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1. Introduction. Consider paired data (Yi, Xi) for a regression

Yi = µ + βXi + ei, 1 ≤ i ≤ n (1.1)

The errors ei in (1.1) are assumed to be independent and identically dis-
tributed, but are not necessarily normal and may be heavy-tailed.

Assume for convenience that β is one dimensional. Then (1.1) is a simple
linear regression. However, most of the following extends more-or-less easily
to higher-dimensional β, in which case (1.1) is a multiple regression.

Given β, define Ri(β) as the rank (or midrank) of Yi − βXi among
{Yj − βXj }. Thus 1 ≤ Ri(β) ≤ n. The rank-regression estimator β̂ is any
value of β that minimizes the sum

D(β) =
n∑

i=1

Rc
i (β)(Yi − βXi) (1.2)

where
Rc

i (β) = Ri(β)− (n + 1)/2 (1.3)

are the centered ranks or midranks.
Since

∑n
i=1 Rc

i (β) = 0 in (1.3), we can subtract a constant from Yi − βXi

in (1.2) without affecting D(β). That is,

D(β, µ) =
n∑

i=1

Rc
i (β)(Yi − βXi − µ) (1.4)

=
n∑

i=1

Rc
i (β)(Yi − βXi) = D(β)

for all µ. Since

D(β) =
n∑

i=1

Rc
i (β)(Yi − βXi − µ), µ = Y − βX

and
∑n

i=1(Yi − βXi − µ) = 0, and since Yi − βXi < Yj − βXj implies
Rc

i (β) < Rc
j(β), it follows that D(β) > 0 for all β unless Yi−βXi is constant.
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As mentioned above, the rank regression slope estimator for β in (1.1)
is any solution of

min
β

D(β) = D(β̂) (1.5)

In particular, both D(β) in (1.2) and β̂ in (1.5) are functions of the residuals
Yi − µ− βXi in (1.4) and (1.1).

The classical least-squares estimators of µ and β are found by minimizing

C(β, µ) =
n∑

i=1

(
Yi − µ− βXi

)2 (1.6)

instead of (1.5). The least-squares estimator β̂c from (1.6) is

β̂c =
∑n

i=1(Yi − Y )(Xi −X)∑n
i=1(Xi −X)2

(1.7)

There is an algorithm for finding β̂ in (1.5) that is nearly as simple (see
below).

Remarks: (1) The system (1.1)–(1.2) has a natural generation to the mul-
tiple regression

Yi = µ +
p∑

j=1

Xijβj + ei, 1 ≤ i ≤ n, p ≥ 2 (1.8)

for which β = (β1, . . . , βp) is vector valued. The analog of the classical
estimator β̂c in (1.7) is β̂c = (X ′X)−1X ′Y where X is the n× (p+1) matrix
implicit on the right-hand side of (1.8).

For vector-valued β, the function D(β) in (1.2) is piecewise linear, con-
tinuous, and convex. (See below for a proof of this in the one-dimensional
case.) Thus the minimum value β̂ can be found by any routine that min-
imizes piece-wise linear continuous convex functions, for example for the
simplex method in dynamic programming. There is a particularly easy al-
gorithm for one dimension (see below).

(2) A natural generalization of the least-squares estimator β̂c in (1.7) is
to minimize

E(β, µ) =
n∑

i=1

∣∣Yi − µ− βXi

∣∣ (1.9)

instead of C(β, µ) in (1.6). The parameter estimates β̂1, µ̂1 at the minimum
of (1.9) do not seem to be as easy to analyze as for the rank regression
model (1.2).
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Theil’s estimator for the slope in (1.1) is

β̂T = median
{

Yj − Yi

Xj −Xi
: 1 ≤ i < j ≤ n

}
(1.10)

(see Hollander and Wolfe, 1999, p421, in the references). If the values Xi

are equally spaced, β̂T and the rank-regression estimator β̂ from (1.2) can be
shown to be asymptotically equally powerful for estimating β (Hollander and
Wolfe, 1999, p456–457). If the Xi are not equally spaced, the rank-regression
estimator β̂ is asymptotically more powerful (that is, more accurate given
the same sample size).

