Lifting Measures to $\boldsymbol{R}^{1}, \boldsymbol{R}^{\boldsymbol{k}}$, and \boldsymbol{R}^{∞}

Stanley Sawyer - Washington University

Vs. September 30, 2009

1. Introduction. The purpose here is to prove

$$
\begin{equation*}
\int_{Y} f(u) \mu_{X}(d u)=\int_{\Omega} f(X(\omega)) P(d \omega)=E(f(X)) \tag{1}
\end{equation*}
$$

where

$$
\mu_{X}(B)=P(X \in B), \quad B \in \mathcal{A}
$$

In (1), $X: \Omega \rightarrow Y$ is a measurable mapping from a probability space (Ω, \mathcal{F}, P) to a measurable space (Y, \mathcal{A}) (that is, X is a Y-valued random variable) and $f(u) \geq 0$ is an \mathcal{A}-measurable function on Y. The measure $\mu_{X}(B)$ is the measure on (Y, \mathcal{A}) that is "induced" or "lifted" from P on (Ω, \mathcal{F}) by the mapping $X: \Omega \rightarrow Y$.

The motivating examples for (1) are (i) $(Y, \mathcal{A})=(R, \mathcal{B}(R))$ for realvalued random variables $X(\omega)$, (ii) $(Y, \mathcal{A})=\left(R^{k}, \mathcal{B}\left(R^{k}\right)\right)$ for vector-valued random variables $X=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$, and (iii) $(Y, \mathcal{A})=\left(R^{\infty}, \mathcal{B}\left(R^{\infty}\right)\right)$ for infinite-sequence-valued random variables $X=\left(X_{1}, X_{2}, \ldots, X_{n} \ldots\right)$.

For $(Y, \mathcal{A})=\left(R^{k}, \mathcal{B}\left(R^{k}\right)\right)$, the relation (1) takes the form

$$
\int_{R^{k}} f\left(u_{1}, \ldots, u_{k}\right) \mu_{X}(d u)=E\left(f\left(X_{1}, \ldots, X_{k}\right)\right)
$$

where $f\left(u_{1}, \ldots, u_{k}\right) \geq 0$ is an arbitrary Borel function on R^{k} and $\mu_{X}(d u)$ is a generalized Lebesgue-Steiltjes measure on R^{k}.

A standard definition for a mapping $X: \Omega \rightarrow Y$ to be \mathcal{A}-measurable is that

$$
\begin{equation*}
\{\omega: X(\omega) \in A\} \in \mathcal{F} \tag{2}
\end{equation*}
$$

for all $A \in \Gamma$ where $\Gamma \subseteq \mathcal{A}$ is a collection of sets with $\mathcal{B}(\Gamma)=\mathcal{A}$. Here $\mathcal{B}(\Gamma)$ is the smallest σ-algebra of subsets of Y that contains Γ.

If $(Y, \mathcal{A})=(R, \mathcal{B}(R))$, then Γ is the set of semi-infinite intervals $A=(-\infty, \lambda]$, so that $\{\omega: X(\omega) \in A\}=\{\omega: X(\omega) \leq \lambda\}$ and $\mu_{X}(A)=$ $P(X \leq \lambda)$ is the distribution function. If $(Y, \mathcal{A})=\left(R^{k}, \mathcal{B}\left(R^{k}\right)\right)$, then Γ is the set of octants $A=\prod_{j=1}^{k}\left(-\infty, \lambda_{j}\right]$ and $\mu_{X}(A)$ is the k-dimensional distribution function. In both cases $\mathcal{B}(\Gamma)$ are the Borel sets in R or R^{k}, respectively.

