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1. Introduction. Suppose that we have n observations, each of which has
d components, which we can represent as the n× d matrix

Y =



Y11 Y12 . . . Y1d

Y21 Y22 . . . Y2d

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .
...

...
. . .

...
Yn1 Yn2 . . . Ynd


(1.1)

For example, we may have (i) measurements of d = 5 air pollutants (CO,
NO, etc.) on n = 42 widely-separated days, (ii) d test scores for n different
students, (iii) best results for d Olympic events for teams from n different
countries, or (iv) d different physical measurements for n individuals (human
or animal) that we are trying to classify. In each case, the ith row corresponds
to the ith multivariate observation, and the jth column corresponds to the
jth variable measured.

As in the univariate (d = 1) case, we can also assume that we have
r covariates for each observation (day or student or country or individual).
For air pollution, these might be wind strength and solar intensity (r = 2),
age, sex, and income for students (r = 3), or species or country of origin for
physical measurements. These are connected in the regression model

Yij =

p∑
a=1

Xiaβaj + eij (1.2)

for the jth component of the ith individual, where 1 ≤ a ≤ p refers to
covariates and p = r+1 if there is an intercept and p = r otherwise. In most
cases, the first column in X corresponds to an intercept, so that Xi1 = 1 for
1 ≤ i ≤ n and β1j = µj for 1 ≤ j ≤ d.

A key assumption in the multivariate model (1.2) is that the measured
covariate terms Xia are the same for all components of the observations Yij .
For example, wind strength and solar intensity have the same numerical
values for all pollutants, although the response to wind and solar intensity
(measured by µj and βaj) may differ. Similarly, the same student has the



Multivariate Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

same age, sex, and income for all tests. In contrast, the parameters µj

and βaj can depend on the individual components j.
The form of (1.2) means that the sum on the right-hand side of (1.2) has

the form of a matrix product. Also, the fact that the Xia are the same for
all j also means that (1.2) has the form of d parallel univariate regressions
for the d components with the same design matrix X.

The errors eij in (1.2) are assumed to be jointly normal with mean zero
in Rnd, where 1 ≤ i ≤ n for observations and 1 ≤ j ≤ d for components. The
rows of eij are assumed to be independent, since they correspond to different
observations.

However, the columns of eij are allowed to be correlated. In practice,
the values of Yij for a particular i are often positively correlated over j. For
example, if one pollutant is high after correcting for wind and solar intensity,
then the other pollutants may be high as well. If a student does well on one
test after correcting for age, sex, and income, then he or she is more likely
to do well on the other tests as well.

In more detail, we assume that the errors eij in (1.2) are mean-zero
jointly normal random variables and satisfy

Cov(eij , ekℓ) = 0, i ̸= k

Cov(eij , eiℓ) = Σjℓ (1.3)

for all i, j, k, ℓ. The assumption of the same d×d covariance matrix Σ for all i
replaces the assumption of a constant variance σ2 for a univariate regression.
To keep things simple, we assume that Σ is positive definite (or invertible).
An equivalent way of writing (1.3) is

Cov(eij , ekℓ) = (In)ikΣjℓ (1.4)

where In is the n× n identity matrix.
To avoid pathologies, we will assume in the following that the p × p

design matrix X ′X is invertible and that n ≥ p+ d.

2. The Regression Model (1.2) in Terms of Matrices: As in the uni-
variate case, we can write the regression (1.2)

Yij =

p∑
a=1

Xiaβaj + eij

in matrix notation as

Y = Xβ + e (2.1)
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In (2.1), Y is n× d, X is n× p, and

β =

 β11 β12 . . . β1d
...

...
. . .

...
βp1 βp2 . . . βpd


is an p × d matrix. If Xi1 is identically one, the first row of β are the
intercepts µj . In general, the ath row of β corresponds to the ath covariate
(or intercept). The jth column of β are the regression coefficients for the jth

component of Yij .
For example, suppose that we measure d = 5 air pollutants on n = 42

different days. Each pollutant has r = 2 parameters for response to wind
strength and solar intensity. Adding an intercept term means p = r + 1 = 3
coefficients and the parameter matrix β is 3 × 5. In a particular numerical
example, the estimated values of the parameters β were

β̂ =

 4.718 4.106 10.115 8.276 2.358
−0.138 −0.192 −0.211 −0.787 0.071
0.012 −0.006 0.021 0.095 0.003

 (2.2)

Each column in (2.2) is the estimated parameter values β for a particular
component of Y . The first row {β1j} contains all of the intercepts of the d = 5
univariate regressions on wind strength and solar intensity. The second row
{β2j} are the coefficients for wind, which might scatter some pollutants but
not others, and the third row {β3j} are the coefficients for solar intensity.

