Math 128
Final Examination - December 12, 2008
Name \qquad
8 problems, 100 points.
Instructions: Show all work - partial credit will be given, and "Answers without work are worth credit without points." You don't have to simplify your answers. You may use a simple calculator that is not graphing or programmable. You may have up to four 3×5 cards, but no other notes.

1. (a) (6 points) Calculate $f_{x y}$, where $f(x, y)=3 e^{-2 x y}$.
$f_{x}=3 \cdot(-2 y) \cdot e^{-2 x y}=-6 y e^{-2 x y}$, so

$$
f_{x y}=-6 y \cdot(-2 x) \cdot e^{-2 x y}-6 e^{-2 x y}=12 x y e^{-2 x y}-6 e^{-2 x y} .
$$

(b) (7 points) Evaluate the double integral $\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}} x y d y d x$.

$$
\begin{aligned}
\int_{0}^{1}\left[x \cdot \frac{y^{2}}{2}\right]_{x^{2}}^{\sqrt{x}} d x & =\frac{1}{2} \int_{0}^{1} x^{2}-x^{5} d x \\
& =\frac{1}{2}\left[\frac{x^{3}}{3}-\frac{x^{6}}{6}\right]_{0}^{1} \\
& =\frac{1}{2}\left(\frac{1}{3}-\frac{1}{6}\right)=\frac{1}{12}
\end{aligned}
$$

(c) (7 points) Solve the differential equation $y^{\prime}=-x y$. We separate variables:

$$
\frac{d y}{d x}=-x y \Longrightarrow \frac{1}{y} d y=-x d x
$$

We then integrate:

$$
\begin{aligned}
\int \frac{1}{y} d y & =\int-x d x \\
\ln |y| & =-\frac{1}{2} x^{2}+C \\
|y| & =e^{-\frac{1}{2} x^{2}+C} \\
y & = \pm e^{C} e^{-\frac{1}{2} x^{2}} .
\end{aligned}
$$

If we wanted, we could rewrite $A= \pm e^{C}$, so that $y=A e^{-\frac{1}{2} x^{2}}$.
2. Let X be a normally distributed random variable, with expected value 3 and variance 4.
(a) (3 points) Set up an integral representing $\operatorname{Pr}(2 \leq X \leq 5)$.

$$
\int_{2}^{5} \frac{1}{2 \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-3}{2}\right)^{2}} d x
$$

(b) (4 points) Show how to use integration by substitution to evaluate your integral from part (a). Use of the table of areas under the standard normal distribution may be helpful.
We take $u=\frac{x-3}{2}$, so that $d u=\frac{1}{2} d x$. Then

$$
\begin{aligned}
\int_{2}^{5} \frac{1}{2 \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-3}{2}\right)^{2}} d x & =\int_{u(2)}^{u(5)} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} u^{2}} d u \\
& =\int_{-0.5}^{1} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} u^{2}} d u \\
& =A(1)-A(-0.5)=A(1)+A(0.5)
\end{aligned}
$$

You can look up the values of $A(1)$ and $A(0.5)$ on the included table.
3. (a) (8 points) Let $f(x)=e^{x} \sin x$. Find an upper bound A for $\left|f^{\prime \prime}(x)\right|=\left|\frac{d^{2}}{d x^{2}} e^{x} \sin x\right|$ on the interval $[-1,2]$.
We first calculate $f^{\prime \prime}$:

$$
\begin{aligned}
f^{\prime}(x) & =e^{x} \sin x+e^{x} \cos x \\
f^{\prime \prime}(x) & =\left(e^{x} \sin x+e^{x} \cos x\right)+\left(e^{x} \cos x-e^{x} \sin x\right) \\
& =2 e^{x} \cos x
\end{aligned}
$$

