalent

to
x2 + 1+ 2x

x2 + 1
= 0, or

(x + 1)2

x2 + 1
= 0, so x = −1. (c) x = −1 is clearly no solution. Multiply

the equation by (x + 1)2/3. Then the denominator becomes x + 1 − 1
3x, which is 0 for x = −3/2.

(d) Multiplying by x − 1 and rearranging yields x(2x − 1) = 0, and so x = 0 or x = 1/2.

3. (a) z = 0 satisfies the equation. If z �= 0, canceling z2 yields z− a = za + zb, or z(1− (a + b)) = a. If
a + b = 1 we have a contradiction. If a + b �= 1, z = a/(1− (a + b)). (b) The equation is equivalent
to (1 + λ)μ(x − y) = 0, so λ = −1, μ = 0, or x = y. (c) μ = ±1 makes the equation meaningless.
Multiplying the equation by 1− μ2 yields λ(1− μ) = −λ, or λ(2− μ) = 0, so λ = 0 or μ = 2.
(d) The equation is equivalent to b(1+ λ)(a − 2) = 0, so b = 0, λ = −1, or a = 2.

Review Problems for Chapter 2

2. See Problem 2.1.3.

3. (a) x = 2
3 (y − 3)+ y = 2

3y − 2+ y = 5
3y − 2, or 5

3y = x + 2, so y = 3
5 (x + 2).

(b) ax − cx = b + d, or (a − c)x = b + d, so x = (b + d)/(a − c).
(c)
√

L = Y0/AK , so squaring each side yields L = (Y0/AK)2. (d) qy = m−px, so y = (m−px)/q.
(e) and (f): See the answers in the text.

5. (a) Multiply the equation by 5K1/2 to obtain K1/2 = 15L1/3. Squaring each side gives K = 225L2/3.
(b) Raise each side to the power 1/t to obtain 1+ r/100 = 21/t , and so r = 100(21/t − 1).
(c) abxb−1

0 = p, so xb−1
0 = p/ab. Now raise each side to the power 1/(b − 1).

(d) Raise each side to the power−ρ to get (1−λ)a−ρ +λb−ρ = c−ρ , or b−ρ = λ−1(c−ρ − (1−λ)a−ρ).
Now raise each side to the power −1/ρ.

9. (a) See the answer in the text. (b) Let u = 1/x and v = 1/y. Then the system reduces to 3u+ 2v = 2,
2u− 3v = 1/4, with solution u = 1/2, v = 1/4. It follows that x = 1/u = 2 and y = 1/v = 4.
(c) See the answer in the text.
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Chapter 3 Introductory Topics II: Miscellaneous

3.1

3. (a)–(d): Look at the last term and replace n by k. Sum over k from 1 to n. (e) The coefficients are the
powers 3n for n = 1, 2, 3, 4, 5, so the general term is 3nxn. (f) and (g) see answers in the text.
(h) This is tricky. One has to see that each term is 198 larger that the previous term. (The problem is
related to the story about Gauss on page 56.)

7. (a)
∑n

k=1 ck2 = c · 12 + c · 22 + · · · + c · n2 = c(12 + 22 + · · · + n2) = c
∑n

k=1 k2

(b) Wrong even for n = 2: The left-hand side is (a1 + a2)
2 = a2

1 + 2a1a2 + a2
2 , but the right-hand side

is a2
1 + a2

2 . (c) Both sides equal b1 + b2 + · · · + bN . (d) Both sides equal 51 + 52 + 53 + 54 + 55.
(e) Both sides equal a2

0,j + · · ·+ a2
n−1,j . (f) Wrong even for n = 2: The left-hand side is a1+ a2/2, but

the right-hand side is (1/k)(a1 + a2).

3.2

5. One does not have to use summation signs. The sum is a + (a + d)+ (a + 2d)+ · · · + (a + (n− 1)d .
There are n terms. The sum of all the a’s is na. The rest is d(1+ 2+ · · · + n− 1). Then use formula (4).

3.3

1. (a) See the text. (b)
∑2

s=0

∑4
r=2

(
rs

r+s

)2 =∑2
s=0

[( 2s
2+s

)2 + ( 3s
3+s

)2 + ( 4s
4+s

)2] = ( 2
3

)2 + ( 3
4

)2 + ( 4
5

)2 +( 4
4

)2 + ( 6
5

)2 + ( 8
6

)2 = 5+ 3113
3600

(c)
∑m

i=1

∑n
j=1 i ·j 2 =∑m

i=1 i ·∑n
j=1 j 2 = 1

2m(m+1)· 16n(n+1)(2n+1) = 1
12m(m+1)n(n+1)(2n+1),

where we used (4) and (5).

4. ā is the mean of the ās’s because ā = 1

n

n∑
s=1

(
1

m

m∑
r=1

ars

)
= 1

n

n∑
s=1

ās .

To prove (∗), note that because arj − ā is independent of the summation index s, it is a common factor
when we sum over s, so

∑m
s=1(arj − ā)(asj − ā) = (arj − ā)

∑m
s=1(asj − ā) for each r . Next, summing

over r gives
m∑

r=1

m∑
s=1

(arj − ā)(asj − ā) =
[ m∑

r=1

(arj − ā)

][ m∑
s=1

(asj − ā)

]
(∗∗)

Using the properties of sums and the definition of āj , we have

m∑
r=1

(arj − ā) =
m∑

r=1

arj −
m∑

r=1

ā = māj −mā = m(āj − ā)

Similarly, replacing r with s as the index of summation, one also has
∑m

s=1(asj − ā) = m(āj − ā).
Substituting these values into (∗∗) then confirms (∗).

3.4

6. (a) If (i)
√

x − 4 = √x + 5− 9, then also (ii) x − 4 = (
√

x + 5− 9)2, which we get by squaring both
sides in (i). Calculating the square on the right-hand side of (ii) gives

√
x + 5 = 5, and so x + 5 = 25,
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i.e. x = 20. This shows that if x is a solution of (i), then x = 20. No other value of x can satisfy (i).
But if we check this solution, we find that with x = 20 the LHS of (i) becomes

√
16 = 4, and the RHS

becomes
√

25− 9 = 5− 9 = −4. Thus the LHS and the RHS are different. This means that equation (i)
actually has no solutions at all. (But note that 42 = (−4)2, i.e. the square of the LHS equals the square
of the RHS. That is how the spurious solution x = 20 managed to sneak in.)
(b) If x is a solution of (iii)

√
x − 4 = 9−√x + 5, then just as in part (a) we find that x must be a solution

of (iv) x − 4 = (9 −√x + 5 )2. Now, (9 −√x + 5 )2 = (
√

x + 5 − 9)2, so equation (iv) is equivalent
to equation (ii) in part (a). This means that (iv) has exactly one solution, namely x = 20. Inserting this
value of x into equation (iii), we find that x = 20 is a solution of (iii).
A geometric explanation of the results can be given with reference to the following figure.

y

-5

5

x
5 10 15 20 25

y = 9−√x + 5

y = √x − 4

y = √x + 5− 9

Figure SM3.4.6

We see that the two solid curves in the figure have no point in common, that is, the expressions
√

x − 4
and
√

x + 5−9 are not equal for any value of x. (In fact, the difference
√

x − 4−(
√

x + 5−9) increases
with x, so there is no point of intersection farther to the right, either.) This explains why the equation
in (a) has no solution. The dashed curve y = 9−√x + 5, on the other hand, intersects y = √x + 5 for
x = 20 (and only there), and this corresponds to the solution in part (b).
Comment: In part (a) it was necessary to check the result, because the transition from (i) to (ii) is only
an implication, not an equivalence. Similarly, it was necessary to check the result in part (b), since the
transition from (iii) to (iv) also is only an implication — at least, it is not clear that it is an equivalence.
(Afterwards, it turned out to be an equivalence, but we could not know that until we had solved the
equation.)

7. (a) Here we have “iff” since
√

4 = 2. (b) It is easy to see by means of a sign diagram that x(x+ 3) < 0
precisely when x lies in the open interval (−3, 0). Therefore we have an implication from left to right
(that is, “only if”), but not in the other direction. (For example, if x = 10, then x(x + 3) = 130.)
(c) x2 < 9 ⇐⇒ −3 < x < 3, so x2 < 9 only if x < 3. If x = −5, for instance, we have x < 3 but
x2 > 9. Hence we cannot have “if” here. (d) x2 + 1 is never 0, so we have “iff” here. (e) If x > 0,
then x2 > 0, but x2 > 0 also when x < 0. (f) x4 + y4 = 0 ⇐⇒ x = 0 and y = 0. If x = 0 and, say,
y = 1, then x4 + y4 = 1, so we cannot have “if” here.

9. (a) If x and y are not both nonnegative, at leat one of them must be negative, i.e. x < 0 or y < 0.
(b) If not all x are greater than or equal to a, at least one x must be less than a. (c) At least one of them
is less than 5. (Would it be easier if the statement to negate were “Neither John nor Diana is less than
5 years old”?) (d)–(f) See the answers in the text.
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3.7
3. For n = 1, both sides are 1/2. Suppose (∗) is true for n = k. Then the sum of the first k + 1 terms is

1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · · +
1

k(k + 1)
+ 1

(k + 1)(k + 2)
= k

k + 1
+ 1

(k + 1)(k + 2)

But
k

k + 1
+ 1

(k + 1)(k + 2)
= (k + 1)2

(k + 1)(k + 2)
= k + 1

k + 2
, which is (∗) for n = k+1. Thus, by induction,

(∗) is true for all n.

4. The claim is true for n = 1. As the induction hypothesis, suppose k3 + (k + 1)3 + (k + 2)3 is divisible
by 9. Note that (k + 1)3 + (k + 2)3 + (k + 3)3 = (k + 1)3 + (k + 2)3 + k3 + 9k2 + 27k + 27 =
k3+ (k+1)3+ (k+2)3+9(k2+3k+3). This is divisible by 9 because the induction hypothesis implies
that the sum of the first three terms is divisible by 9, whereas the last term is also obviously divisible by 9.

Review Problems for Chapter 3

6. (b)⇒ false (because x2 = 16 also has the solution x = −4),⇐ true, because if x = 4, then x2 = 16.
(c)⇒ true,⇐ false because with y > −2 and x = 3, (x − 3)2(y + 2) = 0. (d)⇒ and⇐ both true,
since the equation x3 = 8 has the solution x = 2 and no others. (In the terminology of Section 6.3,
f (x) = x3 is strictly increasing. See Problem 6.3.3 and see the graph Fig. 7, page 88.)

9. Consider Fig. A3.6.8, page 643 in the book, and let nk denote the number of students in the set marked Sk ,
for k = 1, 2, . . . , 8. Sets A, B, and C refer to those who study English, French, and Spanish, respectively.
Since 10 students take all three languages, n7 = 10. There are 15 who take French and Spanish, so
15 = n2 + n7, and thus n2 = 5. Furthermore, 32 = n3 + n7, so n3 = 22. Also, 110 = n1 + n7, so
n1 = 100. The rest of the information implies that 52 = n2+n3+n6+n7, so n6 = 52−5−22−10 = 15.
Moreover, 220 = n1+n2+n5+n7, so n5 = 220−100−5−10 = 105. Finally, 780 = n1+n3+n4+n7,
so n4 = 780− 100− 22− 10 = 648. The answers to the problems are:
(a): n1 = 100 (b): n3 + n4 = 648+ 22 = 670 (c) 1000−∑8

i=1 ni = 1000− 905 = 95

Chapter 4 Functions of One Variable

4.2
1. (a) f (0) = 02 + 1 = 1, f (−1) = (−1)2 + 1 = 2, f (1/2) = (1/2)2 + 1 = 1/4 + 1 = 5/4,

and f (
√

2) = (
√

2)2 + 1 = 2 + 1 = 3. (b) (i) Since (−x)2 = x2, f (x) = f (−x) for all x.
(ii) f (x+1) = (x+1)2+1 = x2+2x+1+1 = x2+2x+2 and f (x)+f (1) = x2+1+2 = x2+3. Thus
equality holds if and only if x2+2x+2 = x2+3, i.e. if and only if x = 1/2. (iii) f (2x) = (2x)2+1 =
4x2 + 1 and 2f (x) = 2x2 + 2. Now, 4x2 + 1 = 2x2 + 2 ⇔ x2 = 1/2 ⇔ x = ±√1/2 = ± 1

2

√
2.

10. (a) No: f (2+1) = f (3) = 18, whereas f (2)+f (1) = 10. (b) Yes: f (2+1) = f (2)+f (1) = −9.
(c) No: f (2+ 1) = f (3) = √3 ≈ 1.73, whereas f (2)+ f (1) = √2+ 1 ≈ 2.41.

13. (a) We must require 5− x ≥ 0, so x ≤ 5. (b) The denominator x2 − x = x(x − 1) must be different
from 0, so x �= 0 and x �= 1. (c) To begin with, the denominator must be nonzero, so we must require
x �= 2 and x �= −3. Moreover, since we can only take the square root of a nonnegative number, the
fraction (x − 1)/(x − 2)(x + 3) must be ≥ 0. A sign diagram reveals that Df = (−3, 1]∪ (2,∞). Note
in particular that the function is defined with value 0 at x = 1.
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15. Since g is obviously defined for x ≥ −2, Dg = [−2,∞). Note that g(−2) = 1, and g(x) ≤ 1 for all
x ∈ Df . As x increases from −2 to∞, g(x) decreases from 1 to −∞, so Rg = (−∞, 1].

4.4

3. If D = a + bP , then 200 = a + 10b, and 150 = a + 15b. Solving for a and b yields a = 300 and
b = −10, so D = 300− 10P .

4. L1: The slope is obviously 1, and the point-slope formula with (x1, y1) = (0, 2) and a = 1 give y = x+2.

L2: Using the point-point formula with (x1, y1) = (0, 3) and (x2, y2) = (5, 0) yields: y − 3 = 0− 3

5− 0
x,

or y = − 3
5x + 3. L3: Has slope 0 and equation y = 1. For L4 and L5 see the text.

10. The set of points that satisfy the inequality 3x + 4y ≤ 12 are those on or below the straight line
3x + 4y = 12 as explained in Example 6 for a similar inequality. Those points that satisfy the inequality
x − y ≤ 1, or equivalently, y ≥ x − 1, are those on or above the straight line x − y = 1. Finally, those
points that satisfy the inequality 3x + y ≥ 3, or equivalently, y ≥ 3 − 3x, are those on or above the
straight line 3x + y = 3. The set of points that satisfy all these three inequalities simultaneously, is the
set shown in Fig. A.4.4.10.

4.5

3. The point–point formula gives C − 200 = 275− 200

150− 100
(x − 100), or C = 3

2
x + 50.

4.6

2. Complementing the answers in the text. (c) Formula (4) with a = − 1
2 and b = −1 gives x = −1 as the

maximum point. (Alternatively, completing the square, f (x) = − 1
2 (x2+2x−3) = − 1

2 (x2+2x+1−4) =
− 1

2 (x+1)2+2, from which we see immediately that f (x) has maximum 2 at x = −1.) (e) Use (2.3.5),
or expand, to verify the formula for f (x). Use a sign diagram to study the sign variation of f (x).

6. Expanding we get U(x) = −(1 + r2)x2 + 8(r − 1)x. Then apply (4.6.4) with a = −(1 + r2) and
b = 8(r − 1).

9. (b) If B2 − 4AC > 0, then according to formula (2.3.4), the equation f (x) = Ax2 + Bx + C = 0
would have two distinct solutions, which is impossible when f (x) ≥ 0 for all x. We find that A =
a2

1 + a2
2 + · · · + a2

n, B = 2(a1b1 + a2b2 + · · · + anbn), and C = b2
1 + b2

2 + · · · + b2
n, so the conclusion

follows easily.

4.7

1. (a) Integer roots must divide 6. Thus ±1, ±2, ±3, and ±6 are the only possible integer solutions. We
find that −2, −1, 1, 3 all are roots, and since there can be no more than 4 roots in a polynomial equation
of degree 4, we have found them all.
(b) The same possible integer solutions. Only −6 and 1 are integer solutions. (The third root is −1/2.)
(c) Neither 1 nor −1 satisfies the equation, so there are no integer roots.
(d) First multiply the equation by 4 to have integer coefficients. Then ±1, ±2, and ±4 are seen to be the
only possible integer solutions. In fact, 1, 2, −2 are all solutions.
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3. (a) The answer is 2x2 + 2x + 4+ 3/(x − 1), because

(2x3 + 2x − 1)÷ (x − 1) = 2x2 + 2x + 4
2x3 − 2x2

2x2 + 2x − 1
2x2 − 2x

4x − 1
4x − 4

3 remainder

(b) The answer is x2 + 1, because

(x4 + x3 + x2 + x)÷ (x2 + x) = x2 + 1
x4 + x3

x2 + x

x2 + x

0 no remainder

(c) The answer is x3 − 4x2 + 3x + 1− 4x/(x2 + x + 1), because

(x5 − 3x4 + 1)÷ (x2 + x + 1) = x3 − 4x2 + 3x + 1
x5 + x4 + x3

− 4x4 − x3 + 1
− 4x4 − 4x3 − 4x2

3x3 + 4x2 + 1
3x3 + 3x2 + 3x

x2 − 3x + 1
x2 + x + 1

− 4x remainder

(d) The answer is 3x5 + 6x3 − 3x2 + 12x − 12+ (28x2 − 36x + 13)/(x3 − 2x + 1), because

(3x8 x2 + 1)÷ (x3 − 2x + 1) = 3x5 + 6x3 − 3x2 + 12x − 12
3x8 − 6x6 + 3x5

6x6 − 3x5 + x2 + 1
6x6 − 12x4 + 6x3

− 3x5 + 12x4 − 6x3 + x2 + 1
− 3x5 + 6x3 − 3x2

12x4 − 12x3 + 4x2 + 1
12x4 − 24x2 + 12x

− 12x3 + 28x2 − 12x + 1
− 12x3 + 24x − 12

28x2 − 36x + 13 remainder
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4. (a) y = 1
2 (x + 1)(x − 3). (Since the graph intersects the x-axis at the two points x = −1 and x =

3, we try the quadratic function f (x) = a(x + 1)(x − 3). Then f (1) = −4a, and since the graph
passes through the point (1,−2),. f (1) = −2 = −4a. But the a = 1/2.) (b) Because the equation
f (x) = 0 has roots x = −3, 1, 2, we try the cubic function f (x) = b(x + 3)(x − 1)(x − 2). Then
f (0) = 6b. According to the graph, f (0) = −12. So b = −2, and hence y = −2(x+3)(x−1)(x−2).
(c) y = 1

2 (x + 3)(x − 2)2. (We try a polynomial of the form f (x) = c(x − 2)2(x + 3), with x = 2 as a
double root. Then f (0) = 12c. From the graph we see that f (0) = 6, and so a = 1/2.)

8. Polynomial division gives

(x2 − γ x )÷ (x + β) = x − (β + γ )

x2 + βx

− (β + γ )x

− (β + γ )x − β(β + γ )

β(β + γ ) remainder

and so

E = α
(
x − (β + γ )+ β(β + γ )

x + γ

)
= αx − α(β + γ )+ αβ(β + γ )

x + γ

4.8

4. (a) C. The graph is a parabola and since the coefficient in front of x2 is positive, it has a minimum point.
(b) D. The function is defined for x ≤ 2 and crosses the y-axis at y = 2

√
2 ≈ 2.8.

(c) E. The graph is a parabola and since the coefficient in front of x2 is negative, it has a maximum point.
(d) B. When x increases, y decreases, and y becomes close to −2 when x is large.
(e) A. The function is defined for x ≥ 2 and increases as x increases.
(f) F. Let y = 2− ( 1

2 )x . Then y increases as x increases. For large values of x, y is close to 2.

5. (a) See the answer in the text. (b) 9t = (32)t = 32t and (27)1/5/3 = (33)1/5/3 = 33/5/3 = 3−2/5, and
then 2t = −2/5, so t = −1/5.

4.9

10. Suppose y = Abx , with b > 0. Then in (a), since the graph passes through the points (x, y) = (0, 2) and
(x, y) = (2, 8), we get 2 = Ab0, or A = 2, and 8 = 2b2, so b = 2. Hence, y = 2 · 2x .
In (b), 2

3 = Ab−1 and 6 = Ab. It follows that A = 2 and b = 3, and so y = 2 · 3x .
In (c), 4 = Ab0 and 1/4 = Ab4. It follows that A = 4 and b4 = 1/16, and so b = 1/2. Thus, y = 4( 1

2 )x .

4.10

3. (a) and (c) see the text. (b) Since ln x2 = 2 ln x, 7 ln x = 6, so ln x = 6/7, and thus x = e6/7.

4. (a) ln(Aert ) = ln(Best ), so ln A + rt = ln B + st , or (r − s)t = ln(B/A), and so t = 1

r − s
ln

B

A
.

(b) t = 1

0.09− 0.02
ln

5.6 · 1012

1.2 · 1012
= 1

0.07
ln

14

3
≈ 22.

According to this, the two countries would have the same GNP in approximately 22 years, so in 2012.
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Review Problems for Chapter 4

4. (a) We must have x2 ≥ 1, i.e. x ≥ 1 or x ≤ −1. (Look at Fig. 4.3.6, page 88.)
(b) The square root is defined if x ≥ 4, but x = 4 makes the denominator 0, so we must require x > 4.
(c) We must have (x − 3)(5− x) ≥ 0, i.e. 3 ≤ x ≤ 5 (using a sign diagram).

7. (a) The point-slope formula gives y − 3 = −3(x + 2), or y = −3x − 3.

(b) The two-point formula gives: y − 5 = 7− 5

2− (−3)
(x − (−3)), or y = 2x/5+ 31/5.

(c) y − b = 3b − b

2a − a
(x − a), or y = (2b/a)x − b.

10. (1,−3) belongs to the graph if −3 = a + b + c, (0,−6) belongs to the graph if −6 = c, and (3, 15)

belongs to the graph if 15 = 9a + 3b + c. It follows that a = 2, b = 1, and c = −6.

14. (a) p(x) = x(x2 + x − 12) = x(x − 3)(x + 4), because x2 + x − 12 = 0 for x = 3 and x = −4.
(b) ±1, ±2, ±4, ±8 are the only possible integer zeros. By trial and error we find that q(2) = q(−4) =
0, so 2(x − 2)(x + 4) = 2x2 + 4x − 16 is a factor for q(x). By polynomial division we find that
q(x)÷ (2x2 + 4x − 16) = x − 1/2, so q(x) = 2(x − 2)(x + 4)(x − 1/2).

16. We use (4.7.5) and denote each polynomial by p(x). (a) p(2) = 8− 2k = 0 for k = 4.
(b) p(−2) = 4k2 + 2k − 6 = 0 for k = −3/2 and k = 1. (c) p(−2) = −26+ k = 0 for k = 26.
(d) p(1) = k2 − 3k − 4 = 0 for k = −1 and k = 4.

17. Since p(2) = 0, x − 2 is a factor in p(x). We find that p(x) ÷ (x − 2) = 1
4 (x2 − 2x − 15) =

1
4 (x + 3)(x − 5), so x = −3 and x = 5 are the two other zeros. (Alternative: q(x) has the same zeros as
4p(x) = x3 − 4x2 − 11x + 30. This polynomial can only have±1, ±2, ±3, ±5, ±10, ±15, and±30 as
integer zeros. It is tedious work to find the zeros in this way.)

21. (a) ln(x/e2) = ln x − ln e2 = ln x − 2 (b) ln(xz/y) = ln(xz) − ln y = ln x + ln z − ln y

(c) ln(e3x2) = ln e3 + ln x2 = 3+ 2 ln x for x > 0. (In general, ln x2 = 2 ln |x|.) (d) See the text.

Chapter 5 Properties of Functions
5.1

3. The equilibrium condition is 106 − P = 10 + 2P , and thus P = 32. The corresponding quantity is
Q = 106− 32 = 74. See the graph in the answer section of the text.

6. f (y∗ − d) = f (y∗)− c gives A(y∗ − d)+B(y∗ − d)2 = Ay∗ +B(y∗)2 − c, or Ay∗ −Ad +B(y∗)2 −
2Bdy∗ + Bd2 = Ay∗ + B(y∗)2 − c. It follows that y∗ = [Bd2 − Ad + c]/2Bd.

5.2
4. If f (x) = 3x + 7, then f (f (x)) = f (3x + 7) = 3(3x + 7)+ 7 = 9x + 28. f (f (x∗)) = 100 requires

9x∗ + 28 = 100, and so x∗ = 8.

5.3
4. (a) f does have an inverse since it is one-to-one. This is shown in the table by the fact that all numbers in

the second row, the domain of f−1, are different. The inverse assigns to each number in the second row,
the corresponding number in the first row. (b) Since f (0) = 4 and f (x) increases by 2 for each unit
increase in x, f (x) = 2x + 4. Solving y = 2x + 4 for x yields x = 1

2y − 2, and thus f−1(x) = 1
2x − 2.
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9. (a) (x3− 1)1/3 = y ⇐⇒ x3− 1 = y3 ⇐⇒ x = (y3+ 1)1/3. If we use x as the independent variable,
f−1(x) = (x3 + 1)1/3. � is the domain and range for both f and f−1.

(b) The domain of f is all x �= 2 Hence (with x �= 2),
x + 1

x − 2
= y ⇐⇒ x + 1 = y(x − 2) ⇐⇒

(1− y)x = −2y − 1 ⇐⇒ x = −2y − 1

1− y
= 2y + 1

y − 1
. Using x as the independent variable, f−1(x) =

(2x + 1)/(x − 1). The domain of the inverse is all x �= 1.

(c) Here y = (1 − x3)1/5 + 2 ⇐⇒ y − 2 = (1 − x3)1/5 ⇐⇒ (y − 2)5 = 1 − x3 ⇐⇒ x3 =
1− (y − 2)5 ⇐⇒ x = (1− (y − 2)5)1/3. With x as the free variable, f−1(x) = (1− (x − 2)5)1/3. �

is the domain and range for both f and f−1.

10. (a) The domain is � and the range is (0,∞), so the inverse is defined on (0,∞). From y = ex+4,
ln y = x + 4, so x = ln y − 4, y > 0. (b) The range is �, which is the domain of the inverse. From
y = ln x − 4, ln x = y + 4, and then x = ey+4. (c) The domain is �. y is increasing and when
x → −∞, y → ln 2. Moreover, y → ∞ as x → ∞. So the range of the function is (ln 2,∞). From
y = ln

(
2+ ex−3

)
, 2+ ex−3 = ey , so ex−3 = ey − 3, and thus x = 3+ ln(ey − 3), y > ln 2.

11. We must solvex = 1
2 (ey−e−y) fory. Multiply the equation by ey to get 1

2e2y− 1
2 = xey or e2y−2xey−1 =

0. Letting ey = z yields z2 − 2xz − 1 = 0, with solution z = x ± √x2 + 1. The minus sign makes z

negative, so z = ey = x +√x2 + 1. This gives y = ln
(
x +√x2 + 1

)
as the inverse function.

5.4

1. (a) It is natural first to see if the curve intersects the axes, by putting x = 0, and then y = 0. This gives 4
points. Then choose some values of−√6 < x <

√
6, and compute the corresponding values of y. Argue

why the graph is symmetric about the x-axis and the y-axis. (The curve is called an ellipse. See the next
section.) (b) This graph is also symmetric about the x-axis and the y-axis. (If (a, b) lies on the graph,
so does (a,−b), (−a, b), and (−a,−b). (The graph is a hyperbola. See the next section.)

2. We see that we must have x ≥ 0 and y ≥ 0. If (a, b) lies on the graph, so does (b, a), so the graph is
symmetric about the line y = x. See the answer in the text.

5.5

4. (a) See the text. (b) Since the circle has centre at (2, 5), its equation is (x − 2)2+ (x − 5)2 = r2. Since
(−1, 3) lies on the circle, (−1− 2)2 + (3− 5)2 = r2, so r2 = 13.

8. x2+y2+Ax+By+C = 0 ⇐⇒ x2+Ax+y2+By+C = 0 ⇐⇒ x2+Ax+( 1
2A
)2+y2+By+( 1

2B
)2 =

1
4 (A2 + B2 − 4C) ⇐⇒ (

x + 1
2A
)2 + (y + 1

2B
)2 = 1

4 (A2 + B2 − 4C). The last is the equation of a
circle centred at

(− 1
2A,− 1

2B
)

with radius 1
2

√
A2 + B2 − 4C. If A2+B2 = 4C, the graph consists only

of the point
(− 1

2A,− 1
2B
)
. For A2 + B2 < 4C, the solution set is empty.

5.6

1. In each case, except (c), the rule defines a function because it associates with each member of the original
set a unique member in the target set. For instance, in (d), if the surface area of a sphere is given, its
volume is uniquely determined: From S = 4πr2, r = (S/4π)1/2, and then V = 4

3πr3 = 4
3π(S/4π)3/2

(for the formulas for the surface area and the volume of a sphere of radius r , see page 632.)
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Review Problems for Chapter 5

3. (a) Equilibrium condition: 150− 1
2P ∗ = 20+ 2P ∗, which gives P ∗ = 52 and Q∗ = 20+ 2P ∗ = 124.

For (b) and (c) se answers in the text.

7. (a) f is defined and strictly increasing for ex > 2, i.e. x > ln 2. Its range is �. (f (x) → −∞ as
x → ln 2+, and f (x)→∞ as x →∞.) From y = 3+ ln(ex − 2), we get ln(ex − 2) = y − 3, and so
ex − 2 = ey−3, or ex = 2+ ey−3, so x = ln(2+ ey−3). Hence f−1(x) = ln(2+ ex−3), x ∈ �.
(b) Note that f is strictly increasing. Moreover, e−λx → ∞ as x → −∞, and e−λx → 0 as x → ∞.
Therefore, f (x) → 0 as x → −∞, and f (x) → 1 as x → ∞. So the range of f , and therefore the

domain of f−1, is (0, 1). From y = a

e−λx + a
we get e−λx + a = a/y, so e−λx = a(1/y − 1), or

−λx = ln a + ln(1/y − 1). Thus x = −(1/λ) ln a − (1/λ) ln(1/y − 1), and therefore the inverse is
f−1(x) = −(1/λ) ln a − (1/λ) ln(1/x − 1), with x ∈ (0, 1).

Chapter 6 Differentiation

6.2
5. (a) We start by using the recipe in (6.2.3) to find the slope of the tangent.

(a) (A): f (a + h) = f (0 + h) = 3h + 2 (B): f (a + h) − f (a) = f (h) − f (0) = 3h + 2 − 2 = 3h

(C)–(D): [f (h)− f (0)]/h = 3 (E): [f (h)− f (0)]/h = 3→ 3 as h→ 0, so f ′(0) = 3. The slope of
the tangent at (0, 2) is 3.
(b) (A): f (a+h) = f (1+h) = (1+h)2−1 = 1+2h+h2−1 = 2h+h2 (B): f (1+h)−f (1) = 2h+h2

(C)–(D): [f (1+h)−f (1)]/h = 2+h (E): [f (1+h)−f (1)]/h = 2+h→ 2 as h→ 0, so f ′(1) = 2.
(c) (A): f (3+h) = 2+3/(3+h) (B): f (3+h)−f (3) = 2+3/(3+h)−3 = −h/(3+h) (C)–(D):
[f (3+ h)− f (3)]/h = −1/(3+ h) (E): [f (3+ h)− f (3)]/h = −1/(3+ h)→−1/3 as h→ 0, so
f ′(3) = −1/3. (d) [f (h)− f (0)]/h = (h3 − 2h)/h = h2 − 2→−2 as h→ 0, so f ′(0) = −2.

