Math 128
Midterm Examination 1 - September 23, 2008
Name \qquad
6 problems, 100 points.
Instructions: Show all work - partial credit will be given, and "Answers without work are worth credit without points." You don't have to simplify your answers. You may use a simple calculator that is not graphing or programmable. You may have a 3×5 card, but no other notes.

1. (18 points) Compute the following partial derivatives
(a) h_{z}, where $h(x, y, z)=\frac{x^{2}+y^{2}+z^{2}}{x y z}$

Using the quotient rule,

$$
h_{z}=\frac{2 z \cdot x y z-\left(x^{2}+y^{2}+z^{2}\right) x y}{(x y z)^{2}} .
$$

(b) $\frac{\partial}{\partial x} \ln \left(e^{x^{2} y}+e^{y^{2} x}\right)$

Using the chain rule twice,

$$
\frac{\partial f}{\partial x}=\frac{1}{e^{x^{2} y}+e^{y^{2} x}} \cdot\left(e^{x^{2} y} \cdot 2 x y+e^{y^{2} x} \cdot y^{2}\right) .
$$

(c) $f_{x y}$, where $f(x, y)=3 \sin x y$

We first compute f_{x} :

$$
f_{x}=3 y \cos x y
$$

And then $f_{x y}=f_{y x}$:

$$
f_{x y}=3 \cos x y-3 x y \sin x y .
$$

2. (12 points) Sketch the level curves of $z=y-x^{2}$ at the levels $z=0,1,2$. Make sure to label your graph.

We graph

$$
0=y-x^{2}, \quad 1=y-x^{2}, \quad 2=y-x^{2},
$$

which, after moving the y 's to the right hand side and multiplying by -1 are

$$
y=x^{2}, \quad y=x^{2}+1, \quad y=x^{2}+2 .
$$

3. (20 points) Let $f(x, y)=x^{2}+4 y^{3}-6 x y+10$.
(a) Find the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

$$
\frac{\partial f}{\partial x}=2 x-6 y, \frac{\partial f}{\partial y}=12 y^{2}-6 x
$$

(b) Find the critical points for f.

We set $2 x-6 y=0$ and $12 y^{2}-6 x=0$. Dividing the first equation by 2 and moving y to the rights gives us $x=3 y$. Substituting this into the other equation gives us $12 y-6 x=12 y^{2}-18 y=0$. We factor this last equation as $6 y(2 y-3)=0$. Thus, $y=0$ or $y=\frac{3}{2}$, and since $x=3 y$, we have the critical points $(0,0)$ and $\left(\frac{9}{2}, \frac{3}{2}\right)$.
(c) Calculate the 2nd derivatives $\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial y^{2}}$, and $\frac{\partial^{2} f}{\partial x \partial y}$.

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x} 2 x-6 y=2 \\
& \frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x} 12 y^{2}-6 x=-6 \\
& \frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y} 12 y^{2}-6 x=24 y .
\end{aligned}
$$

(d) Using the 2nd derivative test, determine which points are relative maxima, relative minima, and saddle points.
From the calculation of the 2nd derivative, we have the discriminant

$$
D(x, y)=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=48 y-36
$$

Plugging in the critical points, we get that $D(0,0)=0-36=-36<0$, hence $(0,0)$ is a critical point.
$D\left(\frac{9}{2}, \frac{3}{2}\right)=48 \cdot \frac{3}{2}-36=36>0$, and since $f_{x x}=2>0$, that $\left(\frac{9}{2}, \frac{3}{2}\right)$ is a relative minimum.
4. A small company has a local monopoly on two competing products: model houses, and model hotels. It costs them $\$ 200$ to build each model house, $\$ 300$ for each hotel. The total revenue from selling x houses and y hotels is $1000 x+1200 y-2 x y-x^{2}-2 y^{2}$.
(a) (5 points) What is the profit $P(x, y)$ from selling x houses and y hotels?

