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1. Statistics and Estimators. Let X1, X2, . . . , Xn be an independent
sample of observations from a probability density f(x, θ). Here f(x, θ) can
be either discrete (like the Poisson or Bernoulli distributions) or continuous
(like normal and exponential distributions).

In general, a statistic is an arbitrary function T (X1, . . . , Xn) of the data
values X1, . . . , Xn. Thus T (X) for X = (X1, X2, . . . , Xn) can depend on
X1, . . . , Xn, but cannot depend on θ. Some typical examples of statistics are

T (X1, . . . , Xn) = X =
X1 + X2 + . . . + Xn

n
(1.1)

= Xmax = max{Xk : 1 ≤ k ≤ n }
= Xmed = median{Xk : 1 ≤ k ≤ n }

These examples have the property that the statistic T (X) is a symmetric
function of X = (X1, . . . , Xn). That is, any permutation of the sample
X1, . . . , Xn preserves the value of the statistic. This is not true in general:
For example, for n = 4 and X4 > 0,

T (X1, X2, X3, X4) = X1X2 + (1/2)X3/X4

is also a statistic.
A statistic T (X) is called an estimator of a parameter θ if it is a statistic

that we think might give a reasonable guess for the true value of θ. In general,
we assume that we know the data X1, . . . , Xn but not the value of θ. Thus,
among statistics T (X1, . . . , Xn), what we call an estimator of θ is entirely
up to us.
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2. Unbiased Estimators, Risk, and Relative Risk. Assume as before
that X = (X1, X2, . . . , Xn) is an independent sample where each Xk has den-
sity f(x, θ). An estimator T (X) is unbiased if

Eθ

(
T (X)

)
= θ for all values of θ (2.1)

Here Eθ(· · ·) means that the sums or integrals involved in calculating the
expected value depend on the parameter θ. For example, if θ is the mean of
a continuous density f(x, θ), then

Eθ(X1) = Eθ(X) =
1
n

n∑

k=1

Eθ(Xk) =
∫

xf(x, θ) dx = θ (2.2)

and both of the statistics T1 = X1 and T2 = X are unbiased estimators of θ.
If the density f(x, θ) is discrete instead of continuous, the integral in (2.2) is
replaced by a sum.

The relation (2.1) implies that if we had a large number of different
samples X(m), each of size n, then the estimates T (X(m)) should cluster
around the true value of θ. However, it says nothing about the sizes of the
errors T (X(m))− θ, which are likely to be more important.

The errors of T (X) as an estimator of θ can be measured by a loss
function L(x, θ), where L(x, θ) ≥ 0 and L(θ, θ) = 0 (see Larsen and Marx,
page 419). The risk is the expected value of this loss, or

R(T, θ) = Eθ

(
L

(
T (X), θ

))

The most common choice of loss function is the quadratic loss function
L(x, θ) = (x− θ)2, for which the risk is

R(T, θ) = Eθ

((
T (X)− θ

)2
)

(2.3)

Another choice is the absolute value loss function L(x, θ) = |x−θ|, for which
the risk is R(T, θ) = E

(
|T (X)− θ|

)
.

If T (X) is an unbiased estimator and L(x, θ) = (x − θ)2, then the
risk (2.3) is the same as the variance

R(T, θ) = Varθ

(
T (X)

)

but not if T (X) is biased (that is, not unbiased).
Assume Eθ

(
T (X)

)
= ψ(θ) for a possibly biased estimator T (X). That

is, ψ(θ) 6= θ for some or all θ. Let S = T − θ, so that Eθ(S) = ψ(θ) − θ.
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Then R(T, θ) = Eθ

(
(T − θ)2

)
= Eθ(S2) and it follows from the relation

Var(S) = E(S2)− E(S)2 that

R(T, θ) = Eθ

(
(T (X)− θ)2

)

= Varθ

(
T (X)

)
+

(
ψ(θ)− θ

)2
, ψ(θ) = Eθ

(
T (X)

)
(2.4)

In principle, we might be able to find a biased estimator T (X) that out-
performs an unbiased estimator T0(X) if the biased estimator has a smaller
variance that more than offsets the term (ψ(θ)− θ)2 in (2.4).

Example (1). Suppose that X1, . . . , Xn are normally distributed N(µ, σ2)
and we want to estimate µ. Then one might ask whether the biased estimator

T (X1, . . . , Xn) =
X1 + X2 + . . . + Xn

n + 1
(2.5)

could have R(T, µ) < R(X,µ) for the MLE X = (X1 + . . . + Xn)/n. While
T (X) is biased, it should also have a smaller variance since we divide by a
larger number. As in (2.4)

R(X,µ) = E
(
(X − µ)2

)
= Var(X) =

σ2

n
(2.6)

R(T, µ) = E
(
(T − µ)2

)
= Var(T ) + E(T − µ)2

= Var
(

X1 + . . . + Xn

n + 1

)
+

(
n

n + 1
µ− µ

)2

=
nσ2

(n + 1)2
+

µ2

(n + 1)2

Comparing R(T, µ) with R(X, µ):

R(T, µ)−R(X,µ) =
n

(n + 1)2
σ2 +

µ2

(n + 1)2
− 1

n
σ2

=
µ2

(n + 1)2
−

(
1
n
− n

(n + 1)2

)
σ2

=
1

(n + 1)2

(
µ2 −

(
(n + 1)2 − n2

n

)
σ2

)

=
1

(n + 1)2

(
µ2 −

(
2n + 1

n

)
σ2

)
(2.7)

Thus R(T, µ) < R(X, µ) if µ2 < ((2n + 1)/n)σ2, which is guaranteed by
µ2 < 2σ2. In that case, R(T, µ) is less risky than R(X, µ) (in the sense of
having smaller expected squared error) even though it is biased.
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2.1. Shrinkage Estimators. The estimator T (X) in (2.5) can be written

T (X1, . . . , Xn) =
n

n + 1
X +

1
n + 1

0

which is a convex combination of X and 0. A more general estimator is

T (X1, . . . , Xn) = cX + (1− c)a (2.8)

where a is an arbitrary number and 0 < c < 1. Estimators of the form
(2.5) and (2.8) are called shrinkage estimators. While shrinkage estimators
are biased unless E(Xi) = µ = a, the calculation above shows that they
have smaller risk if µ2 < 2σ2 for (2.5) or (µ− a)2 < ((1 + c)/(1− c))(σ2/n)
for (2.8).

On the other hand, R(T, µ) and R(X, µ) are of order 1/n and, by arguing
as in (2.6) and (2.7), the difference between the two is of order 1/n2 for fixed
µ, a, and 0 < c < 1. (Exercise: Prove this.) Thus one cannot go too far
wrong by using X instead of a shrinkage estimator.

2.2. Ridge Regression. In ridge regression (which is discussed in other
courses), the natural estimator T1(X) of certain parameters is unbiased, but
Var(T1) is very large because T1(X) depends on the inverse of a matrix that
is very close to being singular.

The method of ridge regression finds biased estimators T2(X) that are
similar to T1(X) such that E

(
T2(X)) is close to E

(
T1(X)

)
but Var

(
T2(X)

)
is of moderate size. If this happens, then (2.4) with T (X) = T2(X) implies
that the biased ridge regression estimator T2(X) can be a better choice than
the unbiased estimator T1(X) since it can have much lower risk and give
much more reasonable estimates.

2.3. Relative Efficiency. Let T (X) and T0(X) be estimators of θ, where
T0(X) is viewed as a standard estimator such as X or the MLE (maximum
likelihood estimator) of θ (see below). Then, the relative risk or relative
efficiency of T (X) with respect to T0(X) is

RR(T, θ) =
R(T0, θ)
R(T, θ)

=
E

(
(T0(X)− θ)2

)

E
(
(T (X)− θ)2

) (2.9)

Note that T0(X) appears in the numerator, not the denominator, and T (X)
appears in the denominator, not the numerator. If RR(T, θ) < 1, then
R(T0, θ) < R(T, θ) and T (X) can be said to be less efficient, or more risky,
than T0(X). Conversely, if RR(T, θ) > 1, then T (X) is more efficient (and
less risky) than the standard estimator T0(X).
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2.4. MLEs are Not Always Sample Means even if Eθ(X) = θ.
The most common example with ̂θMLE = X is the normal family N(θ, 1).
In that case, Varθ(X) = 1/n attains the Cramér-Rao lower bound (see Sec-
tion 4) and thus is the unbiased estimator of θ with the smaller possible
variance.

A second example with Eθ(X) = θ (so that X is an unbiased estimator
of θ) is the Laplace distribution L(θ, c). This has density

f(x, θ, c) =
1
2c

e−|x−θ|/c, −∞ < x < ∞ (2.10)

Since the density f(x, θ, c) is symmetric about x = θ, Eθ(X) = Eθ(X) = θ.
If Y has the density (2.10), then Y has the same distribution as θ + cY0

where Y0 ≈ L(0, 1). (Exercise: Prove this.) Thus the Laplace family (2.10)
is a shift-and-scale family like the normal family N(θ, σ2), and is similar to
N(θ, σ2) except that the probability density of X ≈ L(θ, c) decays exponen-
tially for large x instead of faster than exponentially as is the case for the
normal family. (It also has a non-differentiable cusp at x = θ.)

In any event, one might expect that the MLE of θ might be less willing
to put as much weight on large sample values than does the sample mean X,
since these values may be less reliable due to the relatively heavy tails of the
Laplace distribution. In fact

Lemma 2.1. Let X = (X1, . . . , Xn) be an independent sample of size n
from the Laplace distribution (2.10) for unknown θ and c. Then

̂θMLE(X) = median{X1, . . . , Xn } (2.11)

Remark. That is, if

X(1) < X(2) < . . . X(n) (2.12)

are the order statistics of the sample X1, . . . , Xn, then

̂θMLE(X) =
{

X(k+1) if m = 2k + 1 is odd(
X(k) + X(k+1)

)
/2 if m = 2k is even

(2.13)

Thus ̂θMLE = X(2) if n = 3 and X(1) < X(2) < X(3), and ̂θMLE = (X(2) +
X(3))/2 if n = 4 and X(1) < X(2) < X(3) < X(4).