(e)
f (−1+ h)− f (−1)

h
= −1+ h+ 1/(−1+ h)+ 2

h
= h

−1+ h
→ 0 as h→ 0, so f ′(0) = 0.

(f)
f (1+ h)− f (1)

h
= (1+ h)4 − 1

h
= h4 + 4h3 + 6h2 + 4h+ 1− 1

h
= h3 + 4h2 + 6h + 4→ 4 as

h→ 0, so f ′(1) = 4.

8. (a)
(√

x + h−√x
)(√

x + h+√x
) = (
√

x + h )2+√x + h
√

x−√x
√

x + h−(
√

x)2 = x+h−x = h.

(b)
f (x + h)− f (x)

h
= (
√

x + h−√x)(
√

x + h+√x)

h(
√

x + h+√x)
= h

h(
√

x + h+√x)
= 1√

x + h+√x
(c) This follows from (b).

6.5

5. (a)
1/3− 2/3h

h− 2
= 3h

(
1/3− 2/3h

)
3h(h− 2)

= h− 2

3h(h− 2)
= 1

3h
→ 1

6
as h→ 2

(b) When x → 0, x2 − 1→−1 and x2 →∞, so the fraction has no limit, but tends to −∞.

(c)
32t − 96

t2 − 2t − 3
= 32(t − 3)

(t − 3)(t + 1)
= 32

t + 1
→ 8, as t → 3, so 3

√
32t − 96

t2 − 2t − 3
→ 3
√

8 = 2 as t → 3.

(d)

√
h+ 3−√3

h
= (
√

h+ 3−√3)(
√

h+ 3+√3)

h(
√

h+ 3+√3)
= h+ 3− 3

h(
√

h+ 3+√3)
= 1√

h+ 3+√3
→ 1

2
√

3
as h→ 0.

© Knut Sydsæter, Arne Strøm, and Peter Hammond 2008



C H A P T E R 6 D I F F E R E N T I A T I O N 15

(e)
t2 − 4

t2 + 10t + 16
= (t + 2)(t − 2)

(t + 2)(t + 8)
= t − 2

t + 8
→−2

3
as t →−2.

(f) Observe that 4− x = (2+√x)(2−√x), so lim
x→4

2−√x

4− x
= lim

x→4

1

2+√x
= 1

4
.

6. (a)
f (x)− f (1)

x − 1
= x2 + 2x − 3

x − 1
= (x − 1)(x + 3)

x − 1
= x + 3→ 4 as x → 1.

(b)
f (x)− f (1)

x − 1
= x + 3→ 5 as x → 2.

(c)
f (2+ h)− f (2)

h
= (2+ h)2 + 2(2+ h)− 8

h
= h2 + 6h

h
= h+ 6→ 6 as h→ 0.

(d)
f (a + h)− f (a)

h
= (a + h)2 + 2(a + h)− a2 − 2a

h
= 2a + 2+ h→ 2a + 2 as h→ 0.

(e) Same answer as in (d) putting x − a = h.

(f)
f (a + h)− f (a − h)

h
= (a + h)2 + 2a + 2h− (a − h)2 − 2a + 2h

h
= 4a+4→ 4a+4 as h→ 0.

7. (a) x3 − 8 = 0 has the solution x = 2, and polynomial division yields x3 − 8 = (x − 2)(x2 + 2x + 4).
(b) and (c): see the text.

6.6

7. (a) With f (x) = x2, lim
h→0

f (a + h)− f (a)

h
= lim

h→0

(5+ h)2 − 52

h
= f ′(5). On the other hand, f ′(x) =

2x, so f ′(5) = 10, and the limit is therefore 10. (b) and (c): see the text.

6.7

3. (a) y = 1

x6
= x−6 ⇒ y ′ = −6x−7, using the power rule (6.6.4).

(b) y = x−1(x2 + 1)
√

x = x−1x2x1/2 + x−1x1/2 = x3/2 + x−1/2 ⇒ y ′ = 3
2x1/2 − 1

2x−3/2

(c) y = x−3/2 ⇒ y ′ = − 3
2x−5/2 (d) y = x + 1

x − 1
⇒ y ′ = 1 · (x − 1)− (x + 1) · 1

(x − 1)2
= −2

(x − 1)2

(e) y = x

x5
+ 1

x5
= x−4 + x−5 ⇒ y ′ = − 4

x5
− 5

x6

(f) y = 3x − 5

2x + 8
⇒ 3(2x + 8)− 2(3x − 5)

(2x + 8)2
= 34

(2x + 8)2
(g) y = 3x−11 ⇒ y ′ = −33x−12

(h) y = 3x − 1

x2 + x + 1
⇒ y ′ = 3(x2 + x + 1)− (3x − 1)(2x + 1)

(x2 + x + 1)2
= −3x2 + 2x + 4

(x2 + x + 1)2

6. (a) f ′(x) = 6x−12 = 6(x−2) ≥ 0 ⇐⇒ x ≥ 2, so f is increasing in [2,∞). (b) f ′(x) = x3−3x =
x(x2−3) = x(x−√3)(x+√3), so (using a sign diagram) f is increasing in

[−√3, 0
]

and in
[√

3,∞).
(c) f ′(x) = 2(2− x2)

(x2 + 2)2
= 2(2−√2)(2+√2)

(x2 + 2)2
, so f is increasing in [−√2,

√
2]. (d) See the text.

7. (a) y ′ = −1 − 2x = −3 when x = 1, so the slope of the tangent is −3. Since y = 1 when x = 1,
the point-slope formula gives y − 1 = −3(x − 1), or y = −3x + 4. (b) y ′ = 4x/(x2 + 1)2 = 1 and
y = 0 when x = 1, so y = x − 1. (c) y = x2 − x−2, so y ′ = 2x + 2x−3 = 17/4 and y = 15/4 when

x = 2, so y = (17/4)x − 19/4. (d) y ′ = 4x3(x3 + 3x2 + x + 3)− (x4 + 1)(3x2 + 6x + 1)

[(x2 + 1)(x + 3)]2
= − 1

19
and y = 1/3 when x = 0, so y = −(x − 3)/9.
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9. (a) We use the quotient rule: y = at + b

ct + d
⇒ y ′ = a(ct + d)− (at + b)c

(ct + d)2
= ad − bc

(ct + d)2

(b) y = tn
(
a
√

t + b
) = atn+1/2 + btn ⇒ y ′ = (n+ 1/2)atn−1/2 + nbtn−1.

(c) y = 1

at2 + bt + c
⇒ y ′ = 0 · (at2 + bt + c)− 1 · (2at + b)

(at2 + bt + c)2
= −2at − b

(at2 + bt + c)2

12. This is rather tricky because the denominator is 0 at x1,2 = 2±√2. A sign diagram shows that f (x) > 0
only in (−∞, 0) and in (x1, x2).

6.8
3. (a) y = (x2 + x + 1)−5 = u−5, where u = x2 + x + 1. By the chain rule, y ′ = (−5)u−6u′ =
−5(2x + 1)(x2 + x + 1)−6. (b) With u = x +√x +√x, y = √u = u1/2, so y ′ = 1

2u−1/2u′. Now,
u = x + v1/2, with v = x + x1/2. Then u′ = 1 + 1

2v−1/2v′, where v′ = 1 + 1
2x−1/2. Thus, all in all,

y ′ = 1
2u−1/2u′ = 1

2

[
x + (x + x1/2)1/2

]−1/2
(1+ 1

2 (x + x1/2)−1/2(1+ 1
2x−1/2)). (c) See the text.

6. x = b −√ap − c = b −√u, with u = ap − c. Then
dx

dp
= − 1

2
√

u
u′ = − a

2
√

ap − c
.

12. (a), (e), and (g) are easy. For the others, you need the chain rule. In (d) you need the differentiation rules
for sum, product as well as the chain rule. See the text.

6.9

4. g′(t) = 2t (t − 1)− t2

(t − 1)2
= t2 − 2t

(t − 1)2
, g′′(t) = (2t − 2)(t − 1)2 − (t2 − 2t)2(t − 1)

(t − 1)4
= 2(t − 1)

(t − 1)4
=

2

(t − 1)3
, so g′′(2) = 2.

5. With simplified notation: y ′ = f ′g + fg′, y ′′ = f ′′g + f ′g′ + f ′g′ + fg′′ = f ′′g + 2f ′g′ + fg′′,
y ′′′ = f ′′′g + f ′′g′ + 2f ′′g′ + 2f ′g′′ + f ′g′′ + fg′′′ = f ′′′g + 3f ′′g′ + 3f ′g′′ + fg′′′

6.10
2. (a) dx/dt = (b + 2ct)et + (a + bt + ct2)et = (a + b + (b + 2c)t + ct2)et

(b)
dx

dt
= 3qt2tet − (p + qt3)(et + tet )

t2e2t
= (−qt4 + 2qt3 − pt − p)et

t2e2t
(c) See the text.

4. (a) y ′ = 3x2 + 2e2x is obviously positive everywhere, so y increases in (−∞,∞).
(b) y ′ = 10xe−4x+5x2(−4)e−4x = 10x(1−2x)e−4x . A sign diagram shows that y increases in [0, 1/2].
(c) y ′ = 2xe−x2 + x2(−2x)e−x2 = 2x(1 − x)(1 + x)e−x2

. A sign diagram shows that y increases in
(−∞,−1] and in [0, 1]. (The answer in the text is wrong.)

6.11
3. For these problems we need the chain rule. That is an important rule! In particular, we need the fact that

d

dx
ln f (x) = 1

f (x)
f ′(x) = f ′(x)

f (x)
when f is a differentiable function (with f (x) > 0).

(a) y = ln(ln x) = ln u �⇒ y ′ = 1

u
u′ = 1

ln x

1

x
= 1

x ln x
.

(b) y = ln
√

1− x2 = ln u �⇒ y ′ = 1

u
u′ = 1√

1− x2

−2x

2
√

1− x2
= −x

1− x2
.

(Alternatively:
√

1− x2 = (1− x2)1/2 �⇒ y = 1
2 ln(1− x2), and so on.)
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(c) y = ex ln x �⇒ y ′ = ex ln x + ex 1

x
= ex

(
ln x + 1

x

)
.

(d) y = ex3
ln x2 �⇒ y ′ = 3x2ex3

ln x2 + ex3 1

x2
2x = ex3

(
3x2 ln x2 + 2

x

)
.

(e) y = ln(ex + 1) �⇒ y ′ = ex

ex + 1
. (f) y = ln(x2 + 3x − 1) �⇒ y ′ = 2x + 3

x2 + 3x − 1
.

4. (a) ln u is defined for u > 0, so we must require x + 1 > 0, i.e. x > 0.

(b) We must have 1−x �= 0 for the fraction to be defined, and
3x − 1

1− x
> 0 for the logarithm to be defined.

A sign diagram (see below) shows that
3x − 1

1− x
is defined and positive if and only if 1/3 < x < 1.

(c) ln |x| is defined ⇐⇒ |x| > 0 ⇐⇒ x �= 0.

x
1/3 10

3x − 1

1− x

3x − 1

1− x

5. (a) One must have x2 > 1, i.e. x > 1 or x < −1. (See Fig. 4.3.6 in the text.) (b) ln(ln x) is defined

when ln x is defined and positive, that is, for x > 1. (c) The fraction
1

ln(ln x)− 1
is defined when ln(ln x)

is defined and different from 1. From (b), ln(ln x) is defined when x > 1. Further, ln(ln x) = 1 ⇐⇒
ln x = e ⇐⇒ x = ee. Conclusion:

1

ln(ln x)− 1
is defined ⇐⇒ x > 1 and x �= ee.

9. In these problems we can use logarithmic differentiation. Alternatively we can write the functions in the
form f (x) = eg(x) and then use the fact that f ′(x) = eg(x)g′(x) = f (x)g′(x).

(a) Let f (x) = (2x)x . Then ln f (x) = x ln(2x), so
f ′(x)

f (x)
= 1 · ln(2x)+x · 1

2x
·2 = ln(2x)+1. Hence,

f ′(x) = f (x)(ln(2x)+ 1) = (2x)x(ln x + ln 2+ 1).

(b) f (x) = x
√

x = (eln x
)√x = e

√
x ln x , so f ′(x) = e

√
x ln x · d

dx
(
√

x ln x) = x
√

x

(
ln x

2
√

x
+
√

x

x

)
(c) ln f (x) = x ln

√
x = 1

2x ln x, so f ′(x)/f (x) = 1
2 (ln x+ 1), which gives f ′(x) = 1

2 (
√

x )x(ln x+ 1).

10. ln y = v ln u, so y ′/y = v′ ln u+ (v/u)u′, and so y ′ = uv
(
v′ ln u+ vu′

u

)
.

11. (a) See the answer in the text. (b) Let f (x) = ln(1+ x)− 1
2x. Then f (0) = 0 and moreover f ′(x) =

1/(x + 1)− 1
2 = (1− x)/2(x + 1), which is positive in (0, 1), so f (x) > 0 in (0, 1), and the left-hand

inequality is established. To prove the other inequality, put g(x) = x − ln(1 + x). Then g(0) = 0 and
g′(x) = 1− 1/(x + 1) = x/(x + 1) > 0 in (0, 1), so the conclusion follows.
(c) Let f (x) = 2(

√
x − 1) − ln x. Then f (1) = 0 and f ′(x) = (1/

√
x) − 1/x = (x − √x)/x

√
x =

(
√

x − 1)/x, which is positive for x > 1. The conclusion follows.
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Review Problems for Chapter 6

5. (a) y = −3 and y ′ = −6x = −6 at x = 1, so y − (−3) = (−6)(x − 1), or y = −6x + 3.
(b) y = −14 and y ′ = 1/2

√
x − 2x = −31/4 at x = 4, so y = −(31/4)x + 17.

(c) y = 0 and y ′ = (−2x3 − 8x2 + 6x)/(x + 3)2 = −1/4 at x = 1, so y = (−1/4)(x − 1).

7. (a) f (x) = x3 + x, etc. (b) Easy. (c) h(y) = y(y2 − 1) = y3 − y, etc. (d)–(f): use the quotient rule.

15. (a) y ′ = 2

x
ln x ≥ 0 if x ≥ 1. (b) y ′ = ex − e−x

ex + e−x
≥ 0 ⇐⇒ ex ≥ e−x ⇐⇒ e2x ≥ 0 ⇐⇒ x ≥ 0

(c) y ′ = 1− 3x

x2 + 2
= (x − 1)(x − 2)

x2 + 2
≥ 0 ⇐⇒ x ≤ 1 or x ≥ 2. (Use a sign diagram.)

Chapter 7 Derivatives in Use

7.1
2. Implicit differentiation yields (∗) 2xy + x2(dy/dx) = 0, and so dy/dx = −2y/x. Differentiating (∗)

implicitly w.r.t. x gives 2y+2x(dy/dx)+2x(dy/dx)+x2(d2/dx2) = 0. Inserting the result for dy/dx,
and simplifying yields d2/dx2 = 6y/x2. (Alternatively, we can differentiate−2y/x as a fraction.) These
results follows more easily by differentiating y = x−2 twice.

3. (a) Implicit differentiation w.r.t. x yields (∗) 1 − y ′ + 3y + 3xy ′ = 0. Solving for y ′ yields y ′ =
(1 + 3y)/(1 − 3x) = −5/(1 − 3x)2. Differentiating (∗) w.r.t. x gives −y ′′ + 3y ′ + 3y ′ + 3xy ′′ = 0.
Inserting y ′ = (1+ 3y)/(1− 3x) and solving for y ′′ gives y ′′ = 6y ′/(1− 3x) = −30/(1− 3x)3

(c) Implicit differentiation w.r.t. x yields (∗) 5y4y ′ = 6x5, so y ′ = 6x5/5y4 = (6/5)x1/5. Differentiating
(∗) w.r.t. x gives 20y3(y ′)2 + 5y4y ′′ = 30x4. Inserting y ′ = 6x5/5y4 and solving for y ′′ yields y ′′ =
6x4y−4 − (144/25)x10y−9 = (6/25)x−4/5.

6. (a) 2x + 2yy ′ = 0, and solve for y ′. (b) 1/2
√

x + y ′/2
√

y = 0, and solve for y ′.
(c) 4x3 − 4y3y ′ = 2xy3 + x23y2y ′, and solve for y ′.

8. (a) y + xy ′ = g′(x)+ 3y2y ′, and solve for y ′. (b) g′(x + y)(1+ y ′) = 2x + 2yy ′, and solve for y ′.
(c) 2(xy+1)(y+xy ′) = f ′(x2y)(2xy+x2y ′), and solve for y ′. (How did we differentiate f (x2y) w.r.t.
x? Well, if z = f (u) and u = x2y, then z′ = f ′(u)u′ where u is a product of two functions that both
depend on x. So u′ = 2xy + x2y ′.)

10. (a) 2(x2+y2)(2x+2yy ′) = a2(2x−2yy ′), and solve for y ′. (b) Note that y ′ = 0 when x2+y2 = a2/2,
or y2 = 1

2a2 − x2. Inserting this into the given equation yields x = ± 1
4a
√

6. This yields the four points
on the graph at which the tangent is horizontal.

7.2

1. Implicit differentiation w.r.t. P , with Q as a function of P , yields
dQ

dP
· P 1/2 + Q 1

2P−1/2 = 0.

Thus
dQ

dP
= − 1

2QP−1 = − 19

P 3/2
.

5. Differentiating (∗) w.r.t. P yields f ′′(P + t)
(dP

dt
+1
)2+f ′(P + t)

d2P

dt2
= g′′(P )

(dP

dt

)2+g′(P )
d2P

dt2
.

With simplified notation f ′′(P ′ + 1)2 + f ′P ′′ = g′′(P ′)2 + g′P ′′. Substituting P ′ = f ′/(g′ − f ′) and
solving for P ′′, we get P ′′ = [f ′′(g′)2 − g′′(f ′)2]/(g′ − f ′)3.
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7.3

2. (a) f ′(x) = x2
√

4− x2 + 1

3
x3 −2x

2
√

4− x2
= 4x2(3− x2)

3
√

4− x2
. For the rest, see the answer in the text.

5. (a) See the text. (b) dy/dx = −e−x/(e−x + 3), so dx/dy = −(e−x + 3)/e−x = −1− 3ex

(c) Implicit differentiation w.r.t. x yields y3+x3y2(dy/dx)−3x2y−x3(dy/dx) = 2. Solve for dy/dx,
and then invert.

7.4

3. (a) f (0) = 1 and f ′(x) = −(1+ x)−2, so f ′(0) = −1. Then f (x) ≈ f (0)+ f ′(0)x = 1− x.
(b) f (0) = 1 and f ′(x) = 5(1+ x)4, so f ′(0) = 5. Then f (x) ≈ f (0)+ f ′(0)x = 1+ 5x.
(c) f (0) = 1 and f ′(x) = − 1

4 (1− x)−3/4, so f ′(0) = − 1
4 . Then f (x) ≈ f (0)+ f ′(0)x = 1− 1

4x.

4. F(1) = A and F ′(K) = αAKα−1, so F ′(1) = αA. Then F(K) ≈ F(1)+ F ′(1)(K − 1)=
A+ αA(K − 1) = A(1+ αA(K − 1)).

9. 3exy2 + 3xexy2
(y2 + x2yy ′) − 2y ′ = 6x + 2yy ′. For x = 1, y = 0 this reduces to 3 − 2y ′ = 6, so

y ′ = −3/2. (b) y(x) ≈ y(1)+ y ′(1)(x − 1) = − 3
2 (x − 1)

7.5

2. f ′(x) = (1 + x)−1, f ′′(x) = −(1 + x)−2, f ′′′(x) = 2(1 + x)−3, f (iv)(x) = −6(1 + x)−4, f (v)(x) =
24(1+x)−5. Then f (0) = 0, f ′(0) = 1, f ′′(0) = −1, f ′′′(0) = 2, f (iv)(0) = −6, f (v)(0) = 24, and so
f (x) ≈ f (0)+ 1

1!f
′(0)x + 1

2!f
′′(0)x + 1

3!f
′′′(0)x3 + 1

4!f
(iv)(0)x4 + 1

5!f
(v)(0)x5 = x − 1

2x2 + 1
3x3 −

1
4x4 + 1

5x5

3. With f (x) = 5(ln(1+x)−√1+ x ) = 5 ln(1+x)−5(1+x)1/2 we get f ′(x) = 5(1+x)−1− 5
2 (1+x)−1/2,

f ′′(x) = −5(1 + x)−2 + 5
4 (1 + x)−3/2, and so f (0) = −5, f ′(0) = 5

2 , f ′′(0) = − 15
4 . and the Taylor

polynomial of degree 2 about x = 0 is f (0)+ f ′(0)x + 1
2f ′′(0)x2 = −5+ 5

2x − 15
8 x2.

9. h′(x) = (pxp−1 − qxq−1)(xp + xq)− (xp − xq)(pxp−1 + qxq−1)

(xp + xq)2
= 2(p − q)xp+q−1

(xp + xq)2
, so h′(1) =

1
2 (p − q). Since h(1) = 0, we get h(x) ≈ h(1)+ h′(1)(x − 1) = 1

2 (p − q)(x − 1).

7.6

1. From Problem 7.5.2, f (0) = 0, f ′(0) = 1, f ′′(0) = −1, and f ′′′(c) = 2(1 + c)−3. Then (3) gives
f (x) = f (0)+ 1

1!f
′(0)x + 1

2!f
′′(0)x + 1

3!f
′′′(c)x3 = x − 1

2x2 + 1
3 (1+ c)−3x3.

4. (a) With g(x) = (1+x)1/3, g′(x) = 1
3 (1+x)−2/3, g′′(x) = − 2

9 (1+x)−5/3, and g′′′(x) = 10
27 (1+x)−8/3,

so g(0) = 1, g′(0) = 1
3 , g′′(0) = − 2

9 , g′′′(c) = 10
27 (1+ c)−8/3, so

g(x) = 1+ 1
3x − 1

9x2 + R3(x), where R3(x) = 1
6!

10
27 (1+ c)−8/3x3 = 5

81 (1+ c)−8/3x3

(b) c ∈ (0, x) and x ≥ 0, so (1+ c)−8/3 ≤ 1, and the inequality follows.
(c) 3
√

1003 = 10(1+3 ·10−3)1/3 ≈ 10.0099900, using part (a) to approximate (1+3 ·10−3)1/3. The error
in (b) is |R3(x)| ≤ 5

81 (3 · 10−3)3 = 5
3 10−9. So the error in 3

√
1003 is ≤ 10|R3(x)| = 50

3 10−9 < 2 · 10−8,
and the answer is correct to 7 decimal places.
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7.7
4. (a) Elxeax = (x/eax)aeax = ax (b) Elx ln x = (x/ ln x)(1/x) = 1/ ln x

(c) Elx(x
peax) = x

xpeax
(pxp−1eax + xpaeax) = p + ax

(d) Elx(x
p ln x) = x

xp ln x
(pxp−1 ln x + xp(1/x)) = p + 1/ ln x

9. (a) ElxA = x

A

dA

dx
= 0 (b) Elx(fg) = x

fg
(fg)′ = x

fg
(f ′g + fg′) = xf ′

f
+ xg′

g
= Elxf + Elxg

(c) Elx
f

g
= x

(f/g)

(
f

g

)′
= xg

f

(
gf ′ − fg′

g2

)
= xf ′

f
− xg′

g
= Elxf − Elxg

(d) See the answer in the text. (e) Is like (d), but with +g replaced by −g, and +g′ by −g′.
(f) z = f (g(u)), u = g(x)⇒ Elxz = x

z

dz

dx
= x

u

u

z

dz

du

du

dx
= Eluf (u) Elxu

7.8
3. Using (7.8.4), the functions are continuous wherever they are defined. So (a) and (d) are defined every-

where. In (b) we must exclude x = 1, in (c) the function is defined for x < 2, in (e) we must exclude
x = ±√3−1, because the denominator is 0 for these values of x. Finally, in (f), the first fraction requires
x > 0, and then the other fraction is also defined.

7.9

1. (b) |x| = −x for x < 0. Hence, lim
x→0−

x + |x|
x
= lim

x→0−
x − x

x
= lim

x→0−
0 = 0.

(c) |x| = x for x > 0. Hence, lim
x→0+

x + |x|
x
= lim

x→0+
x + x

x
= lim

x→0+
2 = 2.

(d) When x → 0+,
√

x → 0, so −1/
√

x → −∞. (e) When x → 3+, x − 3 → 0+, and so
x/(x − 3)→∞. (f) When x → 3−, x − 3→ 0−, and so x/(x − 3)→−∞.

4. (a) Vertical asymptote, x = −1. Moreover, x2 ÷ (x + 1) = x − 1 + 1/(x + 1), so y = x − 1 is an
asymptote as x → ±∞. (b) No vertical asymptote. Moreover. (2x3 − 3x2 + 3x − 6) ÷ (x2 + 1) =
2x− 3+ (x− 3)/(x2+ 1), so y = 2x− 3 is an asymptote as x →±∞. (c) Vertical asymptote, x = 1.
Moreover, (3x2 + 2x) ÷ (x − 1) = 3x + 5 + 5/(x − 1), so y = 3x + 5 is an asymptote as x → ±∞.
(d) Vertical asymptote, x = 1. Moreover, (5x4−3x2+1)÷ (x3−1) = 5x+ (−3x2+5x+1)/(x3−1),
so y = 5x is an asymptote as x →±∞.

7.10
4. Recall from Note 4.7.2 that any integer root of the equation f (x) = x4 + 3x3 − 3x2 − 8x + 3 = 0 must

be a factor of the constant term 3. The way to see this directly is to notice that we must have

3 = −x4 − 3x3 + 3x2 + 8x = x(−x3 − 3x2 + 3x + 8)

and if x is an integer then the bracketed expression is also an integer. Thus, the only possible integer
solutions are ±1 and ±3. Trying each of these possibilities, we find that only −3 is an integer solution.

We are told in the problem that there are three other real roots, with approximate values x0 =
−1.9, y0 = 0.4, and z0 = 1.5. If we use Newton’s method once for each of these roots we get new
approximations
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x1 = −1.9− f (−1.9)

f ′(−1.9)
= −1.9− −0.1749

8.454
≈ −1.9+ 0.021 = −1.879

y1 = 0.4 − f (0.4)

f ′(0.4)
= 0.4− −0.4624

−8.704
≈ 0.4− 0.053 = 0.347

z1 = 1.5 − f (1.5)

f ′(1.5)
= 1.5− −0.5625

16.75
≈ 1.5+ 0.034 = 1.534

It can be shown by more precise calculations that the actual roots, rounded to six decimals, are−1.879385,
0.347296, and 1.532089.

7.11

2. (a) When n→∞, 2/n→ 0 and so 5− 2/n→ 5. (b) When n→∞,
n2 − 1

n
= n− 1/n→∞.

(c) When n→∞,
3n√

2n2 − 1
= 3n

n
√

2− 1/n2
= 3√

2− 1/n2
→ 3√

2
= 3
√

2

3
.

7.12

2. L’Hôpital’s rule yields lim
x→a

x2 − a2

x − a
= “0

0

” = lim
x→a

2x

1
= 2a. But note that we don’t really need

l’Hôpital’s rule here, because x2−a2 = (x+a)(x−a), and therefore lim
x→a

x2 − a2

x − a
= lim

x→a
(x+a) = 2a.

(b) lim
x→0

2(1+ x)1/2 − 2− x

2(1+ x + x2)1/2 − 2− x
= “0

0

” = lim
x→0

(1+ x)−1/2 − 1

(1+ 2x)(1+ x + x2)−1/2 − 1
= “0

0

” =

lim
x→0

− 1
2 (1+ x)−3/2

2(1+ x + x2)−1/2 + (1+ 2x)2(− 1
2 )(1+ x + x2)−3/2

= −1

3

7. L = lim
x→a

f (x)

g(x)
= lim

x→a

1/g(x)

1/f (x)
= “0

0

” = lim
x→a

−1/(g(x))2

−1/(f (x))2
· g′(x)

f ′(x)
= lim

x→a

(f (x))2

(g(x))2
· g′(x)

f ′(x)
=

L2 lim
x→a

g′(x)

f ′(x)
= L2 lim

x→a

1

f ′(x)/g′(x)
. The conclusion follows. (Here, we have ignored problems with

“division by 0”, when either f ′(x) or g′(x) tends to 0 as x tends to a.)

Review Problems for Chapter 7

2. 5y4y ′ − y2 − 2xyy ′ = 0, so y ′ = y2

5y4 − 2xy
= y

5y3 − 2x
. Because y = 0 makes the given equation

meaningless, y ′ is never 0.

6. y ′ = 0 when 1+ 1
5 ln x = 0, i.e. ln x = −5, and then x = e−5.

7. (a) We must have
1+ x

1− x
> 0, i.e −1 < x < 1. When x → 1−, f (x) → ∞. When x → −1−,

f (x)→ −∞. Since f ′(x) = 1/(1− x2) > 0 when −1 < x < 1, f is strictly increasing and the range

of f is �. (b) From y = 1

2
ln

1+ x

1− x
, ln

1+ x

1− x
= 2y, so

1+ x

1− x
= e2y . Then solve for x.

9. (a) f (0) = ln 4 and f ′(x) = 2/(2x + 4), so f ′(0) = 1/2. Then f (x) ≈ f (0)+ f ′(0)x = ln 4+ x/2.
(b) g(0) = 1 and g′(x) = −(1/2)(1+ x)−3/2, so g′(0) = −1/2. Then g(x) ≈ g(0)+ g′(0)x = 1− x/2.
(c) h(0) = 0 and h′(x) = e2x + 2xe2x , so h′(0) = 1. Then h(x) ≈ h(0)+ h′(0)x = x.
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12. With x = 1
2 and n = 5, formula (7.6.6) yields, e

1
2 = 1+ 1

2
1! +

( 1
2 )2

2! +
( 1

2 )3

3! +
( 1

2 )4

4! +
( 1

2 )5

5! +
( 1

2 )6

6! ec, where c

is some number between 0 and 1
2 . Now, R6(

1
2 ) = ( 1

2 )6

6! ec <
( 1

2 )6

6! 2 = 1
23040 ≈ 0.0004340, where we used

the fact that since c < 1
2 , ec < e

1
2 < 2. Thus it follows that

e
1
2 ≈ 1+ 1

2
1! +

( 1
2 )2

2! +
( 1

2 )3

3! +
( 1

2 )4

4! +
( 1

2 )5

5! = 1+ 1
2 + 1

8 + 1
48 + 1

384 + 1
3840 ≈ 1.6486979. The error is less

than 0.000043, and e
1
2 ≈ 1.649 correct to 3 decimals.

14. y ′ + (1/y)y ′ = 1, or (∗) yy ′ + y ′ = y. When y = 1, y ′ = 1/2. Differentiating (∗) w.r.t, x yields
(y ′)2 + yy ′′ + y ′′ = y ′. With y = 1 and y ′ = 1/2, we find y ′′ = 1/8, so y(x) ≈ 1+ 1

2x + 1
16x2.

21. (a) lim
x→0

(2− x)ex − x − 2

x3
= “0

0

” = lim
x→0

−ex + (2− x)ex − 1

3x2
= “0

0

” = lim
x→0

−ex − ex + (2− x)ex

6x
=

lim
x→0

−xex

6x
= lim

x→0

−ex

6
= −1

6
. (By canceling x, we needed to use l’Hôpital’s rule only twice.)

