Math 128
Midterm Examination 3 - November 11, 2008
Name \qquad
6 problems, 100 points.
Instructions: Show all work - partial credit will be given, and "Answers without work are worth credit without points." You don't have to simplify your answers. You may use a simple calculator that is not graphing or programmable. You may have a 3×5 card, but no other notes.

1. (16 points) Let $y^{\prime}=x+y$, and suppose $y(0)=0$. Use Euler's method with four steps $(n=4)$ to approximate $y(1)$.
Since we are going from $x=0$ to $x=1$ in 4 steps, the step size is $\Delta x=\frac{1-0}{4}=\frac{1}{4}$. We calculate:

$$
\begin{aligned}
x_{0} & =0 & & =0=y(0) \\
x_{1}=x_{0}+\Delta x & =\frac{1}{4} & y_{1}=y_{0}+\left(x_{0}+y_{0}\right) \cdot \Delta x & =0 \\
x_{2}=x_{1}+\Delta x & =\frac{1}{2} & y_{2}=y_{1}+\left(x_{1}+y_{1}\right) \cdot \Delta x & =\frac{1}{16} \\
x_{3}=x_{2}+\Delta x & =\frac{3}{4} & y_{3}=y_{2}+\left(x_{2}+y_{2}\right) \cdot \Delta x & =\frac{1}{16}+\frac{9}{64}=\frac{13}{64} \\
x_{4}=x_{3}+\Delta x & =\frac{4}{4}=1 & y_{4}=y_{3}+\left(x_{3}+y_{3}\right) \cdot \Delta x & =\frac{13}{64}+\frac{61}{256}=\frac{113}{256}
\end{aligned}
$$

The desired approximation is $y(1) \cong \frac{113}{256}$.
2. (a) (8 points) Find the 3rd degree Taylor polynomial $T_{3}(x)$ centered at 0 of the function $f(x)=\ln (1+x)$.
We take the first three derivatives:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{1+x} \\
f^{\prime \prime}(x) & =-\frac{1}{(1+x)^{2}} \\
f^{(3)}(x) & =\frac{2}{(1+x)^{3}}
\end{aligned}
$$

So

$$
\begin{aligned}
T_{3}(x) & =\ln (1+0)+\frac{1}{1+0} \cdot \frac{1}{1!} x-\frac{1}{(1+0)^{2}} \cdot \frac{1}{2!} x^{2}+\frac{2}{(1+0)^{3}} \cdot \frac{1}{3!} x^{3} \\
& =0+x-\frac{1}{2} x^{2}+\frac{2}{6} x^{3}
\end{aligned}
$$

Note: Another way to approach this problem would be to integrate the Taylor series for $\frac{1}{1+x}$, and take the first three terms.
(b) (4 points) Find the exact value of $\sum_{k=0}^{\infty} x^{2 k}$ at $x=\frac{2}{3}$.

We recognize this as a geometric series, with initial term $a=1$ and ratio $\left(\frac{2}{3}\right)^{2}=\frac{4}{9}$. Thus, the series converges to $\frac{1}{1-\frac{4}{9}}=\frac{9}{5}$.
(c) (4 points) Find the exact value of $\sum_{k=0}^{\infty} x^{2 k}$ at $x=\frac{3}{2}$.

We recognize this as a geometric series, with initial term $a=1$ and ratio $\left(\frac{3}{2}\right)^{2}=\frac{9}{4}$. Thus, the series diverges to infinity.
3. Consider the function $f(x)=\sin x^{2}$.
(a) (7 points) Find the Taylor series centered at 0 for $\sin x^{2}$.

We recall the Taylor series for $\sin x$:

$$
\sin x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!} .
$$

Plugging in x^{2}, we get

$$
\sin x^{2}=\sum_{k=0}^{\infty}(-1)^{k} \frac{\left(x^{2}\right)^{2 k+1}}{(2 k+1)!}=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{4 k+2}}{(2 k+1)!} .
$$

(b) (7 points) Using part (a), evaluate the integral $\int \sin x^{2} d x$.

$$
\begin{aligned}
\int \sin x^{2} d x & =\int \sum_{k=0}^{\infty}(-1)^{k} \frac{\left(x^{2}\right)^{2 k+1}}{(2 k+1)!} d x=\sum_{k=0}^{\infty} \int(-1)^{k} \frac{x^{4 k+2}}{(2 k+1)!} d x . \\
& =C+\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{4 k+3}}{(4 k+3) \cdot(2 k+1)!}
\end{aligned}
$$

4. Let $f(x)=\sin 2 x$.
(a) (4 points) Find the 3rd degree Taylor polynomial $T_{3}(x)$ centered at 0 approximating $\sin 2 x$.
The Taylor series for $\sin x$ is

$$
\sin x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!},
$$

thus, the series for $\sin 2 x$ is

$$
\sin 2 x=\sum_{k=0}^{\infty}(-1)^{k} \frac{(2 x)^{2 k+1}}{(2 k+1)!}=\sum_{k=0}^{\infty}(-1)^{k^{2}} \frac{2^{2 k+1} x^{2 k+1}}{(2 k+1)!} .
$$

The 3rd Taylor polynomial are the terms of the series up to the power x^{3}, i.e.

$$
T_{3}(x)=2 x-\frac{8}{3!} x^{3}=2 x-\frac{4}{3} x^{3} .
$$

(b) (4 points) What is the exact error of your $T_{3}(x)$ from part (a) at $x=\frac{\pi}{4}$?
We plug in to find

$$
\left|\sin \left(2 \cdot \frac{\pi}{4}\right)-T_{3}\left(\frac{\pi}{4}\right)\right|=\left|1-\left(\frac{\pi}{2}-\frac{4}{3} \cdot \frac{\pi^{3}}{4^{3}}\right)\right| \cong 0.075
$$

