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SOME ERGODIC THEORY

2.1 MEAN ERGODIC THEOREMS

We shall work here with a measure space (0, $', j1.), of possibly
infinite measure, and a linear operator T defined in L1(Q, $', j1.)

such that

(1) f ~ 0 a.e. => Tf ~ 0 a.e. ;

(2) In ITfl dj1. :-:; In If I dj1..

Sometimes we shall also require T to satisfy the condition that for
all C > 0,

(3) If I :-:; C a.e. => ITfl :-:; C a.e.

Our main object of study here will be the almost everywhere con
vergence behavior of the ratios

f + Tf + ...+ T"f

Rn(f) = n + 1

as n -+ 00.

The classical result of G. D. Birkhoff states that in case j1.(Q) < 00

and Tf(x) = f(Ex), where E is a measure-preserving transformation
of n into itself, then Rn(f) is almost everywhere convergent as n -+ 00

for all fELl' The result of E. Hopf, which is also classical now,
asserts that the same is true when j1.(Q) < 00 and T in addition to
(1) and (2) satisfies instead of(3) the condition

(3') Tl = 1.
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It is easily seen that (1) and (3') imply (3). Thus we shall be working
in a setup that includes both the results of Birkhoff and Hopf.
Indeed, at the end of this section we shall consider also the cases in
which (1) is not assumed at all, and we shall obtain the ergodic
theorem of Dunford and Schwartz. However, before getting into
these matters we need to establish a few fundamental properties of
such an operator T. We shall present these in the form of separate
propositions.

PROPOSITION 2.1.1. If f1 ,f2 ,..., fn E L1, then

2.1.2 max Tfv ~ T max f,..
l:5',;vSn l~V:5in

PROOF. Since

Iv ~ max fl'
1 ';;I";n

by the linearity of T and (1) we get

Tfv ~ T max fw
l';;l',;;n

Taking the maximum with respect to v, 2.1.2 follows.
PROPOSITION 2.1.2. If Ifni ~ F with FELl and fn --+ f a.e., then

Tfn --+ Tf a.e.

PROOF. We can clearly assume f = O.Set gn = sUPm~nIfml. Then
by our assumptions we have

2.1.3 (a) gn t 0 a.e.;

(b)gn~FEL1'

Since the sequence Tgn is monotone, if Tgn fails to converge to zero
a.e., then for some € > 0 we have

,u{inf Tgn > €} = e > O.

Thus, by (2),

"i/ n.

However, in view of 2.1.3, this inequality yields a contradiction when
n --+ 00.
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PROPOSITION 2.1.3. If T in addition to (1) and (2) satisfies (3),
then for any constant C > 0 and any gEL, we have

2.1.4 (Tg - C)+ ~ T(g - c)+.t
PROOF. Set

It is worthwhile writing this relation in the form

2.1.5

t By (x)+ we mean max[O, x]; we also set (x)- = max[O, -xl

gc = {-~:::::: ~c},g when Igi ~ C

It is easily seen that in any case

Rc ~ (g - C)+.

Thus using (1) and (3) we get

Tg = Tgc + TRc ~ C + T(g - C)+,

and 2.1.4 clearly follows by the positivity of T(g - C)+.

PROPOSITION 2.1.4. If T satisfies (1), (2), and (3), then for any
gE L1 n Loo and any p > 1 the function Tg is in Lp and

2.1.6 In (Tg - C)X(Tg, C) dJl ~ In (g - C)X(g, C) dJl

Thus such a T always admits a unique extension to a linear operator of
Lp into itself for every p > 1.

PROOF. This result is usually obtained by means of the M. Riesz
interpolation theorem. However, we shall see that there is no need
here to use such a sophisticated tool.