(b) lim
x→3

(
1

x − 3
− 5

x2 − x − 6

)
= lim

x→3

x2 − 6x + 9

x3 − 4x2 − 3x + 18
= “0

0

” = lim
x→3

2x − 6

3x2 − 8x − 3
= “0

0

” =

lim
x→3

2

6x − 8
= 1

5
(c) lim

x→4

x − 4

2x2 − 32
= “0

0

” = lim
x→4

1

4x
= 1

16
. (Can you find another way?)

23. (a) lim
x→1

ln x − x + 1

(x − 1)2
= “0

0

” = lim
x→1

(1/x)− 1

2(x − 1)
= “0

0

” = lim
x→1

(−1/x2)

2
= −1

2

(b) lim
x→1

1

x − 1
ln
(7x + 1

4x + 4

)
= lim

x→1

ln(7x + 1)− ln(4x + 4)

x − 1
= “0

0

” = lim
x→1

7

7x + 1
− 4

4x + 4
1

= 3

8

(c) lim
x→1

xx − x

1− x + ln x
= “0

0

”= lim
x→1

xx(ln x + 1)− 1

−1+ 1/x
= “0

0

”= lim
x→1

xx(ln x + 1)2 + xx(1/x)

−1/x2
= −2

(using Example 6.11.4 to differentiate xx).

24. When x → 0, the denominator tends to
√

b − √d and the numerator to 0, so the limit does not exist
when b �= d. If b = d, see the text.

Chapter 8 Single-Variable Optimization

8.1
1. (a) f (0) = 2 and f (x) ≤ 2 for all x (we divide 8 by a number larger than 2), so x = 0 maximizes f (x).

(b) g(−2) = −3 and g(x) ≥ −3 for all x, so x = −2 minimizes g(x). g(x)→∞ as x →∞, so there
is no maximum. (c) h(x) has its largest value 1 when 1+ x2 is the smallest, namely for x = 0, and h(x)

has its smallest value 1/2 when 1+ x2 is the largest, namely for x = ±1.

8.2
2. See the text, but note that the sign variation alone is not sufficient to conclude that the two stationary

points are extreme points. It is important to point out that h(x) → 0 as x → ±∞. Sketch the graph.
(For example, f (x) = 3x − x3 is decreasing in (−∞,−1], increasing in [−1, 1], and decreasing in
[1,∞) but has no maximum or minimum, since f (x)→∞ as x →−∞, and f (x)→−∞ as x →∞.
In fact, x = −1 is a local minimum point and x = 1 is a local maximum point.)

3. h′(t) = 1/2
√

t − 1
2 = (1−√t)/2

√
t . We see that h′(t) ≥ 0 in [0, 1] and h′(t) ≤ 0 in [1,∞). According

to Theorem 8.2.1(a), t = 1 maximizes h(t).

© Knut Sydsæter, Arne Strøm, and Peter Hammond 2008



C H A P T E R 8 S I N G L E - V A R I A B L E O P T I M I Z A T I O N 23

5. f ′(x) = 3x2 ln x + x3/x = 3x2(ln x + 1
3 ). f ′(x) = 0 when ln x = − 1

3 , i.e. x = e−1/3. We see that
f ′(x) ≤ 0 in (0, e−1/3] and f ′(x) ≥ 0 in [e−1/3,∞), so x = e−1/3 minimizes f (x). Since f (x)→∞
as x →∞, there is no maximum.

8. (a) y ′ = ex − 2e−2x , y ′′ = ex + 4e−2x . We see that y ′ = 0 when ex = 2e−2x , or e3x = 2, i.e.
x = 1

3 ln 2. Since y ′′ > 0 everywhere, this is minimum point. (b) y ′ = −2(x − a) − 4(x − b) = 0
when x = 1

3 (a + 2b). This is a maximum point since y ′′ = −6 for all x.
(c) y ′ = 1/x − 5 = 0 when x = 1

5 . This is a maximum point since y ′′ = −1/x2 < 0 for all x > 0.

10. (a) f ′(x) = k − Aαe−αx = 0 when x0 = (1/α) ln(Aα/k). Note that x0 > 0 iff Aα > k. Moreover,
f ′(x) < 0 if x < x0 and f ′(x) > 0 if x > x0, so x0 solves the minimization problem.
(b) Substituting for A in the answer to (a) gives the expression for the optimal height x0. Its value increases
as p0 (probability of flooding) or V (cost of flooding) increases, but decreases as δ (interest rate) or k

(marginal construction costs) increases. The signs of these responses are obviously what an economist
would expect. (Not only an economist, actually.)

8.3

2. (a) π(Q) = Q(a−Q)−kQ = −Q2+(a−k)Q, so π ′(Q) = −2Q+(a−k) = 0 for Q∗ = 1
2 (a−k). This

maximizes π because π ′′(Q) < 0. The monopoly profit is π(Q∗) = −( 1
2 (a− k))2+ (a− k) 1

2 (a− k) =
1
4 (a − k)2. (b) dπ(Q∗)/dk = − 1

2 (a − k) = −Q∗, as in Example 3. (c) The new profit function is

π̂(Q) = π(Q)+ sQ = −Q2+ (a−k)Q+ sQ. π̂ ′(Q) = −2Q+a−k+ s = 0 when Q̂ = 1
2 (a−k+ s).

Now Q̂ = 1
2 (a − k + s) = a − k provided s = a − k, which is the subsidy required to induce the

monopolist to produce a − k units. (The answer in the text has the wrong sign.)

5. T
′
(W) = a

pb(bW + c)p−1W − (bW + c)p

W 2
= a(bW + c)p−1 pbW − bW − c

W 2
, e.t.c.

8.4

2. In all cases the maximum and minimum exist by the extreme value theorem. Follow the recipe in (8.4.1).
(a) f (x) is strictly decreasing so maximum is at x = 0, minimum at x = 3.
(b) f (−1) = f (2) = 10 and f ′(x) = 3x2 − 3 = 0 at x = ±1. f (1) = 6.
(c) f (x) = x + 1/x. f (1/2) = f (2) = 5/2 and f ′(x) = 1− 1/x2 = 0 at x = ±1. f (1) = 2.
(d) f (−1) = 4, f (

√
5) = 0, and f ′(x) = 5x2(x2 − 3) = 0 at x = 0 and x = √3. f (0) = 0, f (

√
3) =

−6
√

3. (e) f (0) = 0, f (3000) = 4.5 · 109, f ′(x) = 3(x2− 3000x + 2 · 106 = 3(x − 500)(x − 2000).
f (1000) = 2.5 · 109, f (2000) = 2 · 109.

4. (a) When there are 60 + x passengers, the charter company earns 800 − 10x from each, so they earn
$(60+ x)(800− 10x). The sports club earns 1/10 of that amount. (b) See the text.

6. (a) (f (2)− f (1))/(2− 1) = (4− 1)/1 = 3 and f ′(x) = 2x, so 2x∗ = 3, and thus x∗ = 3/2.
(b) (f (1) − f (0))/1 = −1 and f ′(x) = −2x/

√
1− x2, so 2x∗/

√
1− (x∗)2 = 1, so x∗ = √5/5.

(From 2x∗/
√

1− (x∗)2 = 1,
√

1− (x∗)2 = 2x∗, and then 1− (x∗)2 = 4(x∗)2. The positive solution is
x∗ = √5/5. (c) (f (6)− f (2))/4 = −1/6 and f ′(x) = −2/x2, so −2/(x∗)2 = −1/6, so x∗ = √12.
(d) (f (4)− f (0))/4 = 1/4 and f ′(x) = x/

√
9+ x2, so x/

√
9+ (x∗)2 = 1/4, so x∗ = √3.
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8.5
1. π(Q) = 10Q − 1

1000Q2 − (5000 + 2Q) = 8Q − 1
1000Q2 − 5000. Since π ′(Q) = 8 − 1

500Q = 0 for
Q = 4000, and π ′′(Q) = − 1

500 < 0, Q = 4000 maximizes profits.

4. (i) π(Q) = 1840Q− (2Q2 + 40Q+ 5000) = 1800Q− 2Q2 − 5000. Since π ′(Q) = 1800− 4Q = 0
for Q = 450, and π ′′(Q) = −4 < 0, Q = 450 maximizes profits.
(ii) π(Q) = 2200Q−2Q2−5000. Since π ′(Q) = 2200−4Q = 0 for Q = 550, and π ′′(Q) = −4 < 0,
Q = 550 maximizes profits..
(iii) π(Q) = −2Q2 − 100Q− 5000 is negative for all Q ≥ 0, so Q = 0 obviously maximizes profits.

6. π ′(Q) = P − abQb−1 = 0 when Qb−1 = P/ab, i.e. Q = (P/ab)1/(b−1). Moreover, π ′′(Q) =
−ab(b − 1)Qb−2 < 0 for all Q > 0, so this is a maximum point.

8.6
2. (a) Strictly decreasing, so no extreme points. (b) f ′(x) = 3x2 − 3 = 0 for x = ±1. With f ′′(x) = 6x,

f ′′(−1) = −6 and f ′′(1) = 6, so x = −1 is a loc. maximum point, and x = 1 is a loc. minimum point.
(c) f ′(x) = 1− 1/x2 = 0 for x = ±1. With f ′′(x) = 2/x3, f ′′(−1) = −2 and f ′′(1) = 2, so x = −1
is a local maximum point, and x = 1 is a local minimum point. (d)–(f): see the text.

3. (a) f (x) is defined if and only if x �= 0 and x ≥ −6. f (x) = 0 at x = −6 and at x = −2. At any other
point x in the domain, f (x) has the same sign as (x+ 2)/x, so f (x) > 0 if x ∈ (−6,−2) or x ∈ (0,∞).
(b) We first find the derivative of f :

f ′(x) = − 2

x2

√
x + 6+ x + 2

x

1

2
√

x + 6
= −4x − 24+ x2 + 2x

2x2
√

x + 6
= x2 − 2x − 24

2x2
√

x + 6
= (x + 4)(x − 6)

2x2
√

x + 6

By means of a sign diagram we see that f ′(x) > 0 if −6 < x < −4, f ′(x) < 0 if −4 < x < 0,
f ′(x) < 0 if 0 < x < 6, f ′(x) > 0 if 6 < x. It follows that f is strictly increasing in [−6,−4],
decreasing in [−4, 0), decreasing in (0, 6], and increasing [6,∞). It follows from the first-derivative test
(Thm. 8.6.1) that f has two local minimum points, x1 = −6 and x2 = 6, and one local maximum point,
x3 = −4, with f (−6) = 0, f (6) = 4

3

√
8 = 8

√
2/3, and f (−4) = 1

2

√
2.

(c) Since limx→0
√

x + 6 = 6 > 0, while limx→0−(1 + 2/x) = −∞ and limx→0+(1 + 2/x) = ∞, we
see that limx→0− f (x) = −∞ and limx→0+ f (x) = ∞. Furthermore,

lim
x→∞ f ′(x) = lim

x→∞

(x2 − 2x − 24

2x2
· 1√

x + 6

)
= 1

2
· 0 = 0

y

−4

−2

2

4

6

8

x−6 −4 −2 2 4 6 8 10

Figure SM8.6.3
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4. Look at the point a. Since f ′(x) is graphed, f ′(x) < 0 to the left of a, f ′(a) = 0, and f ′(x) > 0 to the
right of a, so a is a local minimum point. At the points b and e, f ′(x) > 0 on both sides of the points, so
they cannot be extreme points.

6. (a) f ′(x) = x2ex(3 + x). Use a sign diagram. (x = 0 is not an extreme point, but an inflection point.)
(b) See the text and use a sign diagram for g′(x), or check the sign of g′′(x) = 2x(2+4x ln x+x2(ln 2)2)

at the stationary points.

7. f (x) = x3 + ax + b→∞ as x →∞, and f (x)→−∞ as x →−∞. Thus f (x) has at least one real
root. We have f ′(x) = 3x2+ a. Thus, for a ≥ 0, f ′(x) > 0 for all x �= 0, so f is strictly increasing, and
there is only one real root. Note that for a ≥ 0, 4a3+27b2 ≥ 0. Assume next that a < 0. Then f ′(x) = 0
for x = ±√−a/3 = ±√p, where p = −a/3 > 0. Then f has a local maximum at (−√p, b+ 2p

√
p)

and a local minimum at (
√

p, b − 2p
√

p). If one of the local extreme values is 0, the equation has a
double root, and this is the case iff 4p3 = b2, that is, iff 4a3 + 27b2 = 0. The equation has three real
roots iff the local maximum value is positive and the local minimum value is negative. This occurs iff
|b| < 2p

√
p or iff b2 < 4p3 or iff 4a3 + 27b2 < 0.

8.7

1. (a) f ′(x) = 3x2+3x−6 = 3(x−1)(x+2). Use a sign diagram and see the text. (b) f ′′(x) = 6x+3 = 0
for x = −1/2 and f ′′(x) changes sign around x = −1/2, so this is an inflection point.

3. Straightforward by using these derivatives: (a) y ′ = −e−x(1+ x), y ′′ = xe−x

(b) y ′ = x − 1

x2
, y ′′ = 2− x

x3
(c) y ′ = x2e−x(3− x), y ′′ = xe−x(x2 − 6x + 6)

(d) y ′ = 1− 2 ln x

x3
, y ′′ = 6 ln x − 5

x4
(e) y ′ = 2ex(ex − 1), y ′′ = ex(2ex − 1)

(f) y ′ = 2e−x(2− x2), y ′′ = e−x(x2 − 2x − 2)

Review Problems for Chapter 8

2. (a) Q′(L) = 24L − 3
20L2 = 3L(8 − 1

20L) = 0 for L∗ = 160, and Q(L) is increasing in [0, 160],
decreasing in [160, 200], so Q∗ = 160 maximizes Q(L). Output per worker is Q(L)/L = 12L− 1

20L2,
and this quadratic function has maximum at L∗∗ = 120. (b) See the text.

3. π = −0.0016Q2 + 44Q − 0.0004Q2 − 8Q − 64 000 = −0.002Q2 + 36Q − 64 000, and Q = 9000
maximizes this quadratic function.

(b) ElQC(Q) = Q

C(Q)
C ′(Q) = 0.0008Q2 + 8Q

0.0004Q2 + 8Q+ 64 000
≈ 0.12 when Q = 1000.

4. (a) See Problem 8.7.3(c). (b) lim
x→∞ f (x) = 0 according to (7.12.3), page 253 in the text.

lim
x→−∞ f (x) = −∞ because x3 →−∞ and e−x →∞. (See Fig. A8.R.4, page 671 in the text.)

5. (a) See the text. (b)A sign diagram shows that f ′(x) ≥ 0 in (−1, 1] and f ′(x) ≤ 0 in [1,∞). Hence x = 1

is a maximum point. f ′′(x) = −x(x2 + x − 1)

(x + 1)2
= 0 for x = 0 and x = 1

2 (
√

5− 1). (x = 1
2 (−√5− 1)

is outside the domain.) Since f ′′(x) changes sign around these points, they are both inflection points.
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6. (a) h′(x) = ex(2+ e2x)− ex2e2x

(2+ e2x)2
= ex(2− e2x)

(2+ e2x)2
. See the text.

(b) h is strictly increasing in (−∞, 0], lim
x→−∞h(x) = 0, and h(0) = 1/3. Thus, h defined on (−∞, 0] has

an inverse defined on (0, 1/3] with values in (−∞, 0]. To find the inverse, note that
ex

2+ e2x
= y ⇐⇒

y(ex)2−ex+2y = 0. This quadratic equation in ex has the roots ex = [1±
√

1− 8y2]/2y. Since y = 1/3
for x = 0, see that we must have ex = [1−

√
1− 8y2]/2y, and thus x = ln(1−√1− 8x2 )− ln(2x).

Using x as the free variable, h−1(x) = ln(1 − √1− 8x2 ) − ln(2x). The function and its inverse are
graphed in Fig. SM8.R.6.

y

−1.5

−1.0

−0.5

0.5

x−1.5 −1.0 −0.5 0.5

h

h−1

Figure SM8.R.6

8. f ′(x) = −6x2(x2 − 3)(x2 + 2)

(x4 + x2 + 2)2
, so f is stationary when x = 0 and when x = ±√3. x = √3 is a local

(and global) maximum point, x = −√3 is a local (and global) minimum point, and x = 0 is neither.
(It is an inflection point.) The graph of f is shown in Fig. A8.R.8 in the text, page 671.

9 Integration

9.1

1. This should be straightforward, since all the integrands are powers of x. Note that x
√

x = x ·x1/2 = x3/2,

1/
√

x = x−1/2, and
√

x
√

x
√

x =
√

x
√

x3/2 = √x · x3/4 = √x7/4 = x7/8.

4. (a)
∫

(t3 + 2t − 3) dt =
∫

t3 dt +
∫

2t dt −
∫

3 dt = 1
4 t4 + t2 − 3t + C

(b)
∫

(x−1)2 dx =
∫

(x2−2x+1) dx = 1
3x3−x2+x+C. Alternative: Since

d

dx
(x−1)3 = 3(x−1)2,

we have
∫

(x − 1)2 dx = 1
3 (x − 1)3 + C1. This agrees with the first answer, with C1 = C + 1/3.

(c)
∫

(x − 1)(x + 2) dx =
∫

(x2 + x − 2) dx = 1
3x3 + 1

2x2 − 2x + C

(d) Either first evaluate (x+2)3 = x3+6x2+12x+8, to get
∫

(x+2)3 dx = 1
4x4+2x3+6x2+8x+C,
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or:
∫

(x + 2)3 = 1
4 (x + 2)4 + C1. (e)

∫
(e3x − e2x + ex) dx = 1

3e3x − 1
2e2x + ex + C

(f)
∫

x3 − 3x + 4

x
dx =

∫ (
x2 − 3+ 4

x

)
dx = 1

3x3 − 3x + 4 ln |x| + C

5. (a) First simplify the integrand:
(y − 2)2

√
y
= y2 − 4y + 4√

y
= y3/2 − 4y1/2 + 4y−1/2. From this we get∫

(y − 2)2

√
y

dy=
∫

(y3/2 − 4y1/2 + 4y−1/2) dy= 2
5y5/2 − 8

3y3/2 + 8y1/2 + C.

(b) Polynomial division:
x3

x + 1
= x2−x+1− 1

x + 1
, so
∫

x3

x + 1
dx = 1

3x3− 1
2x2+x− ln |x+1|+C.

(c) Since
d

dx
(1+ x2)16 = 16(1+ x2)15 · 2x = 32x(1+ x2)15,

∫
x(1+ x2)15 dx = 1

32 (1+ x2)16 + C.

10. (a) Easy. (b) (ii)
√

x + 2 = (x + 2)1/2, and use (a). (iii)
1√

4− x
= (4− x)−1/2 , and use (a).

11. F(x) = ∫ ( 1
2ex − 2x) dx = 1

2ex − x2 + C. F(0) = 1
2 implies C = 0.

(b) F(x) = ∫ (x − x3) dx = 1
2x2 − 1

4x4 + C. F(1) = 5
12 implies C = 1

6 .

13. f ′(x) = ∫ (x−2+x3+2) dx = −x−1+ 1
4x4+2x+C. With f ′(1) = 1/4 we have 1/4 = −1+ 1

4+2+C,
so C = −1. New integration yields f (x) = ∫ (−x−1+ 1

4x4+2x−1) dx = − ln x+ 1
20x5+x2−x+D.

With f (1) = 0 we have 0 = − ln 1+ 1
20 + 1− 1+D, so D = −1/20.

9.2

5. We do only (c) and (f):
∫ 3

−2

( 1
2x2 − 1

3x3) dx =
3

−2
( 1

6x3 − 1
12x4) =

3

−2
( 1

12x3(2− x) = − 27
12 + 32

12 = 5
12 .

(f)
∫ 3

2

( 1

t − 1
+ t
)

dt =
3

2

[
ln(t − 1)+ 1

2 t2
] = ln 2+ 9

2 − 4
2 = ln 2+ 5

2

6. (a) A sign diagram shows that f (x) > 0 when 0 < x < 1 and when x > 2. (b) f (x) = x3− 3x2+ 2x,
hence f ′(x) = 3x2 − 6x + 2 = 0 for x0 = 1−√3/3 and x1 = 1+√3/3. We see that f ′(x) > 0 ⇐⇒
x < x0 or x > x1. Also, f ′(x) < 0 ⇐⇒ x0 < x < x1. So f is (strictly) increasing in (−∞, x0] and in
[x1,∞), and (strictly) decreasing in [x0, x1]. Hence x0 is a local maximum point and x1 is a local minimum
point. (c) See the graph in the text.

∫ 1
0 f (x) dx = ∫ 1

0 (x3−3x2+2x) dx = 1
0

(
x4

4 −x3+x2
) = 1

4−0 = 1
4 .

7. (a) f ′(x) = −1 + 3000 000

x2
= 0 for x = √3000 000 = 1000

√
3. (Recall x > 0.) For the rest, see the

text.

9.3

2. (a)
∫ 1

0
(xp+q + xp+r ) dx =

1

0

xp+q+1

p + q + 1
+ xp+r+1

p + r + 1
= 1

p + q + 1
+ 1

p + r + 1
(b) f ′(1) = 6 implies a + b = 6. Since f ′′(x) = 2ax + b, f ′′(1) = 18 implies 2a + b = 18. It follows
that a = 12 and b = 6, so f ′(x) = 12x2 − 6x. But then f (x) = ∫ (12x2 − 6x) dx = 4x3 − 3x2 + C,

and since we want
∫ 2

0 (4x3 − 3x2 + C) = 18, we must have 2
0(x

4 − x3 + Cx) = 18, i.e. C = 5.

3. (a) See text. (b)
∫ 1

0
(x2 + 2)2 dx =

∫ 1

0
(x4 + 4x2 + 4) dx =

1

0
( 1

5x5 + 4
3x3 + 4x) = 83/15

(c)
∫ 1

0

x2 + x +√x + 1

x + 1
dx =

∫ 1

0

x(x + 1)+ (x + 1)1/2

x + 1
dx =

∫ 1

0
(x + (x + 1)−1/2) dx =
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1

0
( 1

2x2 + 2(x + 1)1/2) dx = 2
√

2− 3
2

(d) A
x + b

x + c
+ d

x
= A

x + c + b − c

x + c
+ d

x
= A+ A(b − c)

x + c
+ d

x
. Now integrate.

6. From y2 = 3x we get x = 1
3y2, which inserted into the other equation gives y + 1 = ( 1

3y2 − 1)2, or
y(y3 − 6y − 9) = 0. Here y3 − 6y − 9 = (y − 3)(y2 + 3y + 3), with y2 + 3y + 3 never 0. So (0, 0)

and (3, 3) are the only points of intersection. See the text.

7. W(T ) = K(1 − e−	T )/	T . Here W(T ) → 0 as T → ∞, and using l’Hôpital’s rule, W(T ) → K as
T → 0+. For T > 0, we find W ′(T ) = Ke−	T (1 + 	T − e	T )/	T 2 < 0 because e	T > 1 + 	T (see
Problem 6.11.11). We conclude that W(T ) is strictly decreasing and that W(T ) ∈ (0, K).

8. (a) f ′(x) = 2√
x + 4 (

√
x + 4− 2)

> 0 for x > 0 and f has range (−∞,∞), so f has an inverse

defined on (−∞,∞). We find that the inverse is g(x) = ex/2 + 4ex/4. (y = 4 ln(
√

x + 4 − 2) ⇐⇒
ln(
√

x + 4− 2) = y/4 ⇐⇒ √x + 4 = ey/4 + 2 ⇐⇒ x + 4 = (ey/4 + 2)2 ⇐⇒ x = ey/2 + 4ey/4.)
(b) See Fig. A9.3.8. (c) In Fig. A9.3.8 the graphs of f and g are symmetric about the line y = x, so
area A = area B. But area B is the area of a rectangle with base a and height 10 minus the area below the
graph of g over the interval [0, a]. Therefore, B = 10a−∫ a

0 (ex/2+4ex/4) dx = 10a+18−2ea/2−16ea/4.
Because a = f (10) = 4 ln(

√
14− 2), this simplifies to 10a + 14− 8

√
14 ≈ 6.26.

9.4

2. (a) Let n be the total number of individuals. The number of individuals with income in the interval [b, 2b]

is then N = n

∫ 2b

b

Br−2 dr = n
2b

b

−Br−1 = nB

2b
. Their total income is M = n

∫ 2b

b

Br−2r dr =

n

∫ 2b

b

Br−1 dr = n
2b

b

B ln r = nB ln 2. Hence the mean income is m = M/N = 2b ln 2.

(b) Total demand is x(p) =
∫ 2b

b

nD(p, r)f (r) dr =
∫ 2b

b

nApγ rδBr−2 dr = nABpγ

∫ 2b

b

rδ−2 dr =

nABpγ
2b

b

rδ−1

δ − 1
= nABpγ bδ−1 2δ−1 − 1

δ − 1
.

5. (a) See Fig. A9.4.5. (b)
∫ t

0

(
g(τ)− f (τ)

)
dτ =

∫ t

0

(
2τ 3 − 30τ 2 + 100τ) dτ = 1

2 t2(t − 10)2 ≥ 0 for

all t .

(c)
∫ 10

0
p(t)f (t) =

∫ 10

0

(−t3 + 9t2 + 11t − 11+ 11/(t + 1)
)

dt = 940+ 11 ln 11 ≈ 966.38,∫ 10

0
p(t)g(t)dt =

∫ 10

0

(
t3 − 19t2 + 79t + 121− 121/(t + 1)

)
dt = 3980/3− 121 ln 11 ≈ 1036.52.

Profile g should be chosen.

9.5

1. (a)
∫

x
↑
f

e−x

↑
g′

dx = x
↑
f

(−e−x)
↑
g

−
∫

1
↑
f ′

· (−e−x)
↑
g

dx = −xe−x +
∫

e−x dx = −xe−x − e−x + C

(b)
∫

3xe4x dx = 3x · 1
4e4x −

∫
3 · 1

4e4x dx = 3
4xe4x − 3

16e4x + C
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(c)
∫

(1+ x2)e−x dx = (1+ x2)(−e−x)−
∫

2x(−e−x) dx = −(1+ x2)e−x + 2
∫

xe−x dx

= −(1+ x2)e−x − 2xe−x − 2e−x + C = −(x2 + 2x + 3)e−x + C

(d)
∫

xln x dx = 1
2x2 ln x −

∫
1
2x2 1

x
dx = 1

2x2 ln x −
∫

1
2x dx = 1

2x2 ln x − 1
4x2 + C

2. (a) See the text.
(b) Recall that d

dx
2x = 2x ln 2, and therefore 2x/ ln 2 is the indefinite integral of 2x . If follows that∫ 2

0
x2x dx =

2

0
x

2x

ln 2
−
∫ 2

0

2x

ln 2
dx = 8

ln 2
−

2

0

2x

(ln 2)2
= 8

ln 2
−
( 4

(ln 2)2
− 1

(ln 2)2

)
= 8

ln 2
− 3

(ln 2)2

(c) First use integration by parts on the indefinite integral: with f (x) = x2 and g(x) = ex ,

(∗)
∫

x2ex dx = x2ex −
∫

2xex dx. To evaluate the last integral we must use integration by parts once

more: with f (x) = 2x and g(x) = ex ,
∫

2xex dx = 2xex−
∫

2ex dx = 2xex−(2ex+C). Inserted into

(∗) this gives
∫

x2ex dx = x2ex − 2xex + 2ex +C, and hence,
∫ 1

0
x2ex dx =

1

0
(x2ex − 2xex + 2ex) =

(e − 2e + 2e)− (0− 0+ 2) = e − 2. Alternatively, more compactly using formula (9.5.2):∫ 1

0
x2ex dx =

1

0
x2ex − 2

∫ 1

0
xex dx = e − 2

[ 1

0
xex −

∫ 1

0
ex dx

]
= e − 2[e − ∣∣10ex] = e − 2

5. (a) By formula (9.5.2),
∫ T

0
te−rt dt =

T

0
t
−1

r
e−rt −

∫ T

0

−1

r
e−rt dt = −T

r
e−rT + 1

r

∫ T

0
e−rt dt

= −T

r
e−rT + 1

r

T

0

−1

r
e−rt = 1

r2
(1− (1+ rT )e−rT ). Multiply this expression by b.

(b)
∫ T

0
(a + bt)e−rt dt = a

∫ T

0
e−rt dt + b

∫ T

0
te−rt dt , a.s.o. using (a).

(c)
∫ T

0
(a−bt+ ct2)e−rt dt = a

∫ T

0
e−rt dt−b

∫ T

0
te−rt dt+ c

∫ T

0
t2e−rt dt . Use the previous results

and
∫ T

0
t2e−rt dt =

T

0
t2(−1/r)e−rt −

∫ T

0
2t (−1/r)e−rt dt = −(1/r)T 2e−rT + (2/r)

∫ T

0
te−rt dt.

9.6

2. (a) See the text. (b) With u = x3 + 2 we get du = 3x2 dx and∫
x2ex3+2 dx =

∫
1
3eu du = 1

3eu + C = 1
3ex3+2 + C.

(c) First attempt: u = x + 2, which gives du = dx and
∫

ln(x + 2)

2x + 4
dx =

∫
ln u

2u
du.

This does not look very much simpler than the original integral. A better idea is to substitute u = ln(x+2).

Then du = dx

x + 2
and

∫
ln(x + 2)

2x + 4
dx =

∫
1
2u du = 1

4 (u)2 + C = 1
4 (ln(x + 2))2 + C.

(d) First attempt: u = 1+x. Then, du = dx, and
∫

x
√

1+ x dx = ∫ (u−1)
√

u du = ∫ (u3/2−u1/2) du

= 2
5u5/2− 2

3u3/2+C = 2
5 (1+x)5/2− 2

3 (1+x)3/2+C. Second attempt: u = √1+ x. Then u2 = 1+x

and 2udu = dx. Then the integral is
∫

x
√

1+ x dx = ∫ (u2−1)u2u du = ∫ (2u4−2u3) du e.t.c. Check
that you get the same answer. Actually, even integration by parts works in this case. Put f (x) = x and
g′(x) = √1+ x, and choose g(x) = 2

3 (1+ x)3/2. (The answer looks different, but is not.)
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(e) With u = 1 + x2, x2 = u − 1, and du = 2xdx, so
∫

x3

(1+ x2)3
dx =

∫
x2 · x

(1+ x2)3
dx =

1
2

∫
u− 1

u3
du = 1

2

∫
(u−2 − u−3) du = − 1

2u−1 + 1
4u−2 + C = −1

2(1+ x2)
+ 1

4(1+ x2)2
+ C.

(f) With u = √4− x3, u2 = 4− x3, and 2udu = −3x2dx, so
∫

x5
√

4− x3 dx =
∫

x3
√

4− x3 x2 dx

=
∫

(4−u2) u (− 2
3 )u du =

∫
(− 8

3u2+ 2
3u4) du = − 8

9u3+ 2
15u5+C = − 8

9 (4−x3)3/2+ 2
15 (4−x3)5/2+C

6. (a) I =
∫ 1

0
(x4 − x9)(x5 − 1)12 dx =

∫ 1

0
−x4(x5 − 1)13 dx. Introduce u = x5 − 1. Then du = 5x4dx,

and when x = 0, u = −1, when x = 1, u = 0, and thus I = −
∫ 0

−1

1
5u13 du = −

0

−1

1
70u14 = 1

70 .

