Math 535, Homework 2, due Nov 8

(1) Prove that if a lattice L has a (not necessarily maximal) chain $\hat{0} = m_0 < m_1 < \cdots < m_k = \hat{1}$

with each m_i modular in L, then $\tilde{H}_i(|L|)$ vanishes for i < k-2.

- (2) Let G be a finite group, and $\mathcal{S}(G)$ be the subnormal subgroup lattice:
 - (a) Show that $\mathcal{S}(G)$ is a lattice.
 - (b) Show that $\mathcal{S}(G)$ is lower semi-modular.
 - (c) Is $\mathcal{S}(G)$ geometric for all G? Prove or find a counterexample.
- (3) (a) Show that if L is a semimodular lattice, then every coatom of L^* is modular. (That is, show every atom of L is dual modular.)
 - (b) If L is a geometric lattice, describe the descending chains of the associated EL-labeling with respect to atom ordering a_1, \ldots, a_s .
- (4) Let P_n be the graph consisting of a path with *n*-vertices. Describe the homotopy type of the independence complex of P_n .
- (5) The *n*-dimensional cross polytope X_n is the independence complex of n + 1 disjoint edges.
 - (a) Show that the face lattice $L(X_n)$ has an *EL*-labeling.
 - (b) Conclude that $X_n \simeq S^n$.
- (6) Characterize the graphs G for which the lattice of flats of the cycle matroid is supersolvable.