Math 535, Homework 2, due Nov 8

(1) Prove that if a lattice L has a (not necessarily maximal) chain

$$
\hat{0}=m_{0}<m_{1}<\cdots<m_{k}=\hat{1}
$$

with each m_{i} modular in L, then $\tilde{H}_{i}(|L|)$ vanishes for $i<k-2$.
(2) Let G be a finite group, and $\mathcal{S}(G)$ be the subnormal subgroup lattice:
(a) Show that $\mathcal{S}(G)$ is a lattice.
(b) Show that $\mathcal{S}(G)$ is lower semi-modular.
(c) Is $\mathcal{S}(G)$ geometric for all G ? Prove or find a counterexample.
(3) (a) Show that if L is a semimodular lattice, then every coatom of L^{*} is modular. (That is, show every atom of L is dual modular.)
(b) If L is a geometric lattice, describe the descending chains of the associated $E L$-labeling with respect to atom ordering a_{1}, \ldots, a_{s}.
(4) Let P_{n} be the graph consisting of a path with n-vertices. Describe the homotopy type of the independence complex of P_{n}.
(5) The n-dimensional cross polytope X_{n} is the independence complex of $n+1$ disjoint edges.
(a) Show that the face lattice $L\left(X_{n}\right)$ has an $E L$-labeling.
(b) Conclude that $X_{n} \simeq S^{n}$.
(6) Characterize the graphs G for which the lattice of flats of the cycle matroid is supersolvable.

