Math 132
Worksheet 5 - February 21, 2012
Name \qquad

1. Consider the solid of rotation obtained by rotating $f(x)=x^{3 / 2}$ around the x-axis for $1 \leq x \leq 2$. (Assume that it has uniform mass density δ.)
(a) By a symmetry argument, conclude that the center of mass with respect to y is 0 .
(b) By integrating, find the center of mass with respect to x.
2. Show that $\ln 2 \approx 0.69$ without a calculator!
(a) Set up an integral representing $\ln 2$.
(b) Find a sufficient n so that Simpson's Rule will calculate this integral with error at most $0.005=\frac{1}{200}$. (Remember that n must be even.)
(c) Calculate the Simpson's Rule estimate from (b). Use a calculator, or leave it as a sum of fractions.
3. It is an important fact from probability theory that

$$
\int_{-2}^{2} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \approx 0.95
$$

Determine a number n of subintervals sufficient for the Trapezoid Rule T_{n} to calculate the given integral with error at most 0.005.
4. Determine a number n of subintervals sufficient for the Trapezoid Rule T_{n} to calculate

$$
\int_{-2}^{1} \frac{1}{\sqrt{2 \pi}} e^{3 x^{2}} d x
$$

with error at most 0.005 .
5. If you want more practice, find a sufficient number of subintervals to approximate the integrals in 3 and/or 4 with Simpson's Rule.