(b) With u = √x, u2 = x, and 2udu = dx, and so∫
ln x√

x
dx = 2

∫
ln u2 du = 4

∫
ln u du = 4(u ln u− u)+C = 4

√
x ln
√

x− 4
√

x+C = 2
√

x ln x−
4
√

x + C. (Integration by parts also works in this case with f (x) = ln x and g′(x) = 1/
√

x.)
(c) With u = 1+√x, u− 1 = √x, or (u− 1)2 = x, so 2(u− 1)du = dx. When x = 0, u = 1, when
x = 4, u = 3. Hence,∫ 4

0

dx√
1+√x

=
∫ 3

1

2(u− 1)√
u

du = 2
∫ 3

1
(u1/2 − u−1/2) du = 2

3

1
( 2

3 (u3/2 − 2u1/2) du = 8
3

(The substitution u = √1+√x also works.)

7. (a) With u = 1 + e
√

x , u > 0, and du = 1

2
√

x
· e
√

x dx. When x = 1, u = 1 + e and x = 4 gives

u = 1+ e2. Thus we get (note how we carry over the limits of integration):∫ 4

1

e
√

x

√
x (1+ e

√
x)

dx =
∫ 1+e2

1+e

2 du

u
= 2

1+e2

1+e

ln u = 2 ln(1+ e2)− 2 ln(1+ e)

(b)A natural substitution is u = ex+1, du = ex dx, and dx = du/ex = du/(u−1). When x = 0, u = 2,

when x = 1/3, u = e1/3+1. Thus,
∫ 1/3

0

dx

ex + 1
=
∫ e1/3+1

2

1

u(u− 1)
du =

∫ e1/3+1

2

(
1

u− 1
− 1

u

)
du =

e1/3+1

2

(
ln |u− 1| − ln |u|) = 1

3 − ln(e1/3 + 1)+ ln 2 = ln 2− ln(e−1/3 + 1). (Verify the last equality.)

Rewriting the integrand as
e−x

1+ e−x
, the suggested substitution t = e−x (or even better u = 1 + e−x),

dt = −e−xdx works well. Verify that you get the same answer.

9.7

3. (a) See answer in the text. Using a simplified notation and the result in Example 1(a), we have:
(b)
∫∞

0 (x − 1/λ)2 λe−λx dx = −∣∣∞0 (x − 1/λ)2 e−λx + ∫∞0 2 (x − 1/λ) e−λx dx

= 1/λ2 + 2
∫∞

0 xe−λx dx − (2/λ)
∫∞

0 e−λx dx = 1/λ2 + 2/λ2 − 2/λ2 = 1/λ2

(c)
∫∞

0 (x − 1/λ)3 λe−λx dx = −∣∣∞0 (x − 1/λ)3 e−λx + ∫∞0 3 (x − 1/λ)2 e−λx dx

= −1/λ3 + (3/λ)
∫∞

0 (x − 1/λ)2 λe−λx dx = −1/λ3 + (3/λ)(1/λ2) = 2/λ3

5. (a) f ′(x) = (1 − 3 ln x)/x4 = 0 at x = e1/3, and f ′(x) > 0 for x < e1/3 and f ′(x) < 0 for x > e1/3.
Hence f has a maximum at (e1/3, 1/3e). Since f (x) → −∞ as x → 0+, there is no minimum. Note
that f (x)→ 0 as x →∞. (Use l’Hôpital’s rule.)
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(b)
∫ b

a
x−3 ln x dx = −∣∣b

a
1
2x−2 ln x + ∫ b

a
1
2x−3 dx = ∣∣b

a
(− 1

2x−2 ln x − 1
4x−2). This diverges when b = 1

and a→ 0. But
∫∞

1 x−3 ln x dx = 1/4.

7. If both limits exist, the integral is the sum of the following two limits: I1 = limε→0+
∫ 3
−2+ε

(
1/
√

x + 2
)
dx

and I2 = limε→0+
∫ 3−ε

−2

(
1/
√

3− x
)
dx. Here I1 = lim

ε→0+

∣∣3−2+ε

(
2
√

x + 2
) = lim

ε→0+

(
2
√

5 − 2
√

ε
) =

2
√

5, and I2= lim
ε→0+

∣∣3−ε

−2

(−2
√

3− x
) = lim

ε→0+

(−2
√

ε + 2
√

5
) = 2

√
5.

12. (a) The suggested substitution gives
∫ +∞
−∞

f (x) dx = 1√
π

∫ +∞
−∞

e−u2
du = 1, by (9.7.8).

(b) Here
∫ +∞
−∞

xf (x) dx = 1√
π

∫ +∞
−∞

(μ+√2σu)e−u2
du = μ, using part (a) and Example 3.

(c) Here I =
∫ +∞
−∞

x2f (x) dx = 1√
π

∫ +∞
−∞

(2σ 2u2 + 2
√

2σμu+ μ2)e−u2
du

= 2σ 2

√
π

∫ +∞
−∞

u2e−u2
du + 2

√
2σμ√
π

∫ +∞
−∞

ue−u2
du + μ2

√
π

∫ +∞
−∞

e−u2
du = σ 2 + 0 + μ2. (Note how

integration by parts gives
∫

u2e−u2
du = − 1

2ue−u2 +
∫

1
2e−u2

du, so
∫ +∞
−∞

u2e−u2
du = 1

2

√
π .)

9.8

5. P(10) = 705 gives 641e10k = 705, or e10k = 705/641. Taking the natural logarithm of both sides yields
10k = ln(705/641), so k = 0.1 ln(705/641).

7. Straightforward. Note that in (9.8.10), if b �= 0, there are always two constant solutions, x ≡ 0 and
x ≡ a/b. The latter is obtained by letting A = 0 in (9.8.10). So in addition to the answer in the text, in
(e) add x ≡ 0 as a solution, in (f) add K ≡ 0.

9. (a) Use (9.8.7). (Using (9.8.10), and then using N(0) = 1 to determine the constant, is less efficient.)

(b) 800 = 1000

1+ 999e−0.39t∗ ⇐⇒ 999e−0.39t∗ = 1

4
, so e−0.39t∗ = 1/3996, and so 0.39t∗ = ln 3996, etc.

9.9

2. (a) dx/dt = e2t /x2. Separate:
∫

x2 dx = ∫ e2t dt . Integrate: 1
3x3 = 1

2e2t + C1. Solve for x:

x3 = 3
2e2t + 3C1 = 3

2e2t + C, with C = 3C1. Hence, x = 3
√

3
2e2t + C. (You cannot wait to put the

constant “in the end”. Wrong: 1
3x3 = 1

2e2t , x3 = 3
2e2t , x = 3

√
3
2e2t + C. This is not a solution!)

(b)
∫

e−x dx = ∫ e−t dt . Integrate: −e−x = −e−t + C1. Solve for x: e−x = e−t + C, with C = −C1.
Hence, −x = ln(e−t + C), so x = − ln(e−t + C). (c) Directly from (9.9.3). (d) Similar to (a).
(e) By (9.9.5), x = Ce2t + e2t

∫
(−t)e−2t dt = Ce2t − e2t

∫
te−2t dt . Here

∫
te−2t dt = t (− 1

2 )e−2t +
1
2

∫
e−2t dt = (− 1

2 t − 1
4 )e−2t and thus x = Ce2t − e2t (− 1

2 t − 1
4 )e−2t = Ce2t + 1

2 t + 1
4 .

(f) Formula (9.9.5): x = Ce−3t + e−3t
∫

e3t tet2−3t dt = Ce−3t + e−3t
∫

tet2
dt = Ce−3t + 1

2et2−3t

3. The equation is separable: dk/k = sαeβt dt , so ln k = sα
β

eβt + C1, or k = e
sα
β

eβt

eC1 = Ce
sα
β

eβt

. With

k(0) = k0, we have k0 = Ce
sα
β , and thus k = k0e

sα
β

(eβt−1).
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5. (a) See the text. (b)
∫

K−α dK = ∫ γL0e
βt dt , so

1

1− α
K1−α = γL0

β
eβt + C1.

Hence, K1−α = γL0(1− α)

β
eβt + (1− α)C1. For t = 0, K1−α

0 = γL0(1− α)

β
+ (1− α)C1, so

K1−α = (1− α)γL0

β
(eβt − 1)+K1−α

0 , from which we find K .

6.
t

x

dx

dt
= a is separable:

dx

x
= a

dt

t
, so

∫
dx

x
= a

∫
dt

t
. Integrating yields, ln x = a ln t + C1, so

x = ea ln t+C1 = (eln t )aeC1 = Cta , with C = eC1 .

Review Problems for Chapter 9

3. (a)
∫ 12

0
50 dx =

12

0
50x = 600 (b)

∫ 2

0
(x − 1

2x2) dx =
2

0
( 1

2x2 − 1
6x3) = 2

3

(c)
∫ 3

−3
(u+ 1)2 du =

3

−3

1
3 (u+ 1)3 du = 24 (d)

∫ 5

1

2

z
dz =

5

1
2 ln z = 2 ln 5

(e)
∫ 12

2

3 dt

t + 4
dt =

12

2
3 ln(t + 4) = 3 ln(8/3) (f)

∫ 4

0
v
√

v2 + 9 dv =
4

0

1
3 (v2 + 9)3/2 = 98/3

5. (a) With u = 9 + √x, x = (u − 9)2 and dx = 2(u − 9) du. When x = 0, u = 9 and x = 25 gives

u = 14. Thus,
∫ 25

0

1

9+√x
dx =

∫ 14

9

2(u− 9)

u
du =

∫ 14

9

(
2− 18

u

)
du = 10− 18 ln

14

9
.

(b) With u = √t + 2, t = u2 − 2, and dt = 2u du. When t = 2, u = 2, and t = 7 gives u = 3. Hence,∫ 7

2
t
√

t + 2 dt =
∫ 3

2
(u2 − 2)u · 2u du = 2

∫ 3

2
(u4 − 2u2) du = 2

3

2

(
1
5u5 − 2

3u3
)
= 886/15

(c) With u = 3
√

19x3 + 8, u3 = 19x3 + 8, so 3u2du = 57x2dx. When x = 0, u = 2 and x = 1 gives

u = 3. Then
∫ 1

0
57x2 3

√
19x3 + 8 dx =

∫ 3

2
3u3 du =

3

2

3
4u4 = 195/4.

10. Equilibrium when 50/(Q∗ + 5) = 10 +Q∗, i.e. (Q∗)2 + 50Q∗ − 275 = 0. The only positive solution

is Q∗ = 5, and then P ∗ = 5. CS =
∫ 5

0

[
50

Q+ 5
− 5

]
dQ =

5

0
[50 ln(Q+ 5)− 5Q] = 50 ln 2− 25,

PS =
∫ 5

0
(5− 4.5− 0.1Q) dQ = 1.25.

11. (a) f ′(t) = 4
2 ln t · (1/t) · t − (ln t)2 · 1

t2
= 4

(2− ln t) ln t

t2
, and

f ′′(t) = 4
(2 · (1/t)− 2 ln t · (1/t)) t2 − (2 ln t − (ln t)2) 2t

t4
= 8

(ln t)2 − 3 ln t + 1

t3

(b) Stationary points: f ′(t) = 0 ⇐⇒ ln t (2 − ln t) = 0 ⇐⇒ ln t = 2 or ln t = 0 ⇐⇒
t = e2 or t = 1 Since f ′′(1) = 8 > 0 and f ′′(e2) = −8e−6, t = 1 is a local minimum point and
t = e2 ≈ 7.4 is a local maximum point. We find f (1) = 0 and f (e2) = 16e−2 ≈ 2.2.

(c)
d

dt

(4

3
(ln t)3

)
= 4

3
3(ln t)2 1

t
= f (t), so

∫
f (t) dt = 4

3
(ln t)3 + C. Since f (t) ≥ 0 for all t > 0,

the area is
∫ e2

1
f (t) dt =

e2

1

4

3
(ln t)3 = 4

3
23 − 0 = 32

3
.

12. Straightforward by using (9.8.8)–(9.8.10).
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13. (a) Separable.
∫

x−2 dx = ∫ t dt , and so −1/x = 1
2 t2 + C1, or x = 1/(C − 1

2 t2), (with C = −C1).

(b) and (c): Direct use of (9.9.3). (d) Using (9.9.5), x = Ce−5t + 10e−5t
∫

te5t dt . Here
∫

te5t dt =
t 1

5e5t − 1
5

∫
e5t dt = 1

5 te5t − 1
25e5t . Thus x = Ce−5t + 10e−5t ( 1

5 te5t − 1
25e5t ) = Ce−5t + 2t − 2

5 .
(e) x = Ce−t/2+ e−t/2

∫
et/2et dt = Ce−t/2+ e−t/2

∫
e3t/2 dt = Ce−t/2+ e−t/2 2

3e3t/2 = Ce−t/2+ 2
3et .

(e) x = Ce−3t + e−3t
∫

t2e3t dt = Ce−3t + e−3t ( 1
3 t2e3t − 2

3

∫
te3t dt)

= Ce−3t + 1
3 t2 − 2

3e−3t ( 1
3 te3t − 1

3

∫
e3t dt) = Ce−3t + 1

3 t2 − 2
9 t + 2

27 .

16. (a) and (b), see the text. (c) F ′′(x) = f ′(x) = aλ2e−λx(e−λx − a)(e−λx + a)−3. Note that F ′′(x) = 0
for e−λx = a, i.e. for x0 = −ln a/λ. Since F ′′(x) changes sign about x0 = − ln a/λ, this is an inflection
point. F(x0) = F(− ln a/λ) = a/(a + a) = 1/2. See the graph in Fig. A9.R.16. (d)

∫∞
−∞ f (x) dx =

lim
a→−∞

∫ 0
a

f (x)dx + lim
b→∞

∫ b

0 f (x) dx = lim
a→−∞[F(0)− F(a)]+ lim

b→∞[F(b)− F(0)] = 1, by (a).

10 Interest Rates and Present Values

10.1

3. We solve (1 + p/100)100 = 100 for p. Raising each side to 1/100, 1 + p/100 = 100
√

100, so p =
100(

100
√

100− 1) ≈ 100(1.047− 1) = 4.7.

5. Use formula (10.1.2). (i) R = (1+ 0.17/2)2 − 1 = (1+ 0.085)2 − 1 = 0.177225 or 17.72%
For (ii) ansd (iii) see the answers in the text.

10.2

4. If it looses 90% of its value, then e−0.1t∗ = 1/10, so −0.1t∗ = − ln 10, hence t∗ = (ln 10)/0.1 ≈ 23.

6. With g(x) = (1+ r/x)x for all x > 0, then ln g(x) = x ln(1+ r/x). Differentiation gives g′(x)/g(x) =
ln(1+ r/x)+ x(−x/r2)/(1+ r/x) = ln(1+ r/x)− (x/r)/(1+ r/x), as claimed in the problem. Then
see the answer in the text.

10.3

3. (a) We find f ′(t) = 0.05(t + 5)(35− t)e−t . Obviously, f ′(t) > 0 for t < 35 and f ′(t) < 0 for t > 35,
so t = 35 maximizes f (with f (35) ≈ 278). (b) f (t)→ 0 as t →∞. See the graph in Fig. A10.3.3.

10.4

2. We use formula (10.4.5): (a)
1
5

1− 1
5

= 1

4
(b)

0.1

1− 0.1
= 0.1

0.9
= 1

9
(c)

517

1− 1/1.1
= 517 · 1.1

0.1
= 5687

(d)
a

1− 1/(1+ a)
= 1+ a (e)

5

1− 3/7
= 35

4

6. Let x denote the number of years beyond 1971 that the extractable resources of iron will last. Then
794+794·1.05+· · ·+794·(1.05)x = 249·103. Using (10.4.3), 794[1−(1.05)x+1]/(1−1.05) = 249·103

or (1.05)x+1 = 249 · 103 · 0.05/794 ≈ 16.68. Using a calculator, we find x ≈ (ln 16.68/ ln 1.05)− 1 ≈
56.68, so the resources will be exhausted part way through the year 2028.
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8. (a) The quotient of this infinite series is e−rt , so the sum is f (t) = P(t)e−rt

1− e−rt
= P(t)

ert − 1

(b) f ′(t) = P ′(t)(ert − 1)− P(t)rert

(ert − 1)2
, and t∗ > 0 can only maximize f (t) if f ′(t∗) = 0, that is, if

P ′(t∗)(ert∗ − 1) = rP (t∗)ert∗ , which implies that
P ′(t∗)
P (t∗)

= r

1− e−rt∗ .

(c) lim
r→0

r

1− e−rt∗ =
“0

0

” = lim
r→0

1

t∗e−rt∗ →
1

t∗

10.5

4. Offer (a) is better, because the second offer has present value 4600
1− (1.06)−5

1− (1.06)−1
≈ 20 540.

7. This is a geometric series with first term a = D/(1+ r) and quotient k = (1+ g)/(1+ r). It converges

iff k < 1, i.e. iff 1+ g < 1+ r , or g < r . The sum is
a

1− k
= D/(1+ r)

1− (1+ g)/(1+ r)
= D

r − g
.

10.6

4. Schedule (b) has present value
12 000 · 1.115

0.115
[1− (1.115)−8] ≈ 67 644.42.

Schedule (c) has present value 22 000+ 7000

0.115
[1− (1.115)−12] ≈ 66 384.08.

Thus schedule (c) is cheapest. When the interest rate becomes 12.5 %, schedules (b) and (c) have present
values equal to 65907.61 and 64374.33, respectively.

10.7
5. After dividing all the amounts by $ 10 000, the equation is f (s) = s20+s19+· · ·+s2+s−10 = 0. Then

f (0) = −10 andf (1) = 10, so by the intermediate value theorem (Theorem 7.10.1), there exists a number
s∗ such that f (s∗) = 0. Here s∗ is unique because f ′(s) > 0. In fact f (s) = −10+(s−s21)/(1−s), and
f (s∗) = 0 ⇐⇒ (s∗)10 − 11s∗ + 10 = 0. Then s∗ = 0.928 is an approximate root, which corresponds
to an internal rate of return of about 7.8 %. (See Problem 7.R.26.)

10.8
3. Equilibrium requires αPt −β = γ − δPt+1, or Pt+1 = −(α/δ)Pt + (β+γ )/δ. Using (10.8.4) we obtain

the answer in the text.

Review Problems for Chapter 10

3. If you borrow $ a at the annual interest rate of 11% with interest paid yearly, then the dept after 1 year
is a(1+ 11/100) = a(1.11); if you borrow at annual interest rate 10% with interest paid monthly, your
dept after 1 year will be a(1+ 10/12 · 100)12 ≈ 1.1047a, so schedule (ii) is preferable.

6. We use formula (10.4.5): (a)
44

1− 0.56
= 100 (b) The first term is 20 and the quotient is 1/1.2, so the

sum is
20

1− 1/1.2
= 120 (c)

3

1− 2/5
= 5 (d) The first term is (1/20)−2 = 400 and the quotient is

1/20, so the sum is
400

1− 1/20)
= 8000/19
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8. (a) See the text. (b) We use formula (10.5.3) on the future value of an annuity. See the text.
(c) See the text.

11. (a) f ′(t) = 100e
√

t/2e−rt
[ 1

4
√

t
− r
]
. We see that f ′(t) = 0 for t∗ = 1/16r2. Since f ′(t) > 0 for t < t∗

and f ′(t) < 0 for t > t∗, t∗ maximizes f (t).

(b) f ′(t) = 200e−1/t e−rt
[ 1

t2
− r
]
. We see that f ′(t) = 0 for t∗ = 1/

√
r . Since f ′(t) > 0 for t < t∗

and f ′(t) < 0 for t > t∗, t∗ maximizes f (t).

12. (a) F(10)−F(0) =
∫ 10

0
(1+ 0.4t) dt =

10

0
(t + 0.2t2) = 30. (Note: the total revenue is F(10)−F(0),

not F(10).) (b) See Example 9.5.3.

11 Functions of Many Variables

11.1

6. (a) The denominator must not be 0, so the function is defined for those (x, y) where y �= x − 2.
(b) Must require 2− (x2 + y2) ≥ 0, i.e. x2 + y2 ≤ 2.
(c) Put a = x2 + y2. We must require (4− a)(a − 1) ≥ 0, i.e. 1 ≤ a ≤ 4. (Use a sign diagram.)

7. For (a) and (c) see the text. (b) Since (x − a)2 ≥ 0 and (y − b)2 ≥ 0, it suffices to assume that x �= a

and b �= b, because then we take ln of positive numbers.

11.2

3. (a) and (b) are straightforward. (c) f (x, y) = (x2 − 2y2)5 = u5, where u = x2 − 2y2. Then
f ′1(x, y) = 5u4u′1 = 5(x2 − 2y2)42x = 10x(x2 − 2y2)4. In the same way, f ′2(x, y) = 5u4u′2 =
5(x2− 2y2)4(−4y) = −20y(x2− 2y2)4. Finally, f ′′12(x, y) is the derivative of f ′1(x, y) w.r.t. y, keeping
x constant, so f ′′12(x, y) = (∂/∂y)(10x(x2 − 2y2)4) = 10x4(x2 − 2y2)3(−4y) = −160xy(x2 − 2y2)3.

5. (a)–(c) are easy. (d) z = xy = (eln x)y = ey ln x = eu with u = y ln x. Then z′x = euu′x = xy(y/x) =
yxy−1. In the same way, z′y = euu′y = xy ln x. Moreover, z′′xx = (∂/∂x)(yxy−1) = y(y − 1)xy−2.
(When differentiating xy−1 partially w.r.t. x, y is a constant, so the rule dxa/dx = axa−1 applies.)
z′′yy = (∂/∂y)(xy ln x) = xy(ln x)2. Finally, z′′xy = (∂/∂y)(yxy−1) = xy−1 + yxy−1 ln x. (Note that if
w = xy−1 = xv , with v = y − 1, then w′y = xv ln x · 1 = xy−1 ln x. Or: w = xy−1 = (1/x)xy etc.)

11.3

8. (a) The point (2, 3) lies on the level curve z = 8, so f (2, 3) = 8. The points (x, 3) are those on the line
y = 3 parallel to the x-axis. This line intersects the level curve z = 8 when x = 2 and x = 5.
(b) See the text. (c) If at A you look in the direction of the positive x-axis, you meet level sets whose
values increase, so f ′1(x, y) > 0. A rough estimate of f ′1(x, y) at A is 2, because if you go one unit in
the positive x-axis direction from A, then f (x, y) increases from 8 to 10.

9. (a) It might help to regard the figure as a map of a mountain. At P the terrain is raising in the direction
of the positive x-axis, so f ′x(P ) > 0. The terrain is sloping downwards in the direction of the positive
y-axis so f ′y(P ) < 0. (b) (i) The line x = 1 has no point in common with any of the given level curves.
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(ii) The line y = 2 intersects the level curve z = 2 at x = 2 and x = 6 (approximately).
(c) If you start at the point (6, 0) and move up along the line 2x+ 3y = 12, you first meet the level curve
z = f (x, y) = 1. Moving further you meet level curves with higher z-values. The level curve with the
highest z-value you meet is z = 3, where the straight just touches the level curve.

10. F(1, 0) = F(0, 0)+∫ 1
0 F ′1(x, 0) dx ≥ ∫ 1

0 2 dx = 2, F(2, 0) = F(1, 0)+∫ 2
1 F ′1(x, 0) dx ≥ F(1, 0)+2,

F(0, 1) = F(0, 0)+ ∫ 1
0 F ′2(0, y) dy ≤ 1, F(1, 1) = F(0, 1)+ ∫ 1

0 F ′1(x, 1) dx ≥ F(0, 1)+ 2,

F(1, 1) = F(1, 0)+ ∫ 1
0 F ′2(1, y) dy ≤ F(1, 0)+ 1.

11.6
2. (a)–(d) are routine. (e) f (x, y, z) = (x2 + y3 + z4)6 = u6, with u = x2 + y3 + z4. Then f ′1 = 6u5u′1 =

6(x2+ y3+ z4)52x = 12x(x2+ y3+ z4)5, f ′2 = 6u5u′2 = 6(x2+ y3+ z4)53y2 = 18y2(x2+ y3+ z4)5,
f ′3 = 6u5u′3 = 6(x2 + y3 + z4)54z3 = 24z3(x2 + y3 + z4)5 (f) f (x, y, z) = exyz = eu, with u = xyz,
gives f ′1 = euu′1 = exyzyz. Similarly, f ′2 = euu′2 = exyzxz, and f ′3 = euu′3 = exyzxy

5. When r and w are constants, so is (1/r + 1/w), and thus ∂π/∂p = 1
2p(1/r + 1/w).

10. From f = xyz

we get (∗) ln f = yz ln x. Differentiating (∗) w.r.t x yields f ′x/f = yz/x, and so
f ′x = fyz/x = xyz

yz/x = yzxyz−1. Differentiating (∗) w.r.t y yields f ′y/f = zyz−1 ln x, and so f ′y =
zyz−1(ln x)xyz

. Differentiating (∗) w.r.t z yields f ′z/f = yz(ln y)(ln x), and so f ′z = yz(ln x)(ln y)xyz

.

11.7
2. (a) Y ′K = aAKa−1 and Y ′K = aBLa−1, so KY ′K + LY ′L = aAKa + aBLa = a(AKa + BLa) = aY

(b) KY ′K+LY ′L = KaAKa−1Lb+LAKabLb−1 = aAKaLb+bAKaLa = (a+b)AKaLb = (a+b)Y

(c) Y ′K =
2aKL5 − bK4L2

(aL3 + bK3)2
and Y ′L =

2bK5L− aK2L4

(aL3 + bK3)2
, so

KY ′K + LY ′L =
2aK2L5 − bK5L2 + 2bK5L2 − aK2L5

(aL3 + bK3)2
= K2L2(aL3 + bK3)

(aL3 + bK3)2
= K2L2

aL3 + bK3
= Y .

(According to Section 12.6 these functions are homogeneous of degrees a, a + b, and 1, respectively, so
the results we obtained are immediate consequences of Euler’s Theorem, (12.6.2).)

7. Y ′K = (−m/ρ)a(−ρ)K−ρ−1Aeλt
[
aK−ρ + bL−ρ

]−(m/ρ)−1 = maK−ρ−1Aeλt
[
aK−ρ + bL−ρ

]−(m/ρ)−1
,

Y ′L = (−m/ρ)b(−ρ)L−ρ−1Aeλt
[
aK−ρ + bL−ρ

]−(m/ρ)−1 = mbL−ρ−1Aeλt
[
aK−ρ + bL−ρ

]−(m/ρ)−1
.

Thus, KY ′K + LY ′L = m(aK−ρ + bL−ρ)Aeλt
[
aK−ρ + bL−ρ

]−(m/ρ)−1 = mY . (This function is homo-
geneous of degree m, so the result is an immediate consequences of Euler’s Theorem, (12.6.2).)

11.8

4.
∂

∂m

(pD

m

)
= p

mD′m −D

m2
= p

m2
(mD′m −D) = pD

m2
[Elm D − 1] > 0 iff Elm D > 1,

so pD/m increases with m if Elm D > 1. (Using the formulas in Problem 7.7.9, the result also follows
from the fact that Elm(pD/m) = Elm p + Elm D − Elm m = Elm D − 1.)

Review Problems for Chapter 11

7. (a) z = (x2y4+2)5 = u5, with u = x2y4+2, so
∂z

∂x
= 5u4 ∂u

∂x
= 5(x2y4+2)42xy4 = 10xy4(x2y4+2)4

For the rest see the text.
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11. (b) We want to find all (x, y) that satisfy both equations (i) 4x3 − 8xy = 0 and (ii) 4y − 4x2 + 4 = 0.
From (i), 4x(x2 − 2y) = 0, which means that x = 0, or x2 = 2y. For x = 0, (ii) yields y = −1, so
(x, y) = (0,−1) is one solution. With x2 = 2y, (ii) reduces to 4y − 8y + 4 = 0, or y = 1. But then
x2 = 2, such that x = ±√2. So the two additional solutions are (x, y) = (±√2, 1).

12 Tools for Comparative Statics

12.1

5. We look at (c) and (d). (c): If z = F(x, y) = xy with x = f (t) and y = g(t), then F ′1(x, y) = y,
F ′2(x, y) = x, dx/dt = f ′(t), and dy/dt = g′(t), so formula (12.1.1) gives
dz/dt = F ′1(x, y)(dx/dt)+ F ′2(x, y)(dy/dt) = yf ′(t)+ xg′(t) = g(t)f ′(t)+ f (t)g′(t).

(d): If z = F(x, y) = x

y
with x = f (t) and y = g(t), then F ′1(x, y) = 1

y
, F ′2(x, y) = − x

y2
,
dx

dt
= f ′(t),

and
dy

dt
= g′(t), so formula (12.1.1) gives

dz

dt
= F ′1(x, y)

dx

dt
+ F ′2(x, y)

dy

dt
= 1

y
f ′(t) − x

y2
g′(t) =

yf ′(t)− xg′(t)
y2

= g(t)f ′(t)− f (t)g′(t)
(g(t))2

.

6. Let U(x) = u(x, h(x)) = ln[xα + (ax4 + b)α/3]− α
3 ln(ax4 + b).

Then U ′(x) = αxα−1(3b − ax4)

3[xα + (ax4 + b)α/3](ax4 + b)
. So U ′(x∗) = 0 at x∗ = 4

√
3b/a, whereas U ′(x) > 0 for

x < x∗ and U ′(x) < 0 for x > x∗. Hence x∗ maximizes U .

7. Differentiating (12.1.1) w.r.t. t yields, d2z/dt2 = (d/dt)[F ′1(x, y) dx/dt] + (d/dt)[F ′2(x, y) dy/dt].
Here (d/dt)[F ′1(x, y) dx/dt] = [F ′′11(x, y) dx/dt + F ′′12(x, y) dy/dt]dx/dt + F ′1(x, y) d2x/dt2,
(d/dt)[F ′2(x, y) dy/dt] = [F ′′21(x, y) dx/dt + F ′′22(x, y) dy/dt] dy/dt + F ′2(x, y) d2y/dt2. Assuming
F ′′12 = F ′′21, the conclusion follows.

12.2

2. (a) Let z = F(x, y) = xy2 with x = t + s2 and y = t2s. Then F ′1(x, y) = y2, F ′2(x, y) = 2xy,
∂x/∂t = 1, and ∂y/∂t = 2ts. Then (12.2.1) gives ∂z/∂t = F ′1(x, y)(∂x/∂t) + F ′2(x, y)(∂y/∂t) =
y2 + 2xy2ts = (t2s)2 + 2(t + s2)t2s2ts = t3s2(5t + 4s2). ∂z/∂s is found in the same way.

(b)
∂z

∂t
= F ′1(x, y)

∂x

∂t
+ F ′2(x, y)

∂y

∂t
= 2y

(x + y)2
et+s + −2sx

(x + y)2
ets , etc.

3. It is important that you can do these problems, because in economic applications, functions are frequently
not completely specified. (a) z′r = F ′uu′r +F ′vv′r +F ′ww′r = F ′u2r+F ′v ·0+F ′w(1/r) = 2rF ′u+ (1/r)F ′w.
Check that you get the same answers as in the text.

7. Use the formulas in (12.2.1) and see the text. Only the notation is different.

8. (a) Let u = ln v, where v = x3 + y3 + z3 − 3xyz. Then ∂u/∂x = (1/v)(∂v/∂x) = (3x2 − 3yz)/v.
Similarly, ∂u/∂y = (3y2 − 3xz)/v, and ∂u/∂z = (3z2 − 3xy)/v. Hence,

x
∂u

∂x
+ y

∂u

∂y
+ z

∂u

∂z
= 1

v
(3x3 − 3xyz)+ 1

v
(3y3 − 3xyz)+ 1

v
(3z3 − 3xyz) = 3v

v
= 3
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which proves (i). Equation (ii) is then proved by elementary algebra.
(b) Note that f is here a function of one variable. With z = f (u) where u = x2y, we get ∂z/∂x =
f ′(u)u′x = 2xyf ′(x2y). Likewise, ∂z/∂y = x2f ′(x2y), so x∂z/∂x = 2x2yf ′(x2y) = 2y∂z/∂y.

