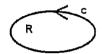
Assume all functions are sufficiently well behaved (continuous, differentiable, etc.) so that out theories apply.

Part I, True or False, 3 points each. Answer A for True, B for False.

1. Suppose C is the positively oriented boundary curve of the region R, as in the figure, and that the area of R is A.

$$A = \oint_C -y dx.$$



- 2. If the vector field $\mathbf{F}(x,y) = M(x,y) \mathbf{i} + N(x,y) \mathbf{j}$ is the flow field (= velocity field) of a fluid rotating steadily counterclockwise in the plane then the divergence of \mathbf{F} , div \mathbf{F} , is positive.
- 3. If M(x,y), N(x,y) are functions defined in a region R in the plane and throughout that region

$$\frac{\partial}{\partial y}M = \frac{\partial}{\partial x}N,$$

then for any closed loop C in R we have

$$\oint_C Mdx + Ndy = 0.$$

- 4. If f(x,y,z) has a local maximum at the point (x_0,y_0,z_0) in the interior (= inside) of its domain of definition then at (x_0,y_0,z_0) the gradient of f is zero, $grad f(x_0,y_0,z_0) = 0$.
- 5. If f(x,y) and g(x,y) are two functions defined in a region R in the plane and if at every point in R grad f = grad g then at all points of the region f(x,y) = g(x,y).

Part II, Multiple Choice, 6 points each.

- **6.** Suppose $f(x,y,z) = x^2 + 2y^3z$. Find the direction in which f is decreasing most rapidly at the point (0,1,0).
 - a. (0,0,-1)
 - **b**. (0,0,1)
 - $\mathbf{c}.\ (0,1,0)$
 - **d**. (0,-1,0)
 - **e**. (1,0,0)
 - f. (-1,0,0)

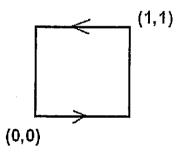
- 7. The tangent plane to the surface $x^2 + y^3 + z^4 = 18$ at the point (3,0,1) cuts the z-axis at the point (0,0,a). What is a?
 - **a**. 9/2
 - **b**. 11/2
 - **c.** 13/2
 - **d**. 15/2
 - **e**. 17/2
 - **f**. 19/2

- 8. The function $f(x,y) = x^2 2xy + y^3 y$ has two critical points, one, A, in the first quadrant (i.e. x,y > 0), and another one, B. Classify these critical points.
 - a. A loc. max; B loc min.
 - b. A loc. max; B loc max.
 - c. A loc. max; B saddle point.
 - **d**. A loc. min; B loc min.
 - e. A loc. min; B loc max.
 - f. A loc. min; B saddle point.
 - g. A saddle point; B loc min.
 - h. A saddle point; B loc max.
 - i. A saddle point; B saddle point.

9. Evaluate

$$\oint_C y^2 dx + x dy$$

where C is the positively oriented boundary of the square bounded by the coordinate axes and the lines x = 1, and y = 1.



- **a**. 0
- **b**. 1
- **c**. 2
- **d**. 3
- e. 4
- f. 5

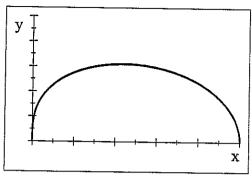
10. Let R be the rectangle $0 \le x \le 1$, $1 \le y \le 3$. Evaluate

$$\iint_{R} \frac{x}{y} dA.$$

- **a.** $\frac{1}{2} \ln 3$ **b.** $\frac{4}{3}$
- **c**. 2ln3
- **d**. $\frac{3}{2}$
- **e**. 3
- f. $3 + \ln 3$

- 11. Suppose R is the triangle with vertices (0,0), (0,2), (1,2). Evaluate $\iint_R x dA$.
 - **a**. 1/2
 - **b**. 1/4
 - **c**. 1/3
 - **d**. 3/2
 - **e**. 2
 - **f**. 3

12. Find the area in the first quadrant (i.e., $x,y \ge 0$) between the curve $x = (x^2 + y^2)^{3/2}$ and the horizontal axis.



