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Appropriate methods for monitoring of the safety of medical
devices introduced into clinical practice have been elusive to
develop and implement. A novel approach is the application
of Bayesian updating, which incorporates existing knowl-
edge regarding event rates into the estimation of risk. This
framework has been shown in other domains to be data effi-
cient and to address some of the limitations of conventional
statistical methods. In this article, the authors propose a
methodologic framework for developing initial prior proba-
bility distributions in risk-stratified patient groups and a
mechanism for incorporating accumulating procedure safety

experience. In addition, they use this methodology to retro-
spectively analyze the clinical outcomes of 309 patients un-
dergoing an infrequent interventional cardiology procedure,
rotational atherectomy. These exploratory analyses demon-
strate the feasibility of Bayesian updating applied to medical
device safety evaluation and indicate that the methodology is
capable of generating stable estimates of risk in a variety of
patient risk groups. Key words: Bayesian statistics; proce-
dural safety; coronary angioplasty. (Med Decis Making
2004;24:399–407)

The practice of interventional cardiology has expe-
rienced remarkable growth in recent years and is

constantly evolving as new devices are introduced and
higher-acuity patient groups are being treated. New de-
vices and therapies are used to treat subgroups of pa-
tients for whom very limited outcome information is
available from randomized clinical trials. In addition,
randomized clinical trials are typically underpowered
to adequately assess the safety of the therapy being

evaluated, especially in terms of low-frequency ad-
verse reactions or outcomes. Rarely used techniques
such as formal posttrial registries to monitor safety or
rigorous case-control studies may be required to
evaluate the safety of a device once approved for use.

It is therefore often difficult to assess the relative
safety and efficacy of new therapies in clinical practice
as compared with existing techniques. Major compli-
cations of interventional cardiology procedures gener-
ally occur at low frequency but may occur at a higher
than expected rate when devices or therapies are used
in patients who have not been extensively studied pre-
viously. In addition, the population of patients treated
in real-life clinical practice may be quite different from
the highly selected patients included in randomized
clinical trials. For these reasons, a reliable methodol-
ogy is needed for monitoring the safety of devices and
therapies introduced into clinical practice.

One approach to this problem is to use Bayesian up-
dating methods to dynamically monitor the safety of
procedures performed within the field of inter-
ventional cardiology. Such Bayesian safety monitoring
methods have been successfully used in other indus-
tries for many years, such as nuclear reactor safety engi-
neering,1 and have recently been reported in profiling
hospital quality.2 However, the use of this strategy for
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the direct assessment of procedural safety has not been
reported. This methodology can formally derive esti-
mates of risk of adverse events following procedures
through the combination of prior risk estimates with
data from current experience. The potential advan-
tages of the Bayesian approach relative to classical
frequentist statistical methods include their efficiency
in terms of data usage as well as the explicit incorpora-
tion of prior knowledge in the estimate of risk. How-
ever, to conduct valid Bayesian analyses, the appropri-
ate estimation of prior probabilities is crucial.

This investigation seeks to explore a Bayesian up-
dating framework for monitoring the safety of medical
devices introduced into clinical practice in interven-
tional cardiology and to compare the results of this
method to those of classical frequentist statistics.

BACKGROUND

Safety Monitoring in Interventional Cardiology

The field of interventional cardiology is focused on
the percutaneous treatment of coronary artery disease
with more than 900,000 interventional coronary proce-
dures performed annually in the United States.3 The
field continues to evolve, with more than 25 stent de-
signs having been approved for clinical use in the
United States since 1995. In addition, entirely new
classes of devices have been recently introduced in-
cluding vascular closure devices, coronary brachy-
therapy devices, distal protection devices, and drug-
eluting stents. Given the rapid growth of the field cou-
pled with the rate of change of the technology and the
expansion of procedures being performed to ever more
acutely ill patients, it has been difficult to ascertain the
absolute or relative safety of new devices and
procedures.

