Math 132
Worksheet 13 - April 24, 2012
Name \qquad

1. In 2-3 sentences, explain why if $f(x)$ has a power series representation around 0 , then $f\left(x^{2}\right)$ also has a power series representation around 0 .
2. Solving a recurrence using power series.
(a) Suppose we are interested in the sequence given by the recurrence $c_{i}=c_{i-1}+2 c_{i-2}$ for $i \geq 2$, with initial conditions $c_{0}=0$ and $c_{1}=1$. List out the first 6 terms of this sequence.
(b) Using polynomial long division, explain why if $\sum_{i=0}^{\infty} c_{i} x^{i}$ is a power series representation for $\frac{x}{1-x-2 x^{2}}$, then c_{i} is the sequence from part (a).

$$
1-x-2 x^{2} \frac{x+}{\mathscr{x}} \begin{aligned}
& x-x^{2}-2 x^{2} \\
& \underline{x}
\end{aligned}
$$

(c) Using partial fractions, find an explicit power series representation for $\frac{x}{1-x-2 x^{2}}$.
(d) On what interval does your series from (c) converge to $\frac{x}{1-x-2 x^{2}}$?
(e) By combining parts (b) and (c), find an explicit formula for the sequence from part (a).

