Math 132
Midterm Examination 2 Solutions - March 26, 2012
6 multiple choice, 4 long answer. 100 points.
Part I was multiple choice. Only the correct answers are listed here.

1. Find the Trapezoid Rule approximation using 4 subintervals of

$$
\int_{-1}^{1} x^{2} d x
$$

(f) $3 / 4$
2. Find the Simpson's Rule approximation using 4 subintervals of

$$
\int_{-1}^{1} x^{2} d x
$$

(e) $2 / 3$
3. Consider the system consisting of 3 point masses:

10 kg at $(3,-1)$
20 kg at $(2,10)$
100 kg at $(1,0)$
The center of mass is:
(g) $\left(\frac{17}{13}, \frac{19}{13}\right)$
4. Simpson's Rule applied to the integral $\int_{1}^{e} \frac{1}{x} d x$ with $n=20$ will be closest to:
(k) 1
(Since $\frac{1}{x} \leq 1$ on $[1, e]$, and then the error bound of $\frac{1 \cdot(e-1)^{5}}{20^{4}}$ is quite small.)

5 . Find the average value of $\sin x$ over the interval $[0, \pi]$.
(d) $2 / \pi$
6. The decay of a certain radioactive isotope of the element rabbitonium is governed by the differential equation $y^{\prime}=-k y$. At $t=0$ you have 300 mg of radioactive rabbitonium. At $t=45$ minutes, you are left with only 100 mg of radioactive rabbitonium.
Then k is \qquad per minute.
(f) $\ln 3 / 45$.

Part II was long answer.

1. Differential equations
(a) (8 points) Solve the differential equation $y^{\prime}=x+x y$ subject to the initial condition $y(0)=5$.

Separating the equation, we have

$$
\frac{y^{\prime}}{1+y}=x
$$

hence

$$
\begin{aligned}
\int \frac{1}{1+y} d y & =\int x d x \\
\ln ||1+y| & =\frac{x^{2}}{2}+C \\
1+y & =A e^{x^{2} / 2} \\
y & =A e^{x^{2} / 2}-1 .
\end{aligned}
$$

The initial condition $y(0)=5=A e^{0}-1$ gives that $A=6$, so

$$
y=6 e^{x^{2} / 2}-1
$$

(b) (8 points) At time $t=0$, there is 1000 liters of water in a tank, with 80 kg of salt dissolved in it. Distilled water flows into the tank at $10 \mathrm{~L} / \mathrm{min}$, and water flows out of the tank at the same rate. The tank is continually stirred, and the salt is kept mixed evenly through the tank.
Set up a differential equation (you needn't solve it) for the mass of salt in the tank at time t. (Your answer should be of the form $y^{\prime}=$ \qquad .)

Inflow of salt $=0$,
outflow of salt $=($ amount of salt in tank $/ 1000) \cdot 10$,
so if $y=$ amount of salt in tank, then

$$
y^{\prime}=-\frac{y \cdot 10}{1000}
$$

The initial condition is $y(0)=80$.
2. Arc lengths and approximate integration
(a) (6 points) Set up a definite integral representing the length of the curve $y=x^{3}$ between $x=0$ and $x=4$.

$$
\int_{0}^{4} \sqrt{1+\left(3 x^{2}\right)^{2}} d x
$$

(b) (10 points) The first several derivatives of $f(x)=\sqrt{1+x^{2}}$ are as follows:

$$
\begin{aligned}
f^{\prime}(x)=\frac{x}{\sqrt{1+x^{2}}}, & f^{\prime \prime}(x)=\frac{1}{\left(1+x^{2}\right)^{3 / 2}}, \quad f^{(3)}(x)=\frac{-3 x}{\left(1+x^{2}\right)^{5 / 2}}, \\
f^{(4)}(x)=\frac{12 x^{2}-3}{\left(1+x^{2}\right)^{7 / 2}}, & f^{(5)}(x)=\frac{45 x-60 x^{3}}{\left(x^{2}+1\right)^{9 / 2}} .
\end{aligned}
$$

Find (with justification) an n such that the Simpson's Rule approximation S_{n} for $\int_{-1}^{4} \sqrt{1+x^{2}} d x$ has error at most 0.001.

The main step in this problem is finding an upper bound for $f^{(4)}$.
Approach 1 to bounding $f^{(4)}$: (triangle inequality)
We have that

$$
\left|f^{(4)}(x)\right|=\frac{\left|12 x^{2}-3\right|}{\left|1+x^{2}\right|^{7 / 2}} \leq \frac{12\left|x^{2}\right|+3}{\left|1+x^{2}\right|^{7 / 2}} .
$$