Proof of Lemma 2.1. By (2.10), the likelihood of θ is

L(θ, X1, . . . , Xn) =
n∏

i=1

(
1
2c

e−|Xi−θ|/c

)
=

1
(2c)n

exp

(
−

n∑

i=1

|Xi − θ|
c

)
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It follows that the likelihood L(θ, X) is maximized whenever the sum

M(θ) =
n∑

i=1

|Xi − θ| =
n∑

i=1

|X(i) − θ| (2.14)

is minimized , where X(i) are the order statistics in (2.12).
The function M(θ) in (2.14) is continuous and piecewise linear. If

X(m) ≤ θ ≤ X(m+1) (that is, if θ lies between the mth and the (m+1)st order
statistics of {Xi }), then X(i) ≤ X(m) ≤ θ if i ≤ m and θ ≤ X(m+1) ≤ X(i)

if m + 1 ≤ i ≤ n. Thus

M(θ) =
n∑

i=1

|X(i) − θ| =
m∑

i=1

(θ −X(i)) +
n∑

i=m+1

(X(i) − θ)

and if X(m) < θ < X(m+1)

d

dθ
M(θ) = M ′(θ) = m− (n−m) = 2m− n

It follows that M ′(θ) < 0 (and M(θ) is decreasing) if m < n/2 and M ′(θ) > 0
(and M(θ) is increasing) if m > n/2. If n = 2k+1 is odd, then n/2 = k+(1/2)
and M(θ) is strictly decreasing if θ < X(k+1) and is strictly increasing if
θ > X(k+1). It follows that the minimum value of M(θ) is attained at
θ = X(k+1).

If n = 2k is even, then, by the same argument, M(θ) is minimized at
any point in the interval (X(k), X(k+1)), so that any value in that interval
maximizes the likelihood. When that happens, the usual convention is to
set the MLE equal to the center of the interval, which is the average of
the endpoints. Thus ̂θMLE = X(k+1) if n = 2k + 1 is odd and ̂θMLE =
(X(k) + X(k+1))/2 if n = 2k is even, which implies (2.13).

A third example of a density with Eθ(X) = Eθ(X) = θ is

f(x, θ) = (1/2)I(θ−1,θ+1)(x) (2.15)

which we can call the centered uniform distribution of length 2 . If X has
density (2.15), then X is uniformly distributed between θ− 1 and θ + 1 and
Eθ(X) = θ. The likelihood of an independent sample X1, . . . , Xn is

L(θ, X1, . . . , Xn) =
n∏

i=1

(1
2
I(θ−1,θ+1)(Xi)

)
=

1
2n

n∏

i=1

I(Xi−1,Xi+1)(θ) (2.16)

=
1
2n

I(Xmax−1,Xmin+1)(θ)
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since (i) θ − 1 < Xi < θ + 1 if and only if Xi − 1 < θ < Xi + 1, so
that I(θ−1,θ+1)(Xi) = I(Xi−1,Xi+1)(θ), and (ii) the product of the indicator
functions is non-zero if and only Xi < θ + 1 and θ − 1 < Xi for all i, which
is equivalent to θ − 1 < Xmin ≤ Xmax < θ + 1 or Xmax − 1 < θ < Xmin + 1.

Thus the likelihood is zero except for θ ∈ (Xmax − 1, Xmin + 1), where
the likelihood has the constant value 1/2n. Following the same convention
as in (2.13), we set

̂θMLE(X) =
Xmax + Xmin

2
(2.17)

(Exercise: Note that normally Xmin < Xmax. Prove that the interval
(Xmax − 1, Xmin + 1) is generally nonempty for the density (2.15).)

2.5. Relative Efficiencies of Three Sample Estimators. We can use
computer simulation to compare the relative efficiencies of the sample mean,
the sample median, and the average of the sample minima and maxima for
the three distributions in the previous subsection. Recall that, while all three
distributions are symmetric about a shift parameter θ, the MLEs of θ are the
sample mean, the sample median, and the average of the sample minimum
and maximum, respectively, and are not the same.

It is relatively easy to use a computer to do random simulations of n
random samples X(j) (1 ≤ j ≤ n) for each of these distributions, where each
random sample X(j) =

(
X

(j)
1 , . . . , X

(j)
m

)
is of size m. Thus the randomly

simulated data for each distribution will involve generating n ×m random
numbers.

For each set of simulated data and each sample estimator T (X), we
estimate the risk by (1/n)

∑n
j=1

(
T (X(j))− θ

)2. Analogously with (2.9), we
estimate the relative risk with respect to the sample mean X by

RR(T, θ) =
(1/n)

∑n
j=1

(
X

(j) − θ
)2

(1/n)
∑n

j=1

(
T (X(j))− θ

)2

Then RR(T, θ) < 1 means that the sample mean has less risk, while
RR(T, θ) > 1 implies that it is riskier. Since all three distributions are
shift invariant in θ, it is sufficient to assume θ = 0 in the simulations.

The simulations show that, in each of the three cases, the MLE is the
most efficient of the three estimators of θ. Recall that the MLE is the sample
mean only for the normal family. Specifically, we find
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Table 2.1: Estimated relative efficiencies with respect to the sample
mean for n = 1,000,000 simulated samples, each of size m = 10:

Distrib Mean Median AvMinMax Most Efficient
CentUnif 1.0 0.440 2.196 AvMinMax
Normal 1.0 0.723 0.540 Mean
Laplace 1.0 1.379 0.243 Median

The results are even more striking for samples of size 30:

Table 2.2: Estimated relative efficiencies with respect to the sample
mean for n = 1,000,000 simulated samples, each of size m = 30:

Distrib Mean Median AvMinMax Most Efficient
CentUnif 1.0 0.368 5.492 AvMinMax
Normal 1.0 0.666 0.265 Mean
Laplace 1.0 1.571 0.081 Median

Table 2.2 shows that the sample mean has a 3:2 advantage over the sample
median for normal samples, but a 3:2 deficit for the Laplace distribution. Av-
eraging the sample minimum and maximum is 5-fold better than the sample
mean for the centered uniforms, but is 12-fold worse for the Laplace distri-
bution. Of the three distributions, the Laplace has the largest probability of
large values.

3. Scores and Fisher Information. Let X1, X2, . . . , Xn be an indepen-
dent sample of observations from a density f(x, θ) where θ is an unknown
parameter. Then the likelihood function of the parameter θ given the data
X1, . . . , Xn is

L(θ, X1, . . . , Xn) = f(X1, θ)f(X2, θ) . . . f(Xn, θ) (3.1)

where the observations X1, . . . , Xn are used in (3.1) instead of dummy vari-
ables xk. Since the data X1, . . . , Xn is assumed known, L(θ, X1, . . . , Xn)
depends only on the parameter θ.

The maximum likelihood estimator of θ is the value θ = θ̂(X) that
maximizes the likelihood (3.1). This can often be found by forming the
partial derivative of the logarithm of the likelihood

∂

∂θ
log L(θ, X1, . . . , Xn) =

n∑

k=1

∂

∂θ
log f(Xk, θ) (3.2)
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and setting this expression equal to zero. The sum in (3.2) is sufficiently
important in statistics that not only the individual terms in the sum, but
also their variances, have names.

Specifically, the scores of the observations X1, . . . , Xn for the den-
sity f(x, θ) are the terms

Yk(θ) =
∂

∂θ
log f(Xk, θ) (3.3)

Under appropriate assumptions on f(x, θ) (see Lemma 3.1 below), the scores
Yk(θ) have mean zero. (More exactly, Eθ

(
Yk(θ)

)
= 0, where the same value

of θ is used in both parts of the expression.)
The Fisher information of an observation X1 from f(x, θ) is the variance

of the scores

I(f, θ) = Varθ

(
Yk(θ)

)
=

∫ (
∂

∂θ
log f(x, θ)

)2

f(x, θ) dx (3.4)

Under an additional hypothesis (see Lemma 3.2 below), we also have

I(f, θ) = −
∫ (

∂2

∂θ2
log f(x, θ)

)
f(x, θ) dx (3.5)

which is often easier to compute since it involves a mean rather than a second
moment.

For example, assume X1, . . . , Xn are normally distributed with unknown
mean θ and known variance σ2

0 . Then

f(x, θ) =
1√
2πσ2

0

e−(x−θ)2/2σ2
0 , −∞ < x < ∞ (3.6)

Thus

log f(x, θ) = −1
2

log(2πσ2
0) − (x− θ)2

2σ2
0

It follows that (∂/∂θ) log f(x, θ) = (x− θ)/σ2
0 , and hence the kth score is

Yk(θ) =
∂

∂θ
log f(Xk, θ) =

Xk − θ

σ2
0

(3.7)

In particular Eθ(Yk(θ)) = 0 as expected since Eθ(Xk) = θ, and, since
E

(
(Xk − θ)2

)
= σ2

0 , the scores have variance

I(f, θ) = Eθ

(
Yk(θ)2

)
=

E
(
(Xk − θ)2

)

(σ2
0)2

=
1
σ2

0

(3.8)
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In this case, the relation

∂2

∂θ2
log f(X, θ) = − 1

σ2
0

from (3.7) combined with (3.5) gives an easier derivation of (3.8).
The Fisher information I(f, θ) = 1/σ2

0 for (3.6) is large (that is, each
Xk has “lots of information”) if σ2

0 is small (so that the error in each Xk is
small), and similarly the Fisher information is small if σ2

0 is large. This may
have been one of the original motivations for the term “information”.

We give examples below of the importance of scores and Fisher infor-
mation. First, we give a proof that Eθ

(
Yk(θ)

)
= 0 under certain conditions.

Lemma 3.1. Suppose that K = {x : f(x, θ) > 0 } is the same bounded
or unbounded interval for all θ, that f(x, θ) is smooth enough that we can
interchange the derivative and integral in the first line of the proof, and that
(∂/∂θ) log f(x, θ) is integrable on K. Then

Eθ

(
Yk(θ)

)
=

∫ (
∂

∂θ
log f(x, θ)

)
f(x, θ) dx = 0 (3.9)

Proof. Since
∫

f(x, θ) dx = 1 for all θ, we can differentiate

d

dθ

∫
f(x, θ)dx = 0 =

∫
∂

∂θ
f(x, θ) dx =

∫
(∂/∂θ)f(x, θ)

f(x, θ)
f(x, θ) dx

=
∫ (

∂

∂θ
log f(x, θ)

)
f(x, θ) dx = 0

Lemma 3.2. Suppose that f(x, θ) satisfies the same conditions as in
Lemma 3.1 and that log f(x, θ) has two continuous partial derivatives that
are continuous and bounded on K. Then

I(f, θ) = Eθ

(
Yk(θ)2

)
= −

∫ (
∂2

∂θ2
log f(x, θ)

)
f(x, θ) dx (3.10)

Proof. Extending the proof of Lemma 3.1,

d2

dθ2

∫
f(x, θ) = 0 =

d

dθ

∫ (
∂

∂θ
log f(x, θ)

)
f(x, θ) dx (3.11)

=
∫ (

∂2

∂θ2
log f(x, θ)

)
f(x, θ) dx +

∫ (
∂

∂θ
log f(x, θ)

)
∂

∂θ
f(x, θ) dx
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The last term equals
∫ (

∂

∂θ
log f(x, θ)

)
(∂/∂θ)f(x, θ)

f(x, θ)
f(x, θ) dx

=
∫ (

∂

∂θ
log f(x, θ)

)2

f(x, θ) dx = I(f, θ)

by (3.4). Since the left-hand side of (3.11) is equal to zero, Lemma 3.2
follows.

