Math 132 Comparing Improper Integrals – April 2, 2012

Theorem 1 (Direct comparison at ∞). Let f and g be functions with no vertical asymptotes on $[b, \infty)$, and suppose that $0 \le f(x) \le g(x)$ for all x on $[b, \infty)$. Then

- 1. If $\int_b^{\infty} f(x) dx = \infty$, then also $\int_b^{\infty} g(x) dx = \infty$.
- 2. If $\int_{h}^{\infty} g(x) dx$ converges, then so does $\int_{h}^{\infty} f(x) dx$.

We've also referred to this as the Domination Test, since the essential ingredient is domination:

if
$$f(x) \le g(x)$$
, then $\int_b^c f(x) \, dx \le \int_b^c g(x) \, dx$.

(as discussed at the beginning of the course).

The statement "at" $-\infty$ is entirely similar.

The statements from both sides of a vertical asymptote are also similar, but let us state them carefully:

Theorem 2 (Direct comparison at a, from the right). Let f and g be functions with an asymptote at a, and no other asymptotes on the interval [a, b], and suppose that $0 \le f(x) \le g(x)$ for all x on [a, b]. Then

- 1. If $\int_a^b f(x) dx = \infty$, then also $\int_a^b g(x) dx = \infty$.
- 2. If $\int_a^b g(x) dx$ converges, then so does $\int_a^b f(x) dx$.

Theorem 3 (Direct comparison at a, from the left). Let f and g be functions with an asymptote at a, and no other asymptotes on the interval [c, a], and suppose that $0 \le f(x) \le g(x)$ for all x on [c, a]. Then

- 1. If $\int_{c}^{a} f(x) dx = \infty$, then also $\int_{c}^{a} g(x) dx = \infty$.
- 2. If $\int_{c}^{a} g(x) dx$ converges, then so does $\int_{c}^{a} f(x) dx$.