Lifting Measures to R^1 , R^k , and R^{∞}

Stanley Sawyer — Washington University Vs. September 30, 2009

1. Introduction. The purpose here is to prove

$$\int_{Y} f(u) \mu_X(du) = \int_{\Omega} f(X(\omega)) P(d\omega) = E(f(X))$$
(1)

where

$$\mu_X(B) = P(X \in B), \quad B \in \mathcal{A}$$

In (1), $X : \Omega \to Y$ is a measurable mapping from a probability space (Ω, \mathcal{F}, P) to a measurable space (Y, \mathcal{A}) (that is, X is a Y-valued random variable) and $f(u) \geq 0$ is an \mathcal{A} -measurable function on Y. The measure $\mu_X(B)$ is the measure on (Y, \mathcal{A}) that is "induced" or "lifted" from P on (Ω, \mathcal{F}) by the mapping $X : \Omega \to Y$.

The motivating examples for (1) are (i) $(Y, \mathcal{A}) = (R, \mathcal{B}(R))$ for realvalued random variables $X(\omega)$, (ii) $(Y, \mathcal{A}) = (R^k, \mathcal{B}(R^k))$ for vector-valued random variables $X = (X_1, X_2, \ldots, X_k)$, and (iii) $(Y, \mathcal{A}) = (R^\infty, \mathcal{B}(R^\infty))$ for infinite-sequence-valued random variables $X = (X_1, X_2, \ldots, X_n, \ldots)$.

For $(Y, \mathcal{A}) = (\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$, the relation (1) takes the form

$$\int_{\mathbb{R}^k} f(u_1, \dots, u_k) \, \mu_X(du) = E\Big(f(X_1, \dots, X_k)\Big)$$

where $f(u_1, \ldots, u_k) \ge 0$ is an arbitrary Borel function on \mathbb{R}^k and $\mu_X(du)$ is a generalized Lebesgue-Steiltjes measure on \mathbb{R}^k .

A standard definition for a mapping $X : \Omega \to Y$ to be \mathcal{A} -measurable is that

$$\{\omega: X(\omega) \in A\} \in \mathcal{F}$$
(2)

for all $A \in \Gamma$ where $\Gamma \subseteq \mathcal{A}$ is a collection of sets with $\mathcal{B}(\Gamma) = \mathcal{A}$. Here $\mathcal{B}(\Gamma)$ is the smallest σ -algebra of subsets of Y that contains Γ .

If $(Y, \mathcal{A}) = (R, \mathcal{B}(R))$, then Γ is the set of semi-infinite intervals $A = (-\infty, \lambda]$, so that $\{\omega : X(\omega) \in A\} = \{\omega : X(\omega) \leq \lambda\}$ and $\mu_X(A) = P(X \leq \lambda)$ is the distribution function. If $(Y, \mathcal{A}) = (R^k, \mathcal{B}(R^k))$, then Γ is the set of octants $A = \prod_{j=1}^k (-\infty, \lambda_j]$ and $\mu_X(A)$ is the k-dimensional distribution function. In both cases $\mathcal{B}(\Gamma)$ are the Borel sets in R or R^k , respectively.

Condition (2) for $A \in \Gamma$ can be written

$$X^{-1}: \Gamma \to \mathcal{F} \tag{3}$$

where $X^{-1}(E) = \{ \omega : X(\omega) \in E \}$. The general lifting theorem is

Theorem. Suppose that $X : \Omega \to Y$ satisfies (3) for some class $\Gamma \subseteq \mathcal{A}$ with $\mathcal{B}(\Gamma) = \mathcal{A}$. Then $X^{-1} : \mathcal{A} \to \mathcal{F}$ and the set function

$$\mu_X(B) = PX^{-1}(B) = P\left(\left\{\omega : X(\omega) \in B\right\}\right)$$
(4)

is a probability measure on \mathcal{A} . Moreover,

$$\int_{Y} f(u)\mu_X(du) = \int_{\Omega} f(X(\omega))P(d\omega) = E(f(X))$$
(5)

for all \mathcal{A} -measurable functions $f(u) \geq 0$.

Proof. (i) Let

$$\mathcal{Q} = \{ B \subseteq Y : X^{-1}(B) \in \mathcal{F} \}$$

Then $\Gamma \subseteq \mathcal{Q}$ by (3). Also (i) $\phi \in \mathcal{Q}$ for the empty set ϕ since $X^{-1}(\phi) = \phi$, (ii) $B \in \mathcal{Q}$ implies $B^c \in \mathcal{Q}$ since $X^{-1}(B^c) = (X^{-1}(B))^c \in \mathcal{F}$, and (iii) $B_j \in \mathcal{Q}$ implies $B = \bigcup_{j=1}^{\infty} B_j \in \mathcal{Q}$ since $X^{-1}(B) = \bigcup_{j=1}^{\infty} X^{-1}(B_j) \in \mathcal{F}$. It follows that \mathcal{Q} is a σ -algebra containing Γ . Thus $\Gamma \subseteq \mathcal{B}(\Gamma) = \mathcal{A} \subseteq \mathcal{Q}$, which implies $X^{-1} : \mathcal{A} \to \mathcal{F}$.

(ii) I claim that $\mu_X(B) = PX^{-1}(B)$ is a probability measure on \mathcal{A} . Clearly $\mu_X(\phi) = 0$ for the empty set ϕ . Assume $B_j \in \mathcal{A}$ are disjoint and $B = \bigcup_{j=1}^{\infty} B_j$. Then the $X^{-1}(B_j)$ are disjoint with $X^{-1}(B) = \bigcup_{j=1}^{\infty} X^{-1}(B_j)$. Since $\mu_X = PX^{-1}$, this implies $\mu_X(B) = \sum_{j=1}^{\infty} \mu_X(B_j)$ and $\mu_X = PX^{-1}$ is a measure on \mathcal{A} . It is a probability measure since $\mu_X(Y) = P(\Omega) = 1$.

(iii) For simple functions $\phi(u) = \sum_{j=1}^{n} c_j I_{B_j}(x)$, the integral is

$$\int_{Y} \phi(u) \mu_{X}(du) = \sum_{j=1}^{n} c_{j} \mu_{X}(B_{j}) = \sum_{i=1}^{n} c_{j} P X^{-1}(B_{j})$$
(6)
$$= \sum_{j=1}^{n} c_{j} P(X \in B_{j}) = E\left(\sum_{j=1}^{n} c_{j} I_{\{X \in B_{j}\}}\right)$$
$$= E\left(\sum_{j=1}^{n} c_{j} I_{B_{j}}(X)\right) = E\left(\phi(X(\omega))\right)$$

For any \mathcal{A} -measurable $f: Y \to \mathbb{R}^1$ with $f(u) \ge 0$, there exist simple functions $\phi_n(u)$ such that $0 \le \phi_n(u) \uparrow f(u)$ for all u. The Monotone Convergence Theorem in (6) then implies (5), which completes the proof of the theorem.