Remarks. The hypotheses of Lemma 3.1 are satisfied for the normal den-
sity (3.6), for which Eθ

(
Yk(θ)

)
= 0 by (3.7). However, the hypotheses are not

satisfied for the uniform density f(x, θ) = (1/θ)I(0,θ)(x) since the supports
K(θ) = (0, θ) depend on θ.

For f(x, θ) = (1/θ)I(0,θ)(x), the scores Yk(θ) = −(1/θ)I(0,θ)(Xk) have
means Eθ

(
Yk(θ)

)
= −1/θ 6= 0, so that the proof of Lemma 3.1 breaks down

at some point. (Exercise: Show that this is the correct formula for the score
for the uniform density and that this is the mean value.)

4. The Cramér-Rao Inequality. Let X1, X2, . . . , Xn be an independent
random sample from the density f(x, θ), where f(x, θ) satisfies the conditions
of Lemma 3.1. In particular,

(i) The set K = {x : f(x, θ) > 0 } is the same for all values of θ and
(ii) The function log f(x, θ) has two continuous partial derivatives in θ

that are integrable on K.
We then have

Theorem 4.1. (Cramér-Rao Inequality) Let T (X1, X2, . . . , Xn) be an
arbitrary unbiased estimator of θ. Then, under the assumptions above,

Eθ

(
(T − θ)2

) ≥ 1
n I(f, θ)

(4.1)

for all values of θ, where I(f, θ) is the Fisher information defined in (3.4).

Remark. Note that (4.1) need not hold if T (X1, . . . , Xn) is a biased esti-
mator of θ, nor if the assumptions (i) or (ii) fail.

Proof of Theorem 4.1. Let T = T (X1, . . . , Xn) be any unbiased estima-
tor of θ. Then

θ = Eθ

(
T (X1, . . . , Xn)

)
(4.2)

=
∫

. . .

∫
T (y1, . . . , yn) f(y1, θ) . . . f(yn, θ) dy1 . . . dyn
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Differentiating (4.2) with respect to θ

1 =
∫

. . .

∫
T (y1, . . . , yn)

∂

∂θ

( n∏

k=1

fk

)
dy1 . . . dyn

where fk = f(yk, θ). By the chain rule

1 =
∫

. . .

∫
T

n∑

k=1







k−1∏

j=1

fj




(
∂

∂θ
fk

) 


n∏

j=k+1

fj





 dy1 . . . dyn

for T = T (y1, y2, . . . , yn) and

1 =
∫

. . .

∫
T

n∑

k=1







k−1∏

j=1

fj




(
(∂/∂θ)fk

fk

)
fk




n∏

j=k+1

fj





 dy1 . . . dyn

=
∫

. . .

∫
T

(
n∑

k=1

∂

∂θ
log

(
f(yk, θ

)
)


n∏

j=1

fj


 dy1 . . . dyn

= Eθ

(
T (X1, . . . , Xn)

(
n∑

k=1

Yk

))
(4.3)

where Yk = (∂/∂θ) log f(Xk, θ) are the scores defined in (3.3). Since
Eθ(Yk(θ)) = 0 by Lemma 3.1, it follows by subtraction from (4.3) that

1 = Eθ

((
T (X1, . . . , Xn)− θ

) (
n∑

k=1

Yk

) )
(4.4)

By Cauchy’s inequality (see Lemma 4.1 below),

E(XY ) ≤
√

E(X2)
√

E(Y 2)

for any two random variables X,Y with E(|XY |) < ∞. Equivalently
E(XY )2 ≤ E(X2)E(Y 2). Applying this in (4.4) implies

1 ≤ Eθ

((
T (X1, . . . , Xn)− θ

)2
)

Eθ




(
n∑

k=1

Yk

)2

 (4.5)
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The scores Yk = (∂/∂θ) log f(Xk, θ) are independent with the same distri-
bution, and have mean zero and variance I(f, θ) by Lemma 3.1 and (3.4).
Thus

Eθ




(
n∑

k=1

Yk

)2

 = Varθ

(
n∑

k=1

Yk

)
= nVarθ(Y1) = nI(f, θ)

Hence 1 ≤ Eθ

(
(T − θ)2

)
nI(f, θ), which implies the lower bound (4.1).

Definition. The efficiency of an estimator T (X1, . . . , Xn) is

RE (T, θ) =
1/

(
nI(f, θ)

)

Eθ((T − θ)2)
=

1
nI(f, θ) Eθ((T − θ)2)

(4.6)

Note that this is the same as the relative risk or relative efficiency (2.9)
with R(T0, θ) replaced by the Cramér-Rao lower bound (4.1). Under the
assumptions of Theorem 4.1, RE (T, θ) ≤ 1.

An unbiased estimator T (X1, . . . , Xn) is called efficient if RE (T, θ) = 1;
that is, if its variance attains the lower bound in (4.1). This means that any
other unbiased estimator of θ, no matter how nonlinear, must have an equal
or larger variance.

An estimator T (X) of a parameter θ is super-efficient if its expected
squared error E

(
(T (X) − θ)2

)
is strictly less than the Cramér-Rao lower

bound. Under the assumptions of Theorem 4.1, this can happen only if
T (X) is biased, and typically holds for some parameter values θ but not for
others. For example, the shrinkage estimator of Section 2.1 is super-efficient
for parameter values θ that are reasonably close to the value a but not for
other θ.

Examples (1). Assume X1, X2, . . . , Xn are N(θ, σ2
0) (that is, normally dis-

tribution with unknown mean θ and known variance σ2
0). Then Eθ(Xk) =

Eθ(X) = θ, and X is an unbiased estimator of θ. Its variance is

Varθ(X) = (1/n)Varθ(X1) =
σ2

0

n

By (3.8), the Fisher information is I(f, θ) = 1/σ2
0 , so that 1/(nI(f, θ)) =

σ2
0/n. Thus Varθ(X) attains the Cramér-Rao lower bound for unbiased es-

timators of θ, so that X is an efficient unbiased estimator of θ.

(2). Assume that X1, . . . , Xn are uniformly distributed in (0, θ) for
some unknown value of θ, so that they have density f(x, θ) = (1/θ)I(0,θ)(x).
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Then X1, . . . , Xn do not satisfy condition (i) at the beginning of Section 4,
but we can see if Theorem 4.1 holds anyway.

As in a remark at the end of Section 3, the scores are Yk(θ) =
(−1/θ)I(0,θ)(Xk). Thus Yk(θ) = −1/θ whenever 0 < Xk < θ (that is, with
probability one), so that Eθ

(
Yk(θ)

)
= −1/θ and Eθ

(
Yk(θ)2

)
= 1/θ2. Hence

I(f, θ) = Var
(
Yk(θ)

)
= 0, so that the Cramér-Rao lower bound for un-

biased estimators in Theorem 4.1 is ∞. (If we can use Lemma 3.2, then
I(f, θ) = −1/θ2 and the lower bound is negative. These are not contradic-
tions, since the density f(x, θ) = (1/θ)I(0,θ)(x) does not satisfy the hypothe-
ses of either Lemma 3.1 or 3.2.)

Ignoring these awkwardnesses for the moment, let Xmax = max1≤i≤n Xi.
Then Eθ(Xmax) = (n/(n + 1))θ, so that if Tmax = ((n + 1)/n)Xmax

Eθ(2X) = Eθ(Tmax) = θ

Thus both T1 = 2X and T2 = Tmax are unbiased estimators of θ. However,
one can show

Varθ(2X) =
2θ2

3n
and Varθ(Tmax) =

θ2

n(n + 2)

Assuming I(f, θ) = 1/θ2 for definiteness, this implies that

RE (2X, θ) = 3/2 and RE (Tmax, θ) = n + 2 → ∞ (if n is large)

Thus the conclusions of Theorem 4.1 are either incorrect or else make no
sense for either unbiased estimator in this case.

We end this section with a proof of Cauchy’s inequality.

Lemma 4.1 (Cauchy-Schwartz-Bunyakowski) Let X,Y be any two ran-
dom variables such that E(|XY |) < ∞. Then

E(XY ) ≤
√

E(X2)
√

E(Y 2) (4.7)

Proof. Note
(
(
√

a) x − (1/
√

a) y
)2 ≥ 0 for arbitrary real numbers x, y, a

with a > 0. Expanding the binomial implies ax2 − 2xy + (1/a)y2 ≥ 0, or

xy ≤ (1/2)
(
ax2 +

1
a

y2
)

for all real x, y and any a > 0. It then follows that for any values of the
random variables X, Y

XY ≤ 1
2

(
aX2 +

1
a

Y 2
)
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In general, if Y1 ≤ Y2 for two random variables Y1, Y2, then E(Y1) ≤ E(Y2).
This implies

E(XY ) ≤ 1
2

(
aE(X2) +

1
a

E(Y 2)
)
, any a > 0 (4.8)

If we minimize the right-hand side of (4.8) as a function of a, for exam-
ple by setting the derivative with respect to a equal to zero, we obtain
a2 = E(Y 2)/E(X2) or a =

√
E(Y 2)/E(X2). Evaluating the right-hand

side of (4.8) with this value of a implies (4.7).

5. Maximum Likelihood Estimators are Asymptotically Efficient.
Let X1, X2, . . . , Xn, . . . be independent random variables with the same dis-
tribution. Assume E(X2

j ) < ∞ and E(Xj) = µ. Then the central limit
theorem implies

lim
n→∞

P

(
X1+X2+· · ·+Xn − nµ√

nσ2
≤ y

)
=

1√
2π

∫ y

−∞
e−(1/2)x2

dx (5.1)

for all real values of y. Is there something similar for MLEs (maximum
likelihood estimators)? First, note that (5.1) is equivalent to

lim
n→∞

P

(√
n

σ2

(
X1+X2+· · ·+Xn

n
− µ

)
≤ y

)
=

1√
2π

∫ y

−∞
e−(1/2)x2

dx

(5.2)
If X1, . . . , Xn were normally distributed with mean θ and variance σ2, then
θ̂n(X) = X = (X1 + . . .+Xn)/n. This suggests that we might have a central
limit theorem for MLEs θ̂n(X) of the form

lim
n→∞

P
(√

nc(θ)
(
θ̂n(X)− θ

) ≤ y
)

=
1√
2π

∫ y

−∞
e−(1/2)x2

dx

where θ is the true value of θ and c(θ) is a constant depending on θ. In fact

Theorem 5.1. Assume
(i) The set K = {x : f(x, θ) > 0 } is the same for all values of θ,
(ii) The function log f(x, θ) has two continuous partial derivatives in θ

that are integrable on K, and
(iii) E(Z) < ∞ for Z = supθ |(∂2/∂θ2) log f(X, θ)|, and
(iv) the MLE θ̂(X) is attained in the interior of K.

