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1. GENERAL SETTING

We are interested in determining whether two discrete random variables A and B (on the
same sample space) are independent.

Let A have a outcomes «aq, ..., a4, and B have b outcomes Sy, ..., 8,. We get a joint proba-
bility distribution:

pA7B(Z‘,j) = P(A = Oéi,B = ,8])

For short, we denote pa, g(%,7) as p;j. We recall that A and B independent means that p; ; =
pA(i)pp(7), where p4(i) = P(A = «;) is the pmf of A, and similarly for B. For short, we denote
pa(i) = pi. and pp(j) = p.;. Thus, A and B are independent if and only if p; ; = p; .p. ;.

As usual, to do statistics, we perform n repeated trials of the experiment underlying the
sample space, and for each resulting w find A(w) and B(w). We count the number of times
each possible («y, 3;) outcome occurs, and denote this O; ;. To say this differently, O; ; is the
number of experiments where A = o; and B = 3;.

Similarly to our notation for p; ., we let O;, be the number of experiments where A = «;, and
O, ; be the number of experiments where B = 3;. Thus O;, = Z?:l O;jand O, ; =317 ,0;;.

By our work on the x? goodness-of-fit statistics, we have that if we knew pi,. and p, ; for all
7 and j, and if A and B are independent then

2
—n
Z Z pz, 5) is approximately x?(ab — 1).
=1 j=1
In typical circumstances, however, the probabilities p; , and p, ; will be unknown, so we estimate
them as p;, = OT‘ and p,j = % Similarly to the situation with estimating o? with S? (which
uses X in place of ), this will require an adjustment to our statistics.

2. THEOREM AND PROOF

Theorem 1. Let A and B be random wvariables on a common sample space, where A has a
possible values aq,...,aq4, and B has b possible values By, ...,By. Repeat the random trial n
times, and let

O; ; = #trials with A = oy, B = f3;.
As above, denote by O;. the number of trials with A = «y, similarly for O, ;.
If A and B are independent, then

O .0,
X = Z Z ( K has approzimate distribution x*((a — 1)(b— 1)).

0:.0.;
i=1 j=1 n o n

Proof sketch for a = 2. In this case, we have the simple expression O, ; = O1; + O3 ;. To make
the notation simpler, we write n1 = O1, and ny = O, so that n; 4+ no = n.
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Then we expand the “square” term for ¢ = 1:

2 ) ,
(Ol,j - ”010j> = <01,j - "3> — <n1jn1]>
n o n n -

<(n1 + 112)01’]' — nl(OLj + O2,j)>2

n

. <’I’L201’j —nlOQ’j>2

n

For i = 2, we reverse the role of 1 and 2, which merely reverses the sign inside the square, hence

also ) )
<02,j - n0203> = <n2017j — n10277>
n o n n

Thus, our statistic is

b n201 ;—n102 2 1201 ;—n102 ; 2
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X = O + 0.
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To simplify notation, at this point we switch to writing % as p; — we’ve seen this kind of
notation before for estimates of probabilities for Bernoulli trials. We notice that
O1; has approximate distribution N (n1p;, n1p;d;),

and similarly (but reversed) for Oy ;. Using independence, and our formulas for expected value
and variance of the linear combination of independent random variables, we get that

1201 j — 1102 ; has approximate distribution N (0, (n3n1 — nina)p;d;).
We notice that (n3n; — n%ng)ﬁjqj = nningp;qj, and then an argument similar to the 2
goodness-of-fit statistic gives us that X has approximate distribution x?((2—1)-(b—1)). O
Proof for a = 2,b = 2. Proceed exactly as above for a = 2, to get down to
(n2011 — n109,1)> N (19012 — n1099)°
nningpi nningps '
We notice that O11 + O12 = n1 and Oz1 + O22 = n2, hence

X:

12012 — 11022 = na(n1 — O1,1) —ni(ng — O21) = —(n201,1 —n1021).
Using this, and putting over a common denominator, we get that
L 2
(19012 — n102.9)° (P2 + P1) _ <n201,2 - n102,2)
nn1nepP1pP2 nnin2pP1g

which (since 201 ; — 1102 ; has approximate distribution N (0, nni1n2p;q;)) is the square of an
approximate standard normal, hence has an approximate x?(1) distribution, as desired. O

X =




