
Math 132
Midterm Examination 2 Solutions – March 26, 2012

6 multiple choice, 4 long answer. 100 points.

Part I was multiple choice. Only the correct answers are listed here.

1. Find the Trapezoid Rule approximation using 4 subintervals of∫ 1

−1
x2 dx.

(f) 3/4

2. Find the Simpson’s Rule approximation using 4 subintervals of∫ 1

−1
x2 dx.

(e) 2/3

3. Consider the system consisting of 3 point masses:
10 kg at (3,−1)
20 kg at (2, 10)
100 kg at (1, 0)
The center of mass is:

(g) (17
13
, 19
13
)

4. Simpson’s Rule applied to the integral
∫ e

1

1

x
dx with n = 20 will be closest to:

(k) 1
(Since 1

x
≤ 1 on [1, e], and then the error bound of 1·(e−1)5

204
is quite small.)

5. Find the average value of sinx over the interval [0, π].

(d) 2/π



6. The decay of a certain radioactive isotope of the element rabbitonium is governed by the
differential equation y′ = −ky. At t = 0 you have 300 mg of radioactive rabbitonium.
At t = 45 minutes, you are left with only 100 mg of radioactive rabbitonium.
Then k is per minute.

(f) ln 3/45.

Part II was long answer.

1. Differential equations

(a) (8 points) Solve the differential equation y′ = x+xy subject to the initial condition
y(0) = 5.

Separating the equation, we have

y′

1 + y
= x

hence ∫ 1

1 + y
dy =

∫
x dx

ln ||1 + y| =
x2

2
+ C

1 + y = Aex
2/2

y = Aex
2/2 − 1.

The initial condition y(0) = 5 = Ae0 − 1 gives that A = 6, so

y = 6ex
2/2 − 1.

(b) (8 points) At time t = 0, there is 1000 liters of water in a tank, with 80 kg of salt
dissolved in it. Distilled water flows into the tank at 10 L/min, and water flows
out of the tank at the same rate. The tank is continually stirred, and the salt is
kept mixed evenly through the tank.
Set up a differential equation (you needn’t solve it) for the mass of salt in the
tank at time t. (Your answer should be of the form y′ = .)

Inflow of salt = 0,
outflow of salt = (amount of salt in tank/1000) · 10,
so if y = amount of salt in tank, then

y′ = −y · 10
1000

.

The initial condition is y(0) = 80.



2. Arc lengths and approximate integration

(a) (6 points) Set up a definite integral representing the length of the curve y = x3

between x = 0 and x = 4. ∫ 4

0

√
1 + (3x2)2 dx.

(b) (10 points) The first several derivatives of f(x) =
√
1 + x2 are as follows:

f ′(x) =
x√

1 + x2
, f ′′(x) =

1

(1 + x2)3/2
, f (3)(x) =

−3x
(1 + x2)5/2

,

f (4)(x) =
12x2 − 3

(1 + x2)7/2
, f (5)(x) =

45x− 60x3

(x2 + 1)9/2
.

Find (with justification) an n such that the Simpson’s Rule approximation Sn for∫ 4

−1

√
1 + x2 dx has error at most 0.001.

The main step in this problem is finding an upper bound for f (4).
Approach 1 to bounding f (4): (triangle inequality)
We have that

|f (4)(x)| = |12x
2 − 3|

|1 + x2|7/2
≤ 12 |x2|+ 3

|1 + x2|7/2
.

The top is ≤ 12 · 42 + 3 on [−1, 4], and the bottom is ≥ 1 everywhere, hence∣∣∣f (4)(x)
∣∣∣ ≤ 12·16+3

1
= 195.

Approach 2 to bounding f (4): (take another derivative)
The 5th derivative is continuous on [1, 4], and has roots at 0 and ±

√
3
2
. We approx-

imate these points and the endpoints, using the triangle inequality to simplify:

∣∣∣f (4)(−1)
∣∣∣ =

12− 3

(1 + 1)7/2
≤ 9

26/2
=

9

8∣∣∣∣∣f (4)(−
√
3

2
)

∣∣∣∣∣ =
12 · 3

4
− 3

(1 + 3
4
)7/2

=
6

(7
4
)7/2
≤ 6

(3
2
)6/2

=
16

9∣∣∣f (4)(0)
∣∣∣ =

3

17/2
= 3∣∣∣∣∣f (4)(

√
3

2
)

∣∣∣∣∣ is the same as
∣∣∣∣∣f (4)(−

√
3

2
)

∣∣∣∣∣∣∣∣f (4)(4)|
∣∣∣ =

12 · 16− 3

(1 + 16)7/2
≤ 189

167/2
=

189

47
≤ 1

Since the max of |f (4)(x)| on [−1, 4] occurs at one of the above points (as it is
clearly zero at the points where it fails to be differentiable), we have that∣∣∣f (4)(x)

∣∣∣ ≤ 3



Finding the bound: Using the error bound for Simpson’s rule, and letting M

be as found in Approach 1 or Approach 2, we want

M · (4− (−1))5

180n4
≤ 1

103
,

so that

n ≥ 4

√
103 ·M · 55

180
.

Writing that you take n to be the least even integer greater than this value
(plugging in M to be 195, or 3, or whatever bound you found) gets full credit.

