
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION
DOMAINS

RUSS WOODROOFE

1. Unique Factorization Domains

Throughout the following, we think of R as sitting inside R[x] as the
constant polynomials (of degree 0).

We recall that

Fact 1. If F is a field, then F [x] is a Euclidean domain, with d(f) = deg f .

but

Lemma 2. Z[x] is not a PID.

Proof. Consider the ideal I = (2, x). If I = (f), then since 2 ∈ I we have
2 = fg. Since deg 2 = 0, we must have deg f = 0, and f | 2. Thus, the
possibilities are ±1,±2.

But the ideal generated by a unit is the entire ring, so (1) = (−1) =
Z[x] 6= I; and ±2 does not divide x, so x /∈ (2) or (−2). It follows that I is
not principal, and so that Z[x] is not a PID. �

This suggests

Question 3. What structure does Z[x] have?

To answer this question, we make a new definition. First, remember than
an element a is irreducible or prime if a = bc implies that either b or c is a
unit.

Definition 4. A ring is a unique factorization domain, abbreviated UFD, if
it is an integral domain such that

(1) Every non-zero non-unit is a product of irreducibles.
(2) The decomposition in part 1 is unique up to order and multiplication

by units.

Thus, any Euclidean domain is a UFD, by Theorem 3.7.2 in Herstein, as
presented in class.

Our goal is the following theorem.

Theorem 5. If R is a UFD, then R[x] is a UFD.

First, we notice that if a ∈ R is prime in R, then a is prime in R[x] (as
a degree 0 polynomial). For if a = bc in R[x], then deg b = deg c = 0, hence
both b and c are in R, hence one is a unit.
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This means that one class of irreducibles in R[x] will be the irreducibles
of R. To factor out these, we make the following definition.

Definition 6. A polynomial f ∈ R[x] is primitive if a | f for some a ∈ R
only if a is a unit.

Example 7. In Z[x], the polynomial 4x2 − 2 is not primitive, since it is
divisible by 2; but 4x2 − 3 is primitive.

Lemma 8. Let f ∈ R[x] be primitive. Then f is irreducible if and only if f
does not factor as a product of polynomials with positive degree.

Proof. (⇒) Trivial.
(⇐) If f = gh where g does not have positive degree, then deg g = 0,

hence g ∈ R, hence (since f is primitive) g is a unit. Thus, if the only
factorizations of f have one term with degree 0, then f is irreducible. �

We give the following fact without proof:

Fact 9. Gcds exist in UFDs.

That gcds exist should not be too surprising: the idea is that you look at
the factorizations of f and g, and take the common irreducible elements (up
to units) for the gcd.

The following lemma then produces primitive polynomials for a factoriza-
tion:

Lemma 10. Let R be a UFD, and let f ∈ R[x] be nonconstant (i.e., deg f >
0). Then there is an a ∈ R and a primitive polynomial g ∈ R[x] such that
f = ag.

Proof. Let
f = a0 + a1x + · · ·+ anxn,

and let a = gcd(a0, a1, . . . , an). Then each ai = abi, and if we take

g = b0 + · · ·+ bnxn

then f = ag. Furthermore, g is primitive, since if p ∈ R divides b0, . . . bn,
then p divides a0, . . . , an, hence by the definition of gcd is a unit. �

Corollary 11. Let R be a UFD. Then any non-zero non-unit in R[x] is
a product of irreducible elements. Each irreducible element is either an ir-
reducible of R, or else a primitive polynomial that doesn’t factor into two
polynomials of positive degree.

Proof. Induct on deg f .
The base case is deg f = 0. In this case, f is in R, and we are done since

R is a UFD.
If deg f > 0, then Lemma 10 gives f = ag for a ∈ R and g primitive. The

element a factors as required (since R is a UFD), while Lemma 8 says that
g is either irreducible, or else factors into two polynomials g0g1 of smaller
positive degree. By induction, g0 and g1 themselves factor into the desired
form, hence g does, hence ag does. �



POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS 3

Let us review this proof on a high level. We take a polynomial f ∈ R[x].
It’s possible that x has some irreducibles from R that we can factor out of
it. If so, we do factor these irreducibles from R out, using Lemma 10. This
leaves a primitive polynomial.

Then a primitive polynomial factors only into polynomials of smaller pos-
itive degree.

Thus, what we’ve done so far is:
(1) Shown that a factorization exists.
(2) Loosely described the form that this factorization takes.

Notice the similarity of part 1 with what we did with Euclidean domains –
it is by looking at degree that we recognize irreducibles.

