Math 132 Worksheet 11 – April 10, 2012 Name

1. Let f(i) be a rational function (the ratio of two polynomials, e.g. $\frac{i^2+12}{i^3-3i+1}$). Explain in 1-3 sentences why the Ratio test will never help determine convergence of $\sum_{i=1}^{\infty} f(i)$.

Hint: you might start by looking at some examples! What is the degree of the polynomials on top and bottom of the Ratio test limit?

2. Consider the power series $\sum_{i=1}^{\infty} \frac{i!}{i^i} \cdot x^i$.

(a) If c_i is the coefficient of x^i , what is c_0 ? c_1 ? c_2 ?

(b) Apply the ratio test and find the radius of convergence.

3. Using the geometric series formula and manipulation of power series, find a power series representation around 0 for the functions:

(a)
$$\frac{1}{1-x^4}$$

For this series, give a formula for the coefficient c_i of x^i . (The formula will depend on whether *i* is a multiple of 4 or not, so you'll need braces.)

(b)
$$\frac{1}{2-x} = \frac{1}{2} \cdot \frac{1}{1-\frac{x}{2}}$$

(c)
$$\frac{1}{1-x} - \frac{1}{2-x} = \frac{1}{x^2 - 3x + 2}$$