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1. Introduction. The purpose here is to derive a formula for the posterior
probabilities (given observed data) that one-, two-, or three-factor submod-
els have all of the active factors in an experimental design (Box and Meyer
1993, Box, Hunter, and Hunter 2005, Appendix 7A). Box et al. (2005) (Chap-
ter 7) has references to FORTRAN and R programs to evaluate the posterior
likelihoods. This note is a companion to a similar program written in C.

In general in experimental design models, one considers observations
of a response variable Yi (1 ≤ i ≤ n) for n different settings of f binary
(High,Low) factors A,B, C,D, E, . . . = A1, A2, . . . , Af with f < n. A regres-
sion model can be written

Yi = β0 +
f∑

j=1

Xijβj + ei, ei ∼ N(0, σ2), 1 ≤ i ≤ n (1.1)

=
m−1∑

j=0

Xijβj + ei, m = f + 1, m ≤ n

where the n × m matrix X satisfies Xij = ±1 and Xi0 ≡ 1 (the intercept
term). Thus the first column Xi0 ≡ 1 and the remaining f = m− 1 columns
correspond to the factors A1, . . . , Af .

The columns of the matrix X are assumed to be orthogonal. In general,
an n×m matrix with±1 entries and orthogonal columns is called a Hadamard
matrix. This is equivalent to Xij = ±1 and X ′X = nIn. It follows that the
least squares and maximum likelihood estimator of the coefficients βj in (1.1)
is

β̂ = (X ′X)−1X ′Y = (1/n)X ′Y (1.2)

Thus β̂i depends only on X only through the ith row of X. This implies
that one can fill out the matrix X with additional orthogonal columns j
with m ≤ j ≤ n− 1 in (1.1) with Xij = ±1 and estimated n−m additional
parameters βm, . . . , βn−1 without affecting the estimates of β0, . . . , βm−1.
In fractional factorial designs (see below), the additional parameters give
estimates of or information about two-way and higher interactions of the
factors A1, . . . , Af . In other Hadamard designs, the additional parameters
are not easily identifiable as interactions but provide information about the
error variance σ2.
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2. More Properties of Experimental Designs. For 1 ≤ j ≤ f in (1.1),
each of the factors Aj is assumed to be either active or inert . A factor A is
active if the factor is significant either as a main effect or else as a significant
interaction with other factors. Otherwise, A is inert, which means that it
has no significant main effect or interactions, and its (High,Low) settings in
(1.1) and (1.2) do not have a significant effect on the response variables Yi.
Typically, a minority of the factors Aj are active and the rest are inert. A
first major aim of an analysis of an experimental design is to identify the
active factors with a minimum number of experimental runs. A second main
aim is to identify the significant main effects and interactions among the
active factors.

Since Xij = ±1 with
∑n

i=1 Xij = 0 for j > 0, interactions of main effects
or interactions of factors can be represented in the regression (1.1) as columns
that are component-wise products of the corresponding component columns.
The orthogonality property (1.2) means that estimates of interaction effects
can be written down independently of estimating the main effects of the
factors in (1.1). In fractional factorial designs, these product columns are
always other columns in the n × n matrix X. In other Hadamard designs,
such product columns are generally are not among the other columns, and
may not be orthogonal to the first m columns.

In (full or fractional) factorial models (with one observation per cell),
m = n = 2d for d ≤ f with columns f +1 ≤ j ≤ m−1 in (1.1) corresponding
to second-order and higher interactions among the f factors. The columns
of X are assumed to be closed under component-wise multiplication, so that
there are columns for any set of interactions of the other columns. The model
is full factorial if f = d, which means that the 2f columns of X correspond to
all main and interaction effects among the f factors along with the intercept.
The model is fractional factorial if d < f ≤ n − 1. This is called a 2f−a

design for a = f − d, or equivalently a 2−a-fraction of a full factorial 2d

design. In full or fractional factorial designs, the columns of the matrix X
in (1.1) form a cyclic Abelian group of order two with n = 2d elements. In
fractional factorial designs, the factors Aj for d < j ≤ f are confounded with
interactions of the first d factors. More generally, each parameter in (1.1) is
a linear combination with ±1 coefficients of 2a parameters corresponding to
some subset of size 2a of the 2f possible main and interaction effects among
the f factors. For either a full factorial or fractional factorial model, the goal
is to quickly identify the active factors Aa1 , . . . , Aab

for 1 ≤ ak ≤ f and then
re-interpret (1.1) as 2b full factorial design with n/2b = 2f−a−b observations
per cell.

The resolution (R) of a factorial design (1.1) is the size of the lower-
order interaction among the factors that is confounded with the intercept.
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That means that at least one main effect is confounded with an (R − 1)th-
order interaction. Thus X is a Resolution 3 design if and only if some main
factor is confounded with some two-way interaction, and is a Resolution 4
(or higher) design if and only if this does not happen.