Then $\left|f^{\prime \prime}(x)\right|=2\left|e^{x}\right||\cos x|$, and since $0 \leq e^{x} \leq e^{2}$ on the given interval, and $|\cos x| \leq 1$ for all x, we find that $A=2 e^{2}$ is an upper bound.
(b) (4 points) Using your result from part (a), find an n so that the midpoint rule approximation M_{n} is accurate to 0.01 for the integral
$\int_{-1}^{2} e^{x} \sin x d x$.
We use the error bound formula:

$$
\operatorname{error} M_{n} \leq \frac{2 e^{2} \cdot(2-(-1))^{3}}{24 n^{2}}=\frac{e^{2} \cdot 27}{24 n^{2}}=\frac{e^{2} \cdot 9}{8 n^{2}}
$$

So if

$$
\frac{e^{2} \cdot 9}{8 n^{2}} \leq 0.01=\frac{1}{100}
$$

then we have the desired accuracy. This means that

$$
\frac{e^{2} \cdot 9 \cdot 100}{8} \leq n^{2}, \quad \text { or } \quad \frac{30 e}{2 \sqrt{2}}=\frac{15 e}{\sqrt{2}} \leq n .
$$

Any n greater than $15 e / \sqrt{2}$ has small enough error, for example $n=30$.
4. The random variable X has outcomes between 0 and π. The probability density function of X is $k \sin x$ for some constant k.
(a) (7 points) Find k.

Since $k \sin x$ is a probability density function, and the outcomes of X are on $[0, \pi]$, we have that

$$
\int_{0}^{\pi} k \sin x d x=k[-\cos x]_{0}^{\pi}=2 k=1
$$

Thus $k=\frac{1}{2}$.
(b) (3 points) Set up an integral for $E(X)$.
(If you have trouble solving part (a), it's ok to leave your answer in terms of k.)

$$
E(X)=\int_{0}^{\pi} x \cdot \frac{1}{2} \sin x d x
$$

(c) (6 points) Evaluate your integral from part (b) to calculate $E(X)$. We use integration by parts. The rule of thumb LATE tells us to
take $u=x$, so that $d v=\frac{1}{2} \sin x d x$, and $d u=d x, v=-\frac{1}{2} \cos x$. We get

$$
\begin{aligned}
& =\left[x \cdot\left(-\frac{1}{2} \cos x\right)\right]_{0}^{\pi}-\int_{0}^{\pi}-\frac{1}{2} \cos x d x \\
& =\left(\pi \cdot\left(-\frac{1}{2}\right) \cdot(-1)-0 \cdot\left(-\frac{1}{2}\right) \cdot 1\right)+\frac{1}{2}[\sin x]_{0}^{\pi} \\
& =\frac{\pi}{2}
\end{aligned}
$$

5. (16 points) Let $f(x, y)=x^{2}+4 y^{3}-6 x y+10$.
(a) Find the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
$\frac{\partial f}{\partial x}=2 x-6 y, \frac{\partial f}{\partial y}=12 y^{2}-6 x$.
(b) Find the critical points for f.

We set $2 x-6 y=0$ and $12 y^{2}-6 x=0$. Dividing the first equation by 2 and moving y to the rights gives us $x=3 y$. Substituting this into the other equation gives us $12 y-6 x=12 y^{2}-18 y=0$. We factor this last equation as $6 y(2 y-3)=0$. Thus, $y=0$ or $y=\frac{3}{2}$, and since $x=3 y$, we have the critical points $(0,0)$ and $\left(\frac{9}{2}, \frac{3}{2}\right)$.
(c) Calculate the 2nd derivatives $\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial y^{2}}$, and $\frac{\partial^{2} f}{\partial x \partial y}$.
$\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x} 2 x-6 y=2$
$\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x} 12 y^{2}-6 x=-6$
$\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y} 12 y^{2}-6 x=24 y$.
(d) Using the 2nd derivative test, determine which points are relative maxima, relative minima, and saddle points.
From the calculation of the 2nd derivative, we have the discriminant

$$
D(x, y)=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=48 y-36
$$

Plugging in the critical points, we get that
$D(0,0)=0-36=-36<0$, hence $(0,0)$ is a saddle point.
$D\left(\frac{9}{2}, \frac{3}{2}\right)=48 \cdot \frac{3}{2}-36=36>0$, and since $f_{x x}=2>0$, that $\left(\frac{9}{2}, \frac{3}{2}\right)$ is a relative minimum.
6.
(a) (8 points) Show how to find a Taylor series for $F(x)=\int_{0}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} t^{2}} d t$. Hint: $F(x)$ is an anti-derivative of $\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}$.
We first find a Taylor series for $\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}$. Since

