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1. Introduction. The purpose here is to prove
∫

Y

f(u)µX(du) =
∫

Ω

f
(
X(ω)

)
P (dω) = E

(
f(X)

)
(1)

where

µX(B) = P (X ∈ B), B ∈ A
In (1), X : Ω → Y is a measurable mapping from a probability space
(Ω,F , P ) to a measurable space (Y,A) (that is, X is a Y -valued random vari-
able) and f(u) ≥ 0 is an A-measurable function on Y . The measure µX(B)
is the measure on (Y,A) that is “induced” or “lifted” from P on (Ω,F) by
the mapping X : Ω → Y .

The motivating examples for (1) are (i) (Y,A) = (R,B(R)) for real-
valued random variables X(ω), (ii) (Y,A) = (Rk,B(Rk)) for vector-valued
random variables X = (X1, X2, . . . , Xk), and (iii) (Y,A) = (R∞,B(R∞)) for
infinite-sequence-valued random variables X = (X1, X2, . . . , Xn . . .).

For (Y,A) = (Rk,B(Rk)), the relation (1) takes the form
∫

Rk

f(u1, . . . , uk) µX(du) = E
(
f(X1, . . . , Xk)

)

where f(u1, . . . , uk) ≥ 0 is an arbitrary Borel function on Rk and µX(du) is
a generalized Lebesgue-Steiltjes measure on Rk.

A standard definition for a mapping X : Ω → Y to be A-measurable is
that

{ω : X(ω) ∈ A } ∈ F (2)

for all A ∈ Γ where Γ ⊆ A is a collection of sets with B(Γ) = A. Here B(Γ)
is the smallest σ-algebra of subsets of Y that contains Γ.

If (Y,A) = (R,B(R)), then Γ is the set of semi-infinite intervals
A = (−∞, λ], so that {ω : X(ω) ∈ A } = {ω : X(ω) ≤ λ } and µX(A) =
P (X ≤ λ) is the distribution function. If (Y,A) = (Rk,B(Rk)), then Γ is the
set of octants A =

∏k
j=1(−∞, λj ] and µX(A) is the k-dimensional distribu-

tion function. In both cases B(Γ) are the Borel sets in R or Rk, respectively.
Condition (2) for A ∈ Γ can be written

X−1 : Γ → F (3)

where X−1(E) = {ω : X(ω) ∈ E }. The general lifting theorem is
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Theorem. Suppose that X : Ω → Y satisfies (3) for some class Γ ⊆ A with
B(Γ) = A. Then X−1 : A → F and the set function

µX(B) = PX−1(B) = P
({ω : X(ω) ∈ B }) (4)

is a probability measure on A. Moreover,
∫

Y

f(u)µX(du) =
∫

Ω

f
(
X(ω)

)
P (dω) = E

(
f(X)

)
(5)

for all A-measurable functions f(u) ≥ 0.

Proof. (i) Let

Q = {B ⊆ Y : X−1(B) ∈ F }

Then Γ ⊆ Q by (3). Also (i) φ ∈ Q for the empty set φ since
X−1(φ) = φ, (ii) B ∈ Q implies Bc ∈ Q since X−1(Bc) =

(
X−1(B)

)c ∈ F ,
and (iii) Bj ∈ Q implies B =

⋃∞
j=1 Bj ∈ Q since X−1(B) =

⋃∞
j=1 X−1(Bj) ∈

F . It follows that Q is a σ-algebra containing Γ. Thus Γ ⊆ B(Γ) = A ⊆ Q,
which implies X−1 : A → F .

(ii) I claim that µX(B) = PX−1(B) is a probability measure on A.
Clearly µX(φ) = 0 for the empty set φ. Assume Bj ∈ A are disjoint and B =⋃∞

j=1 Bj . Then the X−1(Bj) are disjoint with X−1(B) =
⋃∞

j=1 X−1(Bj).
Since µX = PX−1, this implies µX(B) =

∑∞
j=1 µX(Bj) and µX = PX−1 is

a measure on A. It is a probability measure since µX(Y ) = P (Ω) = 1.
(iii) For simple functions φ(u) =

∑n
j=1 cjIBj (x), the integral is

∫

Y

φ(u)µX(du) =
n∑

j=1

cjµX(Bj) =
n∑

i=1

cjPX−1(Bj) (6)

=
n∑

j=1

cjP (X ∈ Bj) = E

( n∑

j=1

cjI{X∈Bj}

)

= E

( n∑

j=1

cjIBj (X)
)

= E
(
φ
(
X(ω)

))

For anyA-measurable f : Y → R1 with f(u) ≥ 0, there exist simple functions
φn(u) such that 0 ≤ φn(u) ↑ f(u) for all u. The Monotone Convergence
Theorem in (6) then implies (5), which completes the proof of the theorem.