Let I(f, θ) be the Fisher information (3.8) in Section 3. Then

lim
n→∞

Pθ

(√
n I(f, θ)

(
θ̂n(X)− θ

)
≤ y

)
=

1√
2π

∫ y

−∞
e−(1/2)x2

dx (5.3)
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for all real values of y. (Condition (iii) is more than is actually required.)

Remarks (1). The relation (5.3) says that the MLE θ̂n(X) is approxi-
mately normally distributed with mean θ and variance 1/

(
nI(f, θ)

)
, or sym-

bolically

θ̂n(X) ≈ N

(
θ,

1
n I(f, θ)

)
(5.4)

If (5.4) held exactly, then Eθ

(
θ̂n(X)

)
= θ and Varθ

(
θ̂n(X)

)
= 1/

(
nI(f, θ)

)
,

and θ̂n(X) would be an unbiased estimator whose variance was equal to
the Cramér-Rao lower. We interpret (5.3)–(5.4) as saying that θ̂n(X) is
asymptotically normal, is asymptotically unbiased, and is asymptotically ef-
ficient in the sense of Section 4, since its asymptotic variance is the the
Cramér-Rao lower bound. However, (5.3) does not exclude the possibility
that Eθ

(|θ̂n(X)|) = ∞ for all finite n, so that θ̂n(X) need not be unbiased
nor efficient nor even have finite variance in the usual senses for any value
of n.

(2). If f(x, θ) = (1/θ)I(0,θ)(x), so that Xi ≈ U(0, θ), then the order
of the rate of convergence in the analog of (5.3) is n instead of

√
n and the

limit is a one-sided exponential, not a normal distribution. (Exercise: Prove
this.) Thus the conditions of Theorem 5.1 are essential.

Asymptotic Confidence Intervals. We can use (5.3) to find asymptotic
confidence intervals for the true value of θ based on the MLE θ̂n(X). It
follows from (5.3) and properties of the standard normal distribution that

lim
n→∞

Pθ

(
−1.96√
nI(f, θ)

< θ̂n − θ <
1.96√
nI(f, θ)

)
(5.5)

= lim
n→∞

Pθ

(
θ̂n(X)− 1.96√

nI(f, θ)
< θ < θ̂n(X) +

1.96√
nI(f, θ)

)
= 0.95

Under the assumptions of Theorem 5.1, we can approximate the Fisher in-
formation I(f, θ) in (3.8) by I

(
f, θ̂n(X)

)
, which does not depend explicitly

on θ. The expression I
(
f, θ̂n(X)

)
is called the empirical Fisher information

of θ depending on X1, . . . , Xn. This and (5.5) imply that

θ̂n(X)− 1.96√

nI(f, θ̂n(X))
, θ̂n(X) +

1.96√
nI(f, θ̂n(X))


 (5.6)

is an asymptotic 95% confidence interval for the true value of θ.
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Examples (1). Let f(x, p) = px(1 − p)1−x for x = 0, 1 for the Bernoulli
distribution. (That is, tossing a biased coin.) Then

log f(x, p) = x log(p) + (1− x) log(1− p)
∂

∂θ
log f(x, p) =

x

p
− 1− x

1− p
and

∂2

∂θ2
log f(x, p) = − x

p2
− 1− x

(1− p)2

Thus by Lemma 3.2 the Fisher information is

I(f, p) = −E

(
∂2

∂θ2
log f(X, p)

)
=

E(X)
p2

+
E(1−X)
(1− p)2

=
p

p2
+

1− p

(1− p)2
=

1
p

+
1

1− p
=

1
p(1− p)

This implies
1√

nI(f, p
=

√
p(1− p)

n

Hence in this case (5.6) is exactly the same as the usual (approximate) 95%
confidence interval for the binomial distribution.

(2). Let f(x, θ) = θxθ−1 for 0 ≤ x ≤ 1. Then

Yk(θ) = (∂/∂θ) log f(Xk, θ) = (1/θ) + log(Xk)

Wk(θ) = (∂2/∂θ2) log f(Xk, θ) = −1/θ2

Since (∂/∂θ) log L(θ, X) =
∑n

k=1 Yk(θ) = (n/θ) +
∑n

k=1 log(Xk), it follows
that

θ̂n(X) = − n∑n
k=1 log(Xk)

(5.7)

Similarly, I(f, θ) = −Eθ

(
Wk(θ)

)
= 1/θ2 by Lemma 3.2. Hence by (5.6)

(
θ̂n(X) − 1.96 θ̂n(X)√

n
, θ̂n(X) +

1.96 θ̂n(X)√
n

)
(5.8)

is an asymptotic 95% confidence interval for θ.

Proof of Theorem 5.1. Let

M(θ) =
∂

∂θ
log L(θ, X1, . . . , Xn) (5.9)
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where L(θ, X1, . . . , Xn) is the likelihood function defined in (3.1). Let θ̂n(X)
be the maximum likelihood estimator of θ. Since θ̂n(X) is attained in the
interior of K by condition (iv),

M(θ̂n) =
∂

∂θ
log L(θ̂n, X) = 0

and by Lemma 3.1

M(θ) =
∂

∂θ
log L(θ, X) =

n∑

k=1

∂

∂θ
log f(Xk, θ) =

n∑

k=1

Yk(θ)

where Yk(θ) are the scores defined in Section 3. By the mean value theorem

M(θ̂n)−M(θ) = (θ̂n − θ)
d

dθ
M(θ̃n) = (θ̂n − θ)

∂2

∂θ2
log L(θ̃n, X)

= (θ̂n − θ)
n∑

k=1

(∂2/∂θ2) log f
(
Xk, θ̃n(X)

)

where θ̃n(X) is a value between θ and θ̂n(X). Since M(θ̂n) = 0

θ̂n − θ =
−M(θ)

(d/dθ)M(θ̃n)
=

∑n
k=1 Yk(θ)

−∑n
k=1(∂2/∂θ2) log f(Xk, θ̃n)

(5.10)

Thus

√
nI(f, θ)

(
θ̂n − θ

)
=

1√
nI(f, θ)

n∑

k=1

Yk(θ)

− 1

nI(f, θ)
∑n

k=1(∂2/∂θ2) log f(Xk, θ̃n(X))
(5.11)

By Lemma 3.1, the Yk(θ) are independent with the same distribution with
Eθ

(
Yk(θ)

)
= 0 and Varθ

(
Yk(θ)

)
= I(f, θ). Thus by the central limit theorem

lim
n→∞

Pθ

(
1√

nI(f, θ)

n∑

k=1

Yk(θ) ≤ y

)
=

1√
2π

∫ y

−∞
e−(1/2)x2

dx (5.12)

Similarly, by Lemma 3.2, Wk(θ) = (∂2/∂θ2) log f(Xk, θ) are independent
with Eθ

(
Wk(θ)

)
= −I(f, θ). Thus by the law of large numbers

lim
n→∞

1
nI(f, θ)

n∑

k=1

∂2

∂θ2
log f(Xk, θ) = −1 (5.13)
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in the sense of convergence in the law of large numbers. One can show that,
under the assumptions of Theorem 5.1, we can replace θ̃n(X) on the right-
hand side of (5.11) by θ as n →∞. It can then be shown from (5.11)–(5.13)
that

lim
n→∞

Pθ

(√
n I(f, θ)

(
θ̂n(X)− θ

) ≤ y
)

=
1√
2π

∫ y

−∞
e−(1/2)x2

dx

for all real values of y. This completes the proof of Theorem 5.1.

6. The Most Powerful Hypothesis Tests are Likelihood Ratio Tests.
The preceding sections have been concerned with estimation and interval
estimation. These are concerned with finding the most likely value or range
of values of a parameter θ, given an independent sample X1, . . . , Xn from a
probability density f(x, θ) for an unknown value of θ.

In contrast, hypothesis testing has a slightly different emphasis. Sup-
pose that we want to use data X1, . . . , Xn to decide between two different
hypotheses, which by convention are called hypotheses H0 and H1. The
hypotheses are not treated in a symmetrical manner. Specifically,

H0: What one would believe if one had no additional data

H1: What one would believe if the data X1, . . . , Xn makes the al-
ternative hypothesis H1 significantly more likely.

Rather than estimate a parameter, we decide between two competing
hypotheses, or more exactly decide (yes or no) whether the data X1, . . . , Xn

provide sufficient evidence to reject the conservative hypothesis H0 in favor
of a new hypothesis H1.

This is somewhat like an an estimation procedure with D(X) =
D(X1, . . . , Xn) = 1 for hypothesis H1 and D(X1, . . . , Xn) = 0 for H0. How-
ever, this doesn’t take into account the question of whether we have sufficient
evidence to reject H0.

A side effect of the bias towards H0 is that choosing H1 can be viewed
as “proving” H1 in some sense, while choosing H0 may just mean that we do
not have enough evidence one way or the other and so stay with the more
conservative hypothesis.

Example. (Modified from Larsen and Marx, pages 428–431.) Suppose that
it is generally believed that a certain type of car averages 25.0 miles per
gallon (mpg). Assume that measurements X1, . . . , Xn of the miles per gallon
are normally distributed with distribution N(θ, σ2

0) with σ0 = 2.4. The
conventional wisdom is then θ = θ0 = 25.0.
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A consumers’ group suspects that the current production run of cars
actually has a higher mileage rate. In order to test this, the group runs
n = 30 cars through a typical course intended to measure miles per gallon.
The results are observations of mpg X1, . . . , X30 with sample mean X =
(1/n)

∑30
i=1 Xi = 26.50. Is this sufficient evidence to conclude that mileage

per gallon has improved?
In this case, the “conservative” hypothesis is

H0 : Xi ≈ N(θ0, σ
2
0) (6.1)

for θ0 = 25.0 and σ0 = 2.40. The alternative hypothesis is

H1 : Xi ≈ N(θ, σ2
0) for some θ > θ0 (6.2)

A standard statistical testing procedure is, in this case, first to choose a “level
of significance” α that represents the degree of confidence that we need to
reject H0 in favor of H1. The second step is to choose a “critical value”
λ = λ(α) with the property that

P (X ≥ λ) = P
(
X ≥ λ(α)

)
= α (6.3)

Given α, the value λ = λ(α) in (6.3) can be determined from the properties
of normal distributions and the parameters in (6.1), and is in fact λ = 25.721
for α = 0.05 and n = 30. (See below.)