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!},
$$

we get that

$$
\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}=\frac{1}{\sqrt{2 \pi}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2} x^{2}\right)^{k}}{k!}=\frac{1}{\sqrt{2 \pi}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k} x^{2 k}}{k!} .
$$

We integrate to get

$$
\begin{aligned}
F(x) & =\int \frac{1}{\sqrt{2 \pi}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k} x^{2 k}}{k!} d x=\frac{1}{\sqrt{2 \pi}} \sum_{k=0}^{\infty} \int \frac{\left(-\frac{1}{2}\right)^{k} x^{2 k}}{k!} d x \\
& =C+\frac{1}{\sqrt{2 \pi}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k} x^{2 k+1}}{(2 k+1) k!} .
\end{aligned}
$$

Since $F(0)=0$, we find that $0=C+\sum 0=C$, and that

$$
F(x)=\frac{1}{\sqrt{2 \pi}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k} x^{2 k+1}}{(2 k+1) k!} .
$$

(b) (3 points) Let X be a random variable with the standard normal distribution. Using part (a), write down an infinite series for the probability $\operatorname{Pr}(0 \leq X \leq 2)$.
Plug into the result from part (a):

$$
\int_{0}^{2} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x=F(2)=\frac{1}{\sqrt{2 \pi}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k} 2^{2 k+1}}{(2 k+1) k!}
$$

7. A certain lecturer often fails to turn off his mobile phone when teaching. Let the random variables X be the amount of lecture time (in hours) before his phone next rings.
(a) (2 points) In 2-3 sentences, explain why X is exponentially distributed.
A number of answers received full credit.
Because X is the amount of time between rare random events, and the events are memoryless.
Because X is the amount of time between phone calls, like the examples we did in class.
etc.
(b) (4 points) From experimental data, the expected value of X is 30 hours of classtime. The standard deviation is also 30 hours. What is the probability density function for X ?
From class, an exponential random variable with probability density function $k e^{-k x}$ has expected value $\frac{1}{k}$. Thus, $k=\frac{1}{30}$ in this example, and the probability density function is

$$
\frac{1}{30} e^{-\frac{1}{30} x} .
$$

(c) (4 points) The random variable Y is normally distributed, but also has expected value and standard deviation of 30 . What is the probability density function for Y ?

$$
\frac{1}{30 \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-30}{30}\right)^{2}} .
$$

8. (8 points) A 100 L tank of water has two hoses flowing into it. One carries $3 \mathrm{~L} / \mathrm{min}$ of saltwater with a concentration $0.1 \mathrm{~kg} / L$; the other carries $2 \mathrm{~L} / \mathrm{min}$ of pure water. $5 \mathrm{~L} / \mathrm{min}$ of water leaves the tank through a drain. At time $t=0$, the tank contains $100 L$ of saltwater at the concentration $0.1 \mathrm{~kg} / L$.
Set up (but do not solve) a differential equation for the amount of salt in the tank at time t.
Let $S(t)$ be the amount of salt in the tank at time t.
The tank has two inputs:
$3 \mathrm{~L} / \mathrm{min}$ at $0.1 \mathrm{~kg} / \mathrm{L} \longrightarrow 0.3 \mathrm{~kg} / \mathrm{min}$.
$2 \mathrm{~L} / \mathrm{min}$ at $0 \mathrm{~kg} / \mathrm{L} \longrightarrow 0 \mathrm{~kg} / \mathrm{min}$.
The tank has one output. Since the total output of saltwater is the same as the total input of saltwater, the volume of the tank is fixed at 100 L , and the concentration in the tank at time t is $\frac{S(t)}{100}$. So the output rate is $5 \cdot \frac{S(t)}{100} \mathrm{~kg} /$ min.
We see that the differential equation governing the amount of salt in the tank is

$$
S^{\prime}(t)=0.3+0-5 \cdot \frac{S(t)}{100}=0.3-\frac{S(t)}{20}
$$