 $x = (x^2 + y^2)^{3/2}$

- a. $\frac{1}{4}$ b. $\frac{1}{2}$ c. $\frac{1}{4} + \frac{1}{2}\pi$
- **e**. $1 + \pi$
- f. π
- 13. Find the volume of the region above the disk $x^2 + y^2 \le 1$ in the z = 0 plane and below the surface $z = 1 + x^2 + y^2$.
 - **a**. $3\pi/2$
 - **b**. $5\pi/3$
 - **c**. $2\pi/3$
 - **d**. $\pi/2$
 - **e**. 2
 - **f.** $2\sqrt{2}$

14. Suppose g(x,y,z) is the potential function $g(x,y,z) = x^2 + z^2$. Let C be the curve $\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + t \, \mathbf{k}, \quad 0 \le t \le 2\pi$.

Find the work done by the force field $F = \nabla g$ in moving an object over this curve.

- **a.** $1 + 4\pi^2$
- **b**. 1
- **c**. $4\pi^2$
- **d**. $\pi^2 1$
- **e**. 0
- f. 2π

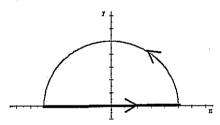
- **15.** Find the average value of the function f(x,y,z) = xz on the three dimensional region $0 \le x \le 1$, $0 \le y \le 3$, $1 \le z \le 3$.
 - **a**. 1
 - **b**. 2
 - **c**. 3
 - **d**. 4
 - **e**. 5
 - **f**. 6

16. Suppose that S is the part of the plane x + y + 3z = 6 on which $x, y, z \ge 0$ and that F is the vector field F(x, y, z) = y k. Suppose that the normal vector for the surface is pointing toward you (rather than away). Evaluate

$$\int\!\int_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \ d\sigma.$$

- **a**. 1
- **b**. $9/(2\sqrt{7})$
- **c.** $1/\sqrt{3}$
- **d.** $\sqrt{11}/3$
- **e**. $18/\sqrt{11}$
- f. $2/(3\sqrt{7})$

17. Suppose F is the vector field F(x,y) = y i - x j. Evaluate the circulation around (= flow integral along) C, the positively oriented boundary of the region $x^2 + y^2 \le 1, y \ge 0$.



- **a**. 0
- **b**. 1
- **c**. -1
- **d**. π
- e. -π
- f. 2π

18. Suppose **F** is the vector field $\mathbf{F}(x,y) = 2xy \mathbf{i} + (x^2 + 1) \mathbf{j}$. Decide if **F** is a gradient vector field. If it is find its potential function f(x,y) and evaluate f(1,1) - f(0,0).

a.
$$f(1,1) - f(0,0) = -1$$

b.
$$f(1,1)-f(0,0)=0$$

c.
$$f(1,1) - f(0,0) = 1$$

d.
$$f(1,1)-f(0,0)=2$$

e.
$$f(1,1) - f(0,0) = 3$$

f. F is not a gradient vector field.

19. Suppose B is the unit box, $B = \{(x, y, z) \text{ with } 0 \le x, y, z \le 1\}$. For the vector field $\mathbf{F}(x, y) = 2xy \mathbf{i} - x^2z \mathbf{j} - y \mathbf{k}$. Evaluate the divergence integral

$$\iiint_{B} \nabla \cdot \mathbf{F} \, dV.$$

- **a**. 1
- **b**. 2
- **c**. 1/2
- **d**. 3/4
- **e**. 4
- **f.** 6

Formulas for Grad, Div. Curl, and the Laplacian

a cranding lot	Orac, Div, Cut, and die Lapiacia		
	Cartesian (x, y, z) i, j, and k are unit vectors in the directions of increasing x, y , and z . M, N, and P are the scalar components of F(x, y, z) in these directions.		
Gradient	$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$		
Divergence	$\nabla \cdot \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$		
Curi	$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix}$		
Laplacian	$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$		