(c) (12 points) Let $T_{n}(x)$ be the degree n Taylor polynomial for $\sin 2 x$, centered at 0 . Find an upper bound for the error of $T_{n}(x)$ on the interval $[-1,1]$. Your bound should depend on n.
We start taking some derivatives:
$f^{\prime}(x)=2 \cos 2 x$
$f^{2}(x)=-4 \sin 2 x$
$f^{(3)}(x)=-8 \cos 2 x$
$f^{(4)}(x)=16 \sin 2 x$
We see that the nth derivative for $\sin 2 x$ is 2^{n}, multiplied by plus or minus, \sin or \cos of $2 x$. Since $|\sin u|$ and $|\cos u|$ are both ≤ 1, we get that

$$
\left|f^{(n)}(x)\right| \leq 2^{n}, \quad \text { so } \quad\left|f^{(n+1)}(x)\right| \leq 2^{n+1}
$$

We plug the bound on the $(n+1)$ st derivative into the error bounding formula for Taylor polynomials to get

$$
\operatorname{error} T_{n}(x) \leq \frac{2^{n+1}}{(n+1)!} \cdot 1^{n+1}=\frac{2^{n+1}}{(n+1)!}
$$

5. (15 points) Let $f(x)=x \sin x^{2}$. Calculate $f^{(14)}(0)$ and $f^{(15)}(0)$.

Hint: Use the coefficients of the Taylor series.
We first find the Taylor series for $x \sin x^{2}$. As in other problems, we use that

$$
\sin x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!} .
$$

Then
$x \sin x^{2}=x \sum_{k=0}^{\infty}(-1)^{k} \frac{\left(x^{2}\right)^{2 k+1}}{(2 k+1)!}=x \sum_{k=0}^{\infty}(-1)^{k} \frac{x^{4 k+2}}{(2 k+1)!}=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{4 k+3}}{(2 k+1)!}$.
We look at the coefficients of x^{14} and x^{15}. From the Taylor formula, they are

$$
\frac{f^{(14)}(0)}{14!} \text { and } \frac{f^{(15)}(0)}{15!}
$$

On the other hand, we calculated the series from that for sin. The coefficient of x^{14} is 0 , since $4 k+3$ is always odd. Thus, $f^{(14)}(0)=0$. The coefficient of x^{15} is $(-1)^{3} \cdot \frac{1}{(2 \cdot 3+1)!}=-\frac{1}{7!}$. We solve to find that $f^{(15)}(0)=-\frac{15!}{7!}$.
6. For each of the following series, show why it converges or diverges:
(a) (7 points) $\sum_{k=1}^{\infty} \frac{\sin ^{2} k}{k^{5 / 4}}$.

We use direct comparison:

$$
0 \leq \sin ^{2} k \leq 1 \Longrightarrow 0 \leq \frac{\sin ^{2} k}{k^{5 / 4}} \leq \frac{1}{k^{5 / 4}}
$$

From class, the series $\sum_{k=0}^{\infty} \frac{1}{k^{5 / 4}}$ converges, and so the given series does as well.
(b) (7 points) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3 / 2}}$.

You may use the fact that $\frac{\ln x}{x^{3 / 2}}$ is decreasing on the interval $[2, \infty)$.
We use the integral test, following the hint that $\ln x / x^{3 / 2}$ is decreasing on $[2, \infty)$. It is certainly continuous and positive on this interval. We take the integral:

$$
\int_{2}^{\infty} \ln x \cdot x^{-3 / 2} d x
$$

We evaluate it via integration by parts. Take $u=\ln x$, so that $d v=x^{-3 / 2}$, and $d u=1 / x, v=-2 x^{-1 / 2}$. Then

$$
\begin{aligned}
\int_{2}^{\infty} \ln x \cdot x^{-3 / 2} d x & =\left[-2 \ln x \cdot x^{-1 / 2}\right]_{2}^{\infty}+\int_{2}^{\infty} 2 x^{-1 / 2} \cdot x^{-1} d x \\
& =\left[-2 \ln x \cdot x^{-1 / 2}\right]_{2}^{\infty}+\int_{2}^{\infty} 2 x^{-3 / 2} d x \\
& =\left[-2 \ln x \cdot x^{-1 / 2}-4 x^{-1 / 2}\right]_{2}^{\infty} \\
& =\lim _{b \rightarrow \infty}-2 \frac{\ln b}{\sqrt{b}}-\frac{4}{\sqrt{b}}+\frac{2 \ln 2}{\sqrt{2}}+\frac{4}{\sqrt{2}} .
\end{aligned}
$$

By l'Hopital's rule (for example), $\ln b / \sqrt{b} \rightarrow 0$, and clearly $1 / \sqrt{b} \rightarrow$ 0 . So the improper integral converges, and by the integral test the series does as well.
(c) (5 points) $\sum_{j=1}^{\infty} \frac{j+1}{j^{2}+1}$.

We do direct comparison:

$$
\frac{j+1}{j^{2}+1}>\frac{j}{j^{2}+1} .
$$

We then use the integral test to show that $\sum_{j=1}^{\infty} \frac{j}{j^{2}+1}$ diverges. The function $\frac{x}{x^{2}+1}$ is continuous and positive and decreasing
on $[1, \infty)$, and the integral can be evaluated with the substition $u=x^{2}+1$:

$$
\begin{aligned}
\int_{1}^{\infty} \frac{x}{x^{2}+1} d x & =\int_{2}^{\infty} \frac{1}{u} \frac{d u}{2} \\
& =[\ln u]_{2}^{\infty} \\
& =\lim _{b \rightarrow \infty} \ln b-\ln 2=\infty
\end{aligned}
$$

