THE 2-BY-2 CHI-SQUARED INDEPENDENCE STATISTIC

RUSS WOODROOFE

1. General setting

We are interested in determining whether two discrete random variables A and B (on the same sample space) are independent.

Let A have a outcomes $\alpha_1, \ldots, \alpha_a$, and B have b outcomes β_1, \ldots, β_b . We get a joint probability distribution:

$$p_{A,B}(i,j) = P(A = \alpha_i, B = \beta_j).$$

For short, we denote $p_{A,B}(i,j)$ as $p_{i,j}$. We recall that A and B independent means that $p_{i,j} = p_A(i)p_B(j)$, where $p_A(i) = P(A = \alpha_i)$ is the pmf of A, and similarly for B. For short, we denote $p_A(i) = p_{i,i}$ and $p_B(j) = p_{i,j}$. Thus, A and B are independent if and only if $p_{i,j} = p_{i,j}p_{i,j}$.

As usual, to do statistics, we perform n repeated trials of the experiment underlying the sample space, and for each resulting ω find $A(\omega)$ and $B(\omega)$. We count the number of times each possible (α_i, β_j) outcome occurs, and denote this $O_{i,j}$. To say this differently, $O_{i,j}$ is the number of experiments where $A = \alpha_i$ and $B = \beta_j$.

Similarly to our notation for $p_{i,.}$, we let $O_{i,.}$ be the number of experiments where $A = \alpha_i$, and $O_{.,j}$ be the number of experiments where $B = \beta_j$. Thus $O_{i,.} = \sum_{j=1}^b O_{i,j}$ and $O_{.,j} = \sum_{i=1}^a O_{i,j}$.

By our work on the χ^2 goodness-of-fit statistics, we have that if we knew $p_{i,.}$ and $p_{.,j}$ for all i and j, and if A and B are independent then

$$\sum_{i=1}^{a} \sum_{j=1}^{b} \frac{(O_{i,j} - np_{i,j}p_{,j})^2}{np_{i,j}p_{,j}}$$
 is approximately $\chi^2(ab-1)$.

In typical circumstances, however, the probabilities $p_{i,.}$ and $p_{.,j}$ will be unknown, so we estimate them as $\hat{p}_{i,.} = \frac{O_{i,.}}{n}$ and $\hat{p}_{.,j} = \frac{O_{.,j}}{n}$. Similarly to the situation with estimating σ^2 with S^2 (which uses \overline{X} in place of μ), this will require an adjustment to our statistics.

2. Theorem and proof

Theorem 1. Let A and B be random variables on a common sample space, where A has a possible values $\alpha_1, \ldots, \alpha_a$, and B has b possible values β_1, \ldots, β_b . Repeat the random trial n times, and let

$$O_{i,j} = \#$$
trials with $A = \alpha_i, B = \beta_j$.

As above, denote by $O_{i,.}$ the number of trials with $A = \alpha_i$, similarly for $O_{.,j}$.

If A and B are independent, then

$$X = \sum_{i=1}^{a} \sum_{j=1}^{b} \frac{\left(O_{i,j} - n\frac{O_{i,i}}{n}\frac{O_{i,j}}{n}\right)^2}{n\frac{O_{i,i}}{n}\frac{O_{i,j}}{n}} has approximate distribution \chi^2((a-1)(b-1)).$$

Proof sketch for a = 2. In this case, we have the simple expression $O_{,j} = O_{1,j} + O_{2,j}$. To make the notation simpler, we write $n_1 = O_{1,i}$ and $n_2 = O_{2,i}$, so that $n_1 + n_2 = n$.