The patient population treated by modern inter-
ventional cardiology is at high risk for acute and de-
layed adverse events, such as postprocedural myocar-
dial infarction (2%–5%) and in-hospital death (1%–
2%).4,5 It is clear, however, that not all patients carry the
same risk of subsequent events. Recently published
analyses of large clinical registries indicate a wide vari-
ation in the rates of adverse events.6,7 Numerous stud-
ies have identified a variety of clinical and demo-
graphic predictors associated with relatively higher
risks of such events. Clinical factors including the pres-
ence of diabetes, advanced age, hemodynamic stability
at the time of the procedure, presence of congestive
heart failure, and presentation with an acute myocar-
dial infarction have been consistently demonstrated to
predict higher rates of adverse events following the

procedure. Several authors have developed risk pre-
diction models, typically relying on multiple logistic
regression analysis, with varying levels of discrimina-
tory power in predicting the risk of an adverse event.6–12

In addition to patient-related factors, the technology
used during interventional procedures has occasion-
ally led to adverse events, even after Food and Drug
Administration (FDA) approval. One example was the
Bard USCI Probe B angioplasty balloon (C. R. Bard,
Inc., Murray Hill, NJ, 1989) that suffered mechanical
failures leading to device separation in the body and
embolization of device components, with subsequent
significant clinical complications (US v. Prigmore, 243
F.3d 1 [1st Circuit] 2001). Another device, the Nir on
Sox™ stent delivery system (Boston Scientific Co.,
Framingham, MA), suffered balloon rupture at low
pressures due to a manufacturing defect. These balloon
ruptures were associated with numerous acute clinical
complications, and the device was withdrawn 6
months after FDA approval in April 1998.13 Therefore,
continued surveillance of device and procedure safety,
even after initial FDA approval, is necessary to detect
possible trends in adverse events following inter-
ventional cardiology procedures.

Bayesian Methods for Safety Monitoring

Bayesian methods address the fundamental issue of
how empirical evidence should change our beliefs
about the value of some quantity of interest. Applied to
medical device safety monitoring, the quantity of inter-
est may be the underlying risk of an adverse event fol-
lowing the use of the device. Bayesian methods involve
the formal combination of a priori beliefs about the risk
(before the accumulation of evidence) along with the
pilot evidence observed to yield an updated, or poste-
rior, belief (“true” risk) through the application of
Bayes’s theorem.14 Bayes’s theorem (Equation 1) can be
derived directly from the fundamental axioms of prob-
ability theory and relates the probability of a proposi-
tion (θ) given the observed evidence (x). In the equation
below, the notation f {θ|x} denotes the conditional
probability of a parameter θ given the data (or evi-
dence) that x is true.15

f x
f x f

{ | }
{ | } { }θ θ θ=

f x{ }
. (1)

There are several important features of Bayesian up-
dating methods that warrant consideration. The first is
that the prior belief (f{θ} in Equation 1) is not restricted
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to include only empirical evidence but may include
subjective (expert) opinion as well. Although the incor-
poration of subjective estimates is controversial in the
medical device safety domain, formal strategies have
been developed and validated in other industries for
eliciting and integrating such subjective data with em-
pirical data in the development of the prior estimate.15

In addition, the theorem can be applied to both discrete
as well as continuous probability distributions. For the
domain studied here, continuous probability distribu-
tions are most appropriate to consider. Finally, it can be
shown that as the observed evidence increases, the
posterior probability, f{θ|x} in Equation 1, converges
to the observed event rate (number of adverse events /
number of patients at risk).14 Therefore, as the amount
of empiric evidence increases, the Bayesian posterior
distribution begins to approach, and eventually con-
verges to, the classical maximum likelihood estimate.
Bayesian methods are efficient, allow for hypothesis
testing, and are easily extended to a decision-analysis
framework. These features make the Bayesian method-
ology attractive as a candidate framework for analyzing
the safety of medical devices and may offer advantages
over classical statistical methods in this domain.

In contrast to Bayesian methods, the classical fre-
quentist statistical approach to monitoring medical de-
vice safety encompasses sampling from a population
and estimating the underlying population event rate
from the sample. No information outside of the empiri-
cally observed sample is incorporated in the estimation
of risk. Typically, the estimate is based on the propor-
tion of observed events to the number of individuals at
risk in the sample using the z approximation for bino-
mial data. Variance is estimated as a simple function of
the estimated proportion, and a confidence interval is
used to describe the range of values into which a speci-
fied proportion of sample means would lie. Typically,
in the frequentist approach, periodically observed
mean event rates are compared to acceptable rates of
adverse events, which are based on previously pub-
lished or observed empirical data. A significant limita-
tion of the classical approach is encountered when
evaluating observed event rates for which no prior em-
pirical data are available for comparison. Benchmark
data from similar patient populations can be used, but
there is no clear consensus on what constitutes signifi-
cant differences in such circumstances. The Bayesian
framework seeks to address this limitation directly
through the construction and explicit use of a prior
probability estimate and with direct comparison of the
final posterior distribution (after empirical data
observed) to the prior estimate.