Profit $=$ Revenue - Cost, thus
$P(x, y)=1000 x+1200 y-2 x y-x^{2}-2 y^{2}-(200 x+300 y)=$ $800 x+900 y-2 x y-x^{2}-2 y^{2}$.
(b) (5 points) Calculate the partial derivatives P_{x} and P_{y}.
$P_{x}=800-2 x-2 y$
$P_{y}=900-2 x-4 y$.
(c) (5 points) Find the number of houses and hotels the company should build to maximize their profit.
We set $P_{x}=P_{y}=0$ and solve for x and y. First: $P_{x}=0=$ $800-2 x-2 y$. When we divide by 2 and move the $2 x$ and $2 y$ to the other side, we get $x+y=400$, or $x=400-y$. Then: $P_{y}=0=900-2 x-4 y$. But we plug in $x=400-y$ to give $0=900-800+2 y-4 y=100-2 y$. Thus, $100=2 y$, or $y=50$ and $x=400-y-350$.
A critical point occurs at 50 hotels and 350 houses.
(d) (3 points) Explain briefly why your answer in (c) is a maximum. We didn't get the tools for a complete answer to this question. I gave full credit for a variety of answers. For example:
i. Finding the discriminant, we get $P_{x x}=-2, P_{y y}=-4$, and $P_{x y}=-2$, thus, that $D=8-4=4$. Since $D>0$ and $P_{x x}<0$, this is a relative max.
ii. The function is an upside-down paraboloid based at the critical point, so has max there.
iii. Careful arguments about profit being unlikely to go to ∞, hence the given point must be a max.
5. Consider the function $z=3 x+y$ on the ellipse $4 x^{2}+y^{2}=25$.
(a) (5 points) Set up a Lagrange multiplier function $F(x, y, \lambda)$ for z subject to this constraint.
$F(x, y, \lambda)=3 x+y+\lambda\left(4 x^{2}+y^{2}-25\right)$.
(b) (12 points) Find all critical points for F.

We calculate the derivatives:
$F_{x}=3+8 \lambda x$
$F_{y}=1+2 \lambda y$
We then solve for λ. First, note that if x or y is zero, then $F_{x}=3$ or $F_{y}=1$, so it is not a critical point. Thus, we can safely divide by x and y.
Solving in $F_{x}=0$, we get that $-3=8 \lambda x$, so that $\lambda=-\frac{3}{8 x}$. Similarly, from $F_{y}=0$ we get that $\lambda=-\frac{1}{2 y}$. Solving, we get that $-6 y=-8 x$, or that $y=\frac{4}{3} x$. Plugging into the constraint, we get that

$$
4 x^{2}+\frac{16}{9} x^{2}=\frac{36+16}{9} x^{2}=\frac{52}{9} x^{2}=25
$$

so that $x^{2}=\frac{9 \cdot 25}{52}$, or $x= \pm \frac{15}{2 \sqrt{13}}$. Then $y=\frac{4}{3} x$. Thus, the critical points are

$$
\begin{array}{r}
\left(\frac{15}{2 \sqrt{13}}, \frac{10}{\sqrt{13}},-\frac{3 \sqrt{13}}{20}\right) \\
\left(-\frac{15}{2 \sqrt{13}},-\frac{10}{\sqrt{13}}, \frac{3 \sqrt{13}}{20}\right)
\end{array}
$$

(c) (5 points) Determine the maximum and minimum value of z on the ellipse $4 x^{2}+y^{2}=25$.
By Lagrange's Theorem, the maximum and minimum must both occur at the x and y values of the critical points from part (b). We evaluate the function:

$$
\begin{aligned}
z\left(\frac{15}{2 \sqrt{13}}, \frac{10}{\sqrt{13}}\right) & =3 \frac{15}{2 \sqrt{13}}+\frac{10}{\sqrt{13}}=\frac{65}{2 \sqrt{13}} \\
z\left(-\frac{15}{2 \sqrt{13}},-\frac{10}{\sqrt{13}}\right) & =-3 \frac{15}{2 \sqrt{13}}-\frac{10}{\sqrt{13}}=-\frac{65}{2 \sqrt{13}}
\end{aligned}
$$

so that $\frac{65}{2 \sqrt{13}}$ is the maximum value and $-\frac{65}{2 \sqrt{13}}$ is the minimum.
6. (10 points) Consider the function $z=f(x, y)=x^{2}-x y+y^{2}$.
(a) What is the slope of the tangent line to f in the cross section $x=1$ at the point $(1,2,3)$?
Since the partial derivative $\frac{\partial f}{\partial y}$ holds x fixed while differentiating with respect to y, it holds x fixed and finds the rate of change with respect to y. We plug in $y=2$ to find the rate of change at this particular point. Thus,

$$
\left.\frac{\partial f}{\partial y}\right|_{x=1, y=2}=\left.\frac{\partial}{\partial y}\left(x^{2}-x y+y^{2}\right)\right|_{x=1, y=2}=-x+\left.2 y\right|_{x=1, y=2}=3
$$

is the slope of the given tangent line.
(b) The real number $f_{x}(2,3)=\left.\frac{\partial f}{\partial x}\right|_{x=2, y=3}$ is the slope of a tangent line to f at some point, in some cross sectional plane. What is the point, and what is the equation of the cross section plane?
Working backwards from part (a), we are looking at f_{x}, which fixes y while differentiating with respect to x. Thus, we are looking in a plane $y=$ something, and in particular, in the plane $y=3$.
We are looking at the point $(2,3, f(2,3))=\left(2,3,2^{2}-2 \cdot 3+3^{2}\right)=$ $(2,3,7)$.