Then we expand the "square" term for i = 1:

$$\begin{pmatrix} O_{1,j} - n \frac{O_{1,j}}{n} \frac{O_{.,j}}{n} \end{pmatrix}^2 = \left(O_{1,j} - n_1 \frac{O_{.,j}}{n} \right)^2 = \left(\frac{nO_{1,j} - n_1O_{.,j}}{n} \right)^2$$
$$= \left(\frac{(n_1 + n_2)O_{1,j} - n_1(O_{1,j} + O_{2,j})}{n} \right)^2$$
$$= \left(\frac{n_2O_{1,j} - n_1O_{2,j}}{n} \right)^2.$$

For i = 2, we reverse the role of 1 and 2, which merely reverses the sign inside the square, hence also

$$\left(O_{2,j} - n\frac{O_{2,i}}{n}\frac{O_{i,j}}{n}\right)^2 = \left(\frac{n_2O_{1,j} - n_1O_{2,j}}{n}\right)^2.$$

Thus, our statistic is

$$X = \sum_{j=1}^{b} \frac{\left(\frac{n_2 O_{1,j} - n_1 O_{2,j}}{n}\right)^2}{n_1 \cdot \frac{O_{.,j}}{n}} + \frac{\left(\frac{n_2 O_{1,j} - n_1 O_{2,j}}{n}\right)^2}{n_2 \cdot \frac{O_{.,j}}{n}}$$
$$= \sum_{j=1}^{b} \frac{(n_1 + n_2) \left(\frac{n_2 O_{1,j} - n_1 O_{2,j}}{n}\right)^2}{n_1 n_2 \cdot \frac{O_{.,j}}{n}}$$
$$= \sum_{j=1}^{b} \frac{(n_2 O_{1,j} - n_1 O_{2,j})^2}{nn_1 n_2 \frac{O_{.,j}}{n}}.$$

To simplify notation, at this point we switch to writing $\frac{O_{,j}}{n}$ as \hat{p}_j – we've seen this kind of notation before for estimates of probabilities for Bernoulli trials. We notice that

 $O_{1,j}$ has approximate distribution $N(n_1\hat{p}_j, n_1\hat{p}_j\hat{q}_j)$,

and similarly (but reversed) for $O_{2,j}$. Using independence, and our formulas for expected value and variance of the linear combination of independent random variables, we get that

$$n_2 O_{1,j} - n_1 O_{2,j}$$
 has approximate distribution $N(0, (n_2^2 n_1 - n_1^2 n_2) \hat{p}_j \hat{q}_j)$

We notice that $(n_2^2n_1 - n_1^2n_2)\hat{p}_j\hat{q}_j = nn_1n_2\hat{p}_j\hat{q}_j$, and then an argument similar to the χ^2 goodness-of-fit statistic gives us that X has approximate distribution $\chi^2((2-1)\cdot(b-1))$. \Box

Proof for a = 2, b = 2. Proceed exactly as above for a = 2, to get down to

$$X = \frac{(n_2 O_{1,1} - n_1 O_{2,1})^2}{n n_1 n_2 \hat{p}_1} + \frac{(n_2 O_{1,2} - n_1 O_{2,2})^2}{n n_1 n_2 \hat{p}_2}$$

We notice that $O_{1,1} + O_{1,2} = n_1$ and $O_{2,1} + O_{2,2} = n_2$, hence

$$n_2O_{1,2} - n_1O_{2,2} = n_2(n_1 - O_{1,1}) - n_1(n_2 - O_{2,1}) = -(n_2O_{1,1} - n_1O_{2,1}).$$

Using this, and putting over a common denominator, we get that

$$X = \frac{(n_2 O_{1,2} - n_1 O_{2,2})^2 (\hat{p}_2 + \hat{p}_1)}{n n_1 n_2 \hat{p}_1 \hat{p}_2} = \left(\frac{n_2 O_{1,2} - n_1 O_{2,2}}{n n_1 n_2 \hat{p}_1 \hat{q}_1}\right)^2,$$

which (since $n_2O_{1,j} - n_1O_{2,j}$ has approximate distribution $N(0, nn_1n_2\hat{p}_j\hat{q}_j)$) is the square of an approximate standard normal, hence has an approximate $\chi^2(1)$ distribution, as desired. \Box