The top is $\leq 12 \cdot 4^{2}+3$ on $[-1,4]$, and the bottom is ≥ 1 everywhere, hence $\left|f^{(4)}(x)\right| \leq \frac{12 \cdot 16+3}{1}=195$.
Approach 2 to bounding $f^{(4)}$: (take another derivative)
The 5 th derivative is continuous on $[1,4]$, and has roots at 0 and $\pm \frac{\sqrt{3}}{2}$. We approximate these points and the endpoints, using the triangle inequality to simplify:

$$
\begin{aligned}
\left|f^{(4)}(-1)\right| & =\frac{12-3}{(1+1)^{7 / 2}} \leq \frac{9}{2^{6 / 2}}=\frac{9}{8} \\
\left|f^{(4)}\left(-\frac{\sqrt{3}}{2}\right)\right|= & \frac{12 \cdot \frac{3}{4}-3}{\left(1+\frac{3}{4}\right)^{7 / 2}}=\frac{6}{\left(\frac{7}{4}\right)^{7 / 2}} \leq \frac{6}{\left(\frac{3}{2}\right)^{6 / 2}}=\frac{16}{9} \\
\left|f^{(4)}(0)\right| & =\frac{3}{1^{7 / 2}}=3 \\
\left|f^{(4)}\left(\frac{\sqrt{3}}{2}\right)\right| & \text { is the same as }\left|f^{(4)}\left(-\frac{\sqrt{3}}{2}\right)\right| \\
\left|f^{(4)}(4)\right| \mid= & \frac{12 \cdot 16-3}{(1+16)^{7 / 2}} \leq \frac{189}{16^{7 / 2}}=\frac{189}{4^{7}} \leq 1
\end{aligned}
$$

Since the max of $\left|f^{(4)}(x)\right|$ on $[-1,4]$ occurs at one of the above points (as it is clearly zero at the points where it fails to be differentiable), we have that

$$
\left|f^{(4)}(x)\right| \leq 3
$$

Finding the bound: Using the error bound for Simpson's rule, and letting M be as found in Approach 1 or Approach 2, we want

$$
\frac{M \cdot(4-(-1))^{5}}{180 n^{4}} \leq \frac{1}{10^{3}}
$$

so that

$$
n \geq \sqrt[4]{\frac{10^{3} \cdot M \cdot 5^{5}}{180}}
$$

Writing that you take n to be the least even integer greater than this value (plugging in M to be 195, or 3, or whatever bound you found) gets full credit.

Finding an integer value for n (optional): We can factor and round up to find an n that "works". We showed that it suffices to take

$$
n \geq \sqrt[4]{\frac{10^{3} \cdot M \cdot 5^{5}}{180}}=\sqrt[4]{\frac{2^{3} \cdot 5^{8} \cdot M}{2^{2} \cdot 3^{2} \cdot 5}}=\sqrt[4]{\frac{2 \cdot 5^{7} \cdot M}{3^{2}}}
$$

If we followed approach 1, then it is convenient to notice that $195 \leq 200$ (as 200 has a very nice factorization).

$$
\sqrt[4]{\frac{2 \cdot 5^{7} \cdot M}{3^{2}}}=\sqrt[4]{\frac{2 \cdot 5^{7} \cdot 195}{3^{2}}} \leq \sqrt[4]{\frac{2 \cdot 5^{7} \cdot 200}{3^{2}}}=\sqrt[4]{\frac{2^{4} \cdot 5^{10}}{3^{2}}}=2 \cdot 5^{2} \cdot \frac{\sqrt{5}}{9} \leq 50
$$

and we see that $n=50$ suffices. (Similarly for approach 2 .)

3. Calculations

(a) (6 points) Find an upper bound for $\left|2 e^{-(x+1)^{2}}+12 \sin (x+1)^{2}\right|$ on the interval $[-3,3]$.

Using the triangle inequality,

$$
\begin{aligned}
\left|2 e^{-(x+1)^{2}}+12 \sin (x+1)^{2}\right| & \leq\left|2 e^{-(x+1)^{2}}\right|+\left|12 \sin (x+1)^{2}\right| \\
& =2\left|e^{-(x+1)^{2}}\right|+12\left|\sin (x+1)^{2}\right| \\
& \leq 2 \cdot 1+12 \cdot 1=14 .
\end{aligned}
$$

(b) (7 points) Evaluate $\int x^{2} \cos x d x$.

We apply integration by parts 2 times. First, take $u_{1}=x^{2}$ and $d v_{1}=\cos x d x$, so that $d u_{1}=2 x d x$ and $v_{1}=\sin x$. We get

$$
\int x^{2} \cdot \cos x d x=x^{2} \cdot \sin x-\int 2 x \cdot \sin x d x
$$

Then take $u_{2}=2 x$ and $d v_{2}=\sin x d x$, so that $d u_{2}=2 d x$ and $v_{2}=-\cos x$. We get the integral to be

$$
=x^{2} \sin x+2 x \cos x-\int 2 \cos x d x=x^{2} \sin x+2 x \cos x-2 \sin x+C
$$

(c) (6 points) Evaluate $\int_{0}^{1} \frac{x}{1+x^{2}} d x$.

