Linear Rank Regression

(Robust Estimation of Regression Parameters)
S. Sawyer - April 25, 2003 rev April 13, 2009

1. Introduction. Consider paired data $\left(Y_{i}, X_{i}\right)$ for a regression

$$
\begin{equation*}
Y_{i}=\mu+\beta X_{i}+e_{i}, \quad 1 \leq i \leq n \tag{1.1}
\end{equation*}
$$

The errors e_{i} in (1.1) are assumed to be independent and identically distributed, but are not necessarily normal and may be heavy-tailed.

Assume for convenience that β is one dimensional. Then (1.1) is a simple linear regression. However, most of the following extends more-or-less easily to higher-dimensional β, in which case (1.1) is a multiple regression.

Given β, define $R_{i}(\beta)$ as the rank (or midrank) of $Y_{i}-\beta X_{i}$ among $\left\{Y_{j}-\beta X_{j}\right\}$. Thus $1 \leq R_{i}(\beta) \leq n$. The rank-regression estimator $\widehat{\beta}$ is any value of β that minimizes the sum

$$
\begin{equation*}
D(\beta)=\sum_{i=1}^{n} R_{i}^{c}(\beta)\left(Y_{i}-\beta X_{i}\right) \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{i}^{c}(\beta)=R_{i}(\beta)-(n+1) / 2 \tag{1.3}
\end{equation*}
$$

are the centered ranks or midranks.
Since $\sum_{i=1}^{n} R_{i}^{c}(\beta)=0$ in (1.3), we can subtract a constant from $Y_{i}-\beta X_{i}$ in (1.2) without affecting $D(\beta)$. That is,

$$
\begin{align*}
D(\beta, \mu) & =\sum_{i=1}^{n} R_{i}^{c}(\beta)\left(Y_{i}-\beta X_{i}-\mu\right) \tag{1.4}\\
& =\sum_{i=1}^{n} R_{i}^{c}(\beta)\left(Y_{i}-\beta X_{i}\right)=D(\beta)
\end{align*}
$$

for all μ. Since

$$
D(\beta)=\sum_{i=1}^{n} R_{i}^{c}(\beta)\left(Y_{i}-\beta X_{i}-\bar{\mu}\right), \quad \bar{\mu}=\bar{Y}-\beta \bar{X}
$$

and $\sum_{i=1}^{n}\left(Y_{i}-\beta X_{i}-\bar{\mu}\right)=0$, and since $Y_{i}-\beta X_{i}<Y_{j}-\beta X_{j}$ implies $R_{i}^{c}(\beta)<R_{j}^{c}(\beta)$, it follows that $D(\beta)>0$ for all β unless $Y_{i}-\beta X_{i}$ is constant.

Linear Rank Regression

As mentioned above, the rank regression slope estimator for β in (1.1) is any solution of

$$
\begin{equation*}
\min _{\beta} D(\beta)=D(\widehat{\beta}) \tag{1.5}
\end{equation*}
$$

In particular, both $D(\beta)$ in (1.2) and $\widehat{\beta}$ in (1.5) are functions of the residuals $Y_{i}-\mu-\beta X_{i}$ in (1.4) and (1.1).

The classical least-squares estimators of μ and β are found by minimizing

$$
\begin{equation*}
C(\beta, \mu)=\sum_{i=1}^{n}\left(Y_{i}-\mu-\beta X_{i}\right)^{2} \tag{1.6}
\end{equation*}
$$

instead of (1.5). The least-squares estimator $\widehat{\beta}_{c}$ from (1.6) is

$$
\begin{equation*}
\widehat{\beta}_{c}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \tag{1.7}
\end{equation*}
$$

There is an algorithm for finding $\widehat{\beta}$ in (1.5) that is nearly as simple (see below).
Remarks: (1) The system (1.1)-(1.2) has a natural generation to the multiple regression

$$
\begin{equation*}
Y_{i}=\mu+\sum_{j=1}^{p} X_{i j} \beta_{j}+e_{i}, \quad 1 \leq i \leq n, \quad p \geq 2 \tag{1.8}
\end{equation*}
$$

for which $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)$ is vector valued. The analog of the classical estimator $\widehat{\beta}_{c}$ in (1.7) is $\widehat{\beta}_{c}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$ where X is the $n \times(p+1)$ matrix implicit on the right-hand side of (1.8).

