Math 493
Midterm Examination 1 - October 6, 2010
Name \qquad

General Instructions: Please answer the following, showing all your work, and without the aid of books or notes.

1. (1 points each) True/False. Please read the statements carefully, as no partial credit will be given.
(a) \qquad If A, B are any events in some sample space, then

$$
P(A \cap B)=P(A)+P(B)-P(A \cup B)
$$

(b) $\overline{\Omega=\mathbb{N}}$. The function $m(j)=\frac{1}{j!}$ is a probability distribution function on
(c) \qquad If A and B are disjoint events, then

$$
P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap C)-P(B \cap C)
$$

(d) \qquad The following function is a probability density function:

$$
f(x)= \begin{cases}\frac{1}{x^{2}} & \text { for } x \geq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

(e) \qquad If A, B, and C are independent events, then

$$
P(A \cup B \cup C)=P(A)+P(B)+P(C)
$$

(f) $\overline{P(X}>0)=\frac{1}{2}$.
(g) \qquad If Y is a uniformly distributed continuous random variable on $[0, \pi]$ $\overline{\text { then }} P(X=e)=0$.
(h) If Z is a uniformly distributed continuous random variable on $[0, \pi]$, then the cumulative distribution function for Z is

$$
F(x)= \begin{cases}0 & \text { for } x<0 \\ \frac{x}{\pi} & \text { for } 0 \leq x \leq \pi \\ 1 & \text { for } x>\pi\end{cases}
$$

2. (4 points each)
(a) A deck is shuffled into uniformly random permutation, and a whist hand (13 cards) is dealt out. Find the probability that the hand consists of 4 cards of one suit, and 3 cards of each of the other three suits.
(b) You roll a die 4 times. What is the probability that no two of the resulting numbers are the same?
(c) You begin repeatedly rolling a die. Let X be the number of rolls before you first get a 6. Find a probability distribution $m(j)$ for X.
3. (a) (4 points) Let X be a continuous real-valued random variable with a (Riemann) density function $f(x)$. Suppose that E is an interval. Show that

$$
P\left(X \in E^{c}\right)=1-P(X \in E)
$$

(Note: We proved the discrete analogue of this in class.)
(b) (6 points) Let X and Y be continuous uniform random variables on $[0,1]$. Find $P(|2 X-Y|<1)$. (A picture may be helpful!)