2. A Simple Algorithm for Finding β̂ in (1.2). First, notice that the
function D(β) in (1.2) is a linear function of β except at values of β for
which the ranks Rc

i (β) change. These values correspond to pairs of integers
(i, j) (i 6= j) for which Yj − βXj = Yi − βXi, or equivalently (if Xi 6= Xj) if
β = (Yj − Yi)/(Xj −Xi) for some i and j. Let Wk be the sorted difference
quotients

{Wk : 1 ≤ k ≤ N } = (2.1)

(sorted) { (Yj − Yi)/(Xj −Xi) : 1 ≤ i < j ≤ n, Xi 6= Xj }

For completeness, set W0 = −∞ and WN+1 = ∞. Then D(β) is linear in
each interval (Wk,Wk+1) (0 ≤ k ≤ N). Since the midranks Ri and Rj are
the same if Yi − βXi = Yj − βXj , it follows that D(β) is continuous at each
β = Wk, and hence is continuous (and piecewise linear) for all β.

Not consider a point of discontinuity β = Wk in the slope of D(β). Then
there exist integers i, j such that for sufficiently small ε > 0

Yi − (Wk − ε)Xi < Yj − (Wk − ε)Xj (2.2)

Yi −WkXi = Yj −WkXj

Yi − (Wk + ε)Xi > Yj − (Wk + ε)Xj

That is, Yi−βXi crosses Yj −βXj from below at β = Wk. This implies that
Xi < Xj , and also that Ri(Y −βX) < Rj(Y −βX) at β = Wk − ε. Thus Ri

increases by one and Rj decreases by one as β crosses through β = Wk from
below. This means that the slope of D(β) increases by −Xi − (−Xj) =
Xj −Xi > 0.

Thus the slope of D(β) always increases as β crosses through β = Wk

from below, and the slope of D(β) is increasing for −∞ < β < ∞. Hence
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D(β) is convex as well as being piecewise linear and continuous. Since D(β)
is convex, continuous, and piecewise linear, D(β) attains its minimum either
at a unique node β = Wk or else on a unique interval (Wk−1,Wk).

By the definition (2.1), the differences Yi − βXi have the same relative
order for β < W1, which is the same relative order for β → −∞, which is
the same order as the Xi. Similarly, Yi − βXi have the opposite order of Xi

if β > WN . Thus

Ri(Y − βX) = Ri(X), β < W1

= n + 1−Ri(X), β > WN

In particular by (1.2)

Slope
(
D(β)

)
= −

n∑

i=1

Rc
i (X)Xi, β < W1

=
n∑

i=1

Rc
i (X)Xi, β > WN

Since
∑n

i=1 Rc
i (X)X = 0, it follows that

Q =
n∑

i=1

Rc
i (X)Xi > 0 (2.3)

unless the Xi are constant. We have now proven

Theorem 2.1. Let (ik, jk) be the integers (i, j) corresponding to k in
the definition of Wk in (2.1). Define S0 = −Q for Q in (2.3) and

Sk = −Q +
k∑

p=1

|Xjp −Xip |

k0 = min{ k : Sk > 0} (2.4)

for 1 ≤ k ≤ N . Then Sk is the slope of D(β) for Wk < β < Wk+1. The
rank-regression estimator β̂ defined by the minimum of D(β) in (1.5) is

β̂ = Wk0 =
Yjk0

− Yik0

Xjk0
−Xik0

if Sk0−1 < 0 < Sk0 and (2.5a)

β̂ =
Wk0−1 + Wk0

2
if Sk0−1 = 0 < Sk0 (2.5b)
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Remarks: (1) Theorem 2.1 gives a simple algorithm for estimating β̂. The
most time-consuming part of the algorithm is sorting the difference quotients
(Yj − Yi)/(Xj −Xi) in (2.1).

(2) Since β̂ = Wk0 where k0 depends on Sk, the estimator β̂ can be
viewed as a “weighted median” of the difference quotients Wk = (Yj −
Yi)/(Xj −Xi) (Hollander and Wolfe, 1999).

3. A Numerical Example. Suppose that n = 5 and

1 2 3 4 5
Yi : 6.19 2.15 −2.15 11.68 3.85
Xi : 0.10 0.20 0.30 0.40 0.50

Then the ranks Ri(X) = 1, 2, 3, 4, 5 and the centered ranks Rc
i (X) = Ri(X)−

(n + 1)/2 = −2,−1, 0, 1, 2. Hence Q in (2.3) is Q = 0.10(−2) + 0.2(−1) +
0.3(0) + 0.4(1) + 0.5(2) = 1.00.