For vector-valued β, the function $D(\beta)$ in (1.2) is piecewise linear, continuous, and convex. (See below for a proof of this in the one-dimensional case.) Thus the minimum value $\widehat{\beta}$ can be found by any routine that minimizes piece-wise linear continuous convex functions, for example for the simplex method in dynamic programming. There is a particularly easy algorithm for one dimension (see below).
(2) A natural generalization of the least-squares estimator $\widehat{\beta}_{c}$ in (1.7) is to minimize

$$
\begin{equation*}
E(\beta, \mu)=\sum_{i=1}^{n}\left|Y_{i}-\mu-\beta X_{i}\right| \tag{1.9}
\end{equation*}
$$

instead of $C(\beta, \mu)$ in (1.6). The parameter estimates $\widehat{\beta}_{1}, \widehat{\mu}_{1}$ at the minimum of (1.9) do not seem to be as easy to analyze as for the rank regression model (1.2).

Linear Rank Regression
Theil's estimator for the slope in (1.1) is

$$
\begin{equation*}
\widehat{\beta}_{T}=\text { median }\left\{\frac{Y_{j}-Y_{i}}{X_{j}-X_{i}}: 1 \leq i<j \leq n\right\} \tag{1.10}
\end{equation*}
$$

(see Hollander and Wolfe, 1999, p421, in the references). If the values X_{i} are equally spaced, $\widehat{\beta}_{T}$ and the rank-regression estimator $\widehat{\beta}$ from (1.2) can be shown to be asymptotically equally powerful for estimating β (Hollander and Wolfe, 1999, p456-457). If the X_{i} are not equally spaced, the rank-regression estimator $\widehat{\beta}$ is asymptotically more powerful (that is, more accurate given the same sample size).
2. A Simple Algorithm for Finding $\widehat{\boldsymbol{\beta}}$ in (1.2). First, notice that the function $D(\beta)$ in (1.2) is a linear function of β except at values of β for which the ranks $R_{i}^{c}(\beta)$ change. These values correspond to pairs of integers $(i, j)(i \neq j)$ for which $Y_{j}-\beta X_{j}=Y_{i}-\beta X_{i}$, or equivalently (if $X_{i} \neq X_{j}$) if $\beta=\left(Y_{j}-Y_{i}\right) /\left(X_{j}-X_{i}\right)$ for some i and j. Let W_{k} be the sorted difference quotients

$$
\begin{align*}
& \left\{W_{k}: 1 \leq k \leq N\right\}= \tag{2.1}\\
& \quad\left(\text { sorted) }\left\{\left(Y_{j}-Y_{i}\right) /\left(X_{j}-X_{i}\right): 1 \leq i<j \leq n, X_{i} \neq X_{j}\right\}\right.
\end{align*}
$$

For completeness, set $W_{0}=-\infty$ and $W_{N+1}=\infty$. Then $D(\beta)$ is linear in each interval $\left(W_{k}, W_{k+1}\right)(0 \leq k \leq N)$. Since the midranks R_{i} and R_{j} are the same if $Y_{i}-\beta X_{i}=Y_{j}-\beta X_{j}$, it follows that $D(\beta)$ is continuous at each $\beta=W_{k}$, and hence is continuous (and piecewise linear) for all β.

