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1. Introduction. The purpose here is to provide an efficient way of deriv-
ing Borel measures (in particular Lebesgue-Steiltjes measures in R1 and Rk)
using semi-rings of subsets of a set X. We feel that this is a more efficient
and more heuristic approach that using algebras of subsets of X, even though
using algebras may provide shorter proofs if certain combinatorial lemmas
are viewed as obvious.

2. Semi-rings of Sets. In general, a semi-ring of subsets of a set X is a
collection Γ of subsets of X such that

(i) φ ∈ Γ
(ii) A,B ∈ Γ implies A ∩B ∈ Γ
(iii) For any A,B ∈ Γ, there exists an integer m and disjoint sets

C1, . . . , Cm ∈ Γ such that A−B =
⋃m

j=1 Cj .

Examples: (1) P (X) = 2X , the set of all subsets of X.

(2) For X = R1, the set Γ of all cells or h-intervals (a, b] for −∞ < a ≤
b < ∞. Another example is the slightly larger collection Γ1 of cells with
−∞ ≤ a ≤ b ≤ ∞. Note that the condition a = b allows φ ∈ Γ.

(3) For X = Rk, the set Γ of all cells
∏k

j=1(aj , bj ] where
∏

denotes the
Cartesian product and −∞ < aj ≤ bj < ∞. As in Example (2), we can also
allow aj = −∞ and bj = ∞.

(4) Any σ-algebra M of subsets of X. Recall that M is a σ-algebra of
subsets of X if

(i) φ ∈M
(ii) A ∈M implies Ac ∈M
(iii) If Aj ∈M for 1 ≤ j < ∞, then A =

⋃∞
j=1 Aj ∈M.

Exercise: Verify that Examples (2) and (3) are semi-rings, and that we can
take m ≤ 2 in part (iii) for Example (2) and m ≤ 2k in Example (3).
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Definition: A set function µ(A) is a premeasure or countably-additive mea-
sure on a semi-ring Γ if µ : Γ → [0,∞] is a function such that

(i) µ(φ) = 0
(ii) If Ak ∈ Γ are disjoint for 1 ≤ k < ∞, and if A =

⋃∞
k=1 Ak ∈ Γ,

then µ(A) =
∑∞

k=1 µ(Ak).
A premeasure µ0 is σ-finite if X =

⋃∞
j=1 Xj where Xj ∈ Γ and µ0(Xj) < ∞.

Notes: (a) In particular, µ(A) = ∞ for A ∈ Γ is allowed.

(b) µ(A) is also finitely-additive on Γ. That is, if A,Aj ∈ Γ, Aj is disjoint,
and A =

⋃n
j=1 Aj satisfies A ∈ Γ, then µ(A) =

∑n
j=1 µ(Aj). This is because

we can take Aj = φ for j > n in property (ii) above. If µ(A) is only finitely
additive; that is, if (ii) is only guaranteed if Aj = φ for j > n for some
finite n, then we call µ(A) a finitely-additive premeasure on Γ.

(c) If A,B ∈ Γ and A ⊆ B, then µ(A) ≤ µ(B) by property (iii) of the
definition of a semi-ring, property (ii) of the definition of a premeasure, and
the property that µ(C) ≥ 0 for C ∈ Γ. Thus a premeasure (or finitely-
additive premeasure) on a semi-ring is automatically monotone.

Definition: µ(A) is a measure on a σ-algebra M if µ : M→ [0,∞] satisfies
(i) µ(φ) = 0
(ii) If Ak ∈ M are disjoint for 1 ≤ k < ∞ and A =

⋃∞
k=1 Ak (which is

automatically in M), then µ(A) =
∑∞

k=1 µ(Ak).

The following three lemmas are useful for working with semi-rings.

