Math 132
Worksheet 11 - April 10, 2012
Name \qquad

1. Let $f(i)$ be a rational function (the ratio of two polynomials, e.g. $\frac{i^{2}+12}{i^{3}-3 i+1}$). Explain in 1-3 sentences why the Ratio test will never help determine convergence of $\sum_{i=1}^{\infty} f(i)$. Hint: you might start by looking at some examples! What is the degree of the polynomials on top and bottom of the Ratio test limit?
2. Consider the power series $\sum_{i=1}^{\infty} \frac{i!}{i^{i}} \cdot x^{i}$.
(a) If c_{i} is the coefficient of x^{i}, what is $c_{0} ? c_{1} ? c_{2}$?
(b) Apply the ratio test and find the radius of convergence.
3. Using the geometric series formula and manipulation of power series, find a power series representation around 0 for the functions:
(a) $\frac{1}{1-x^{4}}$

For this series, give a formula for the coefficient c_{i} of x^{i}. (The formula will depend on whether i is a multiple of 4 or not, so you'll need braces.)
(b) $\frac{1}{2-x}=\frac{1}{2} \cdot \frac{1}{1-\frac{x}{2}}$
(c) $\frac{1}{1-x}-\frac{1}{2-x}=\frac{1}{x^{2}-3 x+2}$

