Here are the instructions from the exam:

Part I

Some of the statements below are always correct the others are sometimes incorrect. Indicate which are which by marking
a for statements that are Always true
b for statements that may \mathbf{B} le false
Here are some statements that could have been used:

- If $f(x, y)$ is a continuous function on the region R of all (x, y) with $x^{2}+y^{2}<$ 1 then $f(x, y)$ must have a maximum at some point in that region.
- If you use the method of Lagrange multipliers to solve the problem of maximizing $K^{1 / 2} L^{1 / 3}-2 K-3 L$ with the constraint $2 K+6 L=3$ then the value of λ, the Lagrange multiplier, that you find is the partial elasticity of K with respect to L.
- If the function $f(x, y)$ does not have a maximum in the region R then the function $g(x, y)=6-3 f(x . y)$ does not have a minimum in R
- The point in the plane $2 x+3 y+4 z=6$ that is closest to the origin is also the point that minimizes the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the constraint $2 x+3 y+4 z=6$.
- The Envelope Theorem gives a technique for testing if a critical point of a function is a local maximum.