Finding an integer value for n (optional): We can factor and round up to
find an n that “works”. We showed that it suffices to take

n ≥ 4

√
103 ·M · 55

180
=

4

√
23 · 58 ·M
22 · 32 · 5

=
4

√
2 · 57 ·M

32
.

If we followed approach 1, then it is convenient to notice that 195 ≤ 200 (as 200
has a very nice factorization).

4

√
2 · 57 ·M

32
=

4

√
2 · 57 · 195

32
≤ 4

√
2 · 57 · 200

32
=

4

√
24 · 510
32

= 2 · 52 ·
√
5

9
≤ 50,

and we see that n = 50 suffices. (Similarly for approach 2.)

3. Calculations

(a) (6 points) Find an upper bound for
∣∣∣2e−(x+1)2 + 12 sin(x+ 1)2

∣∣∣ on the interval
[−3, 3].

Using the triangle inequality,∣∣∣2e−(x+1)2 + 12 sin(x+ 1)2
∣∣∣ ≤ ∣∣∣2e−(x+1)2

∣∣∣+ ∣∣∣12 sin(x+ 1)2
∣∣∣

= 2|e−(x+1)2|+ 12| sin(x+ 1)2|
≤ 2 · 1 + 12 · 1 = 14.

(b) (7 points) Evaluate
∫
x2 cosx dx.

We apply integration by parts 2 times. First, take u1 = x2 and dv1 = cosx dx, so
that du1 = 2x dx and v1 = sinx. We get∫

x2 · cosx dx = x2 · sinx−
∫
2x · sinx dx.

Then take u2 = 2x and dv2 = sinx dx, so that du2 = 2 dx and v2 = − cosx. We
get the integral to be

= x2 sinx+ 2x cosx−
∫
2 cosx dx = x2 sinx+ 2x cosx− 2 sinx+ C.



(c) (6 points) Evaluate
∫ 1

0

x

1 + x2
dx.

We substitute u = 1 + x2, so that du = 2x dx, and the integral becomes

∫ 1

0

x

1 + x2
dx =

∫ 2

1

1

u

du

2
=

[
ln |u|
2

]2
1

=
ln 2

2
− 0.

(d) (6 points) Evaluate
∫ 1

−1
x tan−1 x dx.

We apply integration by parts with u = tan−1 x and dv = x dx, so that du =
1

1+x2 dx and v = x2

2
. We get

∫ 1

−1
x tan−1 x dx =

[
tan−1 x · x

2

2

]1
−1
−
∫ 1

−1

x2

2
· 1

1 + x2
dx.

We notice that 1
2

x2

1+x2 = 1
2

(
1− 1

1+x2

)
, hence the integral is

=

[
tan−1 x · x

2

2

]1
−1

+
1

2

∫ 1

−1

1

1 + x2
− 1 dx =

[
tan−1 x · x

2

2
+

1

2
tan−1 x− x

2

]1
−1

=
(
π

4
· 1
2
+

1

2
· π
4
− 1

2

)
−
((
−π
4

)
· 1
2
− 1

2
· π
4
+

1

2

)
=
π

2
− 1.

4. Volumes and centroids
In both problems on this page, we consider the region between the x-axis and the graph
of y = ex for 0 ≤ x ≤ 2.

(a) (11 points) Find the volume of the solid formed by rotating the given region
around the y-axis.

Solution 1: (easier) We use cylindrical shells:

V = 2π ·
∫ 2

0
x · ex dx = 2π [xex]20 − 2π

∫ 2

0
ex = 2π [xex − ex]20 = 2π(e2 + 1).

Solution 2: (harder, sketched only) We use discs. The shape is between x = ln y
and x = 2 for 1 ≤ y ≤ e2, and between x = 0 and x = 2 for 0 ≤ y ≤ 1. Thus, we
get

V = π
∫ 1

0
22 dy + π

∫ e2

1
(ln y)2 dy.

The integral of (ln y)2 may be computed by two applications of integration by
parts.



(b) (8 points) Find the center of mass x with respect to x of the solid formed by
rotating the given region around the x-axis.
Half credit will be received for instead finding the center of mass x of the given
(unrotated) region.

Full credit: Assume uniform density 1. The density with respect to x is the
cross-sectional area A(x) = π(ex)2 = πe2x, hence we have

x =

∫ 2
0 x · A(x) dx∫ 2
0 A(x) dx

=

∫ 2
0 x · πe2x dx∫ 2
0 πe

2x dx
=

∫ 2
0 x · e2x dx∫ 2
0 e

2x dx

(Observe that the bottom integral is the volume integral.) Computing the bottom
integral is straightforward; for the top we use integration by parts with u = x and
dv = e2x dx, so that du = dx and v = 1

2
e2x:

x =

[
x · 1

2
e2x
]2
0
−
∫ 2
0

1
2
e2x dx[

1
2
e2x
]2
0

=

1
2

[
xe2x − 1

2
e2x
]2
0

1
2
(e4 − 1)

=
3
2
e4 + 1

2

e4 − 1
=

3e4 + 1

2(e4 − 1)
.

Half credit (unrotated region): Assume uniform density 1. Applying the
center of mass formula directly, we have

x =

∫ 2
0 x · ex dx∫ 2
0 e

x dx
=
e2 + 1

e2 − 1

where the integral of the top was previously computed in part (a).