First, we notice that since ITgl ~ Tlgl, we need only show 2.1.5
for g ~ O. Our point of departure will be the inequality 2.1.4,
which we integrate over Q and obtain by means of (2) :
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with

x(u, C) = {~

ifu> C,

ifu ~ C.
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If we multiply the right-hand side of 2.1.6 by CP- 2 (for a p > 1) and
integrate with respect to C from 0 to 00 we obtain, by Fubini's
theorem,

{' CP-2 In (g - C)X(g, C)djJ.dC = (p ~ 1 -~) In gPdjJ. < 00.

Since the integrands are nonnegative, the left-hand side of 2.1.6 can
also be so integrated. Thus, again by Fubini's theorem, we obtain

(_1__ ~)i ITglP djJ. ~ (_1_. -~) i IglP djJ..p-l P n p-l p n

This establishes 2.1.5.

Here and in the following an operator T satisfying (1), (2), and

(3) will be assumed defined on each Lp (p ~ 1) and satisfying 2.1.5.
PROPOSITION 2.1.5. Under the assumptions (1), (2), and (3) we

can define an operator P having also these same properties and such

that for any p > 1,

2.1.7
lim lif + ...+ Tnf - Pfll = 0n ...• co n + 1 P

V fELp-

Consequently, P must also satisfy the relation

2.1.8 TP= P.

PROOF. This result, which is usually referred to as the mean
ergodic theorem, is often obtained for p = 2 by Hilbert space
techniques. We shall establish it here by a little known method due
to F. Riesz.

The basic step is the following

THEOREM 2.1.1. Let T be a linear operator from Lp to Lp (for
a fixed p > 1) which is only assumed to satisfy

2.1.9
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(if the same is true for T).

(if the same is true for T);

lim IIRn(f)llp = /1.
n--+ 00

2.1.11

g + Tg + ...+ Tng f + ...+ T"f Tf + ...+ T"+ If
------- = Ao-----+ A1------

n+1 n+1 n+1

TNf + ...+ Tn+Nf+ ...+ AN------
n + 1 '

IIRn(g) - Rn(f)llp

~f A}fllp + ...+ Ilr-1fllp + 11T"+lfllp + ...+ IITn+1l1p
v= 1 n + 1

2Nllfllp<. .
- n + 1

In fact, let

g = Aof + ...+ ANTNf (Ai ~ 0, Ao + ...+ AN = 1)

be such that

The crucial observation is that for all f E Lp,

(a) f ~ 0 => Pf ~ 0

2.1.10 (b) In IPflP d/1 ~ In IflP d/1;

(c) If I ~ C => IPfl ~ C

PROOF. Set

we get

Then for every f E Lp the ratios

f + Tf + ...+ T"f

Rn(f) = n + 1

form a Cauchy sequence in the mean. Consequently, if we denote by

Pf the limit function, it is easily verified that the operator P is linear

and satisfies

Then since
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Thus

/1 ~ IIRn(f)llp ~ IIRn(f) - Rn(g)llp + IIRn(g)llp~ 2Nllf~lp + /1 + E.n+

This clearly implies 2.1.11.
For p = 2 the convergence ofthe Rn(f)'s then follows immediately

from the parallelogram inequality,

IIRn(f) - Rm(f)II~ + IIRn(f) + Rm(f)ll~ ~ 21IRn(f)II~ + 21IRn(f)II~·

In fact, from the definition of /1 this gives

IIRn(f) - Rm(f)II~ ~ 2[IIRn(f)II~ - /12] + 2[IIRm(f)II~ - /12].

For p i= 2 a slightly less simple inequality has to be used:

2.1.12 Llfl - fzlP d/1

[ r r r If + f IPJminll,P1ZJ~ Cp In IfllP + In IfzlP - 2 In I 2 2 ,t

where Cp is a constant depending only on p and Sn IfliP, Sn IfzlP

are to be less than or equal to one,
To complete the proof of Proposition 2.1.5, observe that if

fELl n Loo, then of course f E Lz and

lif + Tfn++"~ + Tnf - pfllz ----> O. as n ----> 00.