Not consider a point of discontinuity $\beta=W_{k}$ in the slope of $D(\beta)$. Then there exist integers i, j such that for sufficiently small $\epsilon>0$

$$
\begin{align*}
Y_{i}-\left(W_{k}-\epsilon\right) X_{i} & <Y_{j}-\left(W_{k}-\epsilon\right) X_{j} \tag{2.2}\\
Y_{i}-W_{k} X_{i} & =Y_{j}-W_{k} X_{j} \\
Y_{i}-\left(W_{k}+\epsilon\right) X_{i} & >Y_{j}-\left(W_{k}+\epsilon\right) X_{j}
\end{align*}
$$

That is, $Y_{i}-\beta X_{i}$ crosses $Y_{j}-\beta X_{j}$ from below at $\beta=W_{k}$. This implies that $X_{i}<X_{j}$, and also that $R_{i}(Y-\beta X)<R_{j}(Y-\beta X)$ at $\beta=W_{k}-\epsilon$. Thus R_{i} increases by one and R_{j} decreases by one as β crosses through $\beta=W_{k}$ from below. This means that the slope of $D(\beta)$ increases by $-X_{i}-\left(-X_{j}\right)=$ $X_{j}-X_{i}>0$.

Thus the slope of $D(\beta)$ always increases as β crosses through $\beta=W_{k}$ from below, and the slope of $D(\beta)$ is increasing for $-\infty<\beta<\infty$. Hence

Linear Rank Regression

$D(\beta)$ is convex as well as being piecewise linear and continuous. Since $D(\beta)$ is convex, continuous, and piecewise linear, $D(\beta)$ attains its minimum either at a unique node $\beta=W_{k}$ or else on a unique interval (W_{k-1}, W_{k}).

By the definition (2.1), the differences $Y_{i}-\beta X_{i}$ have the same relative order for $\beta<W_{1}$, which is the same relative order for $\beta \rightarrow-\infty$, which is the same order as the X_{i}. Similarly, $Y_{i}-\beta X_{i}$ have the opposite order of X_{i} if $\beta>W_{N}$. Thus

$$
\begin{aligned}
R_{i}(Y-\beta X) & =R_{i}(X), & & \beta<W_{1} \\
& =n+1-R_{i}(X), & & \beta>W_{N}
\end{aligned}
$$

In particular by (1.2)

$$
\begin{aligned}
\operatorname{Slope}(D(\beta)) & =-\sum_{i=1}^{n} R_{i}^{c}(X) X_{i}, & & \beta<W_{1} \\
& =\sum_{i=1}^{n} R_{i}^{c}(X) X_{i}, & & \beta>W_{N}
\end{aligned}
$$

Since $\sum_{i=1}^{n} R_{i}^{c}(X) \bar{X}=0$, it follows that

$$
\begin{equation*}
Q=\sum_{i=1}^{n} R_{i}^{c}(X) X_{i}>0 \tag{2.3}
\end{equation*}
$$

unless the X_{i} are constant. We have now proven
Theorem 2.1. Let $\left(i_{k}, j_{k}\right)$ be the integers (i, j) corresponding to k in the definition of W_{k} in (2.1). Define $S_{0}=-Q$ for Q in (2.3) and

$$
\begin{align*}
S_{k} & =-Q+\sum_{p=1}^{k}\left|X_{j_{p}}-X_{i_{p}}\right| \\
k_{0} & =\min \left\{k: S_{k}>0\right\} \tag{2.4}
\end{align*}
$$

for $1 \leq k \leq N$. Then S_{k} is the slope of $D(\beta)$ for $W_{k}<\beta<W_{k+1}$. The rank-regression estimator $\widehat{\beta}$ defined by the minimum of $D(\beta)$ in (1.5) is

$$
\begin{array}{ll}
\widehat{\beta}=W_{k_{0}}=\frac{Y_{j_{k_{0}}}-Y_{i_{k_{0}}}}{X_{j_{k_{0}}}-X_{i_{k_{0}}}} & \text { if } S_{k_{0}-1}<0<S_{k_{0}} \quad \text { and } \\
\widehat{\beta}=\frac{W_{k_{0}-1}+W_{k_{0}}}{2} & \text { if } S_{k_{0}-1}=0<S_{k_{0}} \tag{2.5b}
\end{array}
$$