12.3

2. (a) See the text. (b) Put F(x, y) = x− y+ 3xy. Then F ′1 = 1+ 3y, F ′2 = −1+ 3x, F ′′11 = 0, F ′′12 = 3,
F ′′22 = 0. In particular, y ′ = −F ′1/F ′2 = −(1+ 3y)/(−1+ 3x). Moreover, using equation (12.3.3),

y ′′ = − 1

(F ′2)3

[
F ′′11(F

′
2)

2 − 2F ′′12F
′
1F
′
2 + F ′′22(F

′
1)

2] = 6(1+ 3y)(−1+ 3x)

(−1+ 3x)3
) = 6(1+ 3y)

(−1+ 3x)2
.

(c) Put F(x, y) = y5 − x6. Then F ′1 = −6x5, F ′2 = 5y4, F ′′11 = −30x4, F ′′12 = 0, F ′′22 = 20y3, so
y ′ = −F ′1/F ′2 = −(−6x5/5y4) = 6x5/5y4. Moreover, using equation (12.3.3),

y ′′ = − 1

(5y4)3

[
(−30x4)(5y4)2 + 20y3(−6x5)2] = 6x4

y4
− 144x10

25y9
.

3. (a) With F(x, y) = 2x2 + xy + y2, y ′ = −F ′1/F ′2 = −(4x + y)/(x + 2y) = −4 at (2, 0). Moreover,
y ′′ = −(28x2 + 14y2 + 14xy)/(x + 2y)3 = −14 at (2, 0). The tangent has the equation y = −4x + 8.
(b) y ′ = 0 requires y = −4x. Inserting this into the original equation gives the two points.

4. If we define F(x, y) = 3x2 − 3xy2 + y3 + 3y2, the given equation is F(x, y) = 4. Now, F ′1(x, y) =
6x−3y2 and F ′2(x, y) = −6xy+3y2+6y, so according to (12.3.1), y ′ = −(6x−3y2)/(−6xy+3y2+6y).

12.4

1. (a) and (b) are easy. (c) Defining F(x, y, z) = exyz − 3xyz, the given equation is F(x, y, z) = 0.
Now, F ′x(x, y, z) = yzexyz − 3yz, F ′z(x, y, z) = xyexyz − 3xy, so (12.4.1) gives, z′x = −F ′x/F ′z =
−(yzexyz − 3yz)/(xyexyz − 3xy) = −yz(exyz − 3)/xy(exyz − 3) = −z/x. (Actually, the equation
exyz = 3xyz has two constant solutions. From xyz = c we find z′x much easier.)

3. (a) Equation (∗) is here P/2
√

L∗ = w. Solve for L∗. (b) The first-order condition is now

Pf ′(L∗)− C ′L(L∗, w) = 0 (∗)

Differentiate (∗) partially w.r.t. P keeping in mind that L∗ depends on P . To find the partial derivative
of Pf ′(L∗) w.r.t. P use the product rule to get 1 · f ′(L∗) + Pf ′′(L∗)(∂L∗/∂P ). The partial deriva-
tive of C ′L(L∗, w) w.r.t. P is C ′′LL(L∗, w)(∂L∗/∂P ). So, all in all, f ′(L∗) + Pf ′′(L∗)(∂L∗/∂P ) −
C ′′LL(L∗, w)(∂L∗/∂P ) = 0. Then solve for ∂L∗/∂P .

Differentiating (∗) w.r.t. w gives, Pf ′′(L∗)(∂L∗/∂w)−C ′′LL(L∗, w)(∂L∗/∂w)−C ′′Lw(L∗, w) = 0.
Then solve for ∂L∗/∂w.

6. (a) F ′1(x, y) = ey−3 + y2 and F ′2(x, y) = xey−3 + 2xy − 2. Hence, the slope of the tangent to the level
curve F(x, y) = 4 at the point (1, 3) is y ′ = −F ′1(1, 3)/F ′2(1, 3) = −10/5 = −2.
(b) Taking the logarithm of both sides, we get (1+ c ln y) ln y = ln A+ α ln K + β ln L. Differentiation

with respect to K gives
c

y

∂y

∂K
ln y+ (1+c ln y)

1

y

∂y

∂K
= α

K
. Solving for ∂y/∂K yields the given answer.

∂y/∂K is found in the same way.
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12.5

3. With F(K, L) = AKaLb, F ′K = aF/K , F ′L = bF/L, F ′′KK = a(a − 1)F/K2, F ′′KL = abF/KL, and
F ′′LL = b(b−1)F/L2. Also,−F ′KF ′L(KF ′K+LF ′L) = −(aF/K)(bF/L)(a+b)F = −ab(a+b)F 3/KL.
Moreover, KL

[
(F ′L)2F ′′KK −2F ′KF ′2F ′′KL+ (F ′K)2F ′′LL

] = −ab(a + b)F 3/KL. It follows that σKL = 1.

12.6

3. (2): xf ′1(x, y)+ yf ′2(x, y) = x(y2 + 3x2)+ y2xy = 3(x3 + xy2) = 3f (x, y)

(3): It is easy to see that f ′1(x, y) = y2 + 3x2 and f ′2(x, y) = 2xy are homogeneous of degree 2.
(4): f (x, y) = x3 + xy2 = x3[1+ (y/x)2] = y3[(x/y)3 + x/y]
(5): x2f ′′11 + 2xyf ′′12 + y2f ′′22 = x2(6x)+ 2xy(2y)+ y2(2x) = 6x3 + 4xy2 + 2xy2 = 3 · 2f (x, y)

4. Using the results in Example 11.2.1(b), x
∂f

∂x
+ y

∂f

∂y
= xy3 − x3y + x3y − xy3

(x2 + y2)
2 = 0 = 0 · f ,

so f is homogeneous of degree 0.

8. From (∗), with k = 1, we get f ′′11 = (−y/x)f ′′12 and f ′′22 = (−x/y)f ′′21. With f ′′12 = f ′′21 we get
f ′′11f

′′
22 − (f ′′12)

2 = (−y/x)f ′′12(−x/y)f ′′12 − (f ′′12)
2 = 0.

12.7

1. (a) and (f) are easy. In (b) you can use Euler’s theorem, as in (e) below.

(c) h(tx, ty, tz) =
√

tx +√ty +√tz

tx + ty + tz
=
√

t (
√

x +√y +√z )

t (x + y + z)
= t−1/2h(x, y, z) for all t > 0, so

h is homogeneous of degree−1/2. (d)G(tx, ty) = √txty ln
(tx)2 + (ty)2

txty
= t
√

xy ln
t2(x2 + y2)

t2xy
=

tG(x, y) for all t > 0, so G is homogeneous of degree 1. (e) xH ′x + yH ′y = x(1/x) + y(1/y) = 2.
Since 2 is not equal to k(ln x + ln y) for any constant k, by Euler’s theorem, H is not homogeneous of
any degree.

2. (a) f (tx1, tx2, tx3) = (tx1tx2tx3)
2

(tx1)4 + (tx2)4 + (tx3)4

(
1

tx1
+ 1

tx2
+ 1

tx3

)
=

t6(x1x2x3)
2

t4(x4
1 + x4

2 + x4
3)

(
1

t

)(
1

x1
+ 1

x2
+ 1

x3

)
= tf (x1, x2, x3), so f is homogeneous of degree 1.

(b) x(tv1, tv2, . . . , tvn) = A
(
δ1(tv1)

−	 + δ2(tv2)
−	 + · · · + δn(tvn)

−	
)−μ/	 =

A
(
t−	(δ1v

−	

1 + δ2v
−	

2 + · · · + δnv
−	
n )
)−μ/	 = (t−	)−μ/	A

(
δ1v
−	

1 + δ2v
−	

2 + · · · + δnv
−	
n

)−μ/	 =
tμA

(
δ1v
−	

1 + δ2v
−	

2 + · · · + δnv
−	
n

)−μ/	 = tμx(x1, x2, x3), so x is homogeneous of degree μ.

12.8

1. In both (a) and (b) we use the approximation f (x, y) ≈ f (0, 0)+ f ′1(0, 0)x + f ′2(0, 0)y.

(a) For f (x, y) = √1+ x + y, f (0, 0) = 1, and f ′1(x, y) = f ′2(x, y) = 1

2
√

1+ x + y
, so f ′1(0, 0) =

f ′2(0, 0) = 1/2, and the linear approximation to f (x, y) about (0, 0) is f (x, y) ≈ 1+ 1
2x + 1

2y.

(b) For f (x, y) = ex ln(1 + y), f ′1(x, y) = ex ln(1 + y) and f ′2(x, y) = ex

1+ y
. Here, f (0, 0) = 0,

f ′1(0, 0) = e0 ln 1 = 0 and f ′2(0, 0) = 1. That yields f (x, y) = ex ln(1+ y) ≈ 0+ 0 · x + 1 · y = y.
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3.
∂g∗

∂μ
= 1

1− β

[
(1+ μ)(1+ ε)α

]1/(1−β)−1
(1+ ε)α = 1

1− β

[
(1+ μ)(1+ ε)α

]β/(1−β)
(1+ ε)α ,

∂g∗

∂ε
= 1

1− β

[
(1+ μ)(1+ ε)α

]β/(1−β)
(1+ μ)α(1+ ε)α−1. See the text.

7. We use formula (12.8.3). (a) Here, ∂z/∂x = 2x and ∂z/∂y = 2y. At (1, 2, 5), we get ∂z/∂y = 2 and
∂z/∂x = 4, so the tangent plane has the equation z− 5 = 2(x − 1)+ 4(y − 2) ⇐⇒ z = 2x + 4y − 5.
(b) From z = (y−x2)(y−2x2) = y2−3x2y+2x4 we get ∂z/∂x = −6xy+8x3 and ∂z/∂y = 2y−3x2.
Thus, at (1, 3, 2) we have ∂z/∂x = −10 and ∂z/∂y = 3. The tangent plane is given by the equation
z− 2 = −10(x − 1)+ 3(y − 3) ⇐⇒ z = −10x + 3y + 3.

12.9

2. We can either use the definition of the differential, (12.9.1), or the rules for differentials as we do here.
(a) dz = d(x3) + d(y3) = 3x2dx + 3y2dy (b) dz = (dx)ey2 + x(dey2

). Here dey2 = ey2
dy2 =

ey2
2ydy, so dz = ey2

dx + 2xyey2
dy = ey2

(dx + 2xydy).

(c) dz = d ln u, where u = x2 − y2. Then dz = 1

u
du = 2xdx − 2ydy

x2 − y2
.

5. d(UeU) = d(x
√

y), and so eUdU+UeUdU = dx
√

y+ (x/2
√

y)dy. Solving for dU yields the answer.

12.11

3. Since we are asked to find the partials of y1 and y2 w.r.t. x1 only, we might as well differentiate the system
partially w.r.t. x1:

(i) 3− ∂y1

∂x1
− 9y2

2
∂y2

∂x1
= 0 (ii) 3x2

1 + 6y2
1
∂y1

∂x1
− ∂y2

∂x1
= 0

Solve for the partials and see the text.
(An alternative, in particular if one needs all the partials, is to use total differentiation:

(i) 3 dx1 + 2x2 dx2 − dy1 − 9y2
2 dy2 = 0, (ii) 3x2

1 dx1 − 2dx2 + 6y2
1 dy1 − dy2 = 0

Letting dx2 = 0 and solving for dy1 and dy2 leads to dy1 = Adx1 and dy2 = Bdx1, where A = ∂y1/∂x1

and B = ∂y2/∂x1.)

4. Differentiation with respect to M gives, (i) I ′(r)r ′M = S ′(Y )Y ′M , (ii) aY ′M + L′(r)r ′M = 1.
(Remember that Y and r are functions of the independent variables a and M .) Writing this as a linear
equation system on standard form, we get

−S ′(Y )Y ′M + I ′(r)r ′M = 0

aY ′M + L′(r)r ′M = 1

Cramer’s rule (or use ordinary elimination) gives

Y ′M =

∣∣∣∣ 0 I ′(r)
1 L′(r)

∣∣∣∣∣∣∣∣−S ′(Y ) I ′(r)
a L′(r)

∣∣∣∣
= I ′(r)

S ′(Y )L′(r)+ aI ′(r)
and r ′M =

S ′(Y )

S ′(Y )L′(r)+ aI ′(r)
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5. Differentiation w.r.t. x yields, y + u′xv + uv′x = 0, u+ xu′x + yv′x = 0. Solving this system for u′x and
v′x we get

u′x =
u2 − y2

yv − xu
= u2 − y2

2yv
, v′x =

xy − uv

yv − xu
= 2xy − 1

2yv

where we substituted xu = −yv and uv = 1− xy. Differentiating u′x w.r.t. x finally yields

u′′xx =
∂2u

∂x2
= ∂

∂x
u′x =

2uu′x2yv − (u2 − y2)2yv′x
4y2v2

= (u2 − y2)(4uv − 1)

4y2v3

9. (a) Differentiation yields 2uvdu+ u2dv − du = 3x2dx + 6y2dy, and eux(udx + xdu) = vdy + ydv.
At P these equations become 3du + 4dv = 6dy and dv = 2dx − dy. Hence du = 2dy − (4/3)dv =
−(8/3) dx + (10/3) dy. So ∂u/∂y = 10/3, ∂v/∂x = 2. (b) See the text.

Review Problems for Chapter 12

4. X = Ng(u), where u = ϕ(N)/N). Then du/dN = [ϕ′(N)N − ϕ(N)]/N2 = (1/N)(ϕ′(N) − u), and
by the product rule and the chain rule,

dX

dN
= g(u)+Ng′(u)

du

dN
= g(u)+ g′(u)(ϕ′(N)− u), u = ϕ(N)

N

Differentiating g(u)+ g′(u)(ϕ′(N)− u) w.r.t. N gives

d2X

dN2
= g′(u)

du

dN
+ g′′(u)

du

dN
(ϕ′(N)− u)+ g′(u)(ϕ′′(N)− du

dN
)

= 1

N
g′′
(
ϕ(N)/N

)[
ϕ′(N)− ϕ(N)/N

]2 + g′
(
ϕ(N)/N

)
ϕ′′(N)

5. (a) Take the natural logarithm, ln E = ln A− a ln p + b ln m, and then differentiate. (b) See the text.

11. Elx(y2exe1/y) = Elx y2 + Elx ex + Elx e1/y = 0. Here Elx y2 = 2 Elx y and Elx ex = x. Moreover,
Elx e1/y = Elx eu, where u = 1/y, so Elx eu = u Elx(1/y) = (1/y)(Elx 1 − Elx y) = −(1/y) Elx y.

All in all, 2 Elx y + x − (1/y) Elx y = 0, so Elx y = xy/(1− 2y). (We used the rules for elasticities in
Problem 7.7.9. If you are not comfortable with these rules, find y ′ by implicit differentiation and then
use Elx y = (x/y)y ′.

16. (a) Differentiating and then gathering all terms in dp and dL on the left-hand side, yields

(i) F ′(L) dp + pF ′′(L) dL = dw (ii) F(L) dp + (pF ′(L)− w) dL = L dw + dB

Since we know that pF ′(L) = w, (ii) implies that dp = (Ldw + dB)/F (L). Substituting this into (i)
and solving for dL, we obtain dL = [(F (L)− LF ′(L))dw − F ′(L)dB]/pF(L)F ′′(L). It follows that

∂p

∂w
= L

F(L)
,

∂p

∂B
= 1

F(L)
,

∂L

∂w
= F(L)− LF ′(L)

pF(L)F ′′(L)
,

∂L

∂B
= − F ′(L)

pF(L)F ′′(L)

(b) We know that p > 0, F ′(L) > 0, and F ′′(L) < 0. Also, F(L) = (wL + B)/p > 0. Hence, it is
clear that ∂p/∂w > 0, ∂p/∂B > 0, and ∂L/∂B > 0.
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To find the sign of ∂L/∂w, we need the sign of F(L)−LF ′(L). From the equations in the model, we
get F ′(L) = w/p and F(L) = (wL+ B)/p, so F(L)− LF ′(L) = B/p > 0. Therefore ∂L/∂w < 0.

13 Multivariable Optimization

13.1

3. F ′K = −2(K − 3) − (L − 6) and F ′L = −4(L − 6) − (K − 3), so the first-order conditions yield
−2(K − 3)− (L− 6) = 0.65, −4(L− 6)− (K − 3) = 1.2. The solution is (K, L) = (2.8, 5.75).

4. (b) First-order conditions: P ′x = −2x + 22 = 0, P ′y = −2y + 18 = 0. It follows that x = 11 and y = 9.

13.2

3. Note thatU = (108−3y−4z)yz. Then ∂U/∂y = 108z−6yz−4z2 = 0 and ∂U/∂z = 108y−3y2−8yz =
0. Because y and z are assumed to be positive, these two equations reduce to 6y + 4z = 108 and
3y + 8z = 108, with solution y = 12 and z = 9. Theorem 13.2.1 cannot be used directly to prove
optimality. However, it can be applied to the equivalent problem of maximizing ln z. See Theorem 13.6.3.)

7. Solve the constraint for z: z = 4x+ 2y− 5. Then minimize P(x, y) = x2+ y2+ (4x+ 2y− 5)2 w.r.t. x
and y. The first-order conditions are: P ′1 = 34x + 16y − 40 = 0, P ′2 = 16x + 10y − 20 = 0, with
solution x = 20/21, y = 10/21. Since P ′′11 = 34, P ′′12 = 16, and P ′′22 = 10, we see that the second-order
conditions for minimum are satisfied.

13.3

3. (a) V ′t (t, x) = f ′t (t, x)e−rt − rf (t, x)e−rt = 0, V ′x(t, x) = f ′x(t, x)e−rt − 1 = 0, so at the optimum,
f ′t (t∗, x∗) = rf (t∗, x∗) and f ′x(t∗, x∗) = ert∗ . (b) See the text and (c).
(c) V (t, x) = g(t)h(x)e−rt − x, so V ′t = h(x)(g′(t) − rg(t))e−rt , V ′x = g(t)h′(x)e−rt − 1. Moreover,
V ′′t t = h(x)(g′′(t) − 2rg′(t) + r2g(t))e−rt , V ′′tx = h′(x)(g′(t) − rg(t))e−rt , and V ′′xx = g(t)h′′(x)e−rt .
At (t∗, x∗), V ′′tx = 0, V ′′xx < 0, and V ′′t t = h(x∗)[g′′(t∗) − 2rg′(t∗) + r2g(t∗)]e−rt∗ . Because g′(t∗) =
rg(t∗), we obtain V ′′t t = h(x∗)[g′′(t∗)− r2g(t∗)]e−rt∗ < 0. Thus (t∗, x∗) is a local maximum point.

(d) The first-order conditions in (b) reduce to e
√

t∗/2
√

t∗ = re
√

t∗ , so t∗ = 1/4r2, and 1/(x∗ + 1) =
e1/4r/e1/2r , or x∗ = e1/4r − 1. The two conditions in (c) are satisfied. (Note that in part (c) of this
problem in the text, the second condition should be h′′(x∗) < 0.) Obviously, h′′(x∗) = −(1+x∗)−2 < 0.

Moreover, g′′(t∗) = 1

4t∗
√

t∗
e
√

t∗(
√

t∗ − 1) = r2(1− 2r)e1/2r < r2e1/2r , which is true when r > 0.

5. (a) We need to have 1+x2y > 0. When x = 0, f (0, y) = 0. For x �= 0, 1+x2y > 0 ⇐⇒ y > −1/x2.
(The figure in the text shows a part of the graph of f . Note that f = 0 on the x-axis and on the y-axis.)

(b) See the text. (c) f ′′11(x, y) = 2y − 2x2y2

(1+ x2y)2
, f ′′12(x, y) = 2x

(1+ x2y)2
, and f ′′22(x, y) = −x4

(1+ x2y)2
.

The second-order derivatives at all points of the form (0, b) are f ′′11(0, b) = 2b, f ′′12(0, b) = 0, and
f ′′22(0, b) = 0. Since f ′′11f

′′
22 − (f ′′12)

2 = 0 at all the stationary points, the second-derivative test tells us
nothing about the stationary points. See the text.
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13.4
2. (a) See the text. (b) The new profit function is π̂ = −bp2−dp2+ (a+βb)p+ (c+βd)p−α−β(a+c)

and the price which maximizes profits is easily seen to be p̂ = a + c + β(b + d)

2(b + d)
.

(c) If β = 0, then p∗ = a

2b
, q∗ = c

2d
, and π(p∗, q∗) = a2

4b
+ c2

4d
− α. Moreover, p̂ = a + c

2(b + d)
with

π̂(p̂) = (a + c)2

4(b + d)
− α, and π(p∗, q∗) − π̂(p̂) = (ad − bc)2

4bd(b + d)
≥ 0. Note that the difference is 0 when

ad = bc, in which case p∗ = q∗, so the firm wants to charge the same price in each market anyway.

3. Imposing a tax of t per unit sold in market area 1 means that the new profit function is π̂(Q1, Q2) =
π(Q1, Q2) − tQ1. The optimal choice of production in market area 1 is then Q̂1 = (a1 − α − t)/2b1

(see the text), and the tax revenue is T (t) = t (a1 − α − t)/2b1 = [t (a1 − α)− t2]/2b1. This quadratic
polynomial has maximum when T ′(t) = 0, so t = 1

2 (a1 − α).

4. (a) Let (x0, y0) = (0, 11.29), (x1, y1) = (1, 11.40), (x2, y2) = (2, 11.49), and (x3, y3) = (3, 11.61),
so that x0 corresponds to 1970, etc. (The numbers yt are approximate, as are most subsequent results.)
We find that μx = 1

4 (0 + 1 + 2 + 3) = 1.5, μy = 1
4 (11.29 + 11.40 + 11.49 + 11.61) = 11.45, and

σxx = 1
4 [(0− 1.5)2 + (1− 1.5)2 + (2− 1.5)2 + (3− 1.5)2] = 1.25. Moreover, we find σxy = 0.13125,

and so â = σxy/σxx = 0.105 and b̂ = μy − âμx ≈ 11.45− 0.105 · 1.5 = 11.29.

(b) With z0 = ln 274, z1 = ln 307, z2 = ln 436, and z3 = ln 524, we have (x0, z0) = (0, 5.61),
(x1, z1) = (1, 5.73), (x2, z2) = (2, 6.08), and (x3, z3) = (3, 6.26). As before, μx = 1.5 and σxx = 1.25.
Moreover, μz = 1

4 (5.61+ 5.73+ 6.08+ 6.26) = 5.92 and σxz ≈ 0.2875. Hence ĉ = σxz/σxx = 0.23,

d̂ = μz − ĉμx = 5.92− 0.23 · 1.5 = 5.575.

(c) With ln (GNP) = 0.105x + 11.25, GNP = e11.25e0.105x = 80017e0.105x . Likewise, FA = 256e0.23x .
The requirement that FA = 0.01 GNP implies that e0.23x−0.105x = 80017/25600, and so 0.125x =
ln(80017/25600). Thus x = ln(80017/25600)/0.125 = 9.12. Since x = 0 corresponds to 1970, the
goal would have been reached in 1979.

5. (a) See the text. (b) FirmA’s profit is now πA(p) = px−5−x = p(29−5p+4q)−5−29+5p−4q =
34p − 5p2 + 4pq − 4q − 34, with q fixed. This quadratic polynomial is maximized at p = pA(q) =
1
5 (2q + 17). Likewise, firm B’s profit is now πB(q) = qy − 3 − 2y = 28q − 6q2 + 4pq − 8p − 35,
with p fixed. This quadratic polynomial is maximized at q = qB(p) = 1

3 (p + 7). For (c) and (d) see
the text.

y

x

4

4

(3, 3)

Figure SM13.5.2

13.5
2. (a) The continuous function f is defined on a closed, bounded set S (see Fig. SM13.5.2), so the extreme

value theorem ensures that f attains both a maximum and a minimum over S. Stationary points are where
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(i) f ′1(x, y) = 3x2 − 9y = 0 and (ii) f ′2(x, y) = 3y2 − 9x = 0. From (i), y = 1
3x2, which inserted

into (ii) yields 1
3x(x3 − 27) = 0. The only solutions are x = 0 and x = 3. Thus the only stationary

point in the interior of S is (x, y) = (3, 3). We proceed by examining the behaviour of f (x, y) along the
boundary of S, i.e. along the four edges of S.
(I) y = 0, x ∈ [0, 4]. Then f (x, 0) = x3 + 27, which has minimum at x = 0, and maximum at x = 4.
(II) x = 4, y ∈ [0, 4]. Then f (4, y) = y3 − 36y + 91. The function g(y) = y3 − 36y + 91, y ∈ [0, 4]
has g′(y) = 3y2− 36 = 0 at y = √12. Possible extreme points along (II) are therefore (4, 0), (4,

√
12),

and (4, 4).
(III) y = 4, x ∈ [0, 4]. Then f (x, 4) = x3− 36x + 91, and as in (II) we see that possible extreme points
are (0, 4), (

√
12, 4), and (4, 4).

(IV) x = 0, y ∈ [0, 4]. As in case (I) we obtain the possible extreme points (0, 0) and (0, 4).
This results in six candidates, and f (3, 3) = 0, f (0, 0) = 27, f (4, 0) = f (0, 4) = 91, f (4,

√
12) =

f (
√

12, 4) = 91− 24
√

12 ≈ 7.7, f (0, 0) = 27. The conclusion follows.

(b) The constraint set S = { (x, y) : x2 + y2 ≤ 1
}

are all points that lie on or inside a circle around
the origin with radius 1. This is a closed and bounded set, and f (x, y) = x2 + 2y2 − x is continuous.
Therefore the extreme value theorem ensures that f attains both a maximum and a minimum over S.

Stationary points for f where f ′x(x, y) = 2x−1 = 0 and f ′y(x, y) = 4y = 0. So the only stationary
point for f is (x1, y1) = (1/2, 0), which is an interior point of S.

An extreme point that does not lie in the interior of S must lie on the boundary of S, that is, on the
circle x2 + y2 = 1. Along this circle we have y2 = 1− x2, and therefore

f (x, y) = x2 + 2y2 − x = x2 + 2(1− x2)− x = 2− x − x2

where x runs through the interval [−1, 1]. (It is a common error to ignore this restriction.) The function
g(x) = 2− x − x2 has one stationary point in the interior of [−1, 1], namely x = −1/2, so any extreme
values of g(x) must occur either for this value of x or at one the endpoints ±1 of the interval [−1, 1].
Any extreme points for f (x, y) on the boundary of S must therefore be among the points

(x2, y2) = (− 1
2 , 1

2

√
3), (x3, y3) = (− 1

2 ,− 1
2

√
3), (x4, y4) = (1, 0), (x5, y5) = (−1, 0)

Now, f ( 1
2 , 0) = − 1

4 , f (− 1
2 ,± 1

2

√
3) = 9

4 , f (1, 0) = 0, and f (−1, 0) = 2. The conclusion follows.

3. The set S is shown in Fig. A13.5.3 in the book. It is clearly closed and bounded, so the continuous
function f has a maximum in S. The stationary points are where ∂f/∂x = 9 − 12(x + y) = 0 and
∂f/∂y = 8− 12(x + y) = 0. But 12(x + y) = 9 and 12(x + y) = 8 give a contradiction. Hence, there
are no stationary points at all. The maximum value of f must therefore occur on the boundary, which
consists of five parts. Either the maximum value occurs at one of the five corners or “extreme points” of
the boundary, or else at an interior point of one of five straight “edges.” The function values at the five
corners are f (0, 0) = 0, f (5, 0) = −105, f (5, 3) = −315, f (4, 3) = −234, and f (0, 1) = 2.

We proceed to examine the behaviour of f at interior points of each of the five edges in Fig. A13.5.3.
(I) y = 0, x ∈ (0, 5). The behaviour of f is determined by the function g1(x) = f (x, 0) = 9x− 6x2 for
x ∈ (0, 5). If this function of one variable has a maximum in (0, 5), it must occur at a stationary point
where g′1(x) = 9− 12x = 0, and so at x = 3/4. We find that g1(3/4) = f (3/4, 0) = 27/8.
(II), x = 5, y ∈ (0, 3). Define g2(y) = f (5, y) = 45 + 8y − 6(5 + y)2 for y ∈ (0, 3). Here g′2(y) =
−52− 12y, which is negative throughout (0, 3), so there are no stationary points on this edge.
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(III) y = 3, x ∈ (4, 5). Define g3(x) = f (x, 3) = 9x + 24 − 6(x + 3)2 for x ∈ (4, 5). Here g′3(x) =
−27− 12x, which is negative throughout (4, 5), so there are no stationary points on this edge either.
(IV) −x + 2y = 2, or y = x/2 + 1, with x ∈ (0, 4). Define the function g4(x) = f (x, x/2 + 1) =
−27x2/2 − 5x + 2 for x ∈ (0, 4). Here g′4(x) = −27x − 5, which is negative in (0, 4), so there are no
stationary points here.
(V) x = 0, y ∈ (0, 1). Define g5(y) = f (0, y) = 8y − 6y2. Then g′5(y) = 8 − 12y = 0 at y = 2/3,
with g5(2/3) = f (0, 2/3) = 8/3.

After comparing the values of f at the five corners of the boundary and at the points found on the
edges labeled (I) and (V), we conclude that the maximum value of f is 27/8, which is achieved at (3/4, 0).

5. (a) f ′1(x, y) = e−x(1 − x)(y − 4)y, f ′2(x, y) = 2xe−x(y − 2). It follows that the stationary points are
(1, 2), (0, 0) and (0, 4). (Make sure you understand why!) Moreover, f ′′11(x, y) = e−x(x − 2)(y2− 4y),
f ′′12(x, y) = e−x(1− x)(2y − 4), and f ′′22 = 2xe−x. Classification of the stationary points:

(x, y) A B C AC − B2 Type of point

(1, 2) 4e−1 > 0 0 2e−1 8e−2 > 0 Loc. min. point

(0, 0) 0 −4 0 −16 < 0 Saddle point

(0, 4) 0 4 0 −16 < 0 Saddle point

(b) We see that f (1, y) = e−1(y2 − 4y)→∞ as y →∞. This shows that f has no global maximum
point. Since f (−1, y) = −e(y2 − 4y)→−∞ as y →∞, f has no global minimum point either.

y

x

y

x

(1, 2) (II)(IV)

(I)

(III)

(c) The set S is obviously bounded. The boundary of S consists of
the four edges of the rectangle, and all points on these line segments
belong to S. Hence S is closed. Since f is continuous, the extreme
value theorem tells us thatf has global maximum and minimum points
in S. These global extreme points must be either stationary points if f

in the interior of S, or points on the boundary of S. The only stationary
point of f in the interior of S is (1, 2). The function value at this point
is f (1, 2) = −4e−1 ≈ 1.4715.

The four edges are most easily investigated separately:
(i) Along (I), y = 0 and f (x, y) = f (x, 0) is identically 0.

(ii) Along (II), x = 5 and f (x, y) = 5e−5(y2 − 4y), which has its least value for y = 2 and its greatest
value for y = 0 and for y = 4. (Note that y ∈ [0, 4] for all points (x, y) on the line segment (II).)
The values are f (5, 2) = −20e−5 ≈ −0.1348 and f (5, 0) = f (5, 4) = 0.

(iii) On edge (III), y = 4 and f (x, y) = f (x, 4) = 0.
(iv) Finally, along (IV), x = 0 and f (x, y) = f (0, y) = 0.