For n = 5, there are N = n(n − 1)/2 = 10 difference quotients Dk =
(Yj − Yi)/(Xj −Xi). In lexicographical order (i then j), these are

−40.38(1, 2) −41.70(1, 3) 18.30(1, 4) −5.86(1, 5) −43.03(2, 3)
47.64(2, 4) 5.65(2, 5) 138.30(3, 4) 29.99(3, 5) −78.33(4, 5)

(The Yi in the table were rounded to two significant figures after the decimal
point.) The number Wk in (2.1) are the sorted values Dk:

−78.33(4, 5) −43.03(2, 3) −41.70(1, 3) −40.38(1, 2) −5.86(1, 5)
5.65(2, 5) 18.30(1, 4) 29.99(3, 5) 47.64(2, 4) 138.30(3, 4)

Then β = Wk will be the minimum of D(β) if Sk−1 < 0 < Sk, where Sk are
the numbers in (2.4). The first seven points β = Wk along with Sk (which
is the slope just after Wk) are:

k : 1 2 3 4 5 6 7
Wk : −78.33 −43.03 −41.70 −40.38 −5.86 5.65 18.30
i, j : 4, 5 2, 3 1, 3 1, 2 1, 5 2, 5 1, 4
Sk : −0.90 −0.80 −0.60 −0.50 −0.10 0.20 0.50

Note S5 = −0.10 < 0 < S6 = 0.20. Thus D(β) is minimized at β = W6 =
5.65 and the rank-regression estimator is β̂ = W6 = 5.65.

4. Bootstrap Confidence Intervals for β. In general, there are two
ways to bootstrap a regression in order to get confidence intervals for model
parameters. Which is preferable depends on how you view the regression.
The two methods often give similar results.
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Bootstrapping Residual Values: If the covariates Xi are assumed to be
known and fixed, you can bootstrap the residuals of the regression. To do
this, carry out the following steps:

First, calculate β̂ by (2.4)–(2.5) and define “residuals”

ra = Ya − β̂Xa, 1 ≤ a ≤ n (4.1)

(These are not quite the same as classical residuals, since they do not contain
an estimate of the intercept parameter µ in (1.1).)

Second, for each of a large number of “bootstrap replications”, define
a “bootstrap resample of residuals” { r∗i : 1 ≤ i ≤ n } by sampling n values
from the set { ra : 1 ≤ a ≤ n } with replacement. That is, each r∗i is chosen
so that it has probability 1/n of being equal to ra for each value ra in (4.1).

Third, define “bootstrap resampled” values Y ∗
i (1 ≤ i ≤ n) by

Y ∗
i = β̂Xi + r∗i (4.2)

The variables Xi stay the same. Define W ∗
k by (2.1) with Y ∗

i in place of Yi

and β̂∗ by (2.5) with W ∗
k in place of Wk and k0

∗ in place of k0. While k0

is determined only by the Xi, it also depends on the order of the difference
quotients (Yj − Yi)/(Xj −Xi).

Fourth, for some number B, collect values β̂∗j for 1 ≤ j ≤ B by carrying
out the steps in the two preceding paragraphs B times in sequence. Sort
β̂∗j to determine the sorted sequence β̂∗(j). The classical 95% bootstrap
confidence interval for β is the interval (β̂∗(0.025n), β̂(0.975n+1)). The usual
rule of thumb for this confidence interval is B ≥ 1000, so that 0.025n ≥ 25.

Some C code that carries out the first few steps above is

betahat = getrankbeta(nn,yy,xx);
/* Find the residuals for Y = beta X + e */
for (i=0; i<nn; i++)

res[i] = yy[i] - betahat*xx[i];
/* For `nboot´ replicated samples */
for (ns=0; ns<nboot; ns++)
{ /* Form (yystar[i],xx[i]) (0 <= i < nn) by */

/* bootstrapping the residuals of yy[i] */
for (i=0; i<nn; i++)
{ int b=nrand(nn);
yystar[i] = betahat*xx[i] + res[b]; }

/* Find and store the bootstrapped estimates betahat^* */
bootbetas[ns] = getrankbeta(nn,yystar,xx); }
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Here nn is the sample size, getrankbeta() is a function that returns the
rank-regression estimator of beta, res[] is an array that stores the residuals
of the regression Y = βX + e, nboot is the number of bootstrap replica-
tions of the sample, yystar[] is an array that holds a single bootstrapped
sample of yy values, nrand(nn) is a function that returns a random inte-
ger in 0,1,2,. . . ,nn-1, and bootbetas[] is an array that holds the nboot
rank-regression estimated values β̂∗j .