Lemma 2.1. Assume sets A,A1, . . . , An ∈ Γ for a semi-ring Γ. Then there
exists m < ∞ and disjoint sets D1, D2, . . . , Dm ∈ Γ such that

A−
n⋃

j=1

Aj = A−A1 −A2 − · · · −An =
m⋃

k=1

Dk (2.1)

Proof. By condition (iii) for semi-rings, A − A1 =
⋃m

j=1 Cj for dis-
joint Cj ∈ Γ. Then A − A1 − A2 =

⋃m
j=1 Cj − A2 =

⋃m
j=1(Cj − A2) =⋃m

j=1

⋃nj

k=1 Djk where Djk ∈ Γ are disjoint for fixed j with
⋃nj

k=1 Djk =
Cj −A2. Since the Cj are disjoint with Djk ⊆ Cj , the Djk are disjoint for
all j, k. Thus we can write A−A1 −A2 =

⋃M
k=1 D̃k for disjoint D̃k ∈ Γ and

M ≤ n1 + . . . + nm. Lemma 2.1 for all n follows by induction on n.

Exercise: Show that we can take m ≤ 2n for the semi-ring of cells Γ in
Example (2). For cells in Rk (Example (3) ), we can take m ≤ 2nk.
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Lemma 2.2. Let µ(A) be a finitely-additive premeasure on a semi-ring Γ.
Assume A,A1, . . . , An ∈ Γ are such that A1, . . . , An are disjoint and⋃n

j=1 Aj ⊆ A. Then
n∑

j=1

µ(Aj) ≤ µ(A) (2.2)

Proof. By Lemma 2.1, A−⋃n
j=1 Aj =

∑m
k=1 Dk where Dk ∈ Γ are disjoint,

also disjoint from A1, . . . , An. Thus {A1, . . . , An, D1, . . . , Dm } are disjoint
and by finite additivity

µ(A) =
n∑

j=1

µ(Aj) +
m∑

k=1

µ(Dk) ≥
n∑

j=1

µ(Aj)

since µ(Dk) ≥ 0.

Lemma 2.3. Let µ(A) be a finitely-additive premeasure on a semi-ring Γ.
Assume A,A1, . . . , An ∈ Γ are such that A ⊆ ⋃n

j=1 Aj . Then

µ(A) ≤
n∑

j=1

µ(Aj) (2.3)

Proof. Since A ⊆ ⋃n
j=1 Aj ,

A = A ∩
n⋃

j=1

Aj =
n⋃

j=1

(A ∩Aj) =
n⋃

j=1

Ãj , Ãj = (A ∩Aj)−
j−1⋃

k=1

(A ∩Ak)

Each A∩Ak ∈ Γ by condition (ii) of the definition of a semi-ring. The sets Ãj

are disjoint, but are not necessarily in Γ. By Lemma 2.1, each Ãj =
⋃nj

k=1 Djk

where Djk ∈ Γ are disjoint for fixed j. Since the Ãj are disjoint, the sets
Djk ∈ Γ are disjoint for all j, k. Since µ is finitely additive,

µ(A) =
n∑

j=1

nj∑

k=1

µ(Dij) ≤
n∑

j=1

µ(Aj)

by Lemma 2.2 since
⋃nj

k=1 Djk = Ãj ⊆ Aj .
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3. Semi-rings and Outer Measures. An outer measure on a set X is a
function µ∗ : P (X) → [0,∞] where P (X) is the set of all subsets E ⊆ X
such that µ∗ satisfies

(i) µ∗(φ) = 0
(ii) E ⊆ F ⊆ X implies µ∗(E) ≤ µ∗(F )
(iii) If Ej ⊆ X for 1 ≤ j < ∞ and E =

⋃∞
j=1 Ej , then µ∗(E) ≤∑∞

j=1 µ∗(Ej).

Note that outer measures are defined for all subsets E of a set X rather than
on a semi-ring or σ-algebra.

Definition: A set A ⊆ X is µ∗-measurable if

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) (3.1)

for all subsets E ⊆ X. Define M(µ∗) as the set of all µ∗-measurable subsets
A ⊆ X.

In particular, A = φ ∈M(µ∗) since (3.1) holds for all E ⊆ X. Similary,
A ∈ M(µ∗) implies Ac ∈ M(µ∗), which are two of the three properties
required for a σ-algebra. More generally:

Theorem 3.1 (Carathéodory) Let µ∗ be an arbitrary outer measure on
a set X. Then

(i) M(µ∗) is a σ-algebra of subsets of X
(ii) µ∗ is a (countably-additive) measure on M(µ∗).