Vector Triple Products

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = (\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u} = (\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v}$$

 $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$

Vector Identities

In the identities here, f and g are differentiable scalar functions, F, F_1 , and F_2 are differentiable vector fields, and a and b are real constants.

$$\nabla \times (\nabla f) = 0$$

$$\nabla (fg) = f \nabla g + g \nabla f$$

$$\nabla \cdot (g\mathbf{F}) = g \nabla \cdot \mathbf{F} + \nabla g \cdot \mathbf{F}$$

$$\nabla \times (g\mathbf{F}) = g \nabla \times \mathbf{F} + \nabla g \times \mathbf{F}$$

$$\nabla \cdot (a\mathbf{F}_1 + b\mathbf{F}_2) = a \nabla \cdot \dot{\mathbf{F}}_1 + b \nabla \cdot \mathbf{F}_2$$

The Fundamental Theorem of Line Integrals

1. Let F = Mi + Nj + Pk be a vector field whose components are continuous throughout an open connected region D in space. Then there exists a differentiable function f such that

$$\mathbf{F} = \nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$$

if and only if for all points A and B in D the value of $\int_A^B \mathbf{F} \cdot d\mathbf{r}$ is independent of the path joining A to B in D.

2. If the integral is independent of the path from A to B, its value is

$$\int_A^B \mathbf{F} \cdot d\mathbf{r} = f(B) - f(A).$$

Green's Theorem and Its Generalization to Three Dimensions

Normal form of Green's Theorem:
$$\oint \mathbf{F} \cdot \mathbf{n} \ ds = \iint \nabla \cdot \mathbf{F} \ dA$$

Divergence-Theorem:
$$\iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \ d\sigma = \iiint\limits_{D} \ \nabla \cdot \mathbf{F} \ dV$$

Tangential form of Green's Theorem:
$$\oint_{\Gamma} \mathbf{F} \cdot d\mathbf{r} = \iint_{\Gamma} \nabla \times \mathbf{F} \cdot \mathbf{k} \, dA$$

Stokes' Theorem:
$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} \, d\sigma$$

$$\nabla \cdot (\mathbf{F}_{1} \times \mathbf{F}_{2}) = \mathbf{F}_{2} \cdot \nabla \times \mathbf{F}_{1} - \mathbf{F}_{1} \cdot \nabla \times \mathbf{F}_{2}$$

$$\nabla \times (\mathbf{F}_{1} \times \mathbf{F}_{2}) = (\mathbf{F}_{2} \cdot \nabla)\mathbf{F}_{1} - (\mathbf{F}_{1} \cdot \nabla)\mathbf{F}_{2} + (\nabla \cdot \mathbf{F}_{2})\mathbf{F}_{1} - (\nabla \cdot \mathbf{F}_{1})\mathbf{F}_{2}$$

$$\nabla \times (\nabla \times \mathbf{F}) = \nabla(\nabla \cdot \mathbf{F}) - (\nabla \cdot \nabla)\mathbf{F} = \nabla(\nabla \cdot \mathbf{F}) - \nabla^{2}\mathbf{F}_{1}$$

$$(\nabla \times \mathbf{F}) \times \mathbf{F} = (\mathbf{F} \cdot \nabla)\mathbf{F} - \frac{1}{2}\nabla(\mathbf{F} \cdot \mathbf{F})$$

Coordinate Conversion Formulas

CYLINDRICAL TO . RECTANGULAR	SPHERICAL TO RECTANGULAR	SPHERICAL TO CYLINDRICAL
$x = r \cos \theta$	$x=\rho\sin\phi\cos\theta$	$r = \rho \sin \phi$
$y = r \sin \theta$	$y = \rho \sin \phi \sin \theta$	$z = \rho \cos \phi$
z = z	$z = \rho \cos \phi$	$\theta = \theta$

Corresponding formulas for dV in triple integrals:

$$dV = dx dy dz$$

$$= dz r dr d\theta$$

$$= \rho^2 \sin \phi d\rho d\phi d\theta$$