The final step is to compare the measure X = 26.50 with λ. If X ≥ λ, we
reject H0 and conclude that the mpgs of the cars have improved. If X < λ,
we assume that, even though X > θ0, we do not have sufficient evidence to
conclude that mileage has improved. Since X = 26.50 > 25.721, we reject
H0 in favor of H1 for this value of α, and conclude that the true θ > 25.0.

Before determining whether or not this is the best possible test, we first
need to discuss what is a test, as well as a notion of “best”.

6.1. What is a Test? What Do We Mean by the Best Test?
The standard test procedure leading up to (6.3) leaves open a number of
questions. Why should the best testing procedure involve X and not a more
complicated function of X1, . . . , Xn? Could we do better if we used more of
the data? Even if the best test involves only X, why necessarily the simple
form X > λ?

More importantly, what should we do if the data X1, . . . , Xn are not
normal under H0 and H1, and perhaps involve a family of densities f(x, θ)
for which the MLE is not the sample mean? Or if H0 is expressed in terms
of one family of densities (such as N(θ, σ2

0)) and H1 in terms of a different
family, such as gamma distributions?
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Before proceeding, we need a general definition of a test, and later a
definition of “best”.

Assume for definiteness that θ, X1, . . . , Xn are all real numbers. We
then define (an abstract) test to be an arbitrary subset C ⊆ Rn, with the
convention that we choose H1 if the data X = (X1, . . . , Xn) ∈ C and oth-
erwise choose H0. (The set C ⊆ Rn is sometimes called the critical region
of the test.) Note that the decision rule D(X) discussed above is now the
indicator function D(X) = IC(X).

In the example (6.1)–(6.3), C =
{

x̃ : x = 1
n

∑n
i=1 xi ≥ λ

}
for x̃ =

(x1, . . . , xn), so that X ∈ C if and only if X ≥ λ.
Later we will derive a formula that gives the best possible test in many

circumstances. Before continuing, however, we need some more definitions.

6.2. Simple vs. Composite Tests. In general, we say that a hypothesis
(H0 or H1) is a simple hypothesis or is simple if it uniquely determines the
density of the random variables Xi. The hypothesis is composite otherwise.

For example, suppose that the Xi are known to have density f(x, θ) for
unknown θ for a family of densities f(x, θ), as in (6.1)–(6.2) for a normal
family with known variance. Then

H0 : θ = θ0 and H1 : θ = θ1 (6.4)

are both simple hypotheses. If as in (6.1)–(6.2)

H0 : θ = θ0 and H1 : θ > θ0 (6.5)

then H0 is simple but H1 is composite.
Fortunately, if often turns out that the best test for H0 : θ = θ0 against

H1 : θ = θ1 is the same test for all θ1 > θ0, so that it is also the best test
against H1 : θ > θ0. Thus, in this case, it is sufficient to consider simple
hypotheses as in (6.4).

6.3. The Size and Power of a Test. If we make a decision between two
hypotheses H0 and H1 on the basis of data X1, . . . , Xn, then there are two
types of error that we can make.

The first type (called a Type I error) is to reject H0 and decide on H1

when, in fact, the conservative hypothesis H0 is true. The probability of
a Type I error (which can only happen if H0 is true) is called the false
positive rate. The reason for this is that deciding on the a priori less likely
hypothesis H1 is called a positive result. (Think of proving H1 as the first
step towards a big raise, or perhaps towards getting a Nobel prize. On the
other hand, deciding on H1 could mean that you have a dread disease, which
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you might not consider a positive result at all. Still, it is a positive result for
the test , if not necessarily for you.)

Suppose that H0 and H1 are both simple as in (6.4). Then the proba-
bility of a Type I error for the test C, or equivalently the false positive rate,
is

α = P (reject H0 | H0 is true) = P (choose H1 | H0) (6.6)

= P (X ∈ C | H0) =
∫

C
f(x̃, θ0) dx̃

where
f(x̃, θ) = f(x1, θ)f(x2, θ) . . . f(xn, θ) (6.7)

is the joint probability density of the sample X = (X1, . . . , Xn) and∫
C

f(x̃, θ0) dx̃ is an n-fold integral.
As the form of (6.6) indicates, α depends only on the hypothesis H0 and

not on H1, since it is given by the integral of f(x̃, θ0) over C and does not
involve θ1. Similarly, the “critical value” λ = λ(α) in (6.3) in the automobile
example depends only on α and n and the parameters involved in H0.

The value α in (6.6) is also called the level of significance of the test C
(or, more colloquially, of the test with critical region C). As mentioned
above, α depends only on the hypothesis H0 and is given by the integral of
a probability density over C. For this reason, α is also called the size of the
test C. That is,

Size(C) =
∫

C
f(x̃, θ0) dx̃ (6.8)

Note that we have just given four different verbal definitions for the value α
in (6.6) or the value of the integral in (6.8). This illustrates the importance
of α for hypothesis testing.

Similarly, a Type II error is to reject H1 and choose H0 when the alter-
native H1 is correct. The probability of a Type II error is called the false
negative rate, since it amounts to failing to detect H1 when H1 is correct.
This is

β = P (reject H1 | H1) =
∫

Rn−C
f(x̃, θ1) dx̃ (6.9)

for θ1 in (6.4) and f(x̃, θ1) in (6.7). Note that β depends only on H1 and
not on H0.

The power of a test is the probability of deciding correctly on H1 if H1

is true, and is called the true positive rate. It can be written

Power(θ1) = 1− β = P (choose H1 | H1) =
∫

C
f(x̃, θ1) dx̃ (6.10)
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The power Power(θ) is usually written as a function of θ since the hypoth-
esis H1 is more likely to be composite. Note that both the level of signifi-
cance α and the power P (θ1) involve integrals over the same critical region C,
but with different densities.

To put these definitions in a table:

Table 6.1. Error Type and Probabilities

What We Decide

Which is True H0 H1

H0 OK Type I
α

H1 Type II
β

OK
Power

If H0 and/or H1 are composite, then α, β, and the power are replaced
by their worst possible values. That is, if for example

H0 : Xi ≈ f0(x) for some density f0 ∈ T0

H1 : Xi ≈ f1(x) for some density f1 ∈ T1

for two classes of densities T0, T1 on R, then

α = sup
f0∈T0

∫

C
f0(x̃) dx̃, β = sup

f1∈T1

∫

Rn−C
f1(x̃) dx̃

and
Power = inf

f1∈T1

∫

C
f1(x̃) dx̃

6.4. The Neyman-Pearson Lemma. As suggested earlier, a standard
approach is to choose a highest acceptable false positive rate α (for reject-
ing H0) and restrict ourselves to tests C with that false positive rate or
smaller.

Among this class of tests, we would like to find the test that has the
highest probability of detecting H1 when H1 is true. This is called (reason-
ably enough) the most powerful test of H0 against H1 among tests C of a
given size or smaller.

Assume for simplicity that H0 and H1 are both simple hypotheses, so
that

H0 : Xi ≈ f(x, θ0) and H1 : Xi ≈ f(x, θ1) (6.11)
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where Xi ≈ f(x) means that the observations Xi are independently chosen
from the density f(x) and f(x, θ) is a family of probability densities. As
mentioned above, both the size and power of a test C ⊆ Rn can be expressed
as n-dimensional integrals over C:

Size(C) =
∫

C

f(x̃, θ0) dx̃ and Power(C) =
∫

C

f(x̃, θ1) dx̃ (6.12)

The next result uses (6.12) to find the most powerful tests of one simple
hypothesis against another at a fixed level of significance α.

Theorem 6.1. (Neyman-Pearson Lemma) Assume that the set

C0 = C0(λ) =
{

x̃ ∈ Rn :
f(x̃, θ1)
f(x̃, θ0)

≥ λ

}
(6.13)

has Size(C0) = α for some constant λ > 0. Then

Power(C) ≤ Power
(C0(λ)

)
(6.14)

for any other subset C ⊆ Rn with Size(C) ≤ α.

Remarks (1). This means that C0(λ) is the most powerful test of H0

against H1 with size Size(C) ≤ α.

(2). If x̃ = X for data X = (X1, . . . , Xn), then the ratio in (6.13)

L(x̃, θ1, θ0) =
f(x̃, θ1)
f(x̃, θ0)

=
L(θ1, X)
L(θ0, X)

(6.15)

is a ratio of likelihoods. In this sense, the tests C0(λ) in Theorem 6.1 are
likelihood-ratio tests.

(3). Suppose that the likelihood L(θ, X) = f(X1, θ) . . . f(Xn, θ) has a
sufficient statistic S(X) = S(X1, . . . , Xn). That is,

L(θ,X) = f(X1, θ) . . . f(Xn, θ) = g
(
S(X), θ

)
A(X) (6.16)

Then, since the factors A(x̃) cancel out in the likelihood ratio, the most-
powerful tests

C0(λ) =
{

x̃ ∈ Rn :
f(x̃, θ1)
f(x̃, θ0)

≥ λ

}
=

{
x̃ ∈ Rn :

g
(
S(x̃), θ1

)

g
(
S(x̃), θ0

) ≥ λ

}
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depend only on the sufficient statistic S(X).

(4). By (6.12) and (6.15)

Size(C) =
∫

C

f(x̃, θ0) dx̃ and Power(C) =
∫

C

L(x̃, θ1, θ0)f(x̃, θ0) dx̃

for L(x̃, θ1, θ0) in (6.15). Intuitively, the set C that maximizes Power(C)
subject to Size(C) ≤ α should be the set of size α with the largest values of
L(x̃, θ1, θ0). This is essentially the proof of Theorem 6.1 given below.

Before giving a proof of Theorem 6.1, let’s give some examples.