We substitute $u=1+x^{2}$, so that $d u=2 x d x$, and the integral becomes

$$
\int_{0}^{1} \frac{x}{1+x^{2}} d x=\int_{1}^{2} \frac{1}{u} \frac{d u}{2}=\left[\frac{\ln |u|}{2}\right]_{1}^{2}=\frac{\ln 2}{2}-0 .
$$

(d) (6 points) Evaluate $\int_{-1}^{1} x \tan ^{-1} x d x$.

We apply integration by parts with $u=\tan ^{-1} x$ and $d v=x d x$, so that $d u=$ $\frac{1}{1+x^{2}} d x$ and $v=\frac{x^{2}}{2}$. We get

$$
\int_{-1}^{1} x \tan ^{-1} x d x=\left[\tan ^{-1} x \cdot \frac{x^{2}}{2}\right]_{-1}^{1}-\int_{-1}^{1} \frac{x^{2}}{2} \cdot \frac{1}{1+x^{2}} d x
$$

We notice that $\frac{1}{2} \frac{x^{2}}{1+x^{2}}=\frac{1}{2}\left(1-\frac{1}{1+x^{2}}\right)$, hence the integral is

$$
\begin{aligned}
& =\left[\tan ^{-1} x \cdot \frac{x^{2}}{2}\right]_{-1}^{1}+\frac{1}{2} \int_{-1}^{1} \frac{1}{1+x^{2}}-1 d x=\left[\tan ^{-1} x \cdot \frac{x^{2}}{2}+\frac{1}{2} \tan ^{-1} x-\frac{x}{2}\right]_{-1}^{1} \\
& =\left(\frac{\pi}{4} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{\pi}{4}-\frac{1}{2}\right)-\left(\left(-\frac{\pi}{4}\right) \cdot \frac{1}{2}-\frac{1}{2} \cdot \frac{\pi}{4}+\frac{1}{2}\right)=\frac{\pi}{2}-1 .
\end{aligned}
$$

4. Volumes and centroids

In both problems on this page, we consider the region between the x-axis and the graph of $y=e^{x}$ for $0 \leq x \leq 2$.
(a) (11 points) Find the volume of the solid formed by rotating the given region around the y-axis.

Solution 1: (easier) We use cylindrical shells:

$$
V=2 \pi \cdot \int_{0}^{2} x \cdot e^{x} d x=2 \pi\left[x e^{x}\right]_{0}^{2}-2 \pi \int_{0}^{2} e^{x}=2 \pi\left[x e^{x}-e^{x}\right]_{0}^{2}=2 \pi\left(e^{2}+1\right)
$$

Solution 2: (harder, sketched only) We use discs. The shape is between $x=\ln y$ and $x=2$ for $1 \leq y \leq e^{2}$, and between $x=0$ and $x=2$ for $0 \leq y \leq 1$. Thus, we get

$$
V=\pi \int_{0}^{1} 2^{2} d y+\pi \int_{1}^{e^{2}}(\ln y)^{2} d y
$$

The integral of $(\ln y)^{2}$ may be computed by two applications of integration by parts.
(b) (8 points) Find the center of mass \bar{x} with respect to x of the solid formed by rotating the given region around the x-axis.
Half credit will be received for instead finding the center of mass \bar{x} of the given (unrotated) region.

Full credit: Assume uniform density 1. The density with respect to x is the cross-sectional area $A(x)=\pi\left(e^{x}\right)^{2}=\pi e^{2 x}$, hence we have

$$
\bar{x}=\frac{\int_{0}^{2} x \cdot A(x) d x}{\int_{0}^{2} A(x) d x}=\frac{\int_{0}^{2} x \cdot \pi e^{2 x} d x}{\int_{0}^{2} \pi e^{2 x} d x}=\frac{\int_{0}^{2} x \cdot e^{2 x} d x}{\int_{0}^{2} e^{2 x} d x}
$$

(Observe that the bottom integral is the volume integral.) Computing the bottom integral is straightforward; for the top we use integration by parts with $u=x$ and $d v=e^{2 x} d x$, so that $d u=d x$ and $v=\frac{1}{2} e^{2 x}$:

$$
\bar{x}=\frac{\left[x \cdot \frac{1}{2} e^{2 x}\right]_{0}^{2}-\int_{0}^{2} \frac{1}{2} e^{2 x} d x}{\left[\frac{1}{2} e^{2 x}\right]_{0}^{2}}=\frac{\frac{1}{2}\left[x e^{2 x}-\frac{1}{2} e^{2 x}\right]_{0}^{2}}{\frac{1}{2}\left(e^{4}-1\right)}=\frac{\frac{3}{2} e^{4}+\frac{1}{2}}{e^{4}-1}=\frac{3 e^{4}+1}{2\left(e^{4}-1\right)} .
$$

Half credit (unrotated region): Assume uniform density 1. Applying the center of mass formula directly, we have

$$
\bar{x}=\frac{\int_{0}^{2} x \cdot e^{x} d x}{\int_{0}^{2} e^{x} d x}=\frac{e^{2}+1}{e^{2}-1}
$$

where the integral of the top was previously computed in part (a).