Thus for every set E of finite measure we deduce that

lim f f + ...+ Tnf d/1 = f Pfd/1.n~oo E n + 1 E

Consequently, for all such E,

v f~ o.

In other words, since IPfl ~ Plfl, when Tsatisfies (1),

f IPfl ~ f If I

t This can be established by expressing

If,lP + If21P - 2 If, ; f21P

as an integral involving the second derivative oflxlP• The constant Cp tends to infinity
as p --> 1.
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2.2.1

This means that the definition of P can be extended to all of LI as

well, so as to satisfy the latter inequality for all fELl'

2.2 MAXIMAL ERGODIC INEQUALITIES

As suggested by the continuity principle, we might expect, if the
ratios

f + Tf + ...+ Tnf

Rn(f) = n + 1

are almost everywhere convergent for every fELl' that there is an
inequality of the type

Il{x : R*(f) > A} :-s; ~ In If I dll

where we have, of course, set

If + Tf + ...+ Tnf I
R*(f) = sup ------.n~O n + 1

This is indeed what we are going to show in this section. To this
end let us introduce some notation. We shall at first assume only

that T satisfies (1) and (2). This given, for every fELl' set

En(f) = {x: max (f + Tf + ...+ Tn!) > O},
O~v5n

E(f) = {x : sup (f + Tf + ...+ T'f) > O}.
0<>

Clearly, as n -+ 00

En(f) iE(f).

It will also be convenient to introduce the function

CPn(Xl,X2,""Xn) = max (XI + X2 + ...+ xn)+·
1,:5; v::;n

We see then that

2.2.2 En(!) = {x : CPn(f, 1f, ..., Tn!) > O}.

We observe that the function CPnhas the following property: When

ever CPn(Xl, X2 , .•• , xn) > 0, then no matter what is the value of X,,+ I

we have
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This is easily verified. In fact, in any case

However, when CPII(XI, X2"'" XII) > 0 we also have

CPII(X 1, X2 , •.. , XII) = max (X 1 + X2 + ...+ Xv),l·~v:5"

23

We are now in a position to prove the
HOPF MAXIMAL ERGODIC THEOREM 2.2.1. If T satisfies

(1) and (2), then V fELl'

f f> O.EII(J)

Consequently, letting n -4 00 we also have

2.2.4 r f>OJE(!>

PROOF. In view of 2.2.2 and 2.2.3 we get

2.2.5 r f ~ r [cp.(f, ... , T"f) - cp.(Tf, ... , T"+ If)] dj1.J E"(J) J E"(!>

Using property (1) (and Proposition 2.1.1),

cPII(Tf, ... , r+ If) = max (Tf + ...+ r+ If) +
O:sv:sn

S max T(f + ...+ T'f)+
O:sv:5n

s T max (f + ...+ T'ft = TcpII(f,···, T"f).
O:s v:5 n

Substituting in 2.2.5, and using the fact that CPII ~ 0,

r f ~ r [CPII(f, ... , T"f) - TcpII(f,···, T"f)] dj1J E"(!> J E"(!>

~ In [CPII(f,···, T''f) - TcpII(f,···, T"f)] dj1

~ O.

The result now follows from property (2).
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Let us now introduce the sets

E~(f) = { max R,(f) > A},
O~v:5:n

In particular, when f ELI, we obtain, letting n -+ 00,

n 1 n r,u{E~(f)}:s; Jo,u{ITjl > ,1.}:s; ,1.P,~oJnITjIPd,u < 00.

This proves 2.2.7(a). Thus, as before, we can start with

'V n ~ O.

r (f - A) ~ r {CPn(f - A,..., T"f - A)JE'J.{f) JE'J.{f)

- cpiTf - A,..., Tn+ If - A.)} d,u.

2.2.6

PROOF. It is clear from the definition of E~(f) that

E~(f) = {CPn(f - A,..., T"f - A) > O}.

