
Math 128
Midterm Examination 3 – November 11, 2008

Name

6 problems, 100 points.

Instructions: Show all work – partial credit will be given, and “Answers
without work are worth credit without points.” You don’t have to
simplify your answers. You may use a simple calculator that is not
graphing or programmable. You may have a 3x5 card, but no other
notes.

1. (16 points) Let y′ = x + y, and suppose y(0) = 0. Use Euler’s method
with four steps (n = 4) to approximate y(1).

Since we are going from x = 0 to x = 1 in 4 steps, the step size is
∆x = 1−0

4
= 1

4
. We calculate:

x0 = 0 y0 = 0 = y(0)

x1 = x0 + ∆x = 1
4

y1 = y0 + (x0 + y0) ·∆x = 0

x2 = x1 + ∆x = 1
2

y2 = y1 + (x1 + y1) ·∆x = 1
16

x3 = x2 + ∆x = 3
4

y3 = y2 + (x2 + y2) ·∆x = 1
16

+ 9
64

= 13
64

x4 = x3 + ∆x = 4
4

= 1 y4 = y3 + (x3 + y3) ·∆x = 13
64

+ 61
256

= 113
256

The desired approximation is y(1) ∼=
113

256
.

2. (a) (8 points) Find the 3rd degree Taylor polynomial T3(x) centered at
0 of the function f(x) = ln(1 + x).
We take the first three derivatives:
f ′(x) =

1

1 + x

f ′′(x) = − 1

(1 + x)2

f (3)(x) =
2

(1 + x)3
.

So

T3(x) = ln(1 + 0) +
1

1 + 0
· 1

1!
x− 1

(1 + 0)2
· 1

2!
x2 +

2

(1 + 0)3
· 1

3!
x3

=0 + x− 1

2
x2 +

2

6
x3



Note: Another way to approach this problem would be to integrate

the Taylor series for
1

1 + x
, and take the first three terms.

(b) (4 points) Find the exact value of
∞∑

k=0

x2k at x = 2
3
.

We recognize this as a geometric series, with initial term a = 1

and ratio (
2

3
)2 =

4

9
. Thus, the series converges to

1

1− 4
9

=
9

5
.

(c) (4 points) Find the exact value of
∞∑

k=0

x2k at x = 3
2
.

We recognize this as a geometric series, with initial term a = 1

and ratio (
3

2
)2 =

9

4
. Thus, the series diverges to infinity.

3. Consider the function f(x) = sin x2.

(a) (7 points) Find the Taylor series centered at 0 for sin x2.
We recall the Taylor series for sin x:

sin x =
∞∑

k=0

(−1)k x2k+1

(2k + 1)!
.

Plugging in x2, we get

sin x2 =
∞∑

k=0

(−1)k (x2)2k+1

(2k + 1)!
=

∞∑
k=0

(−1)k x4k+2

(2k + 1)!
.

(b) (7 points) Using part (a), evaluate the integral
∫

sin x2 dx.

∫
sin x2 dx =

∫ ∞∑
k=0

(−1)k (x2)2k+1

(2k + 1)!
dx =

∞∑
k=0

∫
(−1)k x4k+2

(2k + 1)!
dx.

= C +
∞∑

k=0

(−1)k x4k+3

(4k + 3) · (2k + 1)!
.

4. Let f(x) = sin 2x.



(a) (4 points) Find the 3rd degree Taylor polynomial T3(x) centered at
0 approximating sin 2x.
The Taylor series for sin x is

sin x =
∞∑

k=0

(−1)k x2k+1

(2k + 1)!
,

thus, the series for sin 2x is

sin 2x =
∞∑

k=0

(−1)k (2x)2k+1

(2k + 1)!
=

∞∑
k=0

(−1)k 22k+1x2k+1

(2k + 1)!
.

The 3rd Taylor polynomial are the terms of the series up to the
power x3, i.e.

T3(x) = 2x− 8

3!
x3 = 2x− 4

3
x3.

(b) (4 points) What is the exact error of your T3(x) from part (a) at
x =

π

4
?

We plug in to find

| sin(2 · π
4
)− T3(

π

4
)| = |1− (

π

2
− 4

3
· π

3

43
)| ∼= 0.075.

