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1. Introduction. The purpose here is to prove

| fnstn) = [ r(x@)pa) = B(500) (1)
where
ux(B) = P(XeB), BeA

In (1), X : @ — Y is a measurable mapping from a probability space
(Q, F, P) to a measurable space (Y, A) (that is, X is a Y-valued random vari-
able) and f(u) > 0 is an A-measurable function on Y. The measure px (B)
is the measure on (Y,.A) that is “induced” or “lifted” from P on (92, F) by
the mapping X : Q — Y.

The motivating examples for (1) are (i) (Y,.A) = (R,B(R)) for real-
valued random variables X (w), (ii) (Y, A) = (R¥, B(RF)) for vector-valued
random variables X = (X1, Xo, ..., Xx), and (iii) (Y¥,.A) = (R*>°, B(R>)) for
infinite-sequence-valued random variables X = (X7, Xo,..., X, ...).

For (Y, A) = (R*, B(RF)), the relation (1) takes the form

Fu, . up) px (du) = E(f(Xl,...,Xk)>
Rk

where f(u1,...,ux) > 0 is an arbitrary Borel function on R* and ux (du) is
a generalized Lebesgue-Steiltjes measure on RF.
A standard definition for a mapping X : 2 — Y to be A-measurable is
that
{w: X(w)e A}t eF (2)

for all A € T where I' C A is a collection of sets with B(I') = A. Here B(T)
is the smallest o-algebra of subsets of Y that contains T'.

If (Y,A) = (R,B(R)), then I' is the set of semi-infinite intervals
A = (—00,A], so that {w : X(w) € A} = {w: X(w) < A} and pux(A) =
P(X <)) is the distribution function. If (Y;.A) = (R¥, B(RF)), then I is the
set of octants A = H?Zl(—oo, Aj] and px(A) is the k-dimensional distribu-
tion function. In both cases B(I') are the Borel sets in R or R*, respectively.

Condition (2) for A € T" can be written

X t.r-rF (3)
where X "}(F) = {w: X(w) € E }. The general lifting theorem is
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Theorem. Suppose that X : ) — Y satisfies (3) for some class I' C A with
B(T') = A. Then X! : A — F and the set function

px(B) = PX Y(B) = P({w:X(w) € B}) (4)

is a probability measure on 4. Moreover,

/Y F(wx (du) = /Q (X (@) P(dw) = E(f(X)) (5)

for all A-measurable functions f(u) > 0.

Proof. (i) Let
Q={BCY:XYB)eF}

Then ' C Q by (3). Also (i) ¢ € Q for the empty set ¢ since
X~Y(¢) = ¢, (ii) B € Q implies B € Q since X~ (Bc = (X~ )c e F
and (iii) B; € Q implies B = (J;2, B; € @since X~ 1(B) = ;2 X o BJ) €
F. It follows that Q is a o-algebra containing I'. Thus I' C B( ) ACQ,
which implies X1 : A — F.

(ii) T claim that ux(B) = PX~!(B) is a probability measure on A.
Clearly pux (¢) = 0 for the empty set ¢. Assume B; € A are disjoint and B =
U;X;I Bj. Then the X !(Bj) are disjoint with X~ *(B) = U]Oil X-1(By).
Since ux = PX ™", this implies px(B) = 3277 ux(B;) and px = PX " |
a measure on A. It is a probability measure since px(Y) = P(Q2) = 1.

(iii) For simple functions ¢(u) = 3>_7_, ¢;Ip, (), the integral is

- ;CJP(X eB—J E(Z:C Iixen, })
- E(écJIBj(X)) = B(s(X(w))

For any A-measurable f : Y — R! with f(u) > 0, there exist simple functions
¢n(u) such that 0 < ¢, (u) T f(u) for all u. The Monotone Convergence
Theorem in (6) then implies (5), which completes the proof of the theorem.