Proof. See Folland (1999) in the references, or any textbook on measure
theory. (This proof does not use semi-rings or algebras of sets.)

Notes: (1) Theorem 3.1 does not guarantee that the σ-algebra is very large
or very interesting. Problem 4 on Homework 1 of Math 5051 (Fall 2009) gives
an example of an outer measure µ∗ on X = [0, 1] with µ∗(E) > 0 for all
nonempty E ⊆ [0, 1] but M(µ∗) = {φ,X }.
(2) Let E ⊆ P (X) be an arbitrary collection of subsets of a set X and let
µ0(A) be an arbitrary nonnegative function on E . Then

µ∗(E) = inf
{ ∞∑

j=1

µ0(A) : E ⊆
∞⋃

j=1

Aj , Aj ∈ E
}

(3.2)

defines an outer measure on X. We define µ∗(E) with the convention that
the infimum of the empty set is ∞. That is, if E cannot be covered by a
sequence of sets Aj ∈ E as in (3.2), then µ∗(E) = ∞. (Proof : See Folland
(1999).)
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Definition: H is a (µ∗)-null set if H ⊆ X and µ∗(H) = 0. If H is a µ∗-null
set, then H ∈ M(µ∗). That is, M(µ∗) contains all null sets for µ0. (Proof :
If µ∗(H) = 0, then

µ∗(E) ≤ µ∗(E ∩H) + µ∗(E ∩Hc) ≤ µ∗(E ∩Hc) ≤ µ∗(E)

and (3.1) holds for all E ⊆ X. Hence H ∈M(µ∗).)

The next result shows how to extend an arbitrary premeasure on a semi-
ring to a measure on a σ-algebra.

Theorem 3.2 (Carathéodory) Let µ0 be a (countably-additive) premea-
sure on a semi-ring Γ of subsets of a set X. Define µ∗(E) by (3.2) for E = Γ.
Then

(i) µ∗(A) = µ0(A) for all A ∈ Γ
(ii) Γ ⊆M(µ∗).

Notes: (1) For µ∗(E) as in Theorem 3.2, if we define µ(A) = µ∗(A) for
A ∈ M(µ∗), then µ is a measure on both M(µ∗) and on the smallest σ-
algebra M(Γ) containing Γ.

(2) Under the conditions of Theorem 3.2, if µ0 is σ-finite on X, then every
E ∈ M(µ∗) can be written E = B − H where B ∈ M(Γ) and µ∗(H) = 0.
That is, M(µ∗) differs from M(Γ) only by null sets. (See Problem 2 on
Homework 2 for Math 5051, Fall 2009.)

Proof of Theorem 3.2 (Carathéodory). (i) We first show that µ∗(A) =
µ0(A) for any A ∈ Γ. Since A is a covering of itself, µ∗(A) ≤ µ0(A). Thus is
is sufficient to prove µ0(A) ≤ µ∗(A).

(Remark: Problem 5 of Homework 2 in Math 5051 (Fall 2009) gives
an example of an outer measure defined by (3.2) with µ0(A) > 0 for every
nonempty A ∈ Γ but µ∗(E) = 0 for all sets E ⊆ X. Thus some argument is
required.)

Given A ∈ Γ with µ∗(A) < ∞ (otherwise µ0(A) ≤ µ∗(A) is trivial),
choose Ai ∈ Γ such that

A ⊆
∞⋃

j=1

Aj , µ∗(A) ≤
∞∑

j=1

µ0(Aj) ≤ µ∗(A) + ε

As in the proof of Lemma 2.3, we can find disjoint Bk ∈ Γ such that

A ⊆
∞⋃

j=1

Aj =
∞⋃

k=1

Bk, µ∗(A) ≤
∞∑

k=1

µ0(Bk) ≤
∞∑

j=1

µ0(Aj)
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Then A =
⋃∞

k=1(A ∩Bk) for disjoint sets A ∩Bk ∈ Γ. Thus

µ0(A) =
∞∑

k=1

µ0(A ∩Bk) ≤
∞∑

k=1

µ0(Bk) ≤
∞∑

j=1

µ0(Aj) ≤ µ∗(A) + ε

since µ0(A) ≤ µ0(B) if A ⊆ B, A, B ∈ Γ. This implies µ0(A) ≤ µ∗(A) and
hence µ0(A) = µ∗(A).

