Math 535, Homework 1, due Oct 1

- (1) If Δ is a finite simplicial complex on vertex set V, and $S \subseteq V$, then the *induced subcomplex* on S (denoted $\Delta[S]$) is the simplicial complex with all faces of Δ that are contained in S. Characterize the simplicial complexes Δ such that $H_i(\Delta[S]; \mathbb{Z}) =$ 0 for all i > 0 and all subsets $S \subseteq V(\Delta)$.
- (2) Let L be a finite lattice, and let $\Gamma(L)$ be the simplicial complex with vertex set the atoms of L, and faces all subsets of atoms x_1, \ldots, x_k such that $x_1 \vee \cdots \vee x_k \neq \hat{1}$. Show that $\Gamma(L)$ is homotopy equivalent to |L|.
- (3) A CW-complex is *regular* if every attaching map $D^n \to X^{n-1}$ is a homeomorphism. The face poset L(X) of a regular CW-complex X consists of all cells of X, ordered by inclusion. Show that |L(X)| is homeomorphic to X.
- (4) Find a poset P with |P| a Möbius strip. Find $\mu_P(x, y)$ for every isomorphism type of interval in [x, y].
- (5) For Δ a simplicial complex on vertex set V, let Δ^{\vee} be the simplicial complex with vertex set V and <u>non</u>-faces consisting of $\{V \setminus \sigma : \sigma \in \Delta\}$.
 - (a) Show that $(\Delta^{\vee})^{\vee} = \Delta$.
 - (b) Show that $\tilde{H}_i(\Delta; \mathbb{Z}) \cong \tilde{H}^{n-i-3}(\Delta^{\vee}; \mathbb{Z})$, where n = |V|. Hint: Embed in a simplex and apply Alexander duality!
 - (c) Find $\chi(\Delta^{\vee})$.