Bootstrapping Observations: Alternatively, if the data is viewed as ran-
dom pairs of data (Yi, Xi), you can bootstrap the (vector-valued) observa-
tions (Yi, Xi). To do this, carry out the following steps:

First, for each of a large number of “bootstrap replications”, define a
“bootstrap resample of observations” { (Y ∗

i , X∗
i ) : 1 ≤ i ≤ n } by sampling n

paired values from the set { (Ya, Xa) : 1 ≤ a ≤ n } with replacement. That
is, for each pair (Y ∗

i , X∗
i ), choose b with probability 1/n of being any of the

integers a = 1, . . . , n and set (Y ∗
i , X∗

i ) = (Yb, Xb) (or Y ∗
i = Yb, X∗

i = Xb).
Second, define W ∗

k by (2.1) with (Y ∗
i , X∗

i ) in place of (Yi, Xi) and β̂∗

by (2.5) with W ∗
k in place of Wk and k0

∗ in place of k0.
Third, for some number B, collect values β̂∗j for 1 ≤ j ≤ B by car-

rying out the steps in the two preceding paragraphs B times in sequence.
Confidence intervals for β can be obtained from { β̂∗j } as in the preceding
subsection.

Some C code that carries out the first few steps above is

betahat = getrankbeta(nn,yy,xx);
/* For `nboot´ replicated samples */
for (ns=0; ns<nboot; ns++)
{ /* Form (yystar[i],xxstar[i]) (0 <= i < nn) by */

/* bootstrapping PAIRS of values (yy[b],xx[b]) */
for (i=0; i<nn; i++)
{ int b=nrand(nn);
yystar[i] = yy[b];
xxstar[i] = xx[b]; }

/* Find and store the bootstrapped estimate betahat^* */
bootbetas[ns] = getrankbeta(nn,yystar,xxstar); }

where nn, getrankbeta(), nboot, etc. are the same as before and xxstar[]
is an array that holds the X components of the bootstrapped pairs.

Rationale of bootstrap approximations and the independence of
the β̂∗j : Both bootstrap methods make the implicit assumption that the
β̂∗j can be treated as independent. This can be justified by the fact that
they are determined by independent samples (in the first case) of r∗i drawn
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from the empirical distribution of the residuals ra in (4.1) and in the second
case by independent samples (Y ∗

i , X∗
i ) from the pairs (Yi, Xi). In either

case, the β̂∗j are independent given the observed values (Yi, Xi) (1 ≤ i ≤ n)
with a conditional mean E(β̂∗j) (conditional on the observations (Yi, Xi) ).
This should be close to β if the empirical distribution of the r∗i is close to
the error distribution ei, or else if the empirical distribution of the (Y ∗

i , X∗
i )

matches that of the pairs (Y, X) in the original regression model (1.1). In
this conditional sense, the β̂∗j can be viewed as independent estimators of β
that, hopefully, have at most a small bias.

If the conditional distribution of an estimator β̂ of a parameter β given β
is symmetrically distributed about β, then the middle 95% of the distribution
of β̂ given β is a 95% confidence interval for β. (Exercise: Prove that.) Of
course, this conclusion without some assumption about the relationship of the
distribution of β̂ to β: If β̂ < β with probability one, then the entire range of
the distribution of β̂ will be less than β. However, most reasonable estimators
are approximately unbiased (that is, E(β̂) = β) and the middle 95% of
the range of their distribution is a reasonable approximate 95% confidence
interval for the parameter.

Sampling the middle 95% of the distribution of the β̂∗j is thought to
be generally reasonable if the number of bootstrap replications B ≥ 1000,
although B = 10,000 or B = 100,000 should work even better. Alterna-
tively, if there are B ≥ 50 replications, you can treat the values β̂∗j as B
independent observations with mean β and construct a classical Student-t
or normal-theory 95% confidence interval for β. This often works as well as
the middle 95% of the distribution of the β̂∗j .
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