But, when CPn(f - A,..., T"f - A) > 0, at least one of the inequalities
Tj > A must hold. Thus, if f E Lp, we deduce

This relation is easily seen to give 2.2.1. The remarkable fact is that
this same relation holds even under the sole assumptions (1), (2),
and (3). Indeed, we have

THEOREM 2.2.2. If Tsatisfies (1), (2), and (3), thenfor alifELp

(p ~ 1) and all A > 0 we have

2.2.7 (a) ,u{E~(f)} < 00;

(b) r (f - A) ~ 0
JE'J,(f)

We see that when ,u(Q) < 00 and T1 = 1, then

E1(f) = En(f - A).

[Indeed, R.(f) > A¢> f + ...+ Tj- (v + 1),1. = (f - A) + ...+
T''(f - A) > O.J Thus for such a T (by 2.2.4) we must have

r (f - A) ~ O.JE;.<J)
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2.2.10

However, now, using Proposition 2.1.3 with C = (v + I)A, g =
f + '" + rf, we get

[Tf + ...+ r+1f - (v + I)A]+ ::;; T[f + ...+ T"f - (v + I)AJ+.

Thus again we have

qJn(Tf - A,..., Tn+ 1f - A) ::;; TqJif - A,..., Tnf - A).

This gives, as before,

r (f - A) dJi- ~ f. [qJn(f - A,..., Tnf - A)J E"(f) Q

- TqJn(f - A, ... , Tnf - A)] dJi- ~ 0,

and the theorem is established.

The process of replacing 2.2.7 by 2.2.8 is wasteful. Indeed, although
this is often not realized, 2.2.7 has considerably more content than
2.2.8. It will be rewarding to make a more efficient use of 2.2.7. The
basic idea here apparently goes back to N. Wiener and can be
expressed by the following

STRONG ESTIMATE THEOREM 2.2.3. Let X and Y be

two nonnegative measurable functions and assume that X E Lp for

some p > 1. Further, suppose that for each A > 0 we have

2.2.9 (a) Ji-{Y> A} <00;

(b) Ji-{Y > A} ::;; ~ r X dJi-.J{y>;.}

Then Y must necessarily be also in Lp and

f. YJ'dJi-::;; (-p-) p f. XP dJi-.Q p-l Q

PROOF. Let us first assume that Y itself is also in Lp' This given,
we write the inequality 2.2.9(b) in the form

2.2.11

where we have set as before

x(u, A) = {~
when u > A,

when 0::;; u ::;;A.
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We then multiply both sides of 2.2.11 by .V-z and integrate with
respect to ). from 0 to 00 to obtain, by Fubini's theorem and Holder's
inequality,

~ p ~ 1[t XP djJ.] lilt yP djJ.IP-IIIP.

This clearly implies 2.2.10, at least when YELp'

To establish the result in full generality, observe that, for any
given C > 0, the function

Yc = {~
when Y < C,

when Y;:::': C,

satisfies also the inequality

jJ.{Yc>).} ~~ r XdjJ..tJ{yc>;'}

In case jJ.(Q) < 00, Yc will be in Lp and thus by the above argument
it must satisfy

J. Y~ djJ. ~ (-p-)P J. XP djJ..Q p-l Q

Thus the result for Y can be obtained by letting C -+ 00. In case
jJ.(Q) = ~, the above observation at least shows that we can assume
without loss that Y is bounded. Let, then, 0 ~ Y ~ C and set for
convenience Z. = (Y - E)+. We see then [by 2.2.9(a)] that

jJ.{Z. > O} = jJ.{Y> E} < 00

and thus, since 0 ~ Z. ~ C, Z. must be in Lp• Now note that, by
2.2.9(b), for all ). > 0 we have

jJ.{Z. > A} = jJ.{Y> A + E} ~,2-J. XdjJ./I. + E {y>;.+.}

< ~ r X djJ..- ).J{Z,>;.}

t When J. ~ C, ,u{ Yc > J.} = 0, and when J. < C, the sets {Yc > J.} and {Y > J.}
Irl lho ."me.
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Therefore, we deduce that
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f. Zf dJ-l:-:;(-p-) Pf. XP dJ-l.n p - 1 n

The result for Y is then obtained by letting £ -. O. This completes
the proof of the theorem.