3. Kronecker Products of Matrices. In a univariate regression (d = 1),
the observations Y and parameters β in Y = Xβ + e are column vectors.
For a multivariate regression (d > 1), Y is a n× d matrix and β is an p× d
matrix. Sometimes it will be more convenient to treat the observations Y as
an nd-dimensional vector or β as an pd-dimensional vector, where nd = 210
and pd = 15 if n = 42, d = 5, and p = 3. If d = 1, then Cov(Y ) and Cov(e)
are n× n matrices, but if d > 1 they are not obviously defined as matrices,
but would be 210× 210 if they were defined.

We will use the subscript L when we view Y , β, and e as column vectors
instead of matrices. Thus Y and e are n × d matrices, but YL and eL will
be nd × 1 column vectors. Similarly, βL will be a pd × 1 column vector.
To be explicit, we assume that the matrix entries are stored in the column
vector by rows. This means that the Ith entry of the column vector YL (for
example) is

(YL)I = Yij for I = (i− 1)d+ j (3.1)



Multivariate Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Note that the relation I = (i−1)d+j gives a one-one correspondence between
pairs (i, j) with 1 ≤ j ≤ d and 1 ≤ i ≤ n and indices I with 1 ≤ I ≤ nd.
(Exercise: Prove this.)

The ordering in (3.1) is called lexicographic ordering of (i, j), since it is
the same as alphabetical ordering if i, j were replaced by letters. In partic-
ular, if n = 2 and d = 3, then the N = nd = 6 indices ij are ordered 11, 12,
13, 21, 22, 23.

In the representation I = (i − 1)d + j, the index j is sometimes called
the fast index and i the slow index , since j always changes when I changes
to I + 1 but i only changes when I moves on to the next row, or after j has
completed a full cycle of values 1 ≤ j ≤ d.

If the basic regression equation Y = Xβ + e in (2.1) is written in terms
of vectors, it should take the form

YL = XLβL + eL (3.2)

where XL is an nd×pd matrix that depends somehow on the n×p matrix X.
The notions of Kronecker product or tensor product of vectors or matrices
are a useful way to describe these larger matrices.

Definition. Let A = {Aij } be an m1 × n1 matrix and B = {Bab } an
m2 × n2 matrix. Then, the tensor product or Kronecker product matrix of
A and B is the m1m2 × n1n2 matrix C = A⊗B with components

Cia,jb = AijBab (C = A⊗B) (3.3)

for 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, 1 ≤ a ≤ m2, 1 ≤ b ≤ n2, with the notation
ia = (i − 1) ∗ m2 + a and jb = (j − 1) ∗ n2 + b. More exactly, C is the
m1m2 × n1n2 matrix

CIJ = AijBab for I = (i− 1)m2 + a, J = (j − 1)n2 + b (3.4)

Note that i, a in (3.3) are the slow indices (row indices) of A and B (respec-
tively) while j, b in (3.3) are the fast indices (or column indices).

As an example, the covariance matrix (1.4) of the error terms in (3.2)
can be written

Cov(eL) = In ⊗ Σ (3.5)

The next lemma shows how to represent the “super-matrix” XL in (3.2) in
terms of tensor products.

Lemma 3.1. Let A be an m× n matrix, B a n× d matrix, and W = AB
the matrix product

Wik =
n∑

j=1

AijBjk (3.6)
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Then for WL, BL defined as in (3.1)

WL =
(
A⊗ Id

)
BL (3.7)

where d is the second dimension for the n× d matrix B.

Proof. By (3.6)

Wik =

n∑
j=1

AijBjk =

n∑
j=1

d∑
ℓ=1

Aijδkℓ Bjℓ

=
n∑

j=1

d∑
ℓ=1

(
A⊗ Id

)
ik,jℓ

Bjℓ

by (3.3), which implies (3.7).

By Lemma 3.1, the basic regression equation (2.1)

Yij =

p∑
a=1

Xiaβaj + eij

can be written

YL = (X ⊗ Id)βL + eL (3.8)

so that XL = X ⊗ Id in (3.2).