Example (1). Continuing the example (6.1)–(6.2) where f(x, θ) is the nor-
mal density N(θ, σ2

0), the joint density (or likelihood) is

f(X1, . . . , Xn, θ) =
1√

2πσ2
0

n exp

(
− 1

2σ2
0

n∑

i=1

(Xi − θ)2
)

= C1(θ, σ0, n) exp

(
− 1

2σ2
0

(
n∑

i=1

X2
i − 2θ

n∑

i=1

Xk

))

Since the factor containing
∑n

i=1 X2
i is the same in both likelihoods, the

likelihood ratio is

f(X1, . . . , Xn, θ1)
f(X1, . . . , Xn, θ0)

= C2 exp


 (θ1 − θ0)

σ2
0

n∑

j=1

Xj


 (6.17)

where C2 = C2(θ1, θ0, σ0, n). If θ0 < θ1 are fixed, the likelihood-ratio sets
C0(λ) in (6.13) are

C0(λ) =



 x̃ : C2 exp


 (θ1 − θ0)

σ2
0

n∑

j=1

xj


 ≥ λ



 (6.18a)

=
{

x̃ :
1
n

n∑

i=1

xi ≥ λm

}
(6.18b)

where λm is a monotonic function of λ. Thus the most powerful tests of H0

against H1 for any θ1 > θ0 are tests of the form X ≥ λm. As in (6.3), the
constants λm = λm(α) are determined by

Size
(C(λ)

)
= α = Pθ0

(
X ≥ λm(α)

)
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Since Xi ≈ N(θ0, σ
2
0) and X ≈ N(θ0, σ

2
0/n), this implies

λm(α) = θ0 +
σ0√
n

zα (6.19)

where P (Z ≥ zα) = α. In particular, the most powerful test C ⊆ Rn of
H0 : θ = θ0 against H1 : θ = θ1 at level of significance α or smaller is
C = {x : x ≥ λm(α) } for λm(α) in (6.19).

Since exactly the same tests are most powerful for any θ1 > θ0, the
test (6.18b) are called uniformly most powerful (UMP) for all θ1 > θ0. Note
that λm(α) in (6.19) depends on θ0 but not on θ1. In this sense, these tests
are also most powerful for H0 : θ = θ0 against H1 : θ > θ0.

Example (2). Let f(x, θ) = θxθ−1 for 0 ≤ x ≤ 1 and θ > 0. Suppose
that we want to test H0 : θ = 1 against H1 : θ = θ1 for some θ1 > 1. If
θ = 1, random variables X with distribution f(x, θ) are uniformly distributed
in (0, 1), while if θ1 > 1 a sample X1, X2, . . . , Xn will tend to be more
bunched towards x = 1. We would like to find the most powerful test for
detecting this, at least against the alternative θxθ−1 for θ > 1.

The joint density here is

f(x̃, θ) =
n∏

j=1

f(xj , θ) =
n∏

j=1

θxθ−1
j = θn

( n∏

j=1

xj

)θ−1

In general if θ0 < θ1, the likelihood ratio is

f(x̃, θ1)
f(x̃, θ0)

=
θn
1

(∏n
j=1 xj

)θ1−1

θn
0

(∏n
j=1 xj

)θ0−1
= C

( n∏

j=1

xj

)θ1−θ0

(6.20)

for C = C(θ0, θ1, n). Thus the most powerful tests of H0 : θ = θ0 against
H1 : θ = θ1 for θ0 < θ1 are

C0(λ) =



 x̃ : C

( n∏

j=1

xj

)θ1−θ0 ≥ λ



 (6.21a)

=
{

x̃ :
n∏

j=1

xj ≥ λm

}
(6.21b)

where λm is a monotonic function of λ.
Note that the function λm = λm(α) in (6.21b) depends on H0 but not

on H1. Thus the tests (6.21b) are UMP for θ1 > θ0 as in Example 1.
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Exercise. For H0 : θ = θ0, prove that the tests

C0(λ) =
{

x̃ :
n∏

j=1

xj ≤ λm

}
(6.22)

are UMP against H1 : θ = θ1 for all θ1 < θ0.

6.5. P-values. The nested structure of the likelihood-ratio sets in (6.13)
and (6.14)

C(λα) =
{

x̃ ∈ Rn :
f(x̃, θ1)
f(x̃, θ0)

≥ λα

}
where (6.23)

Size
(C(λα)

)
= P

({
X :

f(X, θ1)
f(X, θ0

≥ λα

})
= α

means that we can give a single number that describes the outcome of the
tests (6.23) for all α. Specifically, let

P = P

(
f(X, θ1)
f(X, θ0)

≥ T0

∣∣∣∣ H0

)
(6.24)

where T0 = T0(X) = f(X, θ1)/f(X, θ0) for the observed sample. Note that
the X in (6.24) is random with distribution H0, but the X in T0(X) is the
observed sample and assumed constant. Then

Lemma 6.1. Suppose that X = (X1, . . . , Xn) is an independent sample
with density f(x, θ). Suppose that we can find constants λα such that (6.23)
holds for all α, 0 < α < 1. Define P by (6.24).

Then, if P < α, the observed X ∈ C(λα) and we reject H0. If P > α,
then the observed X /∈ C(λα) and we accept H0.

Proof. If P < α, then the observed T0(X) > λα by (6.23) and (6.24),
and thus X ∈ C(λα). Hence we reject H0. If P > α, then the observed
T0(X) < λα by the same argument and X /∈ C(λ, α). Hence in this case we
accept H0.

We still need to prove Theorem 6.1:

Proof of Theorem 6.1. For C0 in (6.13) and an arbitrary test C ⊆ Rn

with Size(C) ≤ α, let A = C0 − C and B = C − C0. Then by (6.12)

Power(C0)− Power(C) =
∫

C0
f(x̃, θ1)dx̃ −

∫

C
f(x̃, θ1)dx̃

=
∫

A

f(x̃, θ1)dx̃ −
∫

B

f(x̃, θ1)dx̃ (6.25)

by subtracting the integral over C0 ∩ C from both terms.
By the definition in (6.13), f(x̃, θ1) ≥ λf(x̃, θ0) on A ⊆ C0 and f(x̃, θ1) <

λf(x̃, θ0) on B ⊆ Rn − C0. Thus by (6.25)
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Power(C0)− Power(C) ≥
∫

A

λf(x̃, θ0) dx̃ −
∫

B

λf(x̃, θ0) dx̃

=
∫

C0
λf(x̃, θ0) dx̃ −

∫

C
λf(x̃, θ0) dx̃

by adding the integral of λf(x̃, θ0) over C0∩C to both integrals. Hence again
by (6.12)

Power(C0)− Power(C) ≥ λ
(
Size(C0) − Size(C)) ≥ 0

since λ > 0 and Size(C) ≤ Size(C0) = α by assumption. Thus Power(C) ≤
Power(C0), which completes the proof of (6.14) and hence of Theorem 6.1.

7. Generalized Likelihood Ratio Tests. Suppose that an independent
sample of observations X1, . . . , Xn are known to have density f(x, θ) for
some unknown (vector) parameter θ ∈ Rm, and that we want to test the
hypothesis

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 (7.1)

for subsets Θ0, Θi ⊆ Rm. Some examples are

Example (1). Assume Xj is uniformly distributed U(0, θ) for some un-
known θ. That is, Xj have density f(x, θ) = (1/θ)I(0,θ)(x) and test

H0 : θ = 1 against H1 : θ < 1 (7.2a)

This is of the form (7.1) with Θ0 = { 1 } and Θ1 = (0, 1).
(2). Assume Xj are normally distributed N(µ, σ2) and we want to test

H0 : µ = µ0 against H1 : µ 6= µ0 (7.2b)

without any restrictions on σ. This is of the form (7.1) with Θ0 = { (µ0, σ
2) },

which is a half-line in R2, and Θ1 = { (µ, σ2) : µ 6= µ0 }, which is a half-plane
minus a half-line.

(3). Assume X1, . . . , Xn1 are independent normal N(µ1, σ
2
1) and

Y1, . . . , Yn2 are N(µ2, σ
2
2) and that we want to test

H0 : µ1 = µ2 and σ2
1 = σ2

2 against

H1 : All other (µ1, µ2, σ
2
1 , σ2

2)
(7.2c)

In this case, Θ0 = { (µ, µ, σ2, σ2) } is a two-dimensional subset of R4 and Θ1

is four-dimensional.
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In any of these examples, if we choose particular θ0 ∈ Θ0 and θ1 ∈ Θ1

(θ1 6= θ0) and wanted to test

H0 : θ = θ0 against H1 : θ = θ1 (7.3)

then, by the Neyman-Pearson Lemma (Theorem 6.1 in Section 6.5 above),
the most powerful test of H0 against H1 at any level of significance α is the
likelihood-ratio set

Cλα
=

{
x̃ ∈ Rn :

f(x̃, θ1)
f(x̃, θ0)

≥ λα

}
(7.4)

where x̃ = (x1, . . . , xn). That is, we reject H0 in favor of H1 if X =
(X1, . . . , Xn) ∈ Cλα .

The idea behind generalized likelihood-ratio tests (abbreviated GLRTs)
is that we use the likelihood-ratio test (7.4) with our best guesses for θ0 ∈ Θ0

and θ1 ∈ Θ1. That is, we define

L̂Rn(X) =
max
θ∈Θ1L(θ, X1, . . . , Xn)
max
θ∈Θ0L(θ, X1, . . . , Xn)

=
L(θ̂H1(X), X1, . . . , Xn)

L(θ̂H0(X), X1, . . . , Xn)
(7.5)

where θ̂H1(X) and θ̂H1(X) are the maximum-likelihood estimates for θ ∈ Θ0

and θ ∈ Θ1, respectively. Note that L̂Rn(X) depends on X but not on θ
(except indirectly from the sets Θ0 and Θ1). We then use the tests with
critical regions

Cλα =
{

x̃ ∈ Rn : L̂Rn(x̃) ≥ λα

}
with Size(Cλα) = α (7.6)

Since the maximum likelihood estimates θ̂H1(X), θ̂H1(X) in (7.5) depend
on X = (X1, . . . , Xn), the Neyman-Pearson lemma does not guarantee
that (7.6) provides the most powerful tests. However, the asymptotic con-
sistency of the MLEs (see Theorem 5.1 above) suggests that θ̂H0 , θ̂H1 may
be close to the “correct” values.

Warning: Some statisticians, such as the authors of the textbook
Larsen and Marx, use an alternative version of the likelihood ratio

L̂R
alt

n (X) =
max
θ∈Θ0L(θ,X1, . . . , Xn)
max
θ∈Θ1L(θ,X1, . . . , Xn)

=
L(θ̂H0(X), X1, . . . , Xn)

L(θ̂H1(X), X1, . . . , Xn)
(7.7)

with the maximum for H1 in the denominator instead of the numerator and
the maximum for H0 in the numerator instead of the denominator. One
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then tests for small values of the GLRT statistic instead of large values.

Since L̂R
alt

n (X) = 1/ L̂Rn(X), the critical tests for (7.7) are

Calt
λα

=
{

x̃ ∈ Rn : L̂R
alt

n (x̃) ≤ λα

}
(7.8)

=
{

x̃ ∈ Rn : L̂Rn(x̃) ≥ 1/λα

}
with Size(Calt

λα
) = α

Thus the critical regions (7.8) are exactly the same as those for (7.6) except
for a transformation λα → 1/λα and the direction of the inequality. However,
one has to be aware of small differences between how the tests as described.