METHOD

As described below, the Bayesian updating method-
ology is composed of 5 distinct steps:

1. risk stratification (i.e., grouping patients into similar
risk strata),

2. prior probability estimate development,
3. Bayesian updating process,
4. results interpretation, and
5. sensitivity analysis.

To use Bayesian updating for monitoring procedural
safety using our proposed framework, several funda-
mental assumptions are required. First, we assume that
the risk of an adverse event can be modeled as a bino-
mial process within a group of patients with similar
preprocedural risks, or risk strata. That is, for each pop-
ulation of patients who have similar clinical risk fac-
tors, we assume that the chance of an event is random
and can be considered a Bernoulli trial. Second, we as-
sume that steady-state risk has been achieved; we
therefore eliminate consideration of possible learning
curve effects or systemic factors outside of the patient
and the device or procedure being performed. We also
assume that the probability of adverse events for the
new technology can be modeled as a continuous distri-
bution for each stratum of patient risk. To simplify the
calculations required for the Bayesian updating pro-
cess, we use the conjugate prior distribution of the bi-
nomial distribution, which is the beta distribution. The
beta distribution has 2 parameters that can represent
the shape of the distribution in a flexible way. With ap-
propriate choice of parameters, the beta distribution
can have a symmetric shape, or a tail to the left or the
right, of arbitrary density. Importantly, as a result of the
conjugate relationship of the binomial and beta distri-
butions, the Bayesian updating process yields the pos-
terior distribution that is, itself, another beta distribu-
tion, enabling a computational convenient, iterative
process.16

Initial prior probability distributions for the risk of
adverse events for each risk stratum can be developed
from published clinical trial information, local experi-
ence, expert opinion, or a combination of such sources.
As experience is generated for patients within risk
strata, the Bayesian process allows us to update these
prior distributions to form new, or “posterior” proba-
bility distributions, describing our new state of knowl-
edge in light of the experience gained. New empiric
data are used to update the prior estimates through a
simple process of incrementing the parameters of the
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beta distribution. The resulting parameters describe a
new beta distribution that is the posterior probability
distribution, after combining the empiric evidence
with the original prior probability distribution. This
distribution can be used to estimate a mean, median,
and 2.5th and 97.5th percentile probability interval
that is the central posterior interval (also known as a
95% credible interval). We chose to implement these
calculations using Microsoft Excel 2000 (Microsoft
Corporation, Redmond, WA), although any software
that supports the estimation of the beta distribution
may be used.

We illustrate how this Bayesian updating process
can work in practice with an example using clinical
data from our catheterization laboratory.

A Clinical Example

Let us consider the risk of an adverse event after un-
dergoing rotational atherectomy (RA), a relatively in-
frequently performed procedure representing less than
10% of the percutaneous coronary interventional pro-
cedures performed at our institution. Because of the
complexity of the procedure and relatively infrequent
use, we hypothesized that there may be a higher than
usual in-hospital complication event rate following the
use of this therapy. To test this hypothesis, we retro-
spectively reviewed the clinical outcomes of those pa-
tients who underwent RA between January 1997 and
December 1999 and analyzed the risk of postprocedure
death as well as the combined endpoint of death, myo-
cardial infarction, or coronary bypass surgery, using a
Bayesian updating framework. Using the methodology
outlined above, this example will review the risk strati-
fication, prior probability estimation, Bayesian
updating process, and interpretation of results.