(c) (12 points) Let Tn(x) be the degree n Taylor polynomial for sin 2x,
centered at 0. Find an upper bound for the error of Tn(x) on the
interval [−1, 1]. Your bound should depend on n.
We start taking some derivatives:
f ′(x) = 2 cos 2x
f 2(x) = −4 sin 2x

f (3)(x) = −8 cos 2x
f (4)(x) = 16 sin 2x
....
We see that the nth derivative for sin 2x is 2n, multiplied by plus
or minus, sin or cos of 2x. Since | sin u| and | cos u| are both ≤ 1,
we get that

|f (n)(x)| ≤ 2n, so |f (n+1)(x)| ≤ 2n+1.



We plug the bound on the (n+1)st derivative into the error bound-
ing formula for Taylor polynomials to get

error Tn(x) ≤ 2n+1

(n + 1)!
· 1n+1 =

2n+1

(n + 1)!
.

5. (15 points) Let f(x) = x sin x2. Calculate f (14)(0) and f (15)(0).
Hint: Use the coefficients of the Taylor series.

We first find the Taylor series for x sin x2. As in other problems, we
use that

sin x =
∞∑

k=0

(−1)k x2k+1

(2k + 1)!
.

Then

x sin x2 = x
∞∑

k=0

(−1)k (x2)2k+1

(2k + 1)!
= x

∞∑
k=0

(−1)k x4k+2

(2k + 1)!
=

∞∑
k=0

(−1)k x4k+3

(2k + 1)!
.

We look at the coefficients of x14 and x15. From the Taylor formula,
they are

f (14)(0)

14!
and

f (15)(0)

15!
.

On the other hand, we calculated the series from that for sin. The
coefficient of x14 is 0, since 4k + 3 is always odd. Thus, f (14)(0) = 0.

The coefficient of x15 is (−1)3 · 1

(2 · 3 + 1)!
= − 1

7!
. We solve to find

that f (15)(0) = −15!

7!
.

6. For each of the following series, show why it converges or diverges:

(a) (7 points)
∞∑

k=1

sin2 k

k5/4
.

We use direct comparison:

0 ≤ sin2 k ≤ 1 =⇒ 0 ≤ sin2 k

k5/4
≤ 1

k5/4
.

From class, the series
∞∑

k=0

1

k5/4
converges, and so the given series

does as well.



(b) (7 points)
∞∑

n=1

ln n

n3/2
.

You may use the fact that
ln x

x3/2
is decreasing on the interval [2,∞).

We use the integral test, following the hint that ln x/x3/2 is de-
creasing on [2,∞). It is certainly continuous and positive on this
interval. We take the integral:∫ ∞

2

ln x · x−3/2 dx.

We evaluate it via integration by parts. Take u = ln x, so that
dv = x−3/2, and du = 1/x, v = −2x−1/2. Then∫ ∞

2

ln x · x−3/2 dx =
[
−2 ln x · x−1/2

]∞
2

+

∫ ∞

2

2x−1/2 · x−1 dx

=
[
−2 ln x · x−1/2

]∞
2

+

∫ ∞

2

2x−3/2 dx

=
[
−2 ln x · x−1/2 − 4x−1/2

]∞
2

= lim
b→∞

−2
ln b√

b
− 4√

b
+

2 ln 2√
2

+
4√
2
.

By l’Hopital’s rule (for example), ln b/
√

b → 0, and clearly 1/
√

b →
0. So the improper integral converges, and by the integral test the
series does as well.

(c) (5 points)
∞∑

j=1

j + 1

j2 + 1
.

We do direct comparison:

j + 1

j2 + 1
>

j

j2 + 1
.

We then use the integral test to show that
∞∑

j=1

j

j2 + 1
diverges.

The function
x

x2 + 1
is continuous and positive and decreasing



on [1,∞), and the integral can be evaluated with the substition
u = x2 + 1: ∫ ∞

1

x

x2 + 1
dx =

∫ ∞

2

1

u

du

2

= [ln u]∞2
= lim

b→∞
ln b− ln 2 = ∞.