7.1. Examples. In Example 1 (see (7.2a) above), Θ0 = { 1 } and
Θ1 = (0, 1). This corresponds to the hypotheses H0 : θ = 1 and H1 : θ < 1
where X1, . . . , Xn are U(0, θ). Then one can show

L̂Rn(X) = (1/Xmax)n, Xmax = max
1≤j≤n

Xj

(Argue as in Section 6.5 in the text, Larsen and Marx.) The GLRTs (7.6) in
this case are equivalent to

Cλα(X) = {X : L̂Rn(X) ≥ λα } = {X : (1/Xmax)n ≥ λα } (7.9)

= {X : Xmax ≤ µα } where P (Xmax ≤ µα | H0) = α

In Example 2 (see (7.2b) above), Θ0 = { (µ0, σ
2) : µ = µ0 } and Θ1 =

{ (µ, σ2) : µ 6= µ0 }. This corresponds to the hypotheses H0 : µ = µ0 and
H1 : µ 6= µ0 where X1, . . . , Xn are N(µ, σ2) with σ2 unspecified. One can
show in this case that

L̂Rn(X) =
(

1 +
T (X)2

n− 1

)n/2

where (7.10)

T (X) =
√

n(X − µ0)√
S(X)2

, S(X) =
1

n− 1

n∑

j=1

(Xj −X)2

(See Appendix 7.A.4, pages 519–521, in the textbook, Larsen and Marx.
They obtain (7.10) with −n/2 in the exponent instead of n/2 because they
use (7.7) instead of (7.5) to define the GLRT statistic, which is L̂Rn(X) here
but λ in their notation.)

Since L̂Rn(X) is a monotonic function of |T (X)|, the GLRT test (7.6)
is equivalent to

Cµα(X) = {X : |T (X)| ≥ µα } where P
(|T (X)| ≥ µα

∣∣ H0

)
= α (7.11)

This is the same as the classical two-sided one-sample Student-t test.
There is a useful large sample asymptotic version of the GLRT, for which

it is easy to find the critical values λα. First, we need a reformulation of the
problem H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.
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7.2. Nested Hypothesis Tests. Each of Examples 1–3 can be reformu-
lated as

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 (7.12)

where Θ0 ⊆ Θ1 and Θ1 has more “free parameters” than H0.
Equivalently, “more free parameters” means m0 < m1, where m0 =

dim(Θ0) and m1 = dim(Θ1) are the “local dimensions” of Θ0 and Θ1. In
Example 1, m0 = 0 (a point has “no free parameters” and is “of dimen-
sion 0”) and m1 = 1, where we now take Θ1 = (0, 1]. In Example 2, m1 = 1
(there is one free parameter, σ2 > 0), m2 = 2, and Θ2 = { (µ, σ2) } is
now a full half-plane. In Example 3, m1 = 2 and m2 = 4, since the sets
Θ0,Θ1 ⊆ R4.

Since Θ0 ⊆ Θ1, a test of H0 against H1 cannot be of the form “either-or”
as in Section 6, since θ ∈ Θ0 implies θ ∈ Θ1. Instead, we view (7.12) with
Θ0 ⊆ Θ1 as a test of whether we really need the additional d = m1 − m0

parameter or parameters. That is, if the data X = (X1, . . . , Xn) does not fit
the hypothesis H1 sufficiently better than H0 (as measured by the relative
size of the fitted likelihoods in (7.5) ) to provide evidence for rejecting H0.
Then, to be conservative, we accept H0 and conclude that there is not enough
evidence for the more complicated hypothesis H1.

A test of the form (7.12) with Θ0 ⊆ Θ1 is called a nested hypothesis test .
Note that, if Θ0 ⊆ Θ1, then (7.5) implies that L̂Rn(X) ≥ 1.

Under the following assumptions for a nested hypothesis test, we have
the following general theorem. Assume as before that X1, . . . , Xn is an in-
dependent sample with density f(x, θ) where f(x, θ) satisfies the conditions
of the Cramér-Rao lower bound (Theorem 4.1 in Section 4 above) and of the
asymptotic normality of the MLE (Theorem 5.1 in Section 5 above). Then
we have

Theorem 7.1. (“Twice the Log-Likelihood Theorem”) Under the
above assumptions, assume that Θ0 ⊆ Θ1 in (7.12), that d = m1 −m0 > 0,
and that the two maximum-likelihood estimates θ̂H0(X) and θ̂H1(X) in (7.5)
are attained in the interior of the sets Θ0 and Θ1, respectively. Then, for
L̂Rn(X) in (7.5),

lim
n→∞

P
(
2 log

(
L̂Rn(X)

) ≤ y
∣∣∣ H0

)
= P

(
χ2

d ≤ y
)

(7.13)

for y ≥ 0, where χ2
d represents a random variable with a χ2 distriution with

d = m1 −m0 degrees of freedom.

Proof. The proof is similar to the proof of Theorem 5.1 in Section 5, but
uses an m-dimensional central limit theorem for vector-valued random vari-
ables in Rm and Taylor’s Theorem in Rm instead of in R1.
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Remarks (1). The analog of Theorem 7.1 for the alternative (“upside-
down”) definition of L̂Rn(X) in (7.7) has −2 log

(
L̂Rn(X)alt

)
instead of

2 log
(
L̂Rn(X)

)
.

(2). There is no analog of Theorem 7.1 if the hypotheses H0 and H1 are
not nested. Finding a good asymptotic test for general non-nested composite
hypotheses is an open question in Statistics that would have many important
applications.

8. Fisher’s Meta-Analysis Theorem. Suppose that we are interested
in whether we can reject a hypothesis H0 in favor of a hypothesis H1. As-
sume that six different groups have carried out statistical analyses based on
different datasets with mixed results. Specifically, assume that they have
reported the six P-values (as in Section 6.5 above)

0.06 0.02 0.13 0.21 0.22 0.73 (8.1)

While only one of the six groups rejected H0 at level α = 0.05, and that
was with borderline significance (0.01 < P < 0.05), five of the six P-values
are rather small. Is there a way to assign an aggregated P-value to the six
P-values in (8.1)? After reading these six studies (and finding nothing wrong
with them), should we accept H0 or reject H1 at level α = 0.05?

The first step is to find the random distribution of P-values that in-
dependent experiments or analyses of the same true hypothesis H0 should
attain. Suppose that each experimenter used a likelihood-ratio test of the
Neyman-Pearson form (6.23) or GLRT form (7.6) where it is possible to find
a value λα for each α, 0 < α < 1.

Lemma 8.1. Under the above assumptions, assuming that the hypothe-
sis H0 is true, the P-values obtained by random experiments are uniformly
distributed in (0, 1).

Proof. Choose α with 0 < α < 1. Since α is the false positive rate, the
fraction of experimenters who reject H0, and consequently have P < α for
their computed P-value, is α. In other words, treating their P-values as
observations of a random variable P̃ , then P

(
P̃ < α

)
= α for 0 < α < 1.

This means that P̃ is uniformly distributed in (0, 1).

Given that the numbers in (8.1) should be uniformly distributed if H0

is true, do these numbers seem significantly shifted towards smaller values,
as they might be if H1 were true? The first step towards answering this is
to find a reasonable alternative distribution of the P-values given H1.
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Fisher most likely considered the family of distributions f(p, θ) = θpθ−1

for 0 < θ ≤ 1, so that H0 corresponds to θ = 1. For θ < 1, not only is
E(P ) = θ/(θ + 1) < 1, but the density f(p, θ) has an infinite cusp at θ = 0.
For this family, the likelihood of random P-values P1, . . . , Pn given θ is

L(θ, P1, . . . , Pn) =
n∏

j=1

f(θ, Pj) = θn

( n∏

j=1

Pj

)θ−1

Thus Q =
∏n

j=1 Pj is a sufficient statistic for θ, and we have at least a single
number to summarize the six values in (8.1).

Morever, it follows as in Example 2 in Section 6.4 above that tests of the
form {P :

∏n
j=1 Pj ≤ λα } are UMP for H0 : θ = 1 against the alternatives

θ < 1. (See Exercise (6.22).) The distribution of
∏n

j=1 Pj given θ = 1 can
be obtained from

Lemma 8.2. Assume that U is uniformly distributed in (0, 1). Then
(a) The random variable Y = −A log U = A log(1/U) has an exponential

distribution with rate 1/A.
(b) Y = 2 log(1/U) ≈ χ2

2 (that is, Y has a chi-square distribution with
2 degrees of freedom).

(c) If U1, U2, . . . , Un are independent and uniformly distributed in (0, 1),
then Q =

∑n
j=1 2 log(Uj) ≈ χ2

2n has a chi-square distribution with 2n degrees
of freedom.

Proof. (a) For A, t > 0

P (Y > t) = P
(−A log(U) > t

)
= P

(
log(U) < −t/A

)

= P
(
U < exp(−t/A)

)
= exp(−t/A)

This implies that Y has a probability density fY (t) = −(d/dt) exp(−t/A) =
(1/A) exp(−t/A), which is exponential with rate A.

(b) A χ2
d distribution is gamma(d/2, 1/2), so that χ2

2 ≈ gamma(1, 1/2).
By the form of the gamma density, gamma(1, β) is exponential with rate β.
Thus, by part (a), 2 log(1/U) ≈ gamma(1, 1/2) ≈ χ2

2.
(c) Each 2 log(1/Pj) ≈ χ2

2, which implies that

Q =
n∑

j=1

2 log(1/Pj) ≈ χ2
2n (8.2)

Putting these results together,
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Theorem 8.1 (Fisher). Assume independent observations U1, . . . , Un have
density f(x, θ) = θxθ−1 for 0 ≤ x ≤ 1, and in particular are independent
and uniformly distributed in (0, 1) if θ = 1. Then, the P-value of the UMP
test for H0 : θ = 1 against H1 : θ < 1 is

P = P (χ2
2n ≥ Q0)

where Q0 is the observed value of 2
∑n

j=1 log(1/Uj) and χ2
2n represents a

chi-square distribution with 2n degrees of freedom.

Proof. By Lemma 8.1 and (8.2).

Example. The numbers P1, . . . , P6 in (8.1) satisfy

6∑

j=1

2 log(1/Pj) = 5.63 + 7.82 + 4.08 + 3.12 + 3.03 + 0.63 = 24.31

Thus the P-value in Theorem 8.1 is

P = P (χ2
12 ≥ 24.31) = 0.0185

Thus the net effect of the six tests with P-values in (8.1) is P = 0.0185,
which is significant at α = 0.05 but not at α = 0.01.