Step 1: Risk Stratification

We previously developed and validated risk models
for predicting the risk of death as well as the combined
endpoint of death, myocardial infarction, or need for
urgent coronary bypass surgery (together constituting
the major adverse cardiac events [MACE]), using sim-
plified risk-scoring models.5 From 1 January 1997
through 31 December 1999, data were collected on
4264 consecutive interventional procedures at our
catheterization laboratory. Patients could be stratified
into low-risk (total risk score <3), moderate-risk (scores
3–4), and high-risk (scores >4) groups; each group had a
distinct risk of in-hospital adverse events. The ob-
served mortality rate for these 3 groups increases from
0.39% (95% confidence interval [CI] = 0.2%–0.68%) in

the low-risk population, to 2.19% (95% CI =
1.3%–3.4%) in the moderate-risk group, to 16.1%
(95% CI = 12.5%–20.1%) in the high-risk group. Of
note, although only 9% of patients were classified as
high risk, these patients represented 67% of all in-
hospital deaths due to the high mortality rate in this
risk group.11

From 1 January 1997 through 31 December 1999,
309 patients were treated with RA at our institution.
Four patients died prior to discharge (1.29%), whereas
14 (4.53%) suffered a MACE complication. Among the
rotational atherectomy patient cohort, there were 195
low-risk patients (63%), 75 moderate-risk patients
(24%), and 39 high-risk patients (13%) in the time pe-
riod sampled. As shown in Table 1, the complications
were disproportionately distributed into the high-risk
patient group.

Step 2: Development of Prior Probability Estimates

Using a MEDLINE search, 5 studies assessing the
outcomes of patients undergoing RA were identified as
having been published or presented before 1 January
1997.17–21 Pooling these results (of similar patients) re-
vealed that 6 out of 709 patients died whereas a total of
10 out of 453 patients studied suffered a MACE. Using a
large sample normal distribution, the mean mortality
rate was therefore 0.85% (s = 0.30%) and MACE event
rate was 2.21% (s = 0.70%) for the 5 studies included.
Since all 5 published studies were performed exclu-
sively in low-risk patients, extrapolation of expected
risk to the medium- and high-risk groups was required.

For the estimation of the probability of death in low-
risk patients, we approximated the binomial distribu-
tion with a beta distribution by matching the mean and
variance to derive the beta distribution parameters that
would best fit a mean of 0.85% with a standard devia-
tion of 0.30%. We characterize the beta distribution
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Table 1 Distribution of Patients and Clinical Events
for Rotational Atherectomy Cases, 1997–9

Death MACE

Risk Group n % n % n %

Low 195 63.1 1 0.51 4 2.05
Medium 75 24.3 1 1.33 4 5.33
High 39 12.6 2 5.13 6 15.4
Total 309 100 4 1.29 14 4.53

Note: MACE = major adverse cardiac event (death, coronary artery bypass
surgery, or postprocedure myocardial infarction).



with shape parameters q and r. The mean and variance
are shown in Equations 2 and 3, respectively.22

Mean: µ = q (q + r) (2)

Variance: σ2 = qr/[(q + r)2(q + r + 1)]. (3)

Solving for the parameters q and r, we obtain the fol-
lowing equations that can be used to establish the ini-
tial prior probability beta distribution on the basis of
the prior knowledge from the literature.

q = µ[(µ(1 – µ) σ2) – 1] (4)

r = (1 – µ)[(µ(1 – µ) σ2) – 1]. (5)

Substituting our values from the literature, of a re-
ported mean of 0.85% and standard deviation of
0.30%, we obtain initial parameters for our prior
distribution of

q = 6 and r = 703.

Note that these parameters conveniently equal the
number of patients dying and those surviving. In a sim-
ilar fashion, the parameters for low-risk patients suffer-
ing a MACE event were calculated.

Since no data were available in the published litera-
ture to guide our estimates of event rates in the moder-
ate- and high-risk groups undergoing RA, we used the
relationship of the risk of adverse events in low-, mod-
erate-, and high-risk patients who underwent tradi-
tional (non-RA) interventional procedures to estimate
prior probability distributions for these patient subsets.
Specifically, we assumed that the adverse event rates
for the moderate- and high-risk groups were propor-
tional to the rates observed in the non-RA moderate-
and high-risk patients studied during the study period.
For example, if non-RA patients in the medium-risk
group were twice as likely to die as were non-RA pa-
tients in the low-risk group, we would estimate that RA
patients in the medium-risk group were also twice as
likely to die as the RA patients in the low-risk group, for
whom we had prior probability estimates derived di-
rectly from the literature. In addition, the standard de-
viation for the moderate- and high-risk prior probabil-
ity distributions was assumed to be proportional to the
ratio of mean to standard deviation in the low-risk pa-
tient population. A sensitivity analysis for this extrapo-
lation was performed using diffuse and noninform-

ative prior probability distributions as described below
(see Effect of Choice of Prior Probability Distribution
below).