The projectivity P of a design is that largest value of P such that, for any
subset Ac1 , . . . , AcP

of the f factors, the columns of X in (1.1) are sufficient to
distinguish all of the main effects and interactions among Ac1 , . . . , AcP

. For a
fractional factorial design, that is equivalent to saying that the columns of X
contain a full factorial 2P design for any set of P factors. It is not difficult
to show that P = R − 1 for any Hadamard design (1.1). In particular,
if a design is of resolution 3, then main effects are confounded with two-
way interactions. If a design is of resolution 4, then main effects are not
confounded with any two-way interactions, but two-way interactions can be
confounded with one another.

3. Submodels of an Experimental Design. In general, for any set of
factors M = {Ac1 , . . . , Acr } in (1.1), one can consider the submodel

Yi =
mM−1∑

j=0

XM
ij βM

j + eM
i , eN

i ∼ N
(
0, (σM )2

)
(3.1)

with mM = 2r in which (3.1) (or a subset of the observations in (3.1)) is
a full factorial design with r factors. If X corresponds to a factorial or
fractional factorial design, the columns of XM are a subset of the columns
in the original model (1.1). In other cases, for example Plackett-Burman or
Marshall Hall designs, this is not the case and XM need not be Hadamard
for r ≥ 3. Note that the same response values Yi are used in (1.1) and (3.1),
so that no new observations must be made.

With fractional factorial designs, the either full or nonexistent confound-
ing between different main effects and interactions often means that it is
often possible to identify the active factors from a normal plot of the esti-
mated parameters in (1.1) if there are no significant two-way interactions.
It is generally assumed that 3-way or higher interactions are not significant.
Otherwise, different methods may have to be used.

A more computationally intensive, but still practical, method for iden-
tifying the active factors is to use model selection techniques for linear re-
gressions. Specifically, one looks for the best-fitting model of type (3.1)
with the number of factors satisfying e.g. r ≤ 3, with appropriate penal-
ties for higher r. Among classical model selection methods, finding the
model with the largest model F -statistic seems to work better than max-
imum R2 or adjusted R2. However, a Bayesian regression model due to Box
and Meyer (1993) appears to work better yet, at least in particular examples.
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4. A Bayesian Model-selection Method for 2r Submodels. Given
f ≤ m− 1 factors being screened in (1.1), there are

nT = f +
(

f

2

)
+

(
f

3

)
(4.1)

submodels of the form (3.1) with r ≤ 3. Given the model M , the likelihood
of the parameters βM , σM in (3.1) is of the form

L(β, σ, Y ) =
m∏

i=1

1√
2πσ2

exp


− 1

2σ2


Yi −

m∑

j=0

Xijβj




2



=
1

(2πσ2)m/2
exp

(
− 1

2σ2
(Y −Xβ)′(Y −Xβ)

)

corresponding to the assumption Yi ∼ N
(
(Xβ)i, σ

2
)

in a classical linear re-
gression, suppressing superscripts M for easy of notation. The next tasks are
to prescribe reasonable priors for M, β and σ, write down the full likelihood,
and then find the posterior distributions of the models M in (3.1) given the
response variables Yi in (1.1).

The first assumption for models M is essentially to assume that the r
factors in the model are active (or are potentially active) and the remaining
f − r factors are inert . The prior distribution π0(M) models M corresponds
to the f factors in (1.1) being active with probability π for some value π
and inert with probability 1− π, with independence for the f factors. This
means that the prior for models is

π0(M) = C1π
r(1− π)f−r = C1(1− π)f

(
π

(1− π)

)r

(4.2)

where C1 is determined by
∑

M π0(M) = 1. This depends only on the size
mM = 2r of the model in (3.1).

Conditional on the model M , we assume that βM and σM have the prior
distributions

βM
0 ∼ N(0, σ2/ε), ε = 10−6 (Intercept) (4.3)

βM
j ∼ N(0, γ2σ2), j ≥ 1,

σM ∼ gσ(y), gσ(y) = C/ya

for some γ > 0, assuming an infinite improper prior for σ for some a > 0.
(Box and Meyer essentially assume a = 0.) Thus the priors for M, βM , σM
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depend on two parameters π, γ. Box, Hunter, and Hunter (2005, Chapter 7)
suggest π ≈ 0.25 and γ in the range 2–3.

By (4.3) and (3.1), for 1 ≤ j ≤ m− 1 and βM
q known to be inert,

E
(
(β̂M

j )2
)

E
(
(β̂M

q )2
) =

γ2σ2 + (1/n)σ2

(1/n)σ2
= nγ2 + 1

where β̂M
q represents a parameter estimate of an inert factor. Since

γ =
1√
n

√√√√E
(
(β̂M

j )2
)

E
(
(β̂M

q )2
) − 1 (4.4)

the parameter γ is related to the ratios of expected squares of estimates of
active and inert factors.