It remains to show that the factorization we’ve found is unique. The
technique we use to do this will be to embed R[x] in F [x], and use the fact
that F [x] is a UFD (since its a Euclidean domain).

Recall that Frac R is the field of fractions of R, that is, all formal pairs a
b .

Frac R is a field.

Example 12. Frac Z = Q. Moreover, the construction of Frac R from R
exactly mirrored that of Q from the integers!

Recall further that we think of R as sitting inside F via the embedding
a 7→ a

1 . We can also think of R[x] as sitting inside F [x] by embedding each
coefficient, that is,

a0 + a1x + · · ·+ anxn 7→ a0

1
+

a1

1
x + · · ·+ an

1
xn.

Lemma 13. Let R be a UFD, let f, g ∈ R[x], that f is primitive, and that
F = Frac R. If f divides g in F [x], then f divides g in R[x].

Proof. If f divides g in F [x], then g = fhF for some hF ∈ F [x]. Since
hF ∈ F [x], its coefficient of xi has the form ai

bi
. Let b =

∏
bi. Then, after

cancelling, bhF has 1 on the bottom of each coefficient, hence bhF ∈ R[x];
and bg = f · bhF , so that f divides bg in R[x].

Let c be the element of R with the minimal number of primes in its unique
factorization such that f divides cg in R[x], i.e., such that cg = fh for some
h ∈ R[x]. By the above argument, c exists. If c is a unit, then the proof is
complete.

We will show that if c is not a unit, then we have a contradiction. For
then some irreducible p in R divides c. Hence,

p | cg = fh,

and so p divides either f or ch. But since f is primitive, p does not divide
f . And if p divides h, then h

p is in R, hence c
pg = f h

p , and f divides c
pg.

This contradicts the choice of c as having a minimal number of primes in its
unique factorization. �
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Lemma 13 lets us prove a Theorem of Gauss in our general setting. Gauss’s
Lemma (Lemma 14) can also be found in Herstein as Theorem 3.10.1.
Corollary 14. (Gauss’s Lemma)

Let R be a UFD, F = Frac R. Suppose that 0 6= f ∈ R[x] factors in F [x]
as f = gF hF . Then f = gh for g, h ∈ R[x], where g = cgF for some c ∈ F .
Thus, deg g = deg gF and deg h = deg hF .
Proof. We start out previously to the previous proof: let

gF =
a0

b0
+

a1

b1
x + · · ·+ an

bn
xn,

and let b =
∏

bi, so that bgF ∈ R[x].
We then apply Lemma 10, which says that bgF = ag for some a ∈ R and

primitive g ∈ R[x]. Let c = b
a , and notice that g = cgF .

Then f = g · 1
chF , i.e., g divides f in F [x]. Since g is primitive, Lemma

13 says that it also divides f in R[x], as desired. �

We are now ready to prove our main result: that R a UFD =⇒ R[x] a
UFD.

Proof. (of Theorem 5)
Corollary 11 factors f in R[x] into primes in R and irreducible primitive

polynomials of positive degree, satisfying part 1 of the definition of UFD.
We need to show that the factorization is unique. It suffices to show that it
is unique for primitive polynomials.

Suppose that f is primitive, and factors into irreducibles as f1 . . . fk. Then
each fi is primitive, since if c ∈ R divides fi, then c divides f , hence c is a
unit since f is primitive. Then Lemma 14 tells us that each fi is irreducible
in F [x], where as usual F = Frac R.

Since F [x] is a UFD, the factorization f = f1, . . . fk is unique in F [x],
hence unique in the smaller domain R[x]. �

Since Z is a UFD, we have found one answer to Question 3.
Corollary 15. Z[x] is a UFD.

We can also take polynomial rings in several variables, as discussed pre-
viously.
Corollary 16. Let R be a UFD. Then R[x1, . . . , xn] is also a UFD.
Proof. Induct on n! n = 0 is R, which follows by hypothesis. But then
R[x1, . . . , xn] = R[x1, . . . , xn−1][xn] by definition, and since R[x1, . . . , xn−1]
is a UFD by induction, Theorem 5 gives the result. �

This is especially important when R is a field or the integers.
Corollary 17. If F is a field, then F [x1, . . . , xn] is a UFD.
Corollary 18. Z[x1, . . . , xn] is a UFD.
Remark 19. In your homework, you showed that the next stronger condition
does not hold: F [x1, x2] is not a PID.
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2. The Eisenstein Criterion

The following Eisenstein Criterion will let us produce irreducible polyno-
mials.

Theorem 20. (Eisenstein Criterion)
Let R be a UFD, F = Frac R, and let f ∈ R[x] with

f = a0 + a1x + · · ·+ anxn.