The use of a proportional risk estimate is based on
the reasoning that the higher risk patients would be ex-
pected, in absence of treatment with RA, to suffer ad-
verse events proportional to the risk ratios calculated
in the non-RA population. Since there exist published
data regarding the risk of RA in low-risk patients, from
a Bayesian perspective it would be incomplete to assert
that no information regarding the risk of the RA proce-
dure exists. Extrapolating the known risk of RA in low-
risk groups using the proportional risks of moderate-
and high-risk populations is therefore necessary so as
to incorporate all available knowledge in the develop-
ment of the initial prior distributions.

The prior probability density functions for the risk
of MACE in each risk stratum are plotted in Figure 1. As
shown, prior probability distributions demonstrate in-
creasing risk of adverse events within each risk group.
In addition, the increasing spread of the distributions
demonstrates increasing uncertainty regarding the esti-
mation, such that we are less confident in our risk esti-
mation in the high-risk population, for which we have
no prior published data, as compared to the lowest risk
group, for which we have published literature from
which to formulate our estimate. As a result of such in-
creasing uncertainty with increasing risk, it is implicit
that observations in high-risk patients will influence
our estimates of risk for this population to a greater
extent than the same number observations in the low-
risk group.
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Figure 1 Prior probability distributions for risk of a major adverse
cardiac event following rotational atherectomy stratified by patient
risk. PDF = probability density function value.



Step 3: Bayesian Updating Procedure

Having estimated prior probability distributions for
each patient subgroup, we can now modify these esti-
mates through the Bayesian updating process as empir-
ical data are collected. At the completion of each time
interval (3 months), the total number of cases undergo-
ing RA and the number of cases who suffered an ad-
verse event were recorded. This empiric evidence was
then combined with the prior evidence by updating
our distribution parameters to generate posterior prob-
ability distributions of the likelihood of an adverse
event. The posterior distribution after updating a beta
distribution is itself another beta distribution in which
the parameters are as follows:

qi + 1 = qi + ki (6)

ri + 1 = ri + ni – ki, (7)

where n is the number of patients observed and k is the
number of adverse events experienced. Subscript i re-

fers to the current time period, and subscript i + 1 refers
to the subsequent cycle.

Table 2 presents the empiric data for the risk of
MACE for the high-risk patients undergoing RA. The
first 2 columns indicate the total number of patients
treated with the new procedure and number of patients
suffering at least 1 adverse event occurring during the
quarter, whereas columns 3 and 4 show the updated
parameters based on these empiric data. The updated
mean and standard deviation for the posterior distribu-
tion, calculated using Equations 2 and 3, are shown as
well. The calculated mean and standard deviation for
the final posterior distribution are highlighted at the
bottom of Table 2.

Figure 2 graphically demonstrates the evolution in
the posterior distributions for the risk of MACE in high-
risk patients as more information was gathered during
the study period. The updated beta distributions were
plotted sequentially for each of the 12 time periods
studied, revealing a qualitative trend toward a decrease
in the expected major complication rate in these high-
risk patients undergoing rotational atherectomy, as
compared with the initial prior estimates. In addition,
there is a progressive narrowing of the distribution over
time, implying increased confidence around the mean
of the distribution.

The initial prior probabilities and final posterior
probability distributions are characterized for all risk
strata for both death and MACE outcomes in Table 3. In
addition, the 2.5th, 97.5th, and 50th (median) percen-
tile calculated probabilities for each estimated proba-
bility distribution are shown. For the risk of MACE in
high-risk patients, the prior probability median was
0.50, whereas after 12 quarters of experience, the
Bayesian model has updated this to a reduced esti-
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Table 2 Evolution of Posterior Beta Distribution
Using Bayesian Updating for a Major

Adverse Cardiac Event in High-Risk Patients

Parameters Revised
of Beta Beta

Distribution DistributionTime Period
Number Number of

of Adverse
Year Quarter Patients Events q r x s

Prior estimate (Estimated from
low-risk cases) 4.6 4.6 0.500 0.157

1997 1 1 1 5.6 4.6 0.549 0.149
2 0 0 5.6 4.6 0.549 0.149
3 1 0 5.6 5.6 0.500 0.143
4 2 1 6.6 6.6 0.500 0.133

1998 1 3 0 6.6 9.6 0.407 0.118
2 6 1 7.6 14.6 0.342 0.099
3 7 0 7.6 21.6 0.260 0.080
4 6 2 9.6 25.6 0.273 0.074