Linear Rank Regression
Remarks: (1) Theorem 2.1 gives a simple algorithm for estimating $\widehat{\beta}$. The most time-consuming part of the algorithm is sorting the difference quotients $\left(Y_{j}-Y_{i}\right) /\left(X_{j}-X_{i}\right)$ in (2.1).
(2) Since $\widehat{\beta}=W_{k_{0}}$ where k_{0} depends on S_{k}, the estimator $\widehat{\beta}$ can be viewed as a "weighted median" of the difference quotients $W_{k}=\left(Y_{j}-\right.$ $\left.Y_{i}\right) /\left(X_{j}-X_{i}\right)$ (Hollander and Wolfe, 1999).
3. A Numerical Example. Suppose that $n=5$ and

	1	2	3	4	5
$Y_{i}:$	6.19	2.15	-2.15	11.68	3.85
$X_{i}:$	0.10	0.20	0.30	0.40	0.50

Then the ranks $R_{i}(X)=1,2,3,4,5$ and the centered ranks $R_{i}^{c}(X)=R_{i}(X)-$ $(n+1) / 2=-2,-1,0,1,2$. Hence Q in (2.3) is $Q=0.10(-2)+0.2(-1)+$ $0.3(0)+0.4(1)+0.5(2)=1.00$.

For $n=5$, there are $N=n(n-1) / 2=10$ difference quotients $D_{k}=$ $\left(Y_{j}-Y_{i}\right) /\left(X_{j}-X_{i}\right)$. In lexicographical order $(i$ then $j)$, these are

$$
\begin{array}{rrrrr}
-40.38(1,2) & -41.70(1,3) & 18.30(1,4) & -5.86(1,5) & -43.03(2,3) \\
47.64(2,4) & 5.65(2,5) & 138.30(3,4) & 29.99(3,5) & -78.33(4,5)
\end{array}
$$

(The Y_{i} in the table were rounded to two significant figures after the decimal point.) The number W_{k} in (2.1) are the sorted values D_{k} :

$$
\begin{array}{rrrrr}
-78.33(4,5) & -43.03(2,3) & -41.70(1,3) & -40.38(1,2) & -5.86(1,5) \\
5.65(2,5) & 18.30(1,4) & 29.99(3,5) & 47.64(2,4) & 138.30(3,4)
\end{array}
$$

Then $\beta=W_{k}$ will be the minimum of $D(\beta)$ if $S_{k-1}<0<S_{k}$, where S_{k} are the numbers in (2.4). The first seven points $\beta=W_{k}$ along with S_{k} (which is the slope just after W_{k}) are:

$k:$	1	2	3	4	5	6	7
$W_{k}:$	-78.33	-43.03	-41.70	-40.38	-5.86	5.65	18.30
$i, j:$	4,5	2,3	1,3	1,2	1,5	2,5	1,4
$S_{k}:$	-0.90	-0.80	-0.60	-0.50	-0.10	0.20	0.50

Note $S_{5}=-0.10<0<S_{6}=0.20$. Thus $D(\beta)$ is minimized at $\beta=W_{6}=$ 5.65 and the rank-regression estimator is $\widehat{\beta}=W_{6}=5.65$.
4. Bootstrap Confidence Intervals for $\boldsymbol{\beta}$. In general, there are two ways to bootstrap a regression in order to get confidence intervals for model parameters. Which is preferable depends on how you view the regression. The two methods often give similar results.

Linear Rank Regression
Bootstrapping Residual Values: If the covariates X_{i} are assumed to be known and fixed, you can bootstrap the residuals of the regression. To do this, carry out the following steps:

First, calculate $\widehat{\beta}$ by (2.4)-(2.5) and define "residuals"

$$
\begin{equation*}
r_{a}=Y_{a}-\widehat{\beta} X_{a}, \quad 1 \leq a \leq n \tag{4.1}
\end{equation*}
$$

(These are not quite the same as classical residuals, since they do not contain an estimate of the intercept parameter μ in (1.1).)

Second, for each of a large number of "bootstrap replications", define a "bootstrap resample of residuals" $\left\{r_{i}^{*}: 1 \leq i \leq n\right\}$ by sampling n values from the set $\left\{r_{a}: 1 \leq a \leq n\right\}$ with replacement. That is, each r_{i}^{*} is chosen so that it has probability $1 / n$ of being equal to r_{a} for each value r_{a} in (4.1).