By combining the results of Theorems 2.2.2 and 2.2.3 we can
deduce the following

COROLLARY 2.2.1. If T satisfies (1), (2), and (3) and f E Lp (p > 1),
then

2.2.12

PROOF.

f. [R*(f)]pdJ-l:-:; (-P-)Pf.lfIPdJ-l.n p-l n

Setting

if + ...+ T11R:(f) = max l'0';;'';;/1 V +

Theorem 2.2.2 tells us that for each A > 0,

(a) J-l{R:(f) > A} < 00;

(b) J-l{R:(f) > A} :-:;~ r If I dJ-l.J(R~(f» A}

Thus by Theorem 2.2.3, when f E Lp (p > 1), we obtain

The inequality in 2.2.12 is then obtained by letting n -. 00.

2.3 THE THEOREM OF DUNFORD AND SCHWARTZ

We have now more than we need to prove the following
ERGODIC THEOREM 2.3.1. If T satisfies (1), (2), and (3),

then for every f E Lp (p ~ 1) as n -. 00,

2.3.1 Rn(f) = f + Tfn : ..~ + Tnf -. Pf a.e.,

where Pf is defined according to Proposition 2.1.5.
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PROOF. Let us first show 2.3.1 for p > 1. To this end for a given
fE Lp define

g(f) = lim sup Rn(f),
n .....•co

h(f) = lim inf Rn(f).
n~ 00

In view of 2.1.8 in Proposition 2.1.5 it follows that for any v ~ 0,

g(f + Tfv : ..~ + T1 - Pf) = g(f) - Pf,

h(f + Tf + ...+ T1 - Pf) = h(f) - Pf.v + 1

Using 2.2.12 with f replaced by (f + ...+ T1/v + 1) - Pf we then
obtain, since both g and hare majorized by R*,

Similarly,

In Ih(f) - Pfll'dfl S; (p ~ 1r In IR,.(f) - Pfll'dfl·

This inequality must hold for all v; thus by 2.1.7 of Proposition i
2.1.5 we get

g(f) = h(f) = Pf a.e.

To obtain the result for p = 1, it suffices to use the techniques of
Theorem 1.1.1. Indeed, for any ( > 0 we can find g E Lz such that

In If - gl dfl S; (z.

Then by writing RII(f) - Pf in the form

(f - g) + ...+ T"(f - g) g + Tg + ...+ T"g

n + 1 + P(g - f) + n + 1 - Pg

and setting

Q(f) = lim sup IRII(f) - Pfl,
1I-+~
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we obtain

Q(f) :-=; R*(f - g) + Plf - gl·

Therefore we get, by 2.2.8 and Proposition 2.1.5,

fl{Q(f) > £} :-=; fl{R*(f - g) > ~} + fl{Plf - gl > ~}

:-=; ~f.If - gl dfl + ~f.Plf - gl dfl:-=; 4£.£ n £ n

In other words,

Q(f) = lim sup IRII(f) - Pfl = a a.e.
II~G()

Ilnd

from Theorem 2.2.2 and its Corollary 2.2.1 we immediately deduce
THEOREM 2.3.2. If T satisfies (2) and (3), then

2.3.2 f. [R*(f)]i'dfl :-=; (-p-) I' f. If II' dfl V fELl' (p> 1)n p-1 n

fl{R*f> A} :-=; ~ f. If I dflIe Q

ITfl:-=; flfl

This establishes the theorem.
Remarks. Dunford and Schwartz have also shown that Theorem

2.3.1 remains valid even if we do not assume that T satisfies (1).

