Math 128
Quiz 3 Solutions
Correct answers without work are worth no credit!

1. Consider the function $f(x)=\cos x^{3}$.
(a) Calculate $f^{\prime \prime}(x)$.

$$
\begin{gathered}
f^{\prime}(x)=-\sin x^{3} \cdot 3 x^{2}=-3 x^{2} \sin x^{3} \\
f^{\prime \prime}(x)=-6 x \sin x^{3}-3 x^{2} \cos x^{3} \cdot 3 x^{2}=-6 x \sin x^{3}-9 x^{4} \cos x^{3} .
\end{gathered}
$$

(b) Using your result from part (a), find an upper bound for $\left|f^{\prime \prime}(x)\right|$ on the interval $[-3,0]$.
We use the rules from class repeatedly:

$$
\begin{aligned}
\mid f^{\prime \prime}(x) & =\left|-6 x \sin x^{3}-3 x^{2} \cos x^{3} \cdot 3 x^{2}=-6 x \sin x^{3}-9 x^{4} \cos x^{3}\right| \\
& \leq\left|6 x \sin x^{3}\right|+\left|9 x^{4} \cos x^{3}\right| \\
& \leq 6|x| \cdot\left|\sin x^{3}\right|+9\left|x^{4}\right| \cdot\left|\cos x^{3}\right| .
\end{aligned}
$$

Then $\left|\cos x^{3}\right| \leq 1$, similarly $\left|\sin x^{3}\right| \leq 1$. On the interval $[-3,0]$, we have $|x| \leq 3$ and $\left|x^{4}\right|=|x|^{4} \leq 3^{4}=81$. Thus, $\left|f^{\prime \prime}(x)\right| \leq$ $6 \cdot 3+9 \cdot 81=747$.
Note: It is not correct to bound by $\sin 27$, as $|\sin |$ takes on higher values on the given interval.
(c) Using your value of A from part (b), find a value of n so that T_{n} approximates $\int_{-3}^{0} \cos x^{3} d x$ with error of less than 0.05 .
We want to find n so that

$$
\text { error } T_{n} \leq \frac{747 \cdot 3^{3}}{12 \cdot n^{2}} \leq 0.05
$$

We solve:

$$
\frac{747 \cdot 3^{3}}{12 \cdot 0.05} \leq n^{2}, \quad \text { i.e., } \quad \sqrt{\frac{747 \cdot 3^{3}}{12 \cdot 0.05}} \leq n
$$

It is perfectly fine to leave your solution in this form on a quiz. If you have a calculator, you can find the square root to be 183.3, so
$n=184$. Note: As I've discussed with some of you individually, on error estimations it's perfectly acceptable to be sloppier with the bounds. For example, by taking the higher upper bound for $\left|f^{\prime \prime}(x)\right|$ of 800 , you have easier numbers to calculate with:

$$
\sqrt{\frac{800 \cdot 3^{3}}{12 \cdot 0.05}}=\sqrt{200 \cdot 3^{2} \cdot 20}=60 \cdot \sqrt{10}<n
$$

and (since $\sqrt{10}<4$) we see that $n=240$ will also give the desired error. Which is correct, 240 or 184 ? Both give error of less than 0.05 , and they are close enough that it doesn't make a great deal of difference for calculation time, so either is acceptable.