Third, define "bootstrap resampled" values $Y_{i}^{*}(1 \leq i \leq n)$ by

$$
\begin{equation*}
Y_{i}^{*}=\widehat{\beta} X_{i}+r_{i}^{*} \tag{4.2}
\end{equation*}
$$

The variables X_{i} stay the same. Define W_{k}^{*} by (2.1) with Y_{i}^{*} in place of Y_{i} and $\widehat{\beta}^{*}$ by (2.5) with W_{k}^{*} in place of W_{k} and $k_{0}{ }^{*}$ in place of k_{0}. While k_{0} is determined only by the X_{i}, it also depends on the order of the difference quotients $\left(Y_{j}-Y_{i}\right) /\left(X_{j}-X_{i}\right)$.

Fourth, for some number B, collect values $\widehat{\beta}^{* j}$ for $1 \leq j \leq B$ by carrying out the steps in the two preceding paragraphs B times in sequence. Sort $\widehat{\beta}^{* j}$ to determine the sorted sequence $\widehat{\beta}^{*(j)}$. The classical 95% bootstrap confidence interval for β is the interval $\left(\widehat{\beta}^{*(0.025 n)}, \widehat{\beta}^{(0.975 n+1)}\right)$. The usual rule of thumb for this confidence interval is $B \geq 1000$, so that $0.025 n \geq 25$.

Some C code that carries out the first few steps above is

```
betahat = getrankbeta(nn,yy,xx);
/* Find the residuals for Y = beta X + e */
for (i=0; i<nn; i++)
    res[i] = yy[i] - betahat*xx[i];
/* For `nboot` replicated samples */
for (ns=0; ns<nboot; ns++)
    { /* Form (yystar[i],xx[i]) (0 <= i < nn) by */
        /* bootstrapping the residuals of yy[i] */
        for (i=0; i<nn; i++)
            { int b=nrand(nn);
                yystar[i] = betahat*xx[i] + res[b]; }
            /* Find and store the bootstrapped estimates betahat`* */
            bootbetas[ns] = getrankbeta(nn,yystar,xx); }
```


Linear Rank Regression

Here nn is the sample size, getrankbeta() is a function that returns the rank-regression estimator of beta, res [] is an array that stores the residuals of the regression $Y=\beta X+e$, nboot is the number of bootstrap replications of the sample, yystar[] is an array that holds a single bootstrapped sample of yy values, $n r a n d(n n)$ is a function that returns a random integer in $0,1,2, \ldots, n n-1$, and bootbetas [] is an array that holds the nboot rank-regression estimated values $\widehat{\beta}^{* j}$.
Bootstrapping Observations: Alternatively, if the data is viewed as random pairs of data $\left(Y_{i}, X_{i}\right)$, you can bootstrap the (vector-valued) observations $\left(Y_{i}, X_{i}\right)$. To do this, carry out the following steps:

First, for each of a large number of "bootstrap replications", define a "bootstrap resample of observations" $\left\{\left(Y_{i}^{*}, X_{i}^{*}\right): 1 \leq i \leq n\right\}$ by sampling n paired values from the set $\left\{\left(Y_{a}, X_{a}\right): 1 \leq a \leq n\right\}$ with replacement. That is, for each pair $\left(Y_{i}^{*}, X_{i}^{*}\right)$, choose b with probability $1 / n$ of being any of the integers $a=1, \ldots, n$ and set $\left(Y_{i}^{*}, X_{i}^{*}\right)=\left(Y_{b}, X_{b}\right)\left(\right.$ or $\left.Y_{i}^{*}=Y_{b}, X_{i}^{*}=X_{b}\right)$.

Second, define W_{k}^{*} by (2.1) with $\left(Y_{i}^{*}, X_{i}^{*}\right)$ in place of $\left(Y_{i}, X_{i}\right)$ and $\widehat{\beta}^{*}$ by (2.5) with W_{k}^{*} in place of W_{k} and $k_{0}{ }^{*}$ in place of k_{0}.