The full likelihood (with Bayesian priors) can be written

L(M, β, σ, Y ) = C2

(
π

1− π

)r 1
σa

(4.5)

×
√

ε√
2πσ2

exp
(
−ε

β2
0

2σ2

) (
1√

2πγ2σ2

)m−1
2

exp


− 1

2γ2σ2

m∑

j=1

β2
j




×
(

1√
2πσ2

)n
2

exp
(
− 1

2σ2
(Y −Xβ)′(Y −Xβ)

)

Thus

L(M,β, σ, Y ) = C

(
π

1− π

)r (
1
γ

)m−1

(4.6)

×
(

1√
2πσ2

)n+m+a
2

exp
(
− 1

2σ2
Q(β)

)

where m = 2r and

Q(β) = (Y −Xβ)′(Y −Xβ) + β′Γβ (4.7)

for the m×m matrix

Γ =

(
ε 0

0 1
γ2 Im−1

)
(4.8)
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5. Simplifying the Bayesian Likelihod. The purpose here is to show
that, for the likelihood L(M, β, σ, Y ) in (4.5), the marginal likelihood

L(M, Y ) =
∫ ∞

0

∫

Rm

L(M,σ, Y ) dβ dσ (5.1)

= C1

(
π

1− π

)r (
1
γ

)m−1 det
(
X ′X + Γ

)−1/2

Q(c0)(n−1+a)/2

for Γ in (4.8), Q(β) in (4.7), and c0 = (X ′X + Γ)−1X ′Y . In particular, the
posterior probabilities of the models M in (3.1) given the data Yi in (1.1) is

L(M | Y ) =
L(M,Y )∑
W L(W,Y )

= C2 L(M,Y )

for L(M, Y ) as in (5.1). For a = 0, this corresponds to equation (A.1) in
Box et al. (2005, Appendix 7A).

First, expanding the quadratic form (4.7)

Q(β) = (Y −Xβ)′(Y −Xβ) + β′Γβ

= (Xβ − Y )′(Xβ − Y ) + β′Γβ

= β′(X ′X + Γ)β − 2β′X ′Y + Y ′Y (5.2)

For any vector c ∈ Rm

(β − c)′(X ′X + Γ)(β − c) (5.3)

= β′(X ′X + Γ)β − 2β′(X ′X + Γ)c + c′(X ′X + Γ)c

If c0 = (X ′X + Γ)−1X ′Y , the first two terms in (5.2) and (5.3) are the same
and

Q(β) = (Y −Xβ)′(Y −Xβ) + β′Γβ (5.4)

= (β − c0)′(X ′X + Γ)(β − c0) + Y ′Y − c′0(X
′X + Γ)c0

= (β − c0)′(X ′X + Γ)(β − c0) + Q(c0)

This implies

min
β

(
(Y −Xβ)′(Y −Xβ) + β′Γβ

)

= Q(c0) = (Y −Xc0)′(Y −Xc0) + c′0Γc0

= Y ′Y − c′0(X
′X + Γ)c0 = Y ′

(
In −X(X ′X + Γ)−1X ′

)
Y
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Thus Q(c0) is the Bayesian analog of the error sum of squares in a classical
regression. By (4.6), β = c0 is both the posterior mean and the posterior
mode of the density L(M, β, σ, Y ). However, we are more interested in the
marginal likelihood L(M, Y ) and the corresponding marginal posterior dis-
tribution L(M | Y ) averaged over all possible values of β and σ. By (4.6)
and (5.4)

L(M, β, σ, Y ) = C

(
π

1− π

)r (
1
γ

)m−1 (
1√

2πσ2

)n+m+a
2

(5.5)

× exp
(
− 1

2σ2
(β − c0)′(X ′X + Γ)(β − c0)

)
exp

(
− 1

2σ2
Q(c0)

)

In general, if A is any m×m positive definite matrix
∫

Rm

exp
(
− 1

2σ2
(β − c)′A(β − c)

)
dβ =

∫

Rm

exp
(
− 1

2σ2
β′Aβ

)
dβ

=
∫

Rm

exp
(
− 1

2σ2
β′U ′DUβ

)
dβ

where A = U ′DU for an orthogonal matrix U and diagonal matrix D =
diag(λ1, . . . , λm) with λi > 0. Thus the integral above equals

m∏

i=1

(∫
exp

(
− 1

σ2
β2

i λi

)
dβi

)
=

m∏

i=1

√
2πσ2

λi

=
(
2πσ2

)m/2 det(A)−1/2 (5.6)

since det(A) = det(UDU ′) = det(D). Thus by (5.5) and (5.6)

L(M, σ, Y ) =
∫

Rn

L(M, β, σ, Y ) dβ = C

(
π

1− π

)r (
1
γ

)m−1

(5.7)

×
(

1√
2πσ2

)n+a
2

det
(
X ′X + Γ

)−1/2

exp
(
− 1

2σ2
Q(c0)

)

Finally

L(M, Y ) =
∫ ∞

0

L(M,σ, Y ) dσ = C1

(
π

1− π

)r (
1
γ

)m−1

× det
(
X ′X + Γ

)−1/2

× 1
Q(c0)(n−1+a)/2
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since

∫ ∞

0

(
1
σ2

)n+a
2

exp
(
− 1

2σ2
Q(c0)

)
dσ

=
∫ ∞

0

(
1
y2

)n+a
2

exp
(
− 1

2y2

)
dy

(
1

Q(c0)
n−1+a

2

)

where the integral equals

∫ ∞

0

(2v)
n+a−1

2 −1e−v dv = 2
n+a−3

2 Γ
(

n + a− 1
2

)
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