Collecting all these results, we see that f attains its least value (on S) at the point (1, 2) and its
greatest value (namely 0) at all points of the line segments (I), (III) and (IV).

(d) y ′ = −f ′1(x, y)

f ′2(x, y)
= −e−x(1− x)(y − 4)y

2xe−x(y − 2)
= (x − 1)(y − 4)y

2x(y − 2)
= 0 when x = 1.

13.6
1. (a)f ′x(x, y, z) = 2−2x = 0, f ′y(x, y, z) = 10−2y = 0, f ′x(x, y, z) = −2z = 0. The conclusion follows.
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(b) f ′x(x, y, z) = −2x − 2y − 2z = 0, f ′y(x, y, z) = −4y − 2x = 0, f ′z(x, y, z) = −6z − 2x = 0.

From the two last equations we get y = − 1
2x and z = − 1

3x. Inserting this into the first equation we get
−2x + x + 2

3x = 0, and thus x = 0, and then y = z = 0.

4. To calculate f ′x is routine. To differentiate f w.r.t. y and z we use (9.3.7) and (9.3.6). The derivative of∫ z

y
et2

dt w.r.t. y, keeping z constant is according to (9.3.7), −ey2
. The derivative of

∫ z

y
et2

dt w.r.t. z,

keeping y constant is according to (9.3.6), ez2
. Thus f ′y = 2 − ey2

and f ′z = −3 + ez2
. Since each of

the three partials depends only on one variable and is 0 for two different values of that variable, there are
eight stationary point. See the text.

13.7

2. (a) First-order conditions: π ′K = 2
3pK−1/3 − r = 0, π ′L = 1

2pL−1/2 −w = 0, π ′T = 1
3pT −2/3 − q = 0.

Thus, K−1/3 = 3r/2p, L−1/2 = 2w/p, and T −2/3 = 3q/p. Raising each side of K−1/3 = 3r/2p to the
power of −3 yields, K = (3r/2p)−3 = (2p/3r)3 = (8/27)p3r−3. In a similar way we find L, and T .
(b) See the text.

4. Differentiating pF ′K(K∗, L∗) = r using the product rule gives dp F ′K(K∗, L∗) + pd(F ′K(K∗, L∗)) =
dr . Moreover, d(F ′K(K∗, L∗)) = F ′′KK(K∗, L∗) dK∗ + F ′′KL(K∗, L∗) dL∗. (To see why, note that
dg(K∗, L∗) = g′K(K∗, L∗) dK∗ + g′L(K∗, L∗) dL∗. Then let g = F ′K .) This explains the first dis-
played equation (replacing dK by dK∗ and dL by dL∗). The second is derived in the same way.
(b) Rearrange the equation system by moving the differentials of the exogenous variables to the right-hand
side, suppressing the fact that the partials are evaluated at (K∗, L∗):

pF ′′KK dK∗ + pF ′′KL dL∗ = dr − F ′K dp

pF ′′LK dK∗ + pF ′′LL dL∗ = dw − F ′L dp

We use Cramer’s rule to express the differentials dK∗ and dL∗ in terms of dp, dr , and dw. Putting
� = F ′′KKF ′′LL − F ′′KLF ′′LK = F ′′KKF ′′LL − (F ′′KL)2, we get

dK∗ = 1

p2�

∣∣∣∣ dr − F ′K dp pF ′′KL

dw − F ′L dp pF ′′LL

∣∣∣∣ = −F ′KF ′′LL + F ′LF ′′KL

p�
dp + F ′′LL

p�
dr + −F ′′KL

p�
dw

In the same way

dL∗ = 1

p2�

∣∣∣∣pF ′′KK dr − F ′K dp

pF ′′LK dw − F ′L dp

∣∣∣∣ = −F ′LF ′′KK + F ′KF ′′LK

p�
dp + −F ′′LK

p�
dr + F ′′KK

p�
dw

We can now read off the required partials. (Note that there is an error in the expression for ∂K∗/∂p in
the answer to this problem in the text. In the numerator, replace F ′′KK by F ′′LL. (c) See the text. (Recall
that F ′′LL < 0 follows from (∗∗) in Example 13.3.3.)

5. (a) (i) R′1(x∗1 , x∗2 )+ s = C ′1(x∗1 , x∗2 ) (marginal revenue plus subsidy equal marginal cost)
(ii) R′2(x∗1 , x∗2 ) = C ′2(x∗1 , x∗2 )+ t = 0 (marginal revenue equals marginal cost plus tax). For (b) see the
text. (c) Taking the total differentials of (i) and (ii) yields

(R′′11 − C ′′11)dx∗1 + (R′′12 − C ′′12)dx∗2 = −ds, (R′′21 − C ′′21)dx∗1 + (R′′22 − C ′′22)dx∗2 = dt
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Solving for dx∗1 and dx∗2 yields, after rearranging,

dx∗1 =
−(R′′22 − C ′′22)ds − (R′′12 − C ′′12)dt

D
, dx∗2 =

(R′′21 − C ′′21)ds + (R′′11 − C ′′11)dt

D

From this we find that the partial derivatives are

∂x∗1
∂s
= −R′′22 + C ′′22

D
> 0,

∂x∗1
∂t
= −R′′12 + C ′′12

D
> 0,

∂x∗2
∂s
= R′′21 − C ′′21

D
< 0,

∂x∗2
∂t
= R′′11 − C ′′11

D
< 0

where the signs follow from the assumptions in the problem and the fact that D > 0 from (b). Note
that these signs accord with economic intuition. For example, if the tax on good 2 increases, then the
production of good 1 increases, while the production of good 2 decreases.
(d) Follows from the expressions in (c) because R′′12 = R′′21 and C ′′12 = C ′′21.

Review Problems for Chapter 13

2. (a) The profit function is π(Q1, Q2) = 120Q1 + 90Q2 − 0.1Q2
1 − 0.1Q1Q2 − 0.1Q2

2. First-order
conditions for maximal profit are: π ′1(Q1, Q2) = 120 − 0.2Q1 − 0.1Q2 = 0 and π ′2(Q1, Q2) =
90 − 0.1Q1 − 0.2Q2 = 0. We find (Q1, Q2) = (500, 200). Moreover, π ′′11(Q1, Q2) = −0.2 ≤ 0,
π ′′12(Q1, Q2) = −0.1, and π ′′22(Q1, Q2) = −0.2 ≤ 0. Since also π ′′11π

′′
22 − (π ′′12)

2 = 0.03 ≥ 0,
(500, 200) maximizes profits.
(b) The profit function is now, π̂(Q1, Q2) = P1Q1 + 90Q2 − 0.1Q2

1 − 0.1Q1Q2 − 0.1Q2
2. First-order

conditions for maximal profit: π̂1 = P1−0.2Q1−0.1Q2 = 0, π̂2 = 90−0.1Q1−0.2Q2 = 0. If we need
to have Q1 = 400, the first-order conditions reduce to P1 − 80− 0.1Q2 = 0 and 90− 40− 0.2Q2 = 0.
It follows that P1 = 105.

3. (a) Stationary points where P ′1(x, y) = −0.2x−0.2y+47 = 0 and P ′2(x, y) = −0.2x−0.4y+48y = 0.
It follows that x = 230 and y = 5. Moreover, P ′′11 = −0.2 ≤ 0, P ′′12 = −0.2, and P ′′22 = −0.4 ≤ 0.
Since also P ′′11P

′′
22 − (P ′′12)

2 = 0.04 ≥ 0, (230, 5) maximizes profits. (b) With x + y = 200, and so
y = 200− x, the new profit function is π̂(x) = f (x, 200− x) = −0.1x2 + 39x + 1000. This function
is easily seen to have maximum at x = 195. Then y = 200− 195 = 5.

4. (a) Stationary points:(i) f ′1(x, y) = 3x2 − 2xy = x(3x − 2y) = 0, (ii) f ′2(x, y) = −x2 + 2y = 0. From
(i), x = 0 or 3x = 2y. If x = 0, then (ii) gives y = 0. If 3x = 2y, then (ii) gives 3x = x2, and so x = 0
or x = 3. If x = 3, then (ii) gives y = x2/2 = 9/2. So the stationary points are (0, 0) and (3, 9/2).
(b) (i) f ′1(x, y) = ye4x2−5xy+y2

(8x2 − 5xy + 1) = 0, (ii) f ′2(x, y) = xe4x2−5xy+y2
(2y2 − 5xy + 1) = 0.

If y = 0, then (i) is satisfied and (ii) is only satisfied when x = 0. If x = 0, then (ii) is satisfied and
(i) is only satisfied when y = 0. Thus, in addition to (0, 0), any other stationary point must satisfy
8x2 − 5xy + 1 = 0 and 2y2 − 5xy + 1 = 0. Subtracting the second from the first yields 8x2 = 2y2,
or y = ±2x. Inserting y = −2x into 8x2 − 5xy + 1 = 0 yields 18x2 + 1 = 0, which has no solutions.
Inserting y = 2x into 8x2 − 5xy + 1 = 0 yields x2 = 1

2 , and so x = ± 1
2

√
2. We conclude that the

stationary points are: (0, 0) and ( 1
2

√
2,
√

2), (− 1
2

√
2,−√2)

5. (a) The first-order conditions for (K∗, L∗, T ∗) to maximize π are: π ′K = pa/K∗ − r = 0, π ′L =
pb/L∗ − w = 0, π ′T = pc/T ∗ − q = 0. Hence, K∗ = ap/r , L∗ = bp/w, T ∗ = cp/q.
(b) π∗ = pa ln(ap)−pa ln r +pb ln(bp/w)+pc ln(cp/q)− ap− bp− cp = −pa ln r plus terms that
do not depend on r . So ∂π∗/∂r = −pa/r = −K∗. (c) See the text.
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7. (a) f ′1(x, y) = 2x−y−3x2, f ′2(x, y) = −2y−x, f ′′11(x, y) = 2−6x, f ′′12(x, y) = −1, f ′′22(x, y) = −2.
Stationary points where 2x− y− 3x2 = 0 and−2y− x = 0. The last equation yields y = −x/2, which
inserted into the second equation gives x( 5

6 − x) = 0. It follows that there are two stationary points,
(x1, y1) = (0, 0) and (x2, y2) = (5/6,−5/12). These points are classified in the following table:

(x, y) A B C AC − B2 Type of point

(0, 0) 2 −1 −2 −5 Saddle point

( 5
6 ,− 5

12 ) −3 −1 −2 5 Lok. max. point

(b) f is concave in the domain where f ′′11 ≤ 0, f ′′22 ≤ 0, and f ′′11f
′′
22− (f ′′12)

2 ≥ 0, i.e. where 2− 6x ≤ 0,
−2 ≤ 0, and (2 − 6x)(−2) − (−1)2 ≥ 0. These conditions are equivalent to x ≥ 1/3 and x ≥ 5/12.
In particular, one must x ≥ 5/12. Since 5/12 > 1/3, f is concave in the set S consisting of all (x, y)

where x ≥ 5/12.
(c) The stationary point (x2, y2) = (5/6,−5/12) found in (a) does belong to S. Since f concave in S,
this is a (global) maximum point for f in S. fmax = 125/432.

8. (a) We find f ′1(x, y) = x − 1 + ay, f ′2(x, y) = a(x − 1) − y2 + 2a2y. Stationary points require that
x−1 = −ay and a(x−1) = y2−2a2y. These two equations yield−a2y = y2−2a2y, and so a2y = y2.
Hence y = 0 or y = a2. Since x = 1− ay, the stationary points are (1, 0) and (1− a3, a2). (Since we
were asked only to show that (1 − a3, a2) is a stationary point, it would suffice to verify that it makes
both partials equal to 0.) (b) Note that the partial derivative of f w.r.t. a, keeping x and y constant is
∂f/∂a = y(x − 1) + 2ay2. Evaluated at x = 1 − a3, y = a2, this partial derivative is also a5, thus
confirming the envelope theorem. (c) See the text.

9. For (a)–(c), see the text. (d) ∂2π̂/∂p2 = −2b, ∂2π̂/∂q2 = −2γ , and ∂2π̂/∂p∂y = β + c. The direct
partials of order 2 are negative and � = (∂2π̂/∂p2)(∂2π̂/∂q2) − (∂2π̂/∂p∂q)2 = 4γ b − (β + c)2, so
the conclusion follows.

14 Constrained Optimization

14.1
4. (a) With L(x, y) = x2 + y2 − λ(x + 2y − 4), the first-order conditions are L′1 = 2x − λ = 0 and

L′2 = 2y − 2λ = 0. From these equations we get 2x = y, which inserted into the constraint gives
x + 4x = 4. So x = 4/5 and y = 2x = 8/5, with λ = 2x = 8/5.
(b) The same method as in (a) gives 2x − λ = 0 and 4y − λ = 0, so x = 2y. From the constraint we
get x = 8 and y = 4, with λ = 16. (c) The first-order conditions imply that 2x + 3y = λ = 3x + 2y,
which implies x = y. So the solution is (x, y) = (50, 50) with λ = 250.

5. The budget constraint is 2x + 4y = 1000, so with L(x, y) = 100xy + x + 2y − λ(2x + 4y − 1000), the
first-order conditions are L′1 = 100y+1−2λ = 0 and L′2 = 100x+2−4λ = 0. From these equations,
by eliminating λ, we get x = 2y, which inserted into the constraint gives 2x + 2x = 1000. So x = 250
and y = 125.

7. The problem is: max −0.1x2 − 0.2xy − 0.2y2 + 47x + 48y − 600 subject to x + y = 200.
With L(x, y) = −0.1x2−0.2xy−0.2y2+47x+48y−600−λ(x+y−200), the first-order conditions
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are L′1 = −0.2x − 0.2y + 47 − λ = 0 and L′2 = −0.2x − 0.4y + 48 − λ = 0. Eliminating λ yields
y = 5, and then the budget constraint gives x = 195.

9. (a) With L(x, y) = 100− e−x − e−y − λ(px + qy −m), L′x = L′y = 0 when e−x = λp and e−y = λq.
Hence, x = − ln(λp) = − ln λ − ln p, y = − ln λ − ln q. Inserting these expressions for x and y

into the constraint, then solving for ln λ, yields ln λ = −(m + p ln p + q ln q)/(p + q). Therefore
x(p, q, m) = [m+ q ln(q/p)]/(p + q), y(p, q, m) = [m+ p ln(p/q)]/(p + q).
(b) x(tp, tq, tm) = [tm + tq ln(tq/tp)]/(tp + tq) = x(p, q, m), so x is homogeneous of degree 0.
In the same way we see that y(p, q, m) is homogeneous of degree 0.

14.2
3. (a) Solving x+2y = a for y yields y = 1

2a− 1
2x, and then x2+y2 = x2+( 1

2a− 1
2x)2 = 5

4x2− 1
2ax+ 1

4a2.
This quadratic function certainly has a minimum at x = a/5. (b) L(x, y) = x2 + y2 − λ(x + 2y − a).
The necessary conditions are L′1 = 2x − λ = 0, L′2 = 2y − 2λ = 0, implying that 2x = y. From the
constraint, x = a/5 and then y = 2a/5, λ = 2a/5.

The value function f ∗(a) = (a/5)2 + (2a/5)2 = a2/5, so df ∗(a)/da = 2a/5, which is also the
value of the Lagrangian multiplier. Equation (2) is confirmed. (c) See the text.

4. (a) With L(x, y) = √x+y−λ(x+4y−100), the first-order conditions for (x∗, y∗) to solve the problem
are: (i) ∂L/∂x = 1/2

√
x∗ −λ = 0 (ii) ∂L/∂y = 1− 4λ = 0. From (ii), λ = 1/4, which inserted into

(i) yields
√

x∗ = 2, so x∗ = 4. Then y∗ = 25− 1
4 4 = 24, and maximal utility is U∗ = √x∗ + y∗ = 26.

(b) Denote the new optimal values of x and y by x̂ and ŷ. If 100 is changed to 101, still λ = 1/4 and
x̂ = 4. The constraint now gives 4+ 4ŷ = 101, so that ŷ = 97/4 = 24.25, with Û = √x̂ + ŷ = 26.25.
The increase in the maximum utility as 100 is increased to 101, is thus Û −U∗ = 0.25 = λ. (In general,
the increase in utility is approximately equal to the value of the Lagrange multiplier.)
(c) The necessary conditions for optimality are now ∂L/∂x = 1/2

√
x∗−λp = 0, ∂L/∂y = 1−λq = 0.

Proceeding in the same way as in (a), we find λ = 1/q,
√

x∗ = q/2p, and so x∗ = q2/4p2, with
y∗ = m/q − q/4p. (Note that y∗ > 0 ⇐⇒ m > q2/4p.) (If we solve the constraint for y, the utility
function is u(x) = √x + (m − px)/q. We see that u′(x) = 1/2

√
x − p/q = 0 for x∗ = q2/4p2 and

u′′(x) = −(1/4)x−3/2 < 0 when x > 0. So we have found the maximum.)

5. (a) px∗ = pa+α/λ and qy∗ = qb+β/λ give m = px∗+qy∗ = pa+qb+(α+β)/λ = pa+qb+1/λ,
so 1/λ = m− (pa+qb). The expressions given in (∗∗) are now easily established. (If we think of a and
b as kind of existence minimum of the two goods, the assumption pa+qb < m means that the consumer
can afford to buy (a, b).) (b) With the U∗ given in the answer, since α + β = 1,
∂U∗

∂m
= α

m− (pa + qb)
+ β

m− (pa + qb)
= 1

m− (pa + qb)
= λ > 0. Moreover,

∂U∗

∂p
= −αa

m− (pa + qb)
− α

p
+ −βa

m− (pa + qb)
= −a

m− (pa + qb)
− α

p
= −aλ− α

p
, and−∂U∗

∂m
x∗ =

−λ(a + α

λp
) = −aλ− α

p
, so

∂U∗

∂p
= −∂U∗

∂m
x∗. The last equality is shown in the same way.

6. f (x, T ) = x
∫ T

0 [−t3 + (αT 2 + T − 1)t2 + (T − αT 3)t] dt = x
∣∣T
0 [− 1

4 t4 + (αT 2 + T − 1) 1
3 t3 +

(T − αT 3) 1
2 t2] = − 1

6αxT 5 + 1
12xT 4 + 1

6xT 3. In the same way, g(x, T ) = 1
6xT 3. The solution of

(∗) is x = 384α3M , T = 1/4α, with f ∗(M) = M +M/16α. (The easiest way to solve the problem
is to note that because 1

6xT 3 = M , the problem reduces to that of maximizing M + 1
2MT − αMT 2

for T ≥ 0. For T = 0, the expression is equal to M , and its maximum is attained for T = 1/4α.)
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Alternatively, eliminating the Lagrange multiplier from the first-order conditions f ′1 = λg′1 and f ′2 = λg′2,
we eventually obtain T = 1/4α. The Lagrange multiplier is λ = 1+ 1/16α. Clearly, ∂f ∗(M)/∂M = λ,
which confirms (2).

14.3
1. (a) With L(x, y) = 3xy − λ(x2 + y2 − 8), the first-order conditions are L′1 = 3y − 2λx = 0 and L′2 =

3x−2λy = 0. Since (0, 0) does not satisfy the constraint, from these equations we get x2 = y2. Inserted
into the constraint this yields x2 = 4, and so x = ±2, and the solution candidates are: (2, 2), (2,−2),
(−2, 2), (−2,−2). Here f (2, 2) = f (−2,−2) = 12 and f (−2, 2) = f (2,−2) = −12. So (2, 2) and
(−2,−2) solves the maximization problem, and (−2, 2) and (2,−2) solves the minimization problem,
because the extreme value theorem ensures that solutions exist. (f is continuous and the constraint curve
is a closed bounded set (a circle).)
(b) With L = x + y − λ(x2 + 3xy + 3y2 − 3), the first-order conditions are 1 − 2λx − 3λy = 0
and 1 − 3λx − 6λy = 0. From these equations we get 2λx + 3λy = 3λx + 6λy, or λ(3y + x) = 0.
Here λ = 0 is impossible, so x = −3y. Inserted into the constraint we have (3,−1) and (−3, 1) as the
only possible solutions of the maximization and minimization problems, respectively. The extreme value
theorem ensures that solutions exist. (The objective function is continuous and the constraint curve is a
closed bounded set (an ellipse, see (5.5.5)).

2. (a) With L = x2+y2−2x+1−λ(x2+4y2−16), the first-order conditions are (i) 2x−2−2λx = 0 and
(ii) 2y − 8λy = 0. Equation (i) yields λ = 1− 1/x (why can we be sure that x �= 0?), and equation (ii)
shows that y = 0 or λ = 1/4. If y = 0, then x2 = 16−4y2 = 16, so x = ±4, and then gives λ = 1∓1/4.
If y �= 0, then λ = 1/4 and (i) gives 2x − 2 − x/2 = 0, so x = 4/3. The constraint x2 + 4y2 = 16
now yields 4y2 = 16 − 16/9 = 128/9, so y = ±√32/9 = ±4

√
2/3. Thus, there are four solution

candidates: (i) (x, y, λ) = (4, 0, 3/4), (ii) (x, y, λ) = (−4, 0, 5/4), (iii) (x, y, λ) = (4/3, 4
√

2/3, 1/4),
and (iv) (x, y, λ) = (4/3,−4

√
2/3, 1/4). Of these, the second is the maximum point (while (iii) and (iv)

are the minimum points).
(b) The Lagrangian is L = ln (2+ x2)+y2−λ(x2+2y−2). Hence, the necessary first-order conditions
for (x, y) to be a minimum point are (i) ∂L/∂x = 2x/(2+ x2)− 2λx = 0 (ii) ∂L/∂y = 2y − 2λ = 0,
(iii) x2 + 2y = 2. From (i) we get x

(
1/(2+ x2)− λ

) = 0, so x = 0 or λ = 1/(2+ x2).
(I) If x = 0, then (iii) gives y = 1, so (x1, y1) = (0, 1) is a candidate.
(II) If x �= 0, then y = λ = 1/(2+ x2) , where we used (ii). Inserting y = 1/(2+ x2) into (iii) gives
x2 + 2/(2+ x2) = 2 ⇐⇒ 2x2 + x4 + 2 = 4+ 2x2 ⇐⇒ x4 = 2 ⇐⇒ x = ± 4√2.

From (iii), y = 1− 1
2x2 = 1− 1

2

√
2. Thus, (x2, y2) = (

4√2, 1− 1
2

√
2) and (x3, y3) = (− 4√2, 1− 1

2

√
2)

are candidates. Now f (x1, y1) = f (0, 1) = ln 2 + 1 ≈ 1.69, f (x2, y2) = f (x3, y3) = ln (2+√2 ) +
(1 − 1

2

√
2 )2 = ln (2+√2 ) + 3

2 −
√

2 ≈ 1.31. Hence, the minimum points for f (x, y) (subject to
x2 + 2y = 2) are (x2, y2) and (x3, y3).

4. (a) With L = 24x − x2 + 16y − 2y2 − λ(x2 + 2y2 − 44), the first-order conditions are (i) L′1 =
24−2x−2λx = 0 and (ii) L′2 = 16−4y−4λy = 0. From (i) x(1+λ) = 12 and from (ii) y(1+λ) = 4.
Eliminating λ from (i) and (ii) we get x = 3y. Inserted into the constraint, 11y2 = 44, so y = ±2, and
then x = ±6. So there are two candidates, (x, y) = (6, 2) and (−6,−2), with λ = 1. Computing the
objective function at these two points, the only possible solution is (x, y) = (6, 2). Since the objective
function is continuous and the constraint curve is closed and bounded (an ellipse), the extreme value
theorem assures us that the optimum is found. (b) According to (14.2.3) the approximate change is
λ · 1 = 1.
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14.4

4. The minimum is 1 at (x, y) = (−1, 0). Actually, this problem is quite tricky. The Lagrangian can be
written in the form L = (x + 2)2 + (1− λ)y2 + λx(x + 1)2. The only stationary point which satisfies
the constraint is (0, 0), with λ = −4, and with f (0, 0) = 4. (In fact, L′2 = 0 only if λ = 1 or y = 0. For
λ = 1, L′1 = 3(x + 1)2+ 2 > 0 for all x. For y = 0, the constraint gives x = 0 or x = −1. But x = −1
gives L′1 = 2, so x = 0 is necessary for a stationary point.) Yet at (−1, 0) both g′1(−1, 0) and g′2(−1, 0)

are 0, and the Lagrange multiplier method fails. The given problem is to minimize (the square of) the
distance from (−2, 0) to a point on the graph of g(x, y) = 0. But the graph consists of the isolated point
(−1, 0) and a smooth curve, as illustrated in Fig. SM14.4.4.

y

−6
−5

−4
−3
−2
−1

1
2

3
4
5
6

x−3−2−1 1 2 3 4

(x, y)

y2 = x(x + 1)2

d

Figure SM14.4.4

14.5

4. U ′′11(x, y) = a(a − 1)xa−2 ≤ 0, U ′′22(x, y) = a(a − 1)ya−2 ≤ 0, and U ′′12(x, y) = 0, so U is concave.
With L = xa + ya − λ(px + qy − m), the first-order conditions are L′1 = axa−1 − λp = 0 and
L′2 = aya−1 − λq = 0. Hence, axa−1 = λp and aya−1 − λq. Eliminating λ we get (x/y)a−1 = p/q,
and so x = y(p/q)1/(a−1). Inserted into the budget constraint we get
px + qy = py(p/q)1/(a−1) + qy = ypa/(a−1)q−1/(a−1) + qy = yq−1/(a−1)[pa/(a−1) + qa/(a−1)] = m,
and so y = mq1/(a−1)/[pa/(a−1) + qa/(a−1)]. A similar expression is obtained for x.

14.6

1. (a) L′x = 2x − λ = 0, L′y = 2y − λ = 0, L′z = 2z− λ = 0. It follows that x = y = z, etc. See the text.

3. (a)The Lagrangian isL = α ln x+β ln y+(1−α−β) ln(L−�)−λ(px+qy−w�−m), which is stationary
when: (i) L′x = α/x∗ −λp = 0; (ii) L′y = β/y∗ −λq = 0; (iii) L′� = −(1−α−β)/(L−�∗)+λw = 0.
From (i) and (ii), qy∗ = (β/α)px∗, while (i) and (iii) yield �∗w = wL− [(1− α− β)/α]px∗. Insertion
into the budget constraint and solving for x∗ yields the answer in the text. The corresponding values for
y∗ and �∗ follows. The assumption m ≤ [(1− α − β)/α]wL ensures that �∗ ≥ 0. (b) See the text.

6. The Lagrangian is L = x + y − λ(x2 + 2y2 + z2 − 1)− μ(x + y + z− 1), which is stationary when:
(i) L′x = 1 − 2λx − μ = 0; (ii) L′y = 1 − 4λy − μ = 0; (iii) L′z = −2λz − μ = 0. From (i) and
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(ii), λ(x − 2y) = 0. If λ = 0, then (ii) and (iii) yield the contradiction μ = 1 and μ = 0. Therefore
x = 2y instead. Substituting this value for x into the constraints gives 6y2 + z2 = 1, 3y + z = 1.
Thus z = 1 − 3y and 1 = 6y2 + (1 − 3y)2 = 15y2 − 6y + 1. Hence y = 0 or y = 2/5, implying
that x = 0 or 4/5, and that z = 1 or −1/5. The only two solution candidates are (x, y, z) = (0, 0, 1)

with λ = −1/2, μ = 1, and (x, y, z) = (4/5, 2/5,−1/5) with λ = 1/2, μ = 1/5. Because x + y is
0 at (0, 0, 1) and 6/5 at (4/5, 2/5,−1/5), these are respectively the minimum and the maximum. (The
constraints determine geometrically the curve which is the intersection of an ellipsoid (see Fig. 11.4.2)
and a plane. The continuous function x + y does attain a maximum and a minimum over this closed
bounded set.)

7. (a) With a Cobb–Douglas utility function, U ′k(x) = αkU(x)/xk , so from (6) (with j = 1), we have
pk/p1 = U ′k(x)/U ′1(x) = αkx1/α1xk . Thus pkxk = (ak/a1)p1x1. Inserted into the budget constraint, we
have p1x1 + (a2/a1)p1x1 + · · · + (an/a1)p1x1 = m, which implies that p1x1 = a1m/(a1 + · · · + an).
Similarly, pkxk = akm/(a1 + · · · + an) for k = 1, . . . , n.

(b) From (6) (with j = 1), we get xa−1
k /xa−1

1 = pk/p1 and so xk/x1 = (pk/p1)
−1/(1−a) or pkxk/p1x1 =

(pk/p1)
1−1/(1−a) = (pk/p1)

−a/(1−a). The budget constraint gives

p1x1
[
1+ (p2/p1)

−a/(1−a) + · · · + (pn/p1)
−a/(1−a)

] = m. So p1x1 = mp
−a/(1−a)
1

/ n∑
i=1

p
−a/(1−a)

i .

Arguing similarly for each k, one has xk = mp
−1/(1−a)

k

/ n∑
i=1

p
−a/(1−a)

i for k = 1, . . . , n.

14.7
2. Here L = x + 4y + 3z− λ(x2 + 2y2 + 1

3z2 − b). So necessary conditions are:
(i) L′1 = 1 − 2λx = 0; (ii) L′2 = 4 − 4λy = 0; (iii) L′3 = 3 − 2

3λz = 0. It follows that λ �= 0,
and so x = 1/2λ, y = 1/λ, z = 9/2λ. Inserting these values into the constraint yields λ2 = 9/b, so
λ = ±3/

√
b. The value of the objective function is x + 4y + 3z = 18/λ, so λ = −3/

√
b determines the

minimum point. This is (x, y, z) = (a, 2a, 9a), where a = −√b/6. See the text.

4. With L = x2 + y2 + z− λ(x2 + 2y2 + 4z2 − 1), necessary conditions are: (i) ∂L/∂x = 2x − 2λx = 0,
(ii) ∂L/∂y = 2y − 4λy = 0, (iii) ∂L/∂z = 1 − 8λz = 0. From (i), 2x(1 − λ) = 0, so there are two
possibilities: x = 0 or λ = 1.
(A): x = 0. From (ii), 2y(1− 2λ) = 0, so y = 0 or λ = 1/2.
If (A.1), y = 0, then the constraint gives 4z2 = 1, so z2 = 1/4, or z = ±1/2. Equation (iii) gives
λ = 1/8z, so we have two solution candidates: P1 = (0, 0, 1/2) with λ = 1/4 and P2 = (0, 0,−1/2)
with λ = −1/4.
(A.2) If λ = 1/2, then (iii) gives z = 1/8λ = 1/4. It follows from the constraint that 2y2 = 3/4 (recall
that we assumed x = 0), and hence y = ±√3/8 = ±√6/4. So new candidates are: P3 = (0,

√
6/4, 1/4)

with λ = 1/2, P4 = (0,−√6/4, 1/4) with λ = 1/2.
(B): Suppose λ = 1. Equation (iii) yields z = 1/8, and (ii) gives y = 0. From the constraint, x2 = 15/16,
so x = ±√15/4. Candidates: P5 = (

√
15/4, 0, 1/8) with λ = 1, P6 = (−√15/4, 0, 1/8) with λ = 1.

By computing the values of the criterion function, f (0, 0, 1/2) = 1/2, f (0, 0,−1/2) = −1/2,
f (0,
√

6/4, 1/4) = 5/8, f (0,−√6/4, 1/4) = 5/8, f (
√

15/4, 0, 1/8) = 17/16, f (−√15/4, 0, 1/8) =
17/16, we obtain the conclusion in the text. (c) See the text.