Third, for some number B, collect values $\widehat{\beta}^{* j}$ for $1 \leq j \leq B$ by carrying out the steps in the two preceding paragraphs B times in sequence. Confidence intervals for β can be obtained from $\left\{\widehat{\beta}^{* j}\right\}$ as in the preceding subsection.

Some C code that carries out the first few steps above is

```
betahat = getrankbeta(nn,yy,xx);
/* For `nboot` replicated samples */
for (ns=0; ns<nboot; ns++)
    { /* Form (yystar[i],xxstar[i]) (0 <= i < nn) by */
        /* bootstrapping PAIRS of values (yy[b],xx[b]) */
        for (i=0; i<nn; i++)
            { int b=nrand(nn);
                yystar[i] = yy[b];
                xxstar[i] = xx[b]; }
        /* Find and store the bootstrapped estimate betahat^* */
        bootbetas[ns] = getrankbeta(nn,yystar,xxstar); }
```

where nn, getrankbeta(), nboot, etc. are the same as before and xxstar [] is an array that holds the X components of the bootstrapped pairs.

Rationale of bootstrap approximations and the independence of the $\widehat{\boldsymbol{\beta}}^{* j}$: Both bootstrap methods make the implicit assumption that the $\widehat{\beta}^{* j}$ can be treated as independent. This can be justified by the fact that they are determined by independent samples (in the first case) of r_{i}^{*} drawn
from the empirical distribution of the residuals r_{a} in (4.1) and in the second case by independent samples $\left(Y_{i}^{*}, X_{i}^{*}\right)$ from the pairs $\left(Y_{i}, X_{i}\right)$. In either case, the $\widehat{\beta}^{* j}$ are independent given the observed values $\left(Y_{i}, X_{i}\right)(1 \leq i \leq n)$ with a conditional mean $E\left(\widehat{\beta}^{* j}\right)$ (conditional on the observations $\left(Y_{i}, X_{i}\right)$). This should be close to β if the empirical distribution of the r_{i}^{*} is close to the error distribution e_{i}, or else if the empirical distribution of the $\left(Y_{i}^{*}, X_{i}^{*}\right)$ matches that of the pairs (Y, X) in the original regression model (1.1). In this conditional sense, the $\widehat{\beta}^{* j}$ can be viewed as independent estimators of β that, hopefully, have at most a small bias.

If the conditional distribution of an estimator $\widehat{\beta}$ of a parameter β given β is symmetrically distributed about β, then the middle 95% of the distribution of $\widehat{\beta}$ given β is a 95% confidence interval for β. (Exercise: Prove that.) Of course, this conclusion without some assumption about the relationship of the distribution of $\widehat{\beta}$ to β : If $\widehat{\beta}<\beta$ with probability one, then the entire range of the distribution of $\widehat{\beta}$ will be less than β. However, most reasonable estimators are approximately unbiased (that is, $E(\widehat{\beta})=\beta$) and the middle 95% of the range of their distribution is a reasonable approximate 95% confidence interval for the parameter.

Sampling the middle 95% of the distribution of the $\widehat{\beta}^{* j}$ is thought to be generally reasonable if the number of bootstrap replications $B \geq 1000$, although $B=10,000$ or $B=100,000$ should work even better. Alternatively, if there are $B \geq 50$ replications, you can treat the values $\widehat{\beta}^{* j}$ as B independent observations with mean β and construct a classical Student- t or normal-theory 95% confidence interval for β. This often works as well as the middle 95% of the distribution of the $\widehat{\beta}^{* j}$.

References:

Hettmansperger, T. P., and J. W. McKean (1977) A robust alternative based on ranks to least squares in analyzing linear models. Technometrics 19, p275-284.

Hettmansperger, T. P., and J. W. McKean (1998) Robust Nonparametric Statistical Methods. Arnold, London.

Hollander, M., and D. A. Wolfe (1999) Nonparametric statistical methods, 2nd edition. John Wiley \& Sons, New York.

Jaeckel, L. A. (1972) Estimating regression coefficients by minimizing the dispersion of the residuals. Ann. Math. Statist. 43, p1449-1458.