With lexicographic ordering of the indices, the entries of

CIJ = Cia,jb = AijBab

for fixed I = (i − 1)m2 + a and increasing J = (j − 1)n2 + b trace out
the ath row of B repeatedly for each value of j, with each row of B values
multiplied by Aij .

This means that the matrix C = A ⊗ B can be written in block parti-
tioned form as

C =


a11B a12B . . . a1n1B
a21B a22B . . . a2n2B
...

...
. . .

...
am11B an12B . . . am1n1

B

 (3.9)
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In particular by (3.5)

Cov(eL) =


Σ 0 . . . 0
0 Σ . . . 0
...

...
. . .

...
0 0 . . . Σ

 (3.10)

We conclude this section by proving a number of basic properties of tensor
products:

Lemma 3.2. Suppose that the matrix A is m1 × n1, B is m2 × n2, D is
a n1 × k1, and E is n2 × k2, so that the matrices AD and BE are defined.
Then

(i) Let C = A⊗B and F = D ⊗ E. Then

CF = (A⊗B) (D ⊗ E) = AD ⊗BE (3.11)

(ii) Im ⊗ In = Imn for all integers m,n ≥ 1
(iii) The transpose C ′ = (A⊗B)′ = A′ ⊗B′

(iv) Assume that A and B are invertible square matrices. Then C =
A⊗B is also invertible and(

A⊗B
)−1

= A−1 ⊗B−1 (3.12)

Proof. (i) Write Cia,jb = AijBab and Fjb,kc = DjkEbc. Then

(CF )ia,kc =
∑
jb

Cia,jbFjb,kc

=
∑
j

∑
b

AijBab DjkEbc = (AD)ik(BE)ac

which implies CF = AD ⊗BE.
(ii) By definition, (In ⊗ Im)ia,jb = (In)ij(Im)ab = δijδab, which equals

one if i = j and a = b (or, equivalently, ia = jb), and is otherwise zero. This
implies In ⊗ Im = Imn.

(iii) By definition (A⊗B)ia,jb = AijBab. Hence

(A⊗B)′ia,jb = (A⊗B)jb,ia = AjiBba = (A′)ij(B
′)ab =

(
A′ ⊗B′)

ia,jb

and (A⊗B)′ = A′ ⊗B′.
(iv) By parts (i) and (ii),

(A⊗B)
(
A−1 ⊗B−1

)
= AA−1 ⊗BB−1 = In ⊗ Im = Imn
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Thus A−1 ⊗B−1 is a right inverse of A⊗B and hence is the unique inverse
matrix.

The next lemma is an application of Lemmas 3.1 and 3.2 that will be
useful for the analysis of multivariate ANOVAs and regressions.

Lemma 3.3. Let e = eij be an n × d random matrix whose rows are
independent N(0,Σ) for the same d × d covariance matrix Σ. (That is,
Cov(eL) = In ⊗ Σ as in (3.5).) Let

Zij =
n∑

k=1

Rikekj (3.13)

where R is an n× n orthogonal matrix. Then Zij has the same distribution
as eij . That is, the rows of Zij are independent N(0,Σ).

Proof. Thus Z = Re by (3.13), so that ZL = (R ⊗ Id)eL by Lemma 3.1.
Since eL is a joint normal vector and R⊗ Id is a nd× nd matrix, ZL is also
joint normal, and it is sufficient to prove Cov(ZL) = Cov(eL) = In ⊗ Σ.
By (3.5), (3.13), and Lemma 3.2,

Cov(ZL) = Cov
(
(R⊗ Id) e

)
= (R⊗ Id) (In ⊗ Σ) (R⊗ Id)

′

= RInR
′ ⊗ IdΣId = RR′ ⊗ Σ = In ⊗ Σ

and Z has the same distribution as e.

4. The MLE of the p × d matrix β . The purpose of this section is to
find the maximum likelihood estimator β̂ and its covariance matrix Cov(β̂L).

We first derive Cov(β̂L) using its individual components and then show a
shorter proof using tensor products.

In terms of components, the errors eij in (2.1) are jointly normal, are
independent for different i, and have covariance matrix Σ in j for fixed i.
Thus the likelihood function of the ith observation Yi in the regression Y =
Xβ + e in (2.1) (or equivalently of the ith row of the n× d matrix Y ) is the
multivariate normal density

L(β,Σ, Yi) =
1√

(2