If there is a prime p ∈ R such that
(1) p - an,
(2) p | ai for 0 ≤ i < n, and
(3) p2 - a0,

then f is irreducible over F [x].

Example 21. 3x3−25x+15 is irreducible over Q[x], since 5 divides 25 and
15, but not 3; and 25 does not divide 15.

Proof. Let R = R/(p). Since (p) is a maximal ideal in R, R̄ is a field. For
r ∈ R, let r be the image of r mod (p); and for g ∈ R[x], let g be the
polynomial obtained from g by taking every coefficient mod (p). The map
g 7→ g is a homomorphism. (Check this!)

Suppose by contradiction that f factors as gh in F [x]. Then by Gauss’s
Lemma (Lemma 14), we can take g, h ∈ R[x], where each of g and h has
positive degree. Since we’re in R[x], we can map the factorization f = gh
into R[x]: f = gh.

But f = anxn 6= 0, since p divides every coefficient of f except for an.
Thus, f factors into irreducibles as anx · x · · · · · x. Since R[x] is a UFD, this
factorization is unique, and thus g = cx`, and h = dxm.

What are ` and m? We compare them with deg g and deg h. It is obvious
that ` ≤ deg g and m ≤ deg h. But then

deg f = ` + m ≤ deg g + deg h = deg f

and since deg f = deg f (from above), we have that deg g = ` and deg h = m.
In particular, `,m > 0.

Since the constant terms of g and h are 0, we must have that the constant
terms of g and h are divisible by p. But the constant term of f is the product
of the constant terms of g and h, hence divisible by p2, giving us the desired
contradiction. �

Example 22. x3 − 2 is irreducible in Q[x]. Similarly for xn − p, where p is
a prime, etc.

Coming from the point of view of field extensions, Eisenstein’s Criterion
is useful because it gives us lots of irreducible polynomials over F [x], hence
lots of field extensions of F !
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3. Face rings

Definition 23. An (abstract) simplicial complex ∆ is a family of subsets of
[n] such that if A ∈ ∆ and B ⊆ A, then B ∈ ∆.

An element A of ∆ is called a face, or an (k − 1)-face if |A| = k.

Example 24. The (n− 1)-simplex is the power set of [n]. We identify the
2-simplex with a triangle. The triangle itself (a 2-face) corresponds with [3];
its edges (1-faces) with {1, 2}, {1, 3}, and {2, 3}; vertices with {1}, {2}, and
{3} (0-faces); and the empty set ∅ is a (−1)-face.

Similarly, we identify the 3-simplex with a tetrahedron; and n-simplexes
with higher dimensional versions.

Fact 25. An abstract simplicial complex has a “geometric realization” ob-
tained by glueing together edges, triangles, tetrahedra, etc.

Simplicial complexes are studied in both combinatorics and topology; in
this note I will sketch a connection with ring theory. First, an easy lemma:

Lemma 26. Let C be a non-face of ∆, that is, let C /∈ ∆. Then if D ⊇ C,
then D is also a non-face of ∆.

Proof. If D is a face, then the definition of simplicial complex tells us that
C is also. �

We notice that non-faces are closed under adding elements, while ideals
are closed under multiplication. We make a connection:

Definition 27. Let ∆ be a simplicial complex on [n]. Consider F [x1, . . . , xn],
and take the ideal

I = (
∏
i∈C

xi : C is a non-face of ∆).

Then
F [∆] , F [x1, . . . , xn]/I

is the face ring of ∆.

Let us point out that the reason this is a good definition is: if C is a
non-face, corresponding to a monomial mC =

∏
i∈C xi, then every product

of mC by some xj corresponds to a larger subset, which is hence a non-face.

Remark 28. By the above discussion, I is in fact generated by the monomials
corresponding to the non-faces that are minimal under inclusion.

Example 29. Let ∆ be the following simplicial complex:

2

1

3

5

4
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Then the minimal non-faces of ∆ are {1, 4}, {2, 5}, {1, 5}, {2, 4}, {1, 3, 4},
and {2, 3, 4}. Thus,

F [∆] = F [x1, . . . , x5]/(x1x4, x2x5, x1x5, x2x4, x1x3x4, x2x3x4).

Exercise 30. Let ∆ be the simplicial complex {{1}, {2}}. Show that F [∆]
is not a UFD. Is F [Σ] a UFD for any simplicial complex Σ? Characterize
such simplicial complexes.

Although we won’t go far enough into either ring theory or topology to
say very much about face rings, we note that many interesting properties of
the topology and combinatorial geometry of ∆ are encoded in the algebra of
F [∆].


