THE CENTRAL LIMIT THEOREM FOR MEDIANS

RUSS WOODROOFE

1. SETTING

The purpose of this note is to give a simple sketch of the following theorem:
Theorem 1. Let X_{1}, \ldots, X_{n} be iid random variables with pdf $f(x)$ and cdf $F(X)$. If $F(0)=\frac{1}{2}$, and f is continuous at 0 , then $\sqrt{n} M \xrightarrow{D} N\left(0, \frac{1}{(2 f(0))^{2}}\right)$.

We'll need two relatively heavy results:
Theorem 2. (Taylor approximation) If $g(x)$ is differentiable at 0 , then there is a function $h(x)$ with $\lim _{x \rightarrow 0} h(x)=0$ so that

$$
g(x)=g(0)+g^{\prime}(0) \cdot x+h(x) \cdot x
$$

Theorem 3. (Lebesgue dominated convergence) Suppose that $f_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$ (for every x), where f_{n} and f are all integrable. If every $f_{n}(x)$ satisfies $\left|f_{n}(x)\right| \leq g(x)$ for some $g(x)$ with $\int_{-\infty}^{\infty} g(x) d x<\infty$, then

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f_{n}(x) d x=\int_{-\infty}^{\infty}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x=\int_{-\infty}^{\infty} f(x) d x
$$

Please refer to Wikipedia (or some other reference) for more background on these facts.
Recall that f is asymptotically equivalent to g if $\lim \frac{f}{g}=1$. We write $f \sim g$ in this case.
We'll also need:
Theorem 4. (Stirling's formula) We have that $n!\sim \sqrt{2 \pi n} \cdot\left(\frac{n}{e}\right)^{n}$ as $n \rightarrow \infty$.
Lemma 5. (Easy calculus fact) $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$.

2. Sketch of Proof

Proof. We now sketch the proof of Theorem 1. Some details are left as unassigned exercises.
We leave two gaps:

1) We'll work with odd samples $n=2 k+1$. Even samples are similar, and an easy detail to fill in. This means that the pdf of the nth median is

$$
f_{M}(x)=\frac{(2 k+1)!}{(k!)^{2}} \cdot F(x)^{k} \cdot(1-F(x))^{k} \cdot f(x)
$$

2) We assume that $f_{M}(x)$ is dominated for all n by some $g(x)$ with finite integral, as in the Lebesgue dominated convergence theorem. Under these circumstances, it suffices to show that $f_{\sqrt{n} M} \rightarrow f_{N\left(0, \frac{1}{\left(2 f(0)^{2}\right)}\right.}$.
Exercise 6. (Medium Hard) Find a dominating function for f_{M} for odd samples.
Exercise 7. (Easy) Explain the details of why Lebesgue dominated convergence gives convergence in distribution.

We now apply our above result: first, take a Taylor approximation of $F(x)$:

$$
\begin{aligned}
F(x) & =F(0)+F^{\prime}(0) \cdot x+H(x) \cdot x \\
& =\frac{1}{2}+f(0) \cdot x+H(x) \cdot x
\end{aligned}
$$

where $\lim _{x \rightarrow 0} H(x)=0$. Then

$$
\begin{aligned}
f_{M}(t) & =\frac{(2 k+1)!}{(k!)^{2}} \cdot\left(\frac{1}{2}+f(0) \cdot t+H(t) \cdot t\right)^{k} \cdot\left(\frac{1}{2}-f(0) \cdot t-H(t) \cdot t\right)^{k} \cdot f(t) \\
& =\frac{(2 k+1)!}{(k!)^{2}} \cdot\left(\frac{1}{4}-f(0)^{2} \cdot t^{2}-H(t)^{2} \cdot t^{2}-2 H(t) \cdot t\right)^{k} \cdot f(t) \\
& =\frac{(2 k+1)!}{(k!)^{2}} \cdot 2^{-2 k} \cdot\left(1-4 f(0)^{2} \cdot t^{2}-4 H(t)^{2} \cdot t^{2}-8 H(t) \cdot f(0) \cdot t\right)^{k} \cdot f(t)
\end{aligned}
$$

