ASSIGNMENT 7 SOLUTIONS
[image: image1.png]5.1.1 Let X denote the subset in question.




[image: image2.png]b. X is compact. It is bounded (since x € X <= |[x|| < 1). R?2—X = {x:22+y> > 1}

is open by Proposition 3.4 of Chapter 2. Therefore, X is closed, by Proposition 2.1 of Chapter 2.
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c. X is unbounded, since the point [ nn+ 1] € X for arbitrarily large n € N. There-

fore, X is not compact.

d. X is unbounded for the same reason as in part c.




[image: image3.png]5.1.3  The standard matrix of T is a” for some a € R and therefore T'(x) = a - x. By the
Cauchy-Schwarz inequality, we have |T'(x)| < ||a|| whenever ||x|| = 1, with equality holding when
X is a positive scalar multiple of a. Therefore, ||T|| = ||a.




[image: image4.png]5.2.1




[image: image5.png]b. Wehave Df = [y+1 x—l],soxisacriticalpoint ifand only ify+1=2—-1=0.

Thus, x = [ 1] is the only critical point of f.

¢. Wehave Df = [cosz cosy |, 5o x is a critical point if and only if cosz = cosy = 0.
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Thus, the critical points of f are [
d. We have Df = [2@— 6ry —3z2 +3y2], so x is a critical point if and only if

2z(1 — 3y) = 3(—2? + y?) = 0. Thus, the critical points of f are [g], [ill/?]




[image: image6.png]j. We have Df = [3:::2 +22—6z 2y 2zz+4z ], so x is a critical point if and only if
322 + 22 — 62 = 2y = 2¢2 + 42 = 0. Thus, we have y = 0 and 22(z + 2) = 0, so if z = 0, then the
first equation gives = 0 or z = 2, and if z = —2, then the first equation gives 22 = —24. Thus,
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the critical points of f are |:Ojl and |:0jl .
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[image: image7.png]5.2.3 We take the hemisphere to be given by x2 + % + 22 = 2, 2z > 0. Consider the function
f (;) = (22)(2y)/7? — 22 — y? defined on X = {[z} cx >0, y>0, 22 +92 < rz}. Then f

is continuous on the compact set X and is 0 on the boundary. Therefore, f takes on its global
maximum at an interior point, which must necessarily be a critical point of f, since f is differentiable
on the interior of X.

Since Df = y(r? — 222 — y?) z(r? — 22 — 24?) ], we see that the only critical
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point of f in the interior of X is a = iR [1] . Since this must be the global maximum point, we
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see that the dimensions of the box with maximum volume are — X — X —.
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[image: image8.png]5.2.5  Consider the two rectangles as shown in the figure. The area of the lower rectangle is
z(1 - z) and that of the upper rectangle is u((1 —u) — (1 — z)). The sum of the areas gives us our

function f (z) =z(1 - z) + u(z — u), defined on the domain X = { [Z] :0<u<z< 1}. Since
X is compact and f continuous, we are guaranteed a global maximum value. Since f = 0 on the
boundary of X, that maximum must occur at an interior point. Since f is everywhere differentiable,
it follows that the maximum must occur at a critical point of f. Since Df = [l —2z+u z—2u ],

we see that the only critical point is a = [?g } The width of the upper rectangle is 1/3 and that

of the lower rectangle is 2/3.




[image: image9.png]5.3.1
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b. We have Hess(f)(x) = L

1
0] , 80 the critical point is a saddle point.

c. We have Hess(f)(x) = [—smx ) } , SO
—siny
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a local maximum point when k and £ are odd, and a saddle point when k and £ are of different

parity.

It follows that the critical point [ ] is a local minimum point when k and ¢ are even,

d. Hess(f)(x) = [Z'Gy "6’],so
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Hess(f) (0> = [0 0] , Hess(f) (1/3) = [‘2 2] , and Hess(f)( 13 ) = [2 2} )
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Thus, 13 are saddle points, and the second derivative test is inconclusive at 0. However, it

is easy to tell directly that the origin is a saddle point, as f (3) >0 for z #0 and f (2) < 0 for
y<0.




[image: image12.png]5.4.1 a. Letg ; = z+y—2. Then, solving for points x at which D f(x) = ADg(x) for some
scalar A\, we find 2 [:v y] =A [1 1] &= z = y. Substituting in the constraint equation,

we find the single constrained critical point a = [ 1l Thus, the minimum value of f on the given
curve is 2. The function f obviously has no maximum because the curve is unbounded.
b. Here the roles of f and g reverse, and we seek points x at which [1 1} =

A [a: y] for some scalar X\. Once again, we obtain z = y, and this leads to two critical points,




[image: image13.png]a; = [}] and az = [:i ] Here, a; is the maximum point and ay is the minimum point. (Since
the constraint curve is compact here, we must have both.) The maximum value of g is 2.

c. Because both functions increase as we move outwards from the origin, if a is a min-
imum of f subject to the constraint g = 0, then a is a maximum of g subject to the constraint
f = f(a). (This is a special case of the duality principle in linear programming.) This is best
understood by visualizing the level curves of both functions.




[image: image14.png]5.4.3  Since f is continuous and the sphere is compact, we are guaranteed a maximum value.
We wish to find the maximum point of f on the set g(x) = [|x/*> — 4 = 0. Thus, we seek x on
the sphere so that [2 2 —1] =N [1 y z] for some scalar A. So we must find the

points on the constraint surface satisfying ; = % = —z. We find z = y = —22 with z = +2/3.
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Thus, the two critical points are :!:5 —2 |. The maximum value of f on the sphere is therefore
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