9. Two Contingency-Table Tests. Consider the following contingency
table for n = 1033 individuals with two classifications A and B:

Table 9.1. A Contingency Table for A and B

B: 1 2 3 4 5 6 Sums:

1 29 11 95 78 50 47 310
A: 2 38 17 106 105 74 49 389

3 31 9 60 49 29 28 206
4 17 13 35 27 21 15 128

Sums: 115 50 296 259 174 139 1033

It is assumed that the data in Table 9.1 comes from independent observations
Yi = (Ai, Bi) for n = 1033 individuals, where Ai is one of 1, 2, 3, 4 and Bi is
one of 1, 2, 3, 4, 5, 6. Rather than write out the n = 1033 values, it is more
convenient to represent the data as 24 counts for the 4 × 6 possible A,B
values, as we have done in Table 9.1.
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Suppose we want to test the hypothesis that the Yi are sampled from a
population for which A and B are independent. (Sometimes this hypothesis
is stated that “rows and columns” are independent, but this doesn’t make
very much sense if you analyze it closely.)

If the sample is homogeneous, each observation Yi = (Ai, Bi) has a mul-
tivariate Bernoulli distribution with probability function P

(
Y = (a, b)

)
= pab

for 1 ≤ a ≤ s and 1 ≤ b ≤ t, where s = 4 is the number of rows in Ta-
ble 9.1 and t = 6 is the number of columns, and

∑s
a=1

∑t
b=1 pab = 1. If

the random variables A and B are independent, then P
(
Y = (a, b)

)
=

P (A = a)P (B = b). If P (A = a) = pA
a and P (B = b) = pB

b , then
pab = pA

a pB
b . This suggests the two nested hypotheses

H1 : pab > 0 are arbitrary subject with
s∑

a=1

t∑

b=1

pab = 1 (9.1)

H0 : pab = pA
a pB

b where
s∑

a=1

pA
a =

t∑

b=1

pB
b = 1

9.1. Pearson’s Chi-Square Test.
We first consider the GLRT test for (9.1). Writing p for the matrix p = pab

(1 ≤ a ≤ s, 1 ≤ b ≤ t), the likelihood of Y = (Y1, Y2, . . . , Yn) is

L(p, Y ) =
n∏

i=1

{qi = pab : Yi = (a, b)} =
s∏

a=1

t∏

b=1

pXab

ab (9.2)

where Xab are the counts in Table 9.1. The MLE p̂H1 for hypothesis H1 can
be found by the method of Lagrange multipliers by solving

∂

∂pab
log L(p, Y ) = 0 subject to

s∑
a=1

t∑

b=1

pab = 1

This leads to (p̂H1)ab = Xab/n. The MLE pH0 can be found similarly as the
solution of

∂

∂pA
a

log L(p, Y ) =
∂

∂pB
b

log L(p, Y ) = 0

subject to
s∑

a=1

pA
a =

t∑

b=1

pB
b = 1



Risk, Scores, Fisher Information, and GLRTs . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

This implies p̂A
a = Xa+/n and p̂B

b = X+a/n where Xa+ =
∑t

c=1 Xac and
X+b =

∑s
c=1 Xcb. This in turn implies (p̂H0)ab = (Xa+/n)(X+b/n). Thus

the GLRT statistic for (9.1) is

L̂Rn(Y ) =
L(p̂H1 , Y )
L(p̂H0 , Y )

=
∏s

a=1

∏t
b=1

(
Xab

n

)Xab

∏s
a=1

(
Xa+

n

)Xa+ ∏t
b=1

(
X+b

n

)X+b
(9.3)

Note that hypothesis H1 in (9.1) has m1 = st − 1 free parameters, while
hypothesis H0 has m0 = (s− 1) + (t− 1) free parameters. The difference is
d = m1 −m0 = st − 1 − (s − 1) − (t − 1) = st − s − t + 1 = (s − 1)(t − 1).
Thus by Theorem 7.1 in Section 7

lim
n→∞

P
(
2 log

(
L̂Rn(X)

) ≤ y
∣∣∣ H0

)
= P

(
χ2

d ≤ y
)

(9.4)

where d = (s− 1)(t− 1). The test of H0 against H1 based on (9.4) is often
called the G-test.

Pearson’s “Sum of (Observed− Expected)2/Expected” statistic is

Dn(y) =
s∑

a=1

t∑

b=1

(
Xab − np̂A

a p̂B
b

)2

np̂A
a p̂B

b

=
s∑

a=1

t∑

b=1

(
Xab − (Xa+X+b/n)

)2

(Xa+X+b/n)

It was proven in class in a more general context that

E
(∣∣2 log L̂Rn(Y )−Dn(Y )

∣∣
)
≤ C√

n

for n ≥ 1. It can be show that this in combination with (9.4) implies

lim
n→∞

P
(
Dn(Y ) ≤ y

∣∣ H0

)
= P

(
χ2

d ≤ y
)

(9.5)

Thus the GLRT test for H0 within H1 in (9.1) is asymptotically equivalent
to a test on Dn(Y ), for which the P-value can be written asymptotically

P = P (χ2
d ≥ Dn(Y )Obs)

where “Obs” stands for “Observed value of”.
For the data is Table 9.1, Dn(Y ) = 19.33 and P = 0.199 for d =

(4 − 1)(6 − 1) = 15 degrees of freedom. Thus, the data in Table 9.1 is not
significant using the Pearson’s chi-square test.
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9.2. The Pearson Test is an Omnibus Test.
The GLRT test of (9.1) is sometimes called a test of H0 against an “omnibus”
alternative, since it is designed to have power against any alternative pab for
which A and B fail to be independent.

A test that is sensitive to a particular way in which H0 may fail can
have much greater power against that alternative than an omnibus test,
which much guard against any possible failure of H0. Conversely, a test that
is “tuned” towards a particular alternative can fail miserably when H0 is
false for other reasons.

The shrinkage estimator in Section 2.1 provides a somewhat similar ex-
ample. If we make even a crude guess what the true mean of a normal
sample might be, then a shrinkage estimator towards that value can have
smaller expected squared error than the sample mean estimator, which is
the minimum-variance unbiased estimator for all possible true means. Con-
versely, if we guess wrongly about the true mean, the shrinkage estimator
may have a much larger expected squared error.

9.3. The Mantel-Haenszel Trend Test.
Suppose that one suspects that the random variables A and B in Table 9.1
are correlated as opposed to being independent. In particular, we would like a
test of H0 in (9.1) whose implicit alternative is that A, B are correlated, which
may have greater power if A and B are in fact correlated. We understand that
this test may have much less power against an alternative to independence
in which A and B are close to being uncorrelated.

The Mantel-Haenszel trend test does exactly this. (Note: This test is
also called the Mantel trend test. The “trend” is necessary here because
there is a contingency table test for stratified tables that is also called the
Mantel-Haenszel test.)

Specifically, let r be the sample Pearson correlation coefficient of Ai

and Bi for the sample Yi = (Ai, Bi). That is,

r =
∑n

i=1(Ai −A)(Bi −B)√∑n
i=1(Ai −A)2

√∑n
i=1(Bi −B)2

(9.6)

Recall that Ai takes on integer values with 1 ≤ Ai ≤ s and Bi takes on
integer values with 1 ≤ Bi ≤ t. Then

Theorem 9.1 (Mantel-Haenszel). Under the assumptions of this sec-
tion, using a permutation test based on permuted the values Bi in Yi =
(Ai, Bi) for 1 ≤ i ≤ n among themselves while holding Ai fixed,

lim
n→∞

P
(
(n− 1)r2 ≥ y

∣∣ H0

)
= P (χ2

1 ≥ y) (9.7)
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Remarks. The limits in Theorem 7.1 and (9.4) are based on a probability
space that supports independent random variables with a given probability
density f(x, θ).

In contrast, the underlying probability space in Theorem 9.1, in common
with permutation tests in general, is defined by a set of permutations of the
data under which the distribution of a sample statistic is the same as if H0 is
true. For example, in this case, if we choose Ai at random from A1, . . . , An

and match it with a randomly permuted Bi at that i, then

P (Ai = a,Bi = b) = P (Ai = a)P (Bi = a)

and Ai, Bi are independent. (In contrast, B1 and B2 are not independent.
If B1 happened to be a large value, then the value B2 at a different offset
in the permuted values, conditional on B1 already have been chosen, would
be drawn from values with a smaller mean. Thus B1 and B2 are negatively
correlated.)

Since the pairs Ai, Bi are independent in this permutation probability
space, if the observed value of r in (9.6) is far out on the tail of the statistics r
calculated by randomly permuted the Bi in this manner, then it is likely that
the observed Ai and Bi were not chosen from a distribution in which A and B
were independent. We needn’t worry that the set of possible P-values is
overly discrete if n is large, since in that case the number of permutations (n!)
is truly huge. Since the test statistic (9.7) is the sample correlation itself, if
we reject H0 then it is likely that A and B are correlated.

Example. For the data in Table 9.1, the sample correlation coefficient r =
−0.071 and Xobs = (n − 1)r2 = (1032)(−0.071)2 = 5.2367. The P-value is
P = P (χ2

1 ≥ 5.2367) = 0.0221. Thus Table 9.1 shows significant departure
from independence by the Mantel test, but not for the standard Pearson test.

In general, one can get P-values for a χ2
1 distribution from a standard

normal table, since it is the square of a standard normal. Thus

P = P (χ2
1 ≥ 5.2367) = P (Z2 ≥ 5.2367)

= P (|Z| ≥
√

5.2367) = 2P (Z ≥ 2.2884) = 0.0221

Proof of Theorem 9.1 (Remarks). The usual central limit theorem is
for independent random variables X1, . . . , Xn, . . . drawn from the same
probability space. There are analogous limit theorems (also giving nor-
mal distributions) for sums and linear combinations of values in segments
Xk+1, . . . , Xk+m (that is, for offsets between k + 1 and k + m) of a large,
randomly permuted sequence of numbers X1, . . . , Xn, assuming that εn ≤
m ≤ (1− ε)n as n →∞ for some ε > 0.
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These theorems are sometimes referred to collectively as “Hajek’s Cen-
tral Limit Theorem” and can be used to prove not only Theorem 9.1, but also
a large variety of large-sample limit theorems in nonparametric statistics.

Remark. Even though (I believe) the Friedman of the Freidman rank-
sum test (a nonparametric analog of the two-way ANOVA) is the same
as the economist Friedman, the Hajek of Hajek’s central limit theorem
(Jaroslav Hájek, 1926–1974) is not the same person as the famous conserva-
tive economist (Friedrich von) Hajek (1899–1992). In particular, it is not true
that all famous results in nonparametric statistics are named after Nobel-
prize-winning economists.