(ii) We next show that any A ∈ Γ satisfies A ∈ M(µ∗). Since µ∗ is
subadditive (that is, property (iii) of the definition of outer measure), it is
sufficient to prove

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E ∩Ac)

for all subsets E ⊆ X. Choose Aj ∈ Γ such that

E ⊆
∞⋃

j=1

Aj , µ∗(E) ≤
∞∑

j=1

µ0(Aj) ≤ µ∗(E) + ε

By property (iii) of the definition of a semi-ring

E ∩A ⊆
∞⋃

j=1

(A ∩Aj), E ∩Ac ⊆
∞⋃

j=1

(Aj −A) =
∞⋃

j=1

nj⋃

k=1

Djk

where Aj −A =
⋃nj

k=1 Djk for disjoint Djk ∈ Γ. Thus

µ∗(E ∩A) + µ∗(E ∩Ac) ≤
∞∑

j=1

µ0(A ∩Aj) +
∞∑

j=1

nj∑

k=1

µ0(Djk)

=
∞∑

j=1

(
µ0(A ∩Aj) +

nj∑

k=1

µ0(Djk)
)

=
∞∑

j=1

µ0(Aj) ≤ µ∗(E) + ε

since Aj = (A ∩ Aj) ∪ (Aj − A) and µ0 is finitely additive. Thus µ∗(E) ≥
µ∗(E ∩ A) + µ∗(E ∩ Ac) for all E ⊆ X, which completes the proof of the
theorem.

An important corollary of Theorem 3.2 is

Theorem 3.3 (Fréchet) Let µ and ν be two measures on a σ-algebra M
on a set X. Assume Γ ⊆ M for a semi-ring Γ, that µ(A) = ν(A) for every
A ∈ Γ, and that µ an ν are both σ-finite on Γ. Then µ(E) = ν(E) for all
E ∈M.
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Proof. This is essentially Theorem 1.14 in Folland (1999).
Define µ∗(E) and ν∗(E) by (3.2) for E = Γ. Then µ∗(E) = ν∗(E) for

all E ⊆ X since µ(A) = ν(A) for A ∈ Γ. Since measures are countably
subadditive, µ(E) ≤ µ∗(E) and ν(E) ≤ ν∗(E) for all E ∈ M. If we can
show that µ(E) = µ∗(E) for any E ∈ M and σ-finite premeasure µ on Γ,
then we could conclude µ(E) = µ∗(E) = ν∗(E) = ν(E) for all E ∈ M(Γ)
and we would be done.

First, assume µ∗(E) < ∞. As in the proofs of Lemma 2.3 and Theo-
rem 3.3, there exist disjoint sets Aj ∈ Γ such that

E ⊆ A =
∞⋃

j=1

Aj , µ∗(E) ≤
∞∑

j=1

µ(Aj) = µ(A) ≤ µ∗(E) + ε

Since the Aj are disjoint and µ∗(Aj) = µ(Aj) by Theorem 3.3, µ∗(A) =
µ(A). Since E ⊆ A and µ∗(A) ≤ µ∗(E) + ε, µ∗(A− E) ≤ ε. Thus also
µ(A− E) ≤ µ∗(A− E) ≤ ε and

µ∗(E) ≤ µ∗(A) = µ(A) = µ(E) + µ(A− E) ≤ µ(E) + ε

Thus µ∗(E) ≤ µ(E) and hence µ∗(E) = µ(E) for µ∗(E) < ∞.
Since µ is σ-finite, X =

⋃∞
j=1 Xj where Xj ∈ Γ, µ(Xj) < ∞, and Xj

are disjoint. Then for all E ∈M(Γ)

µ(E) =
∞∑

j=1

µ(E ∩Xj) =
∞∑

j=1

µ∗(E ∩Xj) = µ∗(E)

and µ = µ∗ on M(Γ), which was to be proven.