1999 1 5 1 10.6 29.6 0.264 0.069
2 4 0 10.6 33.6 0.240 0.064
3 2 0 10.6 35.6 0.229 0.061
4 2 0 10.6 37.6 0.220 0.059

Final 39 6 10.6 37.6 0.220 0.059

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability

P
D

F

Distribution after Quarter 12
(Final Posterior Distribution)

Distribution after Quarter 6

Distribution after Quarter 1

Prior Probability 
Distribution

Figure 2 Evolution of risk estimates through 36 mo for risk of major
adverse cardiac events in high-risk patients undergoing rotational
atherectomy. PDF = probability density function value.



mated median risk of 0.216. There is an associated sub-
stantial shift “to the left” (reduced expected risk) as
shown in Figure 2.

Step 4: Interpretation of Results

Based on the results of the analysis presented in Ta-
ble 3, the principal finding is that the revised estimates
of risk tended toward lower probability of the risk of
death or MACE in both medium- and high-risk patient
groups, whereas there was essentially no change in the
estimates of risk in the lowest risk population. In addi-
tion the 95% central posterior interval (2.5th to 97.5th
percentile, also known as the 95% credible interval) of
the posterior distribution, decreases in width com-
pared with the prior distribution for each analysis, as
should be expected with increasing and consistent evi-
dence. Furthermore, each subset analysis yielded a
posterior distribution that stabilized over the period
studied.

We also compared the results of the Bayesian analy-
sis to the normal approximation (the z approximation)
of the binomial distribution to represent the proportion
of events observed (without including prior data). In all
cases, the 95% confidence interval of the normal ap-
proximation for the proportion of empiric data exten-
sively overlapped with the 95% central posterior inter-
vals of the beta distribution. The frequentist and
Bayesian results seemed to be generally comparable in
this particular case. Figure 3 illustrates the change in
risk estimate (and 95% posterior intervals) for MACE

in high-risk patients for both classical methods and the
Bayesian methodology. However, if the prior assump-
tions are valid, the Bayesian inference provides more
efficient analysis with narrower lengths of the central
posterior interval as has been demonstrated previ-
ously.23 In Figure 3, quarters 2 and 3 illustrate a poten-
tial benefit of the Bayesian methodology, as the
Bayesian estimate of risk yielded a 95% central poste-
rior interval that is finite, whereas the frequentist esti-
mate yielded 95% CIs spanning a range as to make
them noninterpretable. Over time, and with increasing
empiric evidence, the classical and Bayesian methods
converge, as expected.

Although the results from the RA example did not
suggest that this higher risk technique resulted in a
higher risk of adverse events in the sickest patients
than was expected, the finding that there was a trend
toward reduced risk in moderate- and high-risk pa-
tients is potentially informative. It is likely that the
moderate- and high-risk patients undergoing RA were
selected from among the population of moderate- and
high-risk patients based on some unmodeled factors
that predict better outcomes, for example, no recent ev-
idence of congestive heart failure on presentation. Al-
ternatively, it is possible that RA itself is somewhat
protective in higher risk subsets of patients, although
this is highly speculative and clinically counter-
intuitive.
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Table 3 Median (50th Percentile), 2.5th, and
97.5th Percentile Probability Values for

Prior and Posterior Probability Distributions

Death MACE

Patient Risk 2.5th 50th 97.5th 2.5th 50th 97.5th

Low risk
Prior 0.003 0.008 0.016 0.011 0.021 0.037
Posterior 0.003 0.007 0.014 0.012 0.021 0.034

Medium
Prior 0.017 0.045 0.092 0.059 0.120 0.209
Posterior 0.014 0.033 0.064 0.048 0.086 0.138

High risk
Prior 0.106 0.339 0.648 0.202 0.500 0.798
Posterior 0.042 0.108 0.215 0.116 0.216 0.346
MACE = major adverse cardiac event.
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Figure 3 Comparison of risk estimates for Bayesian and classical
methods for the risk of a major adverse cardiac event in high-risk pa-
tients. Squares represent classical frequentist methods, whereas tri-
angles represent the Bayesian estimate. Means are represented by the
symbol (square or triangle) for each quarter, whereas the 95% confi-
dence intervals and the 95% central posterior intervals are shown by
solid bars. The asterisk (*) indicates that the 95% confidence interval
for the maximum likelihood estimate is undefined, due to exceed-
ingly small sample size.