Condition (2) for $A \in \Gamma$ can be written

$$
\begin{equation*}
X^{-1}: \Gamma \rightarrow \mathcal{F} \tag{3}
\end{equation*}
$$

where $X^{-1}(E)=\{\omega: X(\omega) \in E\}$. The general lifting theorem is

Lifting Measures to R^{1}, R^{k}, and $R^{\infty} \ldots$
Theorem. Suppose that $X: \Omega \rightarrow Y$ satisfies (3) for some class $\Gamma \subseteq \mathcal{A}$ with $\mathcal{B}(\Gamma)=\mathcal{A}$. Then $X^{-1}: \mathcal{A} \rightarrow \mathcal{F}$ and the set function

$$
\begin{equation*}
\mu_{X}(B)=P X^{-1}(B)=P(\{\omega: X(\omega) \in B\}) \tag{4}
\end{equation*}
$$

is a probability measure on \mathcal{A}. Moreover,

$$
\begin{equation*}
\int_{Y} f(u) \mu_{X}(d u)=\int_{\Omega} f(X(\omega)) P(d \omega)=E(f(X)) \tag{5}
\end{equation*}
$$

for all \mathcal{A}-measurable functions $f(u) \geq 0$.
Proof. (i) Let

$$
\mathcal{Q}=\left\{B \subseteq Y: X^{-1}(B) \in \mathcal{F}\right\}
$$

Then $\Gamma \subseteq \mathcal{Q}$ by (3). Also (i) $\phi \in \mathcal{Q}$ for the empty set ϕ since $X^{-1}(\phi)=\phi$, (ii) $B \in \mathcal{Q}$ implies $B^{c} \in \mathcal{Q}$ since $X^{-1}\left(B^{c}\right)=\left(X^{-1}(B)\right)^{c} \in \mathcal{F}$, and (iii) $B_{j} \in \mathcal{Q}$ implies $B=\bigcup_{j=1}^{\infty} B_{j} \in \mathcal{Q}$ since $X^{-1}(B)=\bigcup_{j=1}^{\infty} X^{-1}\left(B_{j}\right) \in$ \mathcal{F}. It follows that \mathcal{Q} is a σ-algebra containing Γ. Thus $\Gamma \subseteq \mathcal{B}(\Gamma)=\mathcal{A} \subseteq \mathcal{Q}$, which implies $X^{-1}: \mathcal{A} \rightarrow \mathcal{F}$.
(ii) I claim that $\mu_{X}(B)=P X^{-1}(B)$ is a probability measure on \mathcal{A}. Clearly $\mu_{X}(\phi)=0$ for the empty set ϕ. Assume $B_{j} \in \mathcal{A}$ are disjoint and $B=$ $\bigcup_{j=1}^{\infty} B_{j}$. Then the $X^{-1}\left(B_{j}\right)$ are disjoint with $X^{-1}(B)=\bigcup_{j=1}^{\infty} X^{-1}\left(B_{j}\right)$. Since $\mu_{X}=P X^{-1}$, this implies $\mu_{X}(B)=\sum_{j=1}^{\infty} \mu_{X}\left(B_{j}\right)$ and $\mu_{X}=P X^{-1}$ is a measure on \mathcal{A}. It is a probability measure since $\mu_{X}(Y)=P(\Omega)=1$.
(iii) For simple functions $\phi(u)=\sum_{j=1}^{n} c_{j} I_{B_{j}}(x)$, the integral is

$$
\begin{align*}
& \int_{Y} \phi(u) \mu_{X}(d u)=\sum_{j=1}^{n} c_{j} \mu_{X}\left(B_{j}\right)=\sum_{i=1}^{n} c_{j} P X^{-1}\left(B_{j}\right) \tag{6}\\
& =\sum_{j=1}^{n} c_{j} P\left(X \in B_{j}\right)=E\left(\sum_{j=1}^{n} c_{j} I_{\left\{X \in B_{j}\right\}}\right) \\
& =E\left(\sum_{j=1}^{n} c_{j} I_{B_{j}}(X)\right)=E(\phi(X(\omega)))
\end{align*}
$$

For any \mathcal{A}-measurable $f: Y \rightarrow R^{1}$ with $f(u) \geq 0$, there exist simple functions $\phi_{n}(u)$ such that $0 \leq \phi_{n}(u) \uparrow f(u)$ for all u. The Monotone Convergence Theorem in (6) then implies (5), which completes the proof of the theorem.