4. Lebesgue-Stieltjes Measures in R1. Let F (x) be an increasing real-
valued right-continuous function on R1. Let Γ be the semi-ring

Γ = { (a, b] : −∞ < a ≤ b < ∞ } (4.1)

Define µF on Γ by

µF ( (a, b] ) = F (b)− F (a) (4.2)

Then
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Theorem 4.1. µF in (4.2) is a premeasure on the semi-ring Γ. In particular,
µF in (4.2) extends to a unique Borel measure on R1.

Proof. Since F (x) is real-valued, µF ( (n, n + 1] ) < ∞ and µF is σ-finite.
Once we prove that µF is a premeasure on Γ, it follows from Theorems 3.3
and 3.4 that µF has a unique extension as a Borel measure on M(R1). This
will be the Lebesgue-Stieltjes measure on R1 corresponding to F (x). In
particular, it is sufficient to prove that µF is a premeasure.

Assume A = (a, b] and Aj = (aj , bj ] satisfy

(a, b] =
∞⋃

j=1

(aj , bj ] where (aj , bj ] are disjoint

By Lemma 2.2,
∑n

j=1(aj , bj ] ⊆ (a, b] implies

n∑

j=1

(
F (bj)− F (aj)

)
=

n∑

j=1

µF (Aj) ≤ µF (A) = F (b)− F (a)

for all n. Hence

∞∑

j=1

(
F (bj)− F (aj)

) ≤ F (b)− F (a) (4.3)

Thus it is sufficient to prove

F (b)− F (a) ≤
∞∑

j=1

(
F (bj)− F (aj)

)
(4.4)

For any ε > 0, there exist δ > 0 and δj > 0 such that

F (a + δ)− F (a) < ε and F (bj + δj)− F (bj) < ε/2j (4.5)

for all j ≥ 1. Then

[a + δ, b] ⊆ (a, b] =
∞⋃

j=1

(aj , bj ] ⊆
∞⋃

j=1

(aj , bj + δj)

Since [a + δ, b] is compact, it follows that

[a + δ, b] ⊆
n⋃

j=1

(aj , bj + δj)
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for some n < ∞. By Lemma 2.3 and (4.5)

µF ( (a, b] ) = F (b)− F (a) ≤ (
F (b)− F (a + δ)

)
+ ε

≤
n∑

j=1

(
F (bj + δj)− F (aj)

)
+ ε

≤
n∑

j=1

(
F (bj)− F (aj)

)
+

n∑

j=1

ε/2j + ε

≤
∞∑

j=1

(
F (bj)− F (aj)

)
+ 2ε

Since this holds for all ε > 0, we conclude (4.4) and hence that µF is a
premeasure on Γ in (4.1).

5. Lebesgue-Stieltjes Measures in Rk. Let Γ be the semi-ring

Γ =
{

C : C =
k∏

j=1

(aj , bj ] for −∞ < aj ≤ bj < ∞, 1 ≤ j ≤ k

}
(5.1)

where
∏k

j=1(aj , bj ] means Cartesian product. As in Section 2 (Example 3),
Γ is a semi-ring of subsets of Rk. If µ is a Borel measure on Rk and
µ(Rk) < ∞, an analog for Rk of the increasing function F (x) in Section 4 is

F (x1, x2, . . . , xk) = µ

( k∏

j=1

(−∞, xj ]
)

(5.2)

We now want the analog of µ
(
(a, b] ) = F (b) − F (a) in Section 4. Consider

the special case of the product measure

µ = µ1 ⊗ µ2 ⊗ . . .⊗ µk

for one-dimensional measures µj . This means

F (x1, x2, . . . , xk) = F1(x1)F2(x2) . . . Fk(xk)

where Fj(x) = µj

(
(−∞, x]

)
and

µ

( k∏

j=1

(aj , bj ]
)

=
k∏

j=1

(
Fj(bj)− Fj(aj)

)
(5.3)
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In particular, if C = (a, b]× (c, d] ⊆ R2, then

µ
(
(a, b]× (c, d] ) =

(
F1(b)− F1(a)

)(
F2(d)− F2(c)

)

= F1(b)F2(d)− F1(a)F2(d)− F1(b)F2(c) + F1(a)F2(c)

If F (x1, x2) in (5.2) is not a product, the generalization is the addition and
subtraction formula