To simplify notation, write $4 H(t)^{2} \cdot t^{2}-8 H(t) \cdot f(0) \cdot t$ as $t \cdot G(t)$.
We now examine $f_{\sqrt{n} M}(t)$, which we must show converges as $n \rightarrow \infty$ to a normal pdf:

$$
\begin{aligned}
f_{\sqrt{n} M}(t) & =\frac{1}{\sqrt{n}} f_{M}\left(\frac{t}{\sqrt{n}}\right)=\frac{1}{\sqrt{2 k+1}} \cdot f_{M}\left(\frac{t}{\sqrt{2 k+1}}\right) \\
& =\frac{1}{\sqrt{2 k+1}} \frac{(2 k+1)!}{(k!)^{2}} \cdot 2^{-2 k} \cdot\left(1-4 f(0)^{2} \cdot \frac{t^{2}}{2 k+1}-G\left(\frac{t}{\sqrt{2 k+1}}\right) \cdot \frac{t}{\sqrt{2 k+1}}\right)^{k} \cdot f\left(\frac{t}{\sqrt{2 k+1}}\right) .
\end{aligned}
$$

Then

$$
\left(1-4 f(0)^{2} \cdot \frac{t^{2}}{2 k+1}\right)^{k}=\left(1-\frac{4 f(0)^{2} \cdot t^{2} \cdot \frac{k}{2 k+1}}{k}\right)^{k} \rightarrow e^{-2 f(0)^{2} \cdot t^{2}}
$$

Exercise 8. (Easy but tedious) Show that

$$
\left(1-4 f(0)^{2} \cdot \frac{t^{2}}{2 k+1}-G\left(\frac{t}{\sqrt{2 k+1}}\right) \cdot \frac{t}{\sqrt{2 k+1}}\right)^{k} \sim\left(1-\frac{4 f(0)^{2} \cdot t^{2} \cdot \frac{k}{2 k+1}}{k}\right)^{k} .
$$

(You'll need to look up a bound on the error term in the Taylor approximation).
Thus, we have

$$
f_{\sqrt{n} M}(t) \sim \frac{1}{\sqrt{2 k+1}} \frac{(2 k+1)!}{(k!)^{2}} \cdot 2^{-2 k} \cdot e^{-2 f(0)^{2} \cdot t^{2}} \cdot f\left(\frac{t}{\sqrt{2 k+1}}\right)
$$

We further notice that $f\left(\frac{t}{\sqrt{2 k+1}}\right) \rightarrow f(0)$, by continuity of f at 0 , so

$$
f_{\sqrt{n} M}(t) \sim \frac{1}{\sqrt{2 k+1}} \frac{(2 k+1)!}{(k!)^{2}} \cdot 2^{-2 k} \cdot e^{-2 f(0)^{2} \cdot t^{2}} \cdot f(0)
$$

We now apply Stirling's formula:

$$
f_{\sqrt{n} M}(t) \sim \frac{1}{\sqrt{2 k+1}} \cdot \frac{\sqrt{2 \pi(2 k+1)} \cdot\left(\frac{2 k+1}{e}\right)^{2 k+1}}{2 \pi k \cdot\left(\frac{k}{e}\right)^{2 k}} \cdot 2^{-2 k} \cdot e^{-2 f(0)^{2} \cdot t^{2}} \cdot f(0) .
$$

We cancel the $\sqrt{2 k+1}$ terms, and combine the $2 k$ th powers, to get

$$
\begin{aligned}
f_{\sqrt{n} M}(t) & \sim \frac{1}{\sqrt{2 \pi}} \cdot\left(\frac{2 k+1}{2 k}\right)^{2 k} \cdot\left(\frac{2 k+1}{e \cdot k}\right) \cdot e^{-2 f(0)^{2} \cdot t^{2}} \cdot f(0) \\
& \sim \frac{1}{\sqrt{2 \pi}} \cdot\left(1+\frac{1}{2 k}\right)^{2 k} \cdot\left(\frac{2 k+1}{e \cdot k}\right) \cdot e^{-2 f(0)^{2} \cdot t^{2}} \cdot f(0)
\end{aligned}
$$

We take limits of all remaining terms:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f_{\sqrt{n} M}(t) & =\frac{1}{\sqrt{2 \pi}} \cdot e \cdot \frac{2}{e} \cdot e^{-2 f(0)^{2} \cdot t^{2}} \cdot f(0) \\
& =\frac{2 f(0)}{\sqrt{2 \pi}} e^{-2 f(0)^{2} \cdot t^{2}}=f_{N\left(0, \frac{1}{\left(2 f(0)^{2}\right)}\right)}(t)
\end{aligned}
$$

Exercise 9. (Medium) Show that the $\sqrt{n} M$ pdf from an even sample is asymptotically equivalent with the odd sample pdf worked out above.