We have developed enough tools here to be able to carry out the

proof of convergence even in this case. There are two courses of
action that may be followed. We could reprove Propositions 2.1.4
and 2.1.5 and Theorem 2.2.2 directly only under assumptions (2)

and (3). This makes their proof slightly more cumbersome. The
other course of action is to introduce, as Dunford and Schwartz do,

another operator f, by setting

ff = sup Tg V f ~ O.
Igl:5f

This operator is easily shown to be linear, positive, and to satisfy (3)
whenever T does. It is somewhat less elementary but quite straight
forward to show that f satisfies also condition (2) (see [llJ).

Since we trivially have
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If we recall, the mean convergence result of Theorem 2.1.1 was
established without any assumption of positivity for T. We can thus
again define the operator P, and it automatically follows that P
satisfies the conditions

(2) If I ~ c => IPfl ~ C a.e.

(3) LlPfld.u ~ Llf'd.u 'if fELl nL",.

In fact, we do have

f ~ 0 => Tf ~ 0,

2.4.2
fulTfld.u ~ fu1fld.u

The above-mentioned result is the following
THEOREM 2.4.1. If T is an operator satisfying 2.4.1 and 2.4.2,

then for given f, g E Ll, g ~ 0, the ratios

2.4.1

where f, g E Ll, g ~ 0, and T is a linear operator of Ll into Ll
which is only assumed to satisfy the two conditions

R (/ ) = f + Tf + ...+ Tnf
n ,g T Tng + g + ...+ g

2.4 THE THEOREM OF CHACON AND ORNSTEIN

thus the result must hold for p = 1. This shows that also in this case
the definition of P can be extended to all fELl' This given, the
proof of the Ergodic Theorem 2.3.1 can be used word by word to
show convergence without the assumption that Tshould be positive.

f + Tf + ...+ TY
Rn(f, g) = + T: + + Tn 'g goo. g

This section will be dedicated to the presentation of the theorem of
Chacon and Ornstein. We shall thus be concerned with the almost

everywhere convergence behavior of the ratios
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2.4.3

are almost everywhere convergent in the set when the denominators
eventually become positive.

The existence of the limit, remarkable as it is in view of the
weakness ofthe hypotheses under which it holds, is not by itself very
illuminating as to the behavior of these ratios. For this reason we
shall also present here the work of Chacon on the identification of
the limit.

Many different proofs of these results are now available. Largely
these new proofs have been stimulated by the work of BruneI [5].
BruneI discovered that the convergence result could be obtained
in a remarkably simple way by means of a maximal ergodic in
equality which seemed to be of a new type. Unfortunately, BruneI's
proof of this inequality is intricate and not very illuminating.
Several attempts have been made, the most noteworthy of them
being those of Akcoglu [IJ and Meyer [33J, to obtain BruneI's
inequality by a more revealing path. The extent to which these
attempts have been successful is mostly a subjective matter. To
those who know well the work of Chacon and Ornstein [1OJ and
Chacon [9J, Akcoglu's paper may appear to tell what is really
behind BruneI's inequality. To those who are familiar with modern
potential theory the work of Meyer may be more revealing. However,
to those who do not possess any extra information the shortest
path to BruneI's inequality up to now could still be found in BruneI's
paper.

Because of all the literature that has flourished on this subject few
people seem to be familiar with the contents of the now classical
paper of Hopf [18J, which was indeed the starting point of this
branch of ergodic the~ry. We shall show here that it is now possible
to give a very lucid and reasonably short proof of all these results,
including BruneI's inequality, by following the rather natural line of
reasoning adopted by Hopf. Indeed, we shall see that the only
additional basic tool needed to carry out Hopf's original program is
the following theorem which appears in the work of Chacon and
Ornstein:

THEOREM 2.4.2. If T is an operator satisfying 2.4.1 and 2.4.2,
then for given fELl' P E L1, P ;:::0 we have

T"f
lim n . = 0
n- 00 p + Tp + '" + T p

£I.e. in the set where the denominators eventually become positive.
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