µ
(
(a, b]× (c, d] ) = F (b, d)− F (a, d)− F (b, c) + F (a, c) (5.4)

(Hint : Draw a picture in the plane.) For general k, the expansion of the
product (5.3) is a sum with 2k terms:

µ

( k∏

j=1

(aj , bj ]
)

=
∑

c:{ 1,...,k }→R
cj=aj or bj

nc=#{ j:cj=aj }

(−1)nc

k∏

j=1

Fj(cj) (5.5)

If F (x1, x2, . . . , xk) in (5.2) is not a product, the generalization of (5.5) is

Lemma 5.1 Let C =
∏k

j=1(aj , bj ]. Define F (x1, . . . , xk) by (5.2) where µ

is a Borel measure on Rk with µ(Rk) < ∞. Then

∆C(F ) = µ

( k∏

j=1

(aj , bj ]
)

=
∑

c:{ 1,...,k }→R
cj=aj or bj

nc=#{ j:cj=aj }

(−1)ncF (c1, c2, . . . , ck) (5.6)

Proof. By (5.4) and induction on k.

In particular, F (x1, x2, . . . , xk) in (5.2) satisfies ∆C(F ) ≥ 0 for all
cells C ∈ Γ in (5.1). This is called the box condition for the function
F (x1, x2, . . . , xk).

The analog of right continuity for F (x) for x ∈ R1 is the following. We
say that xn ↓ x for xn = (xn

1 , xn
2 , . . . , xn

k ) and x = (x1, x2, . . . , xk) ∈ Rk if
xn

j ↓ xj for each j, 1 ≤ j ≤ k.
A function F (x1, x2, . . . , xk) on Rk is jointly right continuous on Rk if

xn ↓ x ∈ Rk implies F (xn) → F (x). If the box condition ∆C(F ) ≥ 0 holds
for all C ∈ Γ, then F (xn) ↓ F (x).

Exercises: (1) Show that F (x1, . . . , xn) defined by (5.2) is jointly right
continuous.

(2) If F (x1, . . . , xk) in (5.2) satisfies the box condition ∆C(F ) ≥ 0 for all
C ∈ Γ, then xn ↓ x implies F (xn) ↓ F (x).
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Theorem 5.1 Let F : Rk → R be a function such that
(i) For all cells C ∈ Γ in (5.1),

∆C(F ) =
∑

c:{ 1,...,k }→R
cj=aj or bj

nc=#{ j:cj=aj }

(−1)ncF (c1, c2, . . . , ck) ≥ 0 (5.7)

(ii) F (x1, x2, . . . , xk) is jointly right continuous.
Then µ(C) = ∆C(F ) defined by (5.7) is a premeasure on the semi-ring Γ
in (5.1).

Note: Then, by the results in Section 3, µ(C) extends to a unique Borel
measure µ(A) on Rk.

Proof of Theorem 5.1. It is not difficult to show (but with some work)
that µ(C) is finitely additive on Γ by generalizing the proof that µ(C) defined
by the product measure (5.3) is finitely additive on Γ. The results in Sections
2 and 3 carry over since they are about general semi-rings and outer measures.
Now assume

C =
∞⋃

i=1

Ci, C, Ci ∈ Γ, Ci disjoint

Assume C =
∏k

j=1(aj , bj ] and Ci =
∏k

j=1(aij , bij ]. Then

µ(C) ≥
∞∑

i=1

µ(Ci)

follows from Lemma 2.2 as in the proof of Theorem 4.1. Define Cδ =∏k
j=1(aj + δ, bj ] and Ciδ =

∏k
j=1(aij , bij + δ]. Then, by condition (ii) in

Theorem 5.1, for all ε > 0, there exist δ > 0 and δi > 0 such that

µ(Cδ)− µ(C) < ε, µ(Ciδi)− µ(Ci) < ε/2i

for 1 ≤ i < ∞. This is the analog of (4.5) in the proof of Theorem 4.1.
The rest of the proof of Theorem 4.1 carries over with changes only in the
notation. Hence

µ(C) =
∞∑

i=1

µ(Ci)

and µ(C) is a premeasure on Γ.
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