Step 5: Sensitivity Analysis—Effect of Choice of
Prior Probability Distribution

The choice of initial prior probability distributions
can be controversial, as there are limited accepted prin-
ciples to guide this selection. As such, in any Bayesian
updating review, a sensitivity analysis is warranted to
confirm that the results obtained were not due to the
choice of the initial prior alone. In this example, we
chose a proportional risk model, assuming that the
risks of adverse events in moderate- and high-risk RA
groups were proportional to the risks in lower risk
groups. An alternative approach would have been to
use a noninformative prior probability distribution, in-
dicating no expectation regarding the final probability
distribution. Two such noninformative distributions
include the uniform prior [β(1,1)], which has a constant
value of 1.0 over the interval of 0 to 1, as well as Jeffrey’s
prior [β(0.5,0.5)], which has 2 peaks, one near the value
of 0 and the other at 1. Figure 4 illustrates the uniform
prior, Jeffrey’s prior, and the estimated prior probability
distribution used in this analysis for the risk of MACE
in high-risk patients.

Although the 2 noninformative prior distributions
have quite different shapes than our estimated prior
distribution, their impact was small after the accumu-
lation of only a few quarters of empiric data. As can be
seen in Figure 5, the means of the posterior distribu-
tions tend to quickly converge regardless of the choice
of the prior. Similarly, the variance of the posterior dis-
tributions was only minimally affected by the choice of
prior (data not shown). Therefore, we conclude that the

choice of prior, in this example, did not significantly
affect the results of the analysis.

DISCUSSION

This exploratory study used the Bayesian updating
methodology to efficiently incorporate prior knowl-
edge and accumulating clinical experience into refined
estimates of risk for particular procedures used in
interventional cardiology. There are several potential
advantages of this method over non-Bayesian frequent-
ist methods for monitoring procedural and device
safety. These include an analysis based on a formalized
theoretic foundation that maximizes the use of infor-
mation available to assess safety. In addition, prior esti-
mates are not restricted to include only empiric evi-
dence but may include subjective (expert) opinion as
well. This approach can be used prospectively, and re-
sults are available nearly in real-time, conveying
significant advantages over retrospective analyses.

A significant challenge in interpreting the results of
the Bayesian updating process is to assess the relative
differences between the posterior and prior distribu-
tions. One methodology to consider is to compare over-
lap of the distributions through comparison of 95% in-
tervals for each, as illustrated in the example presented
above. Using a frequentist statistical framework, if the
95% intervals for 2 distributions do not overlap, then
there is at least a 95% likelihood that the distributions
are distinct. Similarly, in the Bayesian framework, we
would conclude that the posterior distribution showed
a significant reduction in expected risk if the 97.5th
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percentile of the posterior distribution was less than
the 2.5th percentile of the prior distribution. This level
of separation is unlikely without a great deal of experi-
ence (data) to move the probability distribution far to
the left and was not achieved by the RA example (see
Table 3). However, less stringent requirements for
supporting a substantial change from the prior to the
posterior distributions may warrant consideration.

The examples presented are intended primarily to
illustrate the methodology and are based on a retro-
spective analysis from a single center, and therefore the
clinical results may not be generalizable to other envi-
ronments. The risk stratification models used have ac-
ceptable but limited discriminatory power, and incor-
poration of advances in observational statistical
methods, such as propensity score modeling, may im-
prove their reliability by accounting for heterogeneity
in treatment allocation.24 The initial assumptions of the
models used for generating the prior probability esti-
mates influence the results to a great extent. Specifi-
cally, the assumption that the uncertainty of the initial
estimates (the standard deviation of the prior probabil-
ity distribution) should be proportional to the esti-
mated mean probability of adverse outcome may be
overly conservative. However, the sensitivity analyses,
described above, did not significantly alter the results
of this study.

Future Directions

This exploratory analysis demonstrates the feasibil-
ity of Bayesian updating applied to the domain of med-
ical device safety evaluation and indicates that the
methodology is capable of generating stable estimates
of risk in a variety of patient risk groups. Further study
is needed to assess the tradeoffs of Bayesian over classi-
cal statistical methods and to evaluate this methodol-
ogy prospectively and in automated data acquisition
environments.
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