5. The Lagrangian is L = rK + wL− λ(K1/2L1/4 −Q), so necessary conditions are:
(i) L′K = r − 1

2λK−1/2L1/4 = 0, (ii) L′L = w − 1
4λK1/2L−3/4 = 0, (iii) K1/2L1/4 = Q. From
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(i) and (ii) we get by eliminating λ, L = 1
2 (rK/w). Inserting this into the constraint and solving for K

yields the answer given in the text.

14.8

2. (a) Conditions (2)–(3): (i) 2x − 1− 2λx = 0; (ii) 4y − 2λy = 0; (iii) λ ≥ 0, but λ = 0 if x2 + y2 < 1.
(b) From (ii), y(2− λ) = 0, so either (I) y = 0 or (II) λ = 2.
(I) y = 0. If λ = 0, then from (i), x = 1/2 and (x, y) = (1/2, 0) is a candidate for optimum (since
it satisfies all the Kuhn–Tucker conditions). If y = 0 and λ > 0, then from (iii) and x2 + y2 ≤ 1,
x2+ y2 = 1. But then x = ±1, and (x, y) = (±1, 0) are candidates, with λ = 1/2 and 3/2, respectively.
(II) λ = 2. Then from (i), x = −1/2 and (iii) gives y2 = 3/4, so y = ±√3/2. So (−1/2,±√3/2) are
the two remaining candidates. For the conclusion, see the text.

3. (a) The Kuhn-Tucker conditions are: (i) −2(x − 1)− 2λx = 0; (ii) −2yey2 − 2λy = 0;
(iii) λ ≥ 0, with λ = 0 if 4x2 + y2 < a. From (i), x = (1 + λ)−1, and (ii) reduces to y(ey2 + λ) = 0,
and so y = 0 (because ey2 + λ is always positive).
(I): Assume that λ = 0. Then equation (i) gives x = 1. In this case we must have a ≥ x2 + y2 = 1.
(II): Assume that λ > 0. Then (iii) gives x2+y2 = a, and so x = ±√a (remember that y = 0). Because
x = 1/(1+ λ) and λ > 0 we must have 0 < x < 1, so x = √a and a = x2 < 1. It remains to find the

value of λ and check that it is > 0. From equation (i) we get λ = 2(x − 1)

−2x
= 1

x
− 1 = 1√

a
− 1 > 0.

Conclusion: The only point that satisfies the Kuhn–Tucker conditions is (x, y) = (1, 0) if a ≥ 1 and

(
√

a, 0) if 0 < a < 1. The corresponding value of λ is 0 or
1√
a
−1, respectively. In both cases it follows

from Theorem 14.8.1 that we have found the maximum point, because L is concave in (x, y), as we can

see by studying the Hessian

(
L′′11 L′′12

L′′21 L′′22

)
=
(−2− 2λ 0

0 −ey2
(2+ 4y2)− 2λ

)
.

(b) If a ∈ (0, 1) we have f ∗(a) = f (
√

a, 0) = 2 − (
√

a − 1)2 − 1 = 2
√

a − a, and for a ≥ 1 we
get f ∗(a) = f (1, 0) = 1 (not 2, as it says in the answer section of the first printing of the book). The
derivative of f ∗ is as given in the book, but note that in order to find the derivative df ∗(a)/da when
a = 1, we need to show that the right and left derivatives (see page 242 in the book)

(f ∗)′(1+) = lim
h→0+

f ∗(1+ h)− f ∗(1)

h
and (f ∗)′(1−) = lim

h→0−
f ∗(1+ h)− f ∗(1)

h

exist and are equal. The right derivative is obviously 0, since f ∗(a) = 1 for all a ≥ 1. To find the left
derivative we need to calculate limh→0−(2

√
1+ h − (1 + h) − 1)/h. A straightforward application of

l’Hôpital’s rule shows that this limit is also 0. Hence (f ∗)′(1) exists and equals 0.

14.9

2. (a) The admissible set is the shaded region in Fig. A14.9.2 in the text.
(b) With the constraints g1(x, y) = −x − y ≤ −4, g2(x, y) = −x ≤ 1, g3(x, y) = −y ≤ −1,
the Lagrangian is L = x + y − ex − ex+y − λ1(−x − y + 4) − λ2(−x − 1) − λ3(−y + 1). The
first-order conditions are that there exist nonnegative numbers λ1, λ2, and λ3 such that (i) L′x =
1 − ex − ex+y + λ1 + λ2 = 0; (ii) L′y = 1 − ex+y + λ1 + λ3 = 0; (iii) λ1(−x − y + 4) = 0;
(iv) λ2(−x − 1) = 0; (v) λ3(−y + 1) = 0. (We formulate the complementary slackness conditions as
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in (14.8.5).) From (ii), ex+y = 1 + λ1 + λ3. Inserting this into (i) yields λ2 = ex + λ3 ≥ ex > 0.
Because λ2 > 0, (iv) implies that x = −1. So any solution must lie on the line (II) in the figure, which
shows that the third constraint must be slack. (Algebraically, because x + y ≥ 4 and x = −1, we have
y ≥ 4 − x = 5 > 1.) So from (v) we get λ3 = 0, and then (ii) gives λ1 = ex+y − 1 ≥ e4 − 1 > 0.

Thus from (iii), the first constraint is active, so y = 4 − x = 5. Hence the only possible solution is
(x∗, y∗) = (−1, 5). Because L(x, y) is concave, we have found the optimal point.

3. (a) The feasible set is shown in Fig. A14.9.3 in the book. (The function to be maximized is f (x, y) =
x + ay. The level curves of this function are straight lines with slope−1/a if a �= 0, and vertical lines if
a = 0. The dashed line in the figure is such a level curve (for a ≈ −0.25). The maximum point for f is
that point in the feasible region that we shall find if we make a parallel displacement of this line as far to
the right as possible (why to the right?) without losing contact with the shaded region.)

The Lagrangian is L(x, y) = x + ay − λ1(x
2 + y2 − 1) + λ2(x + y) (the second constraint must

be written as −x − y ≤ 0), so the Kuhn–Tucker conditions are:
(i) L′1(x, y) = 1− 2λ1x + λ2 = 0; (ii) L′2(x, y) = a − 2λ1y + λ2 = 0;
(iii) λ1 ≥ 0, with λ1 = 0 if x2 + y2 < 1; (iv) λ2 ≥ 0, with λ2 = 0 if x + y > 0.

(b) From (i), 2λ1x = 1+ λ2 ≥ 1 > 0, so since from (iii) λ1 ≥ 0, we must have λ1 > 0 and also x > 0.
Because λ1 > 0, it follows from (iii) that x2 + y2 = 1, so any maximum point must lie on the circle.
(I) First assume that x + y = 0. Then y = −x, and since x2 + y2 = 1, we get x = 1

2

√
2 (recall that we

have seen that x must be positive) and y = − 1
2

√
2. Adding equations (i) and (ii), we get

1+ a − 2λ1(x + y)+ 2λ2 = 0

and since x + y = 0, we find that λ2 = −(1+ a)/2. Now, λ2 must be ≥ 0, and therefore we must have
a ≤ −1 in this case. Equation (i) gives λ1 = 1+ λ2/2x = 1− a/4x = 1− a/2

√
2.

(II) Then consider the case x + y > 0. Then λ2 = 0, and we get 1− 2λ1x = 0 and a − 2λ1y = 0,
which gives x = 1/(2λ1) and y = a/(2λ1). Since (x, y) must lie on the circle, we then get 1 = x2+y2 =
1+ a2/4λ2

1 , and therefore 2λ1 =
√

1+ a2 . This gives x = 1√
1+ a2

and y = a√
1+ a2

. Because

x + y = (1 + a)/(2λ1), and because x + y is now assumed to be positive, we must have a > −1 in
this case. Conclusion: The only points satisfying the Kuhn–Tucker conditions are the ones given in the
text. Since the feasible set is closed and bounded and f is continuous, it follows from the extreme value
theorem that extreme points exists.

4. (a) The Lagrangian is L = y − x2 + λy + μ(y − x + 2) − ν(y2 − x), which is stationary when
(i) −2x − μ + ν = 0; (ii) 1 + λ + μ − 2νy = 0. Complementary slackness requires in addition,
(iii) λ ≥ 0, with λ = 0 if y > 0; (iv) μ ≥ 0, with μ = 0 if y − x > −2; (v) ν ≥ 0, with ν = 0 if y2 < x.

From (ii), 2νy = 1 + λ + μ > 0, so y > 0. Then (iii) implies λ = 0, and 2νy = 1 + μ. From (i),
x = 1

2 (ν − μ). But x ≥ y2 > 0, so ν > μ ≥ 0, and from (v), y2 = x.
Suppose μ > 0. Then y − x + 2 = y − y2 + 2 = 0 with roots y = −1 and y = 2. Only y = 2 is

feasible. Then x = y2 = 4. Because λ = 0, conditions (i) and (ii) become−μ+ν = 8 and μ−4ν = −1,
so ν = −7/3, which contradicts ν ≥ 0, so (x, y) = (4, 2) is not a candidate. Therefore μ = 0 after
all. Thus x = 1

2ν = y2 and, by (ii), 1 = 2νy = 4y3. Hence y = 4−1/3, x = 4−2/3. This is the only
remaining candidate. It is the solution with λ = 0, μ = 0, and ν = 1/2y = 4−1/6.

(b) We write the problem as max xey−x − 2ey subject to y ≤ 1+ 1
2x, x ≥ 0, y ≥ 0. The Lagrangian is

L = xey−x − 2ey − λ(y − 1− x/2), so the first-order conditions (14.9.4) and (14.9.5) are:
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(i) L′x = ey−x − xey−x + 1
2λ ≤ 0 (= 0 if x > 0); (ii) L′y = xey−x − 2e − λ ≤ 0 (= 0 if y > 0);

(iii) λ ≥ 0 with λ = 0 if y < 1+ 1
2x.

From (i) we have x ≥ 1 + 1
2λex−y ≥ 1, so (iv) (x − 1)ey−x = 1

2λ. Suppose λ > 0. Then (iii)
implies (v) y = 1 + 1

2x > 0. From (ii) and (iv) we then have xey−x = 2e + λ = ey−x + 1
2λ and so

λ = 2ey−x−4e = 2e(e− 1
2 x−2), by (v). But then λ > 0 implies that e− 1

2 x > 2, which contradicts x ≥ 0.
When λ = 0, (iv) gives x = 1. If y > 0, then (ii) yields ey−1 = 2e, and so y − 1 = ln(2e) > 1

2x when
x = 1. Thus feasibility requires that y = 0, so we see that (x, y) = (1, 0) is the only point satisfying all
the conditions, with λ = 0.

5. A feasible triple (x∗1 , x∗2 , k∗) solves the problem iff there exist numbers λ and μ such that (i) 1−2x∗1−λ ≤ 0
(= 0 if x∗1 > 0); (ii) 3 − 2x∗2 − μ ≤ 0 (= 0 if x∗2 > 0); (iii) −2k∗ + λ + μ ≤ 0 (= 0 if k∗ > 0);
(iv) λ ≥ 0 with λ = 0 if x∗1 < k∗; and (v) μ ≥ 0 with μ = 0 if x∗2 < k∗.

If k∗ = 0, then feasibility requires x∗1 = 0 and x∗2 = 0, and so (i) and (iii) imply that λ ≥ 1 and
μ ≥ 3, which contradicts (iii). Thus, k∗ > 0. Next, if μ = 0, then x∗2 ≥ 3/2 and λ = 2k∗ > 0. So
x∗1 = k∗ = 1/4, contradicting x∗2 ≤ k∗. So μ > 0, which implies that x∗2 = k∗. Now, if x∗1 = 0 < k∗,
then λ = 0, which contradicts (i). So 0 < x∗1 = 1

2 (1 − λ). Next, if λ > 0, then x∗1 = k∗ = x∗2 =
1
2 (1 − λ) = 1

2 (3 − μ) = 1
2 (λ + μ). But the last two equalities are only satisfied when λ = −1/3 and

μ = 5/3, which contradicts λ ≥ 0. So λ = 0 after all, with x∗2 = k∗ > 0, μ > 0, x∗1 = 1
2 (1 − λ) = 1

2 .
Now, from (iii) it follows that μ = 2k∗ and so, from (ii), that 3 = 2x∗2 + μ = 4k∗. The only possible
solution is, therefore, (x∗1 , x∗2 , k∗) = (1/2, 3/4, 3/4), with λ = 0 and μ = 3/2. (The Lagrangian is
concave in (x1, x2, k). See FMEA, Theorem 3.2.4.)

6. A minus sign has disappeared in the objective function which should be: −(x + 1
2 )2 − 1

2y2.
(a) See Fig. A14.9.6 in the text. Note that for (x, y) to be admissible, e−x ≤ y ≤ 2/3, and so ex ≥ 3/2.
(b) The Lagrangian is L = −(x+ 1

2 )2− 1
2y2−λ1(e

−x−y)−λ2(y− 2
3 ), and the first-order conditions are:

(i) −(2x + 1) + λ1e
−x = 0; (ii) −y + λ1 − λ2 = 0; (iii) λ1 ≥ 0, with λ1 = 0 if e−x < y;

(iv) λ2 ≥ 0, with λ2 = 0 if y < 2/3. From (i), λ1 = (2x + 1)ex ≥ 3/2, because of (a). From (ii),
λ2 = λ1 − y ≥ 3/2 − 2/3 > 0, so y = 2/3 because of (iii). Solution: (x∗, y∗) = (ln(3/2), 2/3), with
λ1 = 3[ln(3/2)+ 1/2], λ2 = 3 ln(3/2)+ 5/6. The Lagrangian is concave so this is the solution.

Alternative argument: Suppose λ1 = 0. Then from (ii), y = −λ2 ≤ 0, contradicting y ≥ e−x .
So λ1 > 0, and (iii) gives y = e−x . Suppose λ2 = 0. Then from (ii), λ1 = y = e−x and (i) gives
e−2x = 2x + 1. Define g(x) = 2x + 1 − e−2x . Then g(0) = 0 and g′(x) = 2 + 2e−2x > 0. So the
equation e−2x = 2x + 1 has no solution except x = 0. Thus λ2 > 0, etc.

Review Problems for Chapter 14

3. (a) Interpretation of the first-order condition p(x∗) = C ′1(x∗, y∗) − x∗p′(x∗): How much is gained by
selling one ton extra of the first commodity? p(x∗), because this is the price obtained for one ton. How
much is lost? First, selling one ton extra of the first commodity incurs the extra cost C(x∗ + 1, y∗) −
C(x∗, y∗), which is approximately C ′1(x∗, y∗). But since presumably p′(x) < 0, producing one ton extra
leads to a decrease in income which is approximately −x∗p′(x∗) (the number of tons sold times the
decrease in the price. So what we loose by increasing production by 1 ton (C ′1(x∗, y∗) − x∗p′(x∗)) is
approximately what we gain (p(x∗)). The other first-order condition, q(y∗) = C ′2(x∗, y∗) − y∗q ′(y∗)
has a similiar interpretation.
(b) See the text. If we assume that the restriction is x + y ≤ m, we have to add the condition λ ≥ 0, with
λ = 0 if x̂ + ŷ < m.
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4. See the text. If one were to find the partial derivatives of x and y w.r.t. p as well, it would be better to
calculate differentials, which would yield the equations (i) y dp + p dy = 24 dw − w dx − x dw and
(ii) U ′1 dp + p(U ′′11 dx + U ′′12 dy) = U ′2 dw + wU ′′21 dx + wU ′′22 dy, and then solve these equations for
dx and dy in terms of dp and dw.

5. (a) With L = x2 + y2 − 2x + 1− λ( 1
4x2 + y2 − b), the first-order conditions are:

(i) L′1 = 2x − 2− 1
2λx = 0; (ii) L′2 = 2y − 2λy = 0; (iii) 1

4x2 + y2 = b.
From (ii), (1− λ)y = 0, and thus λ = 1 or y = 0.
(I) Suppose first thatλ = 1. Then (i) givesx = 4

3 , and from (iii) we havey2 = b− 1
4x2 = b− 4

9 , which gives

y = ±
√

b − 4
9 . This gives two candidates: (x1, y1) = (4/3,

√
b − 4

9 ) and (x2, y2) = (4/3,−
√

b − 4
9 ).

(II) If y = 0, then from (iii), x2 = 4b, i.e. x = ±2
√

b. This gives two further candidates: (x3, y3) =
(2
√

b, 0) and (x4, y4) = (−2
√

b, 0). The objective function evaluated at the candidates are: f (x1, y1) =
f (x2, y2) = b−1/3, f (x3, y3) = (2

√
b−1)2 = 4b−4

√
b+1, f (x4, y4) = (−2

√
b−1)2 = 4b+4

√
b+1

Clearly, (x4, y4) is the maximum point. To decide which of the points (x3, y3), (x1, y1), or (x2, y2) give
the minimum, we have to decide which of 4b − 4

√
b + 1 and b − 1

3 is the largest. The difference is

4b− 4
√

b+ 1− (b− 1
3

) = 3
(
b− 4

3

√
b+ 4

9

) = 3
(√

b− 2
3

)2
> 0 since b > 4

9 . Thus the minimum occurs
at (x1, y1) and (x2, y2).

The constraint x2/4+ y2 = b is the ellipse indicated in the figure. The objective function f (x, y) =
(x− 1)2+ y2 is the square of the distance between (x, y) and the point (1, 0). The level curves for f are
therefore circles centred at (1, 0), and in the figure we see those two that passes through the maximum
and minimum points. (b) See the text.

y

x

-4

-2

2

4

-4 -2 2 4 6

(x1, y1)

(x3, y3)

(x2, y2)

(x4, y4)

For Problem 14.R.5

7. (a) With L = x2 − 2x + 1+ y2 − 2y − λ[(x + y)
√

x + y + b − 2
√

a], the first-order conditions are:
(i) L′1 = 2x − 2− λ[

√
x + y + b + (x + y)/

√
x + y + b ] = 0,

(ii) L′2 = 2y − 2 − λ[
√

x + y + b + (x + y)/
√

x + y + b ] = 0. From these equations it follows
immediately that 2x − 2 = 2y − 2, so x = y. See the text.
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(b) Differentiation yields: (i) dx = dy; (ii) 6x2 dx + x2 db + 2bx dx = da. From these equations we
easily read off the first-order partials of x and y w.r.t. a and b. Further,

∂2x

∂a2
= ∂

∂a

(
∂x

∂a

)
= ∂

∂a

1

6x2 + 2bx
= − 12x + 2b

(6x2 + 2bx)2

∂x

∂a
= − 12x + 2b

(6x2 + 2bx)3
= − 6x + b

4(3x2 + bx)3

8. (a) The Lagrangian is L = xy−λ1(x
2+ry2−m)−λ2(−x), and the necessary Kuhn–Tucker conditions

for (x∗, y∗) to solve the problem are:

(i) L′1 = y∗ − 2λ1x
∗ + λ2 = 0;

(ii) L′2 = x∗ − 2rλ1y
∗ = 0;

(iii) λ1 ≥ 0, with λ1 = 0 if (x∗)2 + r(y∗)2 < m;
(iv) λ2 ≥ 0, with λ2 = 0 if x∗ > 1;
(v) (x∗)2 + r(y∗)2 ≤ m;
(vi) x∗ ≥ 1

(b) From (ii) and (vi) we see that λ1 = 0 is impossible. Thus λ1 > 0, and from (iii) and (v),

(vii) (x∗)2 + r(y∗)2 = m.

(I): Assume λ2 = 0. Then from (i) and (ii), y∗ = 2λ1x
∗ and x∗ = 2λ1ry

∗, so y∗ = 4λ2
1ry
∗. If

y∗ = 0, then (ii) implies x∗ = 0, which is impossible. Hence, λ2
1 = 1/4r and thus λ1 = 1/2

√
r . Then

y∗ = x∗/
√

r , which inserted into (vii) and solved for x∗ yields x∗ = √m/2 and then y∗ = √m/2r . Note
that x∗ ≥ 1 ⇐⇒ √

m/2 ≥ 1 ⇐⇒ m ≥ 2. Thus for m ≥ 2, x∗ = √m/2 and y∗ = √m/2r , with
λ1 = 1/2

√
r and λ2 = 0 is a solution candidate.

(II): Assume λ2 > 0. Then x∗ = 1 and from (vii) we have r(y∗)2 = m − 1, so y∗ = √(m− 1)/r

(y∗ = −√(m− 1)/r contradicts (ii)). Inserting these values for x∗ and y∗ into (i) and (ii) and solving
for λ1 and λ2 yields λ1 = 1/2

√
r(m− 1) and furthermore, λ2 = (2 − m)/

√
r(m− 1). Note that

λ2 > 0 ⇐⇒ 1 < m < 2. Thus, for 1 < m < 2, the only solution candidate is x∗ = 1, y∗ =√
(m− 1)/r , with λ1 = 1/2

√
r(m− 1) and λ2 = (2−m)/

√
r(m− 1).

The objective function is continuous and the constraint set is obviously closed and bounded, so by the
extreme value theorem there has to be a maximum. The solution candidates we have found are therefore
optimal. (Alternatively, L′′11 = −2λ1 ≤ 0, L′′22 = −2rλ1 ≤ 0, and � = L′′11L

′′
22 − (L′′12)

2 = 4rλ2
1 − 1.

In the case m ≥ 2, � = 0, and in the case 1 < m < 2, � = 1/(m− 1) > 0. Thus in both cases, L(x, y)

is concave.)

15 Matrix and Vector Algebra

15.1

2. Here is one method: Adding the 4 equations gives x1+x2+x3+x4 = 1
3 (b1+b2+b3+b4), after dividing

by 3. From this equation, subtracting each original equation in turn gives x1 = − 2
3b1+ 1

3 (b2+ b3+ b4),
x2 = − 2

3b2 + 1
3 (b1 + b3 + b4), x3 = − 2

3b3 + 1
3 (b1 + b2 + b4), x4 = − 2

3b4 + 1
3 (b1 + b2 + b3).

Systematic elimination of the variables starting by eliminating (say) x4 is an alternative.

6. Suggestion: Solve the first equation for y. Insert this expression for y and x = 93.53 into the third
equation. Solve it for s. Insert the results into the second equation and solve for c, etc.
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15.3

1. (a)

(
0 −2
3 1

)(−1 4
1 5

)
=
(

0 · (−1)+ (−2) · 1 0 · 4+ (−2) · 5
3 · (−1)+ 1 · 1 3 · 4+ 1 · 5

)
=
(−2 −10
−2 17

)
The rest goes in the same way. Note that in (d) AB is not defined because the number of columns in A is
not equal to the number of rows in B.

5. (a) We know that A is an m × n matrix. Let B be a p × q matrix. The matrix product AB is defined if
and only if n = p, and BA is defined if and only if q = m. So for both AB and BA to be defined, it is
necessary and sufficient that B is an n×m matrix.
(b) We know from part (a) that if BA and AB are defined, then B must be a 2 × 2 matrix. So let B =(

x y

z w

)
. Then BA =

(
x y

z w

)(
1 2
2 3

)
=
(

x + 2y 2x + 3y

z+ 2w 2z+ 3w

)
, and AB =

(
1 2
2 3

)(
x y

z w

)
=(

x + 2z y + 2w

2x + 3z 2y + 3w

)
. Hence, BA = AB iff (i) x + 2y = x + 2z, (ii) 2x + 3y = y + 2w,

(iii) z + 2w = 2x + 3z, and (iv) 2z + 3w = 2y + 3w. The first and last of these four equations
are true if and only if y = z, and if y = z, then the second and third are true if and only if x = w − y.
Hence, the matrices B that commute with A are precisely the matrices of the form

B =
(

w − y y

y w

)
= w

(
1 0
0 1

)
+ y

(−1 1
1 0

)

where y and w can be any real numbers.

15.4

2. We start by performing the multiplication

⎛
⎝ a d e

d b f

e f c

⎞
⎠
⎛
⎝ x

y

z

⎞
⎠ =

⎛
⎝ ax + dy + ez

dx + by + f z

ex + fy + cz

⎞
⎠. Next,

(x, y, z)

⎛
⎝ ax + dy + ez

dx + by + f z

ex + fy + cz

⎞
⎠ = (ax2 + by2 + cz2 + 2dxy + 2exz+ 2fyz), which is a 1× 1 matrix.

7. (a) Direct verification yields (i) A2 = (a + d)A− (ad − bc)I2 =
(

a2 + bc ab + bd

ac + cd bc + d2

)

(b) For the matrix A in (a), A2 = 0 if a + d = 0 and ad = bc, so one example with A �= 0 is

A =
(

1 1
−1 −1

)
.

(c) Multiplying (i) in (a) by A and using A3 = 0 yields (ii) (a + d)A2 = (ad − bc)A. Multiplying
by A once more gives (ad − bc)A2 = 0. If ad − bc �= 0, then A2 = 0. If ad − bc = 0, (ii) yields
(a + d)A2 = 0, and if a + d �= 0, again A2 = 0. Finally, if ad − bc = a + d = 0, then (i) implies
A2 = 0.

15.5

6. In general, for any natural number n > 3, one has ((A1A2 · · ·An−1)An)
′ = A′n(A1A2 · · ·An−1)

′.
As the induction hypothesis, suppose the result is true for n − 1. Then the last expression becomes
A′nA′n−1 · · · , A′2A′1, so the result is true for n.
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8. (a) TS = S is shown in the text. A similar argument shows that T2 = 1
2 T + 1

2 S. To prove the last
equality, we do not have to consider the individual elements: T3 = TT2 = T( 1

2 T+ 1
2 S) = 1

2 T2+ 1
2 TS =

1
2 ( 1

2 T+ 1
2 S)+ 1

2 S = 1
4 T+ 3

4 S.

(b) The appropriate formula is (∗) Tn = 21−nT + (1 − 21−n)S. This formula is correct for n = 1
(and for n = 2, 3). Suppose (∗) is true for n = k. Then using the two first equalities in (a), Tk+1 =
TTk = T(21−kT + (1 − 21−k)S) = 21−kT2 + (1 − 21−k)TS = 21−k( 1

2 T + 1
2 S) + (1 − 21−k)S =

2−kT+ 2−kS+ S− 2 · 2−kS = 2−kT+ (1− 2−k)S, which is formula (∗) for n = k + 1.

15.6

3. By using elementary operations, we find that

⎛
⎝

w x y z

2 1 4 3 1
1 3 2 −1 3c

1 1 2 1 c2

⎞
⎠ ∼

⎛
⎝ 1 0 2 2 1− c2

0 1 0 −1 2c2 − 1
0 0 0 0 −5c2 + 3c + 2

⎞
⎠

We can tell from the last matrix that the system has solutions if and only if−5c2 + 3c+ 2 = 0, that is, if
and only if c = 1 or c = −2/5. For these particular values of c we get the solutions in the text.

4. (a) After moving the first row down to row number three, Gaussian elimination yields the matrix⎛
⎝ 1 2 1 b2

0 1 −2 3
2b2 − 1

2b3

0 0 3− 4a b1 + (2a − 3
2 )b2 + ( 1

2 − a)b3

⎞
⎠. Obviously, there is a unique solution iff a �= 3/4.

(b) Put a = 3/4 in part (a). Then the last row in the matrix in (a) becomes (0, 0, 0, b1 − 1
4b3). It follows

that if b1 �= 1
4b3 there is no solution. If b1 = 1

4b3 there are an infinite number of solutions. In fact,
x = −2b2 + b3 − 5t , y = 3

2b2 − 1
2b3 + 2t , z = t , with t ∈ �.

15.7

3. Using the definitions of vector addition and multiplication of a vector by a real number, we get
3(x, y, z) + 5(−1, 2, 3) = (4, 1, 3) ⇐⇒ (3x − 5, 3y + 10, 3z + 15) = (4, 1, 3). Since two vectors
are equal if and only if they are component-wise equal, this vector equation is equivalent to the equation
system 3x − 5 = 4, 3y + 10 = 1, and 3z+ 15 = 3, with the obvious solution x = 3, y = −3 , z = −4.

5. We need to find numbers t and s such that t (2,−1)+s(1, 4) = (4,−11).This vector equation is equivalent
to (2t + s,−t + 4s) = (4,−11), which in turn is equivalent to the equation system (i) 2t + s = 4
(ii) −t + 4s = −11. This system has the solution t = 3, s = −2, so (4,−11) = 3(2,−1)− 2(1, 4).

15.8

2. (a) See the text. (b) As λ runs through [0, 1], the vector x will run through all points on the line segment
S between a and b. In fact, according to the point–point formula, the line L through (3, 1) and (−1, 2)

has the equation x2 = − 1
4x1 + 7

4 or x1 + 4x2 = 7. The line segment S is traced out by having x1 run
through [3,−1] as x2 runs through [1, 2]. Now, (1 − λ)a + λb = (3 − 4λ, 1 + λ). Any point (x1, x2)

on L satisfies x1 + 4x2 = 7 and equals (3 − 4λ, 1 + λ) for λ = 1
4 (3 − x1) = x2 − 1. Any point on the

segment of this line between a = (3, 1) and b = (−1, 2) equals (3− 4λ, 1+ λ) for some λ ∈ [0, 1].
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8. (||a|| + ||b||)2 − ||a + b||2 = ||a||2 + 2||a|| · ||b|| + ||b||2 − (a + b)(a + b) = 2(||a|| · ||b|| − a · b) ≥
2(||a|| · ||b|| − |a · b|) ≥ 0 by the Cauchy–Schwarz inequality (2).

15.9

3. One method: (5, 2, 1) − (3, 4,−3) = (2,−2, 4) and (2,−1, 4) − (3, 4,−3) = (−1,−5, 7) are two
vectors in the plane. The normal (p1, p2, p3) must be orthogonal to both these vectors, so (2,−2, 4) ·
(p1, p2, p3) = 2p1 − 2p2 + 4p3 = 0 and (−1,−5, 7) · (p1, p2, p3) = −p1 − 5p2 + 7p3 = 0. One
solution of these two equations is (p1, p2, p3) = (1,−3,−2). Then using formula (4) with (a1, a2, a3) =
(2,−1, 4) yields (1,−3,−2) · (x1 − 2, x2 + 1, x3 − 4) = 0, or x1 − 3x2 − 2x3 = −3.

A more pedestrian approach is to assume that the equation is ax+ by+ cz = d and require the three
points to satisfy the equation: a + 2c = d, 5a + 2b + c = d, 2a − b + 4c = d. Solve for a, b, and c in
terms of d , insert the results into the equation ax + by + cz = d and cancel d.

Review Problems for Chapter 15

7. (a)

(
1 4 1
2 2 8

) −2
← ∼

(
1 4 1
0 −6 6

)
−1/6

∼
(

1 4 1
0 1 −1

) ←
−4
∼
(

1 0 5
0 1 −1

)
The solution is x1 = 5, x2 = −1.

(b)

⎛
⎝ 2 2 −1 2

1 −3 1 0
3 4 −1 1

⎞
⎠ ←← ∼

⎛
⎝ 1 −3 1 0

2 2 −1 2
3 4 −1 1

⎞
⎠ −2 −3
←
←

∼
⎛
⎝ 1 −3 1 0

0 8 −3 2
0 13 −4 1

⎞
⎠ 1/8

∼
⎛
⎝ 1 −3 1 0

0 1 −3/8 1/4
0 13 −4 1

⎞
⎠ −13
←

∼
⎛
⎝ 1 −3 1 0

0 1 −3/8 1/4
0 0 7/8 −9/4

⎞
⎠

8/7

∼
⎛
⎝ 1 −3 1 0

0 1 −3/8 1/4
0 0 1 −18/7

⎞
⎠ ←3 ∼

⎛
⎝ 1 0 −1/8 3/4

0 1 −3/8 1/4
0 0 1 −18/7

⎞
⎠ ←←

3/8 1/8

∼
⎛
⎝ 1 0 0 3/7

0 1 0 −5/7
0 0 1 −18/7

⎞
⎠. The solution is x1 = 3/7, x2 = −5/7, x3 = −18/7.

(c)

(
1 3 4 0
5 1 1 0

) −5
← ∼

(
1 3 4 0
0 −14 −19 0

)
−1/14

∼
(

1 3 4 0
0 1 19/14 0

) ←
−3
∼
(

1 0 −1/14 0
0 1 19/14 0

)
The solution is x1 = (1/14)x3, x2 = −(19/14)x3, where x3 is arbitrary. (One degree of freedom.)

10. (a) See the text.
(b) In (a) we saw that a can be produced even without throwing away outputs. For b to be possible if we
are allowed to throw away output, there must exist a λ in [0, 1] such that 6λ+ 2 ≥ 7, −2λ+ 6 ≥ 5, and
−6λ+ 10 ≥ 5. These inequalities reduce to λ ≥ 5/6, λ ≤ 1/2, λ ≤ 5/6, which are incompatible.
(c) Revenue= R(λ) = p1x1+p2x2+p3x3 = (6p1− 2p2− 6p3)λ+ 2p1+ 6p2+ 10p3. If the constant
slope 6p1 − 2p2 − 6p3 is > 0, then R(λ) is maximized at λ = 1; if 6p1 − 2p2 − 6p3 is < 0, then R(λ)

is maximized at λ = 0. Only in the special case where 6p1 − 2p2 − 6p3 = 0 can the two plants both
remain in use.
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11. If PQ − QP = P, then PQ = QP + P, and so P2Q = P(PQ) = P(QP + P) = (PQ)P + P2 =
(QP+P)P+P2 = QP2+2P2. Thus, P2Q−QP2 = 2P2. Moreover, P3Q = P(P2Q) = P(QP2+2P2) =
(PQ)P2 + 2P3 = (QP + P)P2 + 2P3 = QP3 + 3P3 Hence, P3Q−QP3 = 3P3.

16 Determinants and Inverse Matrices
16.1

3. (a) Cramer’s rule gives x =

∣∣∣∣ 8 −1
5 −2

∣∣∣∣∣∣∣∣ 3 −1
1 −2

∣∣∣∣
= −16+ 5

−6+ 1
= 11

5
, y =

∣∣∣∣ 3 8
1 5

∣∣∣∣∣∣∣∣ 3 −1
1 −2

∣∣∣∣
= 15− 8

−5
= −7

5
.

(b) and (c) are done in the same way.

7. (b) Note that because c1 is the proportion of income consumed, we can assume that 0 ≤ c1 ≤ 1. Likewise,
0 ≤ c2 ≤ 1. Because m1 ≥ 0 and m2 ≥ 0, we see that D > 0 (excluding the case c1 = c2 = 1).
(c) Y2 depends linearly on A1. Increasing A1 by one unit changes Y2 by the factor m1/D ≥ 0, so Y2

increases when A1 increases.
Here is an economic explanation: An increase in A1 increases nation 1’s income, Y1. This in turn

increases nation 1’s imports, M1. However, nation 1’s imports are nation 2’s exports, so this causes nation
2’s income, Y2, to increase, and so on.

16.2

1. (a) Sarrus’s rule yields:

∣∣∣∣∣∣
1 −1 0
1 3 2
1 0 0

∣∣∣∣∣∣ = 0− 2+ 0− 0− 0− 0 = −2.

(b)

∣∣∣∣∣∣
1 −1 0
1 3 2
1 2 1

∣∣∣∣∣∣ = 3− 2− 0− 0− 4− (−1) = −2

(c) 5 of the 6 products have 0 as a factor. The only product that does not include 0 as a factor is the product
of the terms on the main diagonal. The determinant is therefore adf .

(d)

∣∣∣∣∣∣
a 0 b

0 e 0
c 0 d

∣∣∣∣∣∣ = aed + 0+ 0− bec − 0− 0 = e(ad − bc)

3. (a) The determinant of the coefficient matrix is |A| =
∣∣∣∣∣∣

1 −1 1
1 1 −1
−1 −1 −1

∣∣∣∣∣∣ = −4.

The numerators in (16.2.4) are (verify!)∣∣∣∣∣∣
2 −1 1
0 1 −1
−6 −1 −1

∣∣∣∣∣∣ = −4 ,

∣∣∣∣∣∣
1 2 1
1 0 −1
−1 −6 −1

∣∣∣∣∣∣ = −8 ,

∣∣∣∣∣∣
1 −1 2
1 1 0
−1 −1 −6

∣∣∣∣∣∣ = −12

Hence, (4) yields the solution x1 = 1, x2 = 2, and x3 = 3. Inserting this into the original system of
equations confirms that this is a correct answer.
(b) The determinant of the coefficient matrix is equal to −2, and the numerators in (16.2.4) are all 0, so
the unique solution is x1 = x2 = x3 = 0. (c). Follow the pattern in (a).
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6. (a) Substituting T = d + tY into the expression for C gives C = a − bd + b(1− t)Y . Substituting for
C in the expression for Y then yields Y = a + b(Y − d − tY )+A0. Then solve for Y , T , and C in turn
to derive the answers given in (b) below.

(b) We write the system as

⎛
⎝ 1 −1 0
−b 1 b

−t 0 1

⎞
⎠
⎛
⎝ Y

C

T

⎞
⎠ =

⎛
⎝A0

a

d

⎞
⎠. Then Cramer’s rule yields

Y =

∣∣∣∣∣∣
A0 −1 0
a 1 b

d 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
1 −1 0
−b 1 b

−t 0 1

∣∣∣∣∣∣
= a − bd + A0

1− b(1− t)
, C =

∣∣∣∣∣∣
1 A0 0
−b a b

−t d 1

∣∣∣∣∣∣∣∣∣∣∣∣
1 −1 0
−b 1 b

−t 0 1

∣∣∣∣∣∣
= a − bd + A0b(1− t)

1− b(1− t)

T =

∣∣∣∣∣∣
1 −1 A0

−b 1 a

−t 0 d

∣∣∣∣∣∣∣∣∣∣∣∣
1 −1 0
−b 1 b

−t 0 1

∣∣∣∣∣∣
= t (a + A0)+ (1− b)d

1− b(1− t)

(This problem is meant to train you in using Cramer’s rule. Note how systematic elimination is much
more efficient.)

16.3

1. Each of the determinants is a sum of 4! = 24 terms. In (a) there is only one nonzero term. In fact,
according to (16.3.4), the value of the determinant is abcd. (b) Only two terms in the sum are nonzero:
The product of the elements on the main diagonal, which is 1 · 1 · 1 · d, with a plus sign, and the term
shown here: ∣∣∣∣∣∣∣∣

1 0 0 1
0 1 0 0
0 0 1 0
a b c d

∣∣∣∣∣∣∣∣
Since there are 5 rising lines between the pairs, the sign of the product 1 · 1 · 1 · a must be minus. So the
value of the determinant is d − a. (c) 4 terms are nonzero. See the text.

16.4

10. (a) and (b) see the text. (c) We have (In−A)(In+A) = In · In−AIn+ InA−AA = In−A+A−A2 =
In − A2, and this expression equals 0 if and only if A2 = In.
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12. The description in the answer in the text amounts to the following:

Dn =

∣∣∣∣∣∣∣∣
a + b a · · · a

a a + b · · · a
...

...
. . .

...

a a · · · a

∣∣∣∣∣∣∣∣
← · · · ←

1 · · ·
. . .

1

=

∣∣∣∣∣∣∣∣
na + b na + b · · · na + b

a a + b · · · a
...

...
. . .

...

a a · · · a + b

∣∣∣∣∣∣∣∣

= (na + b)

∣∣∣∣∣∣∣∣
1 1 · · · 1
a a + b · · · a
...

...
. . .

...

a a · · · a + b

∣∣∣∣∣∣∣∣
−a · · · −a

← · · ·
. . .

←
= (na + b)

∣∣∣∣∣∣∣∣
1 1 · · · 1
0 b · · · 0
...

...
. . .

...

0 0 · · · b

∣∣∣∣∣∣∣∣
According to (16.3.4), the last determinant is bn−1. Thus Dn = (na + b)bn−1.

16.5

1. (a) See the answer. (b) One possibility is to expand by the second row or the third column (because they
have both two zero entries). But it is easier first to use elementary operations to get a row or a column
with one more zero. For instance in this way:

∣∣∣∣∣∣∣∣
1 2 3 4
0 −1 0 11
2 −1 0 3
−2 0 −1 3

∣∣∣∣∣∣∣∣
−2 2

←
←

=

∣∣∣∣∣∣∣∣
1 2 3 4
0 −1 0 11
0 −5 −6 −5
0 4 5 11

∣∣∣∣∣∣∣∣
=
∣∣∣∣∣∣
−1 0 11
−5 −6 −5

4 5 11

∣∣∣∣∣∣
−5 −4
←
←

=
∣∣∣∣∣∣
−1 0 11

0 −6 −60
0 5 55

∣∣∣∣∣∣
= −1

∣∣∣∣−6 −60
5 55

∣∣∣∣ = −(−330+ 300) = 30

When computing determinants one can use elementary row operations as well as column operations, but
column operations become meaningless when solving linear equation systems using Gaussian elimination.
When elementary operations have produced a row or column with only one non-zero element, then it is
natural to expand the determinant by that row or column. (c) See the answer in the text.

16.6

6. (b) From (a), A3− 2A2+A = I, or A(A2− 2A+ I) = I, so using Theorem 16.6.2, A−1 = A2− 2A+ I.
The last expression can also be written (A− I)2. (c) See the text.

9. B2+B =
(

3/2 −5
−1/4 3/2

)
+
(−1/2 5

1/4 −1/2

)
=
(

1 0
0 1

)
= I. One can verify directly that B3−2B+

I = 0, but here is an alternative that makes use of B2+B = I: B3− 2B+ I = B3+B2−B2− 2B+ I =
B(B2 + B)− B2 − 2B+ I = B− B2 − 2B+ I = −(B2 + B)+ I = 0.
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16.7

1. (a) The determinant is 10−12 = −2, and the adjoint is

(
C11 C21

C12 C22

)
=
(

5 − 3
−4 2

)
, so the inverse is

− 1
2

(
5 −3
−4 2

)
=
(−5/2 3/2

2 −1

)

(b) If we denote the matrix by A, the adjoint is

adj A =
⎛
⎝C11 C21 C31

C12 C22 C32

C13 C23 C33

⎞
⎠ =

⎛
⎝ 1 4 2

2 −1 4
4 −2 −1

⎞
⎠

and the determinant is |A| = a11C11 + a21C21 + a31C31 = 1 · 1+ 2 · 4+ 0 · 2 = 9, (by expansion along
the first column). Hence,

A−1 = 1
9 (adj A) = 1

9

⎛
⎝ 1 4 2

2 −1 4
4 −2 −1

⎞
⎠

(c) Since the determinant is 0 there is no inverse.

3. The determinant of I − A is |I − A| = 0.496, and the adjoint is adj(I − A) =
⎛
⎝ 0.72 0.64 0.40

0.08 0.76 0.32
0.16 0.28 0.64

⎞
⎠.

Hence (I − A)−1 = 1

0.496
· adj(I − A) ≈

⎛
⎝ 1.45161 1.29032 0.80645

0.16129 1.53226 0.64516
0.32258 0.56452 1.29032

⎞
⎠, rounded to five decimal

places. If you want an exact answer, note that
1000

496
= 125

62
and adj(I−A) =

⎛
⎝ 0.72 0.64 0.40

0.08 0.76 0.32
0.16 0.28 0.64

⎞
⎠ =

1

25

⎛
⎝ 18 16 10

2 19 8
4 7 16

⎞
⎠. This gives (I− A)−1 = 5

62

⎛
⎝ 18 16 10

2 19 8
4 7 16

⎞
⎠.

4. Let B denote the n × p matrix whose ith column has the elements b1i , b2i , . . . , bni . The p systems of
n equations in n unknowns can be expressed as AX = B, where A is n × n and X is n × p. Following
the method illustrated in Example 2, exactly the same row operations that transform the n × 2n matrix
(A : I) into (I : A−1) will also transform the n × (n + p) matrix (A : B) into (I : B∗), where
B∗ is the matrix with elements b∗ij . (In fact, because these row operations are together equivalent to
premultiplication by A−1, it must be true that B∗ = A−1B.) When k = r , the solution to the system is
x1 = b∗1r , x2 = b∗2r , . . . , xn = b∗nr .

5. (a) The following shows that the inverse is

(−2 −1
3
2 − 1

2

)
:

(
1 2 1 0
3 4 0 1

) −3
← ∼

(
1 2 1 0
0 −2 −3 1

)
− 1

2
∼
(

1 2 1 0
0 1 3

2 − 1
2

)←
−2
∼(

1 2 −2 −1
0 1 3

2 − 1
2

)
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(b) ⎛
⎝ 1 2 3 1 0 0

2 4 5 0 1 0
3 5 6 0 0 1

⎞
⎠ −2 −3
←
←

∼
⎛
⎝ 1 2 3 1 0 0

0 0 −1 −2 1 0
0 −1 −3 −3 0 1

⎞
⎠ ←
←

∼
⎛
⎝ 1 2 3 1 0 0

0 −1 −3 −3 0 1
0 0 −1 −2 1 0

⎞
⎠ −1
−1
∼
⎛
⎝ 1 2 3 1 0 0

0 1 3 3 0 −1
0 0 1 2 −1 0

⎞
⎠←−2

∼
⎛
⎝ 1 0 −3 −5 0 2

0 1 3 3 0 −1
0 0 1 2 −1 0

⎞
⎠ ←
←
−3 3

∼
⎛
⎝ 1 0 0 1 −3 2

0 1 0 −3 3 −1
0 0 1 2 −1 0

⎞
⎠

(c) We see that the third row is the fist row multiplied by −3, so the matrix has no inverse.

16.8

1. (a) The determinant |A| of the coefficient matrix is |A| =
∣∣∣∣∣∣

1 2 −1
2 −1 1
1 −1 −3

∣∣∣∣∣∣ = 19.

The determinants in (16.8.2) are (verify!)∣∣∣∣∣∣
−5 2 −1

6 −1 1
−3 −1 −3

∣∣∣∣∣∣ = 19 ,

∣∣∣∣∣∣
1 −5 −1
2 6 1
1 −3 −3

∣∣∣∣∣∣ = −38 ,

∣∣∣∣∣∣
1 2 −5
2 −1 6
1 −1 −3

∣∣∣∣∣∣ = 38

According to (16.8.4) the solution is x = 19/19 = 1, y = −38/19 = −2, and z = 38/19 = 2. Inserting
this into the original system of equations confirms that this is the correct answer.

(b) The determinant |A| of the coefficient matrix is

∣∣∣∣∣∣∣∣
1 1 0 0
1 0 1 0
0 1 1 1
0 1 0 1

∣∣∣∣∣∣∣∣ = −1.

The determinants in (16.8.2) are (verify!)∣∣∣∣∣∣∣∣
3 1 0 0
2 0 1 0
6 1 1 1
1 1 0 1

∣∣∣∣∣∣∣∣ = 3 ,

∣∣∣∣∣∣∣∣
1 3 0 0
1 2 1 0
0 6 1 1
0 1 0 1

∣∣∣∣∣∣∣∣ = −6 ,

∣∣∣∣∣∣∣∣
1 1 3 0
1 0 2 0
0 1 6 1
0 1 1 1

∣∣∣∣∣∣∣∣ = −5 ,

∣∣∣∣∣∣∣∣
1 1 0 2
1 0 1 3
0 1 1 6
0 1 0 1

∣∣∣∣∣∣∣∣ = 5

According to (16.8.4) the solution is x = −3, y = 6, z = 5, and u = −5. Inserting this into the original
system of equations confirms that this is the correct answer.

3. According to Theorem 16.8.2, the system has nontrivial solutions iff the determinant of the coefficient
equal to 0. Expansion according to the first row gives∣∣∣∣∣∣

a b c

b c a

c a b

∣∣∣∣∣∣ = a

∣∣∣∣ c a

a b

∣∣∣∣− b

∣∣∣∣ b a

c b

∣∣∣∣+ c

∣∣∣∣ b c

c a

∣∣∣∣
= a(bc − a2)− b(b2 − ac)+ c(ab − c2) = 3abc − a3 − b3 − c3.

Thus the system has nontrivial solutions iff 3abc − a3 − b3 − c3 = 0.
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16.9

4. The equation system is obtained directly from (16.9.4).

Review Problems for Chapter 16

3. It is a bad idea to use “brute force” here. Note instead that rows 1 and 3 and rows 2 and 4 in the determinant
have “much in common”. So begin by subtracting row 3 from row 1, and row 4 from row 2. According
to Theorem 16.4.1(F), this does not change the value of the determinant. This gives, if we thereafter use
Theorem 16.4.1(C),

∣∣∣∣∣∣∣∣
0 a − b 0 b − a

b − a 0 a − b 0
x b x a

a x b x

∣∣∣∣∣∣∣∣ = (a − b)2

∣∣∣∣∣∣∣∣
0 1 0 −1
−1 0 1 0

x b x a

a x b x

∣∣∣∣∣∣∣∣ = (a − b)2

∣∣∣∣∣∣∣∣
0 1 0 0
−1 0 1 0

x b x a + b

a x b 2x

∣∣∣∣∣∣∣∣
The last equality is obtained by adding row 2 to row 4 in the middle determinant. If we expand the last
determinant by the row 1, we end up with an easy 3× 3 determinant to evaluate. The equation becomes
(a − b)2(4x2 − (a + b)2) = (a − b)2(2x + (a + b))(2x − (a + b)) = 0. The conclusion follows.

5. (a) Expanding by column 3: |A| =
∣∣∣∣∣∣
q −1 q − 2
1 −p 2− p

2 −1 0

∣∣∣∣∣∣ = (q − 2)

∣∣∣∣ 1 −p

2 −1

∣∣∣∣ − (2 − p)

∣∣∣∣ q −1
2 −1

∣∣∣∣ =
(q − 2)(−1+ 2p)− (2− p)(−q + 2) = (q − 2)(p + 1), but there are many other ways.

|A + E| =
∣∣∣∣∣∣
q + 1 0 q − 1

2 1− p 3− p

3 0 1

∣∣∣∣∣∣ = (1 − p)

∣∣∣∣ q + 1 q − 1
3 1

∣∣∣∣ = (1 − p)[q + 1 − 3(q − 1)]

= 2(p − 1)(q − 2). For the rest see the text.

8. (a) Note that

U2 =

⎛
⎜⎜⎝

1 1 . . . 1
1 1 . . . 1
...

...
. . .

...

1 1 . . . 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1 1 . . . 1
1 1 . . . 1
...

...
. . .

...

1 1 . . . 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

n n . . . n

n n . . . n
...

...
. . .

...

n n . . . n

⎞
⎟⎟⎠ = nU

(b) The trick is to note that

A =
⎛
⎝ 4 3 3

3 4 3
3 3 4

⎞
⎠ =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠+

⎛
⎝ 3 3 3

3 3 3
3 3 3

⎞
⎠ = I3 + 3U

From (a), (I3 + 3U)(I3 + bU) = I3 + (3+ b + 3 · 3bU) = I3 + (3+ 10b)U, which is equal to I3 if we
choose b = −3/10. It follows that

A−1 = (I3 + 3U)−1 = I3 − (3/10)U =
⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠−

⎛
⎝ 3

10
3

10
3

10
3

10
3

10
3

10
3

10
3

10
3

10

⎞
⎠ = 1

10

⎛
⎝ 7 −3 −3
−3 7 −3
−3 −3 7

⎞
⎠
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11. (a) Gauss-elimination yields

⎛
⎝ a 1 4 2

2 1 a2 2
1 0 −3 a

⎞
⎠ ←
←
∼
⎛
⎝ 1 0 −3 a

2 1 a2 2
a 1 4 2

⎞
⎠ −2 −a

←
←

∼
⎛
⎝ 1 0 −3 a

0 1 a2 + 6 −2a + 2
0 1 3a + 4 −a2 + 2

⎞
⎠ −1
←

∼
⎛
⎝ 1 0 −3 a

0 1 a2 + 6 −2a + 2
0 0 −a2 + 3a − 2 −a2 + 2a

⎞
⎠

It follows that the system has unique solution iff −a2 + 3a − 2 �= 0, i.e. iff a �= 1 and a �= 2.
If a = 2, the last row consists only of 0’s so there ia an infinite number of solutions, while if a = 1,

there are no solutions.
(b) If we perform the same elementary operations as in (a) on the associated extended matrix, we get

⎛
⎝ 1 0 −3 b3

0 1 a2 + 6 b2 − 2b3

0 0 −a2 + 3a − 2 b1 − b2 + (2− a)b3

⎞
⎠ ,

We see that there are infinitely many solutions iff all elements in the last row are 0, i.e. iff a = 1 and
b1 − b2 + b3 = 0, or when a = 2 and b1 = b2.

13. For once we use “unsystematic elimination”. Solve the first equation for y, the second for z, and the fourth
for u, using the expression found for y. Insert all this into the third equation. This gives: a(b − 2)x =
−2a+2b+3. There is a unique solution provided a(b−2) �= 1. We easily verify the solutions in the text.

15. We prove the result for 3× 3 matrices that differ only in the first row:

∣∣∣∣∣∣
a11 + x a12 + y a13 + z

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣

x y z

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ (∗)

We expand the first determinant in (∗) by the first row, where C11, C12, C13 are the complements of the
three entries in the first row, and we get

(a11 + x)C11 + (a12 + y)C12 + (a13 + z)C13 = [a11C11 + a12C12 + a13C13]+ [xC11 + yC12 + zC13]

The sums in square brackets are the two last determinants in (∗).

17 Linear Programming

17.1

3. The set A is the shaded set in Fig. SM17.1.3.
(a) The solution is obviously at the point P in the figure because it has the largest x2 coordinate among
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all points in A. P is the point where the two lines −2x1 + x2 = 2 and x1 + 2x2 = 8 intersect, and the
solution of these two equations is (x1, x2) = (4/5, 18/5).

x2

x1

P

A

Q

8

4

−2x1 + x2 = 2

3x1 + 2x2 = c

x1 + 2x2 = 8

Figure SM17.1.3

(b) The point in A with the largest x1 coordinate is obviously Q = (8, 0).
(c) One of the lines 3x1 + 2x2 = c is the dashed line in Fig. SM17.1.3. As c increases, the line moves
out farther and farther to the north-east. The line that has the largest value of c and still has a point in
common with A, is the point Q in the figure.
(d) The line 2x1 − 2x2 = c (or x2 = x1 − c/2) makes a 45◦ angle with the x1 axis, and intersects the x1

axis at c/2. As c decreases, the line moves to the left. The line that has the smallest value of c and still
has a point in common with A, is the point P in the figure.
(e) The line 2x1+4x2 = c is parallel to the line x1+2x2 = 8 in the figure. As c increases, the line moves
out farther and farther to the north-east. The line with points in common with A that has the largest value
of c is obviously obtained when the line “covers” the line x1+ 2x2 = 8. So all points on the line segment
between P and Q are solutions.
(f) The line−3x1− 2x2 = c is parallel to the dashed line in the figure, and intersects the x1 axis at−c/3.
As c decreases, the line moves out farther and farther to the north-east, so the solution is at Q = (8, 0).
(We could also argue like this: Minimizing −3x1 − 2x2 subject to (x1, x2) ∈ A must occur at the same
point as maximizing 3x1 + 2x2 subject to (x1, x2) ∈ A.)

17.2

1. (a) See Fig. A17.1.1(a) in the text. When 3x1 + 2x2 ≤ 6 is replaced by 3x1 + 2x2 ≤ 7 in Problem
17.1.1, the feasible set expands because the steepest line is moved to the right. The new optimal point
is at the intersection of the lines 3x1 + 2x2 = 7 and x1 + 4x2 = 4, and it follows that the solution is
(x1, x2) = (2, 1/2). The old maximum value of the objective function was 36/5. The new optimal value
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is 3 · 2+ 4 · 1
2 = 8 = 40/5, and the difference in optimal value is u∗1 = 5/4.

(b) When x1+4x2 ≤ 4 is replaced by x1+4x2 ≤ 5, the feasible set expands because the line x1+4x2 = 4
is moved up. The new optimal point is at the intersection of the lines 3x1+2x2 = 6 and x1+4x2 = 5, and
it follows that the solution is (x1, x2) = (7/5, 9/10). The old maximum value of the objective function
was 36/5. The new optimal value is 39/5, and the difference in optimal value is u∗2 = 3/5.
(c) See the text.

17.3

1. (a) From Fig. A17.3.1(a) in the text it is clear as c increases, the dashed line moves out farther and farther
to the northeast. The line that has the largest value of c and still has a point in common with the feasible
set is the point P , which has coordinates (x, y) = (0, 3).
(b) In Fig. A17.3.1(b), as c decreases, the dashed line moves farther and farther to the south west. The
line that has the smallest value of c and still has a point in common with the feasible set is the point P ,
which has coordinates (u1, u2) = (0, 1). The associated minimum value is 20u1 + 21u2 = 21. This is
the maximum value in the primal problem, so the answer to question (c) is yes.

2. Actually not much to add. From the easily produced figure we can read off the solution.

3. See Fig. SM17.3.3 and the text.

x2

5

x1
5 10

2x1 + x2 = 16

400x1 + 500x2 = konst.

x1 + 2x2 = 11

(x∗1 , x∗2 ) = (7, 2)

x1 + 4x2 = 16

Figure SM17.3.3

17.4

2. (a) The problem is similar to Problem 17.3.3. See the answer in the text. Note that 300x∗1+200x∗2 = 2800.
(b) The dual problem is

min (54u1 + 48u2 + 50u3) subject to

⎧⎪⎨
⎪⎩

6u1 + 4u2 + 5u3 ≥ 300

3u1 + 6u2 + 5u3 ≥ 200

u1, u2, u3 ≥ 0
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Figure SM17.5.3

The optimal solution of the primal is x∗1 = 8, x∗2 = 2. Since they are both positive, the first two constraints
in the dual is satisfied with equality at the optimal triple (u∗1, u∗2, u∗3). Since the second constraint in the
primal is satisfied with strict inequality: 4x∗1 + 6x∗2 = 44 < 48, u∗2 = 0. So 6u∗1 + 5u∗3 = 300 and
3u∗1 + 5u∗3 = 200. It follow that u∗1 = 100/3, u∗2 = 0, and u∗3 = 20, with 54u∗1 + 48u∗2 + 50u∗3 = 2800.
(c) See the text.

17.5

3. (a) See the text. (b) The dual is given in the text. Look at Fig. SM17.5.3. We see from the figure that
optimum occurs at the point where the first and the third constraint are satisfied with equality i.e. where
10x∗1 + 20x∗2 = 10 000 and 20x∗1 + 20x∗2 = 11 000. The solution is x∗1 = 100 and x∗2 = 450. The
maximum value of the criterion is 300 · 100+ 500 · 450 = 255 000.
By complementary slackness, the constraints in the dual problem must in optimum be satisfied with
equality. Since the second constraint in the primal in the optimum has a slack (20 · 100 + 10 · 450 <

8000), then y∗2 = 0. Hence 10y∗1 + 20y∗3 = 300, 20y∗1 + 20y∗3 = 500. It follows that the solution
of the dual problem is y∗1 = 20, y∗2 = 0, y∗3 = 5. The minimum value of the objective function is
10 000 · 20+ 8 000 · 0+ 11 000 · 5 = 255 000.
(c) If the cost per hour in factory 1 increases by 100, the maximum in the primal problem would increase
by y∗1 = 20. (The numbers y1, y2, and y3 are the shadow prices for the resources in the primal.) Increasing
the costs in factory 1 by 100 will therefore increase the maximum in the primal by 100 × 20 = 2000.
(We assume that the optimal point in the primal does not change.) Since the maximum in the primal is
the minimum in the dual, it follows that the minimum costs in the dual will increase by 2000 if the cost
per hour in factory 1 increases by 100.

Review Problems for Chapter 17
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2. (a) Regard the given LP problem as the primal and denote it by (P). Its dual is shown in answer section
and is denoted by (D). If you draw the feasible set for (D) and a line −x1 + x2 = c, you see that as c

increases, the line moves to the northwest, and the line that has the largest value of c and still has a point
in common with the feasible set is the point (0, 8), which is the solution to (D).
(b) We see that when x1 = 0 and x2 = 8, the second and fourth constraint in (D) are satisfied with strict
inequality, so in the optimum in (P), y2 = y4 = 0. Also, since x2 = 8 > 0, the second constraint in (P) is
in optimum satisfied with equality, i.e. 2y1 − y3 = 1. But then we see that the objective function in (P)
is 16y1+ 6y2 − 8y3− 15y4 = 16y1− 8y3 = 8(2y1− y3) = 8. If we put y3 = b, y1 = 1

2 (1+ b), and we
conclude that (y1, y2, y3, y4) = ( 1

2 (1+b), 0, b, 0) must be a solution of (P) provided b is chosen such that
y1 = 1

2 (1+ b) ≥ 0, i.e. b ≥ −1, and y3 = b ≥ 0, and the first constraints in (P) is satisfied. (The second
constraint we already know is satisfied with equality.) The first constraint reduces to− 1

2 (1+b)−2b ≥ −1,
or b ≤ 1

5 . We conclude that ( 1
2 (1+ b), 0, b, 0) is optimal provided 0 ≤ b ≤ 1

5 .
(c) The objective function in (D) is now kx1 + x2. If k ≥ 0, there is no solution. The condition for (0, 8)

to be the solution is that k is less or equal to the slope of the constraint −x1 + 2x2 = 16, i.e. k ≤ −1/2.

4. (a) See the text. (b) With the Lagrangian L = (500− ax1)x1+ 250x2 − λ1(0.04x1+ 0.03x2 − 100)−
λ2(0.025x1+0.05x2−100)−λ3(0.05x1−100)−λ4(0.08x2−100), the Kuhn–Tucker conditions (with
nonnegativity constraints) are: there exist numbers λ1, λ2, λ3, and λ4, such that

∂L/∂x1 = 500− 2ax1 − 0.04λ1 − 0.025λ2 − 0.05λ3 ≤ 0 (= 0 if x1 > 0) (i)

∂L/∂x2 = 250− 0.03λ1 − 0.05λ2 − 0.08λ4 ≤ 0 (= 0 if x2 > 0) (ii)

λ1 ≥ 0, and λ1 = 0 if 0.04x1 + 0.03x2 < 100 (iii)

λ2 ≥ 0, and λ2 = 0 if 0.025x1 + 0.05x2 < 100 (iv)

λ3 ≥ 0, and λ3 = 0 if 0.05x1 < 100 (v)

λ4 ≥ 0, and λ4 = 0 if 0.08x2 < 100 (vi)

(c) The Kuhn–Tucker conditions are sufficient for optimality since the Lagrangian is easily seen to be
concave in (x1, x2) for a ≥ 0. If (x1, x2) = (2000, 2000/3) is optimal, then (i) and (ii) are satisfied
with equality. Moreover, the inequalities in (iv) and (vi) are strict when x1 = 2000 and x2 = 2000/3,
so λ2 = λ4 = 0. Then (ii) gives λ1 = 25000/3. It remains to check for which values of a that λ3 ≥ 0.
From (i), 0.05λ3 = 500− 4000a − 0.04(25000/3) = 500/3− 4000a ≥ 0 iff a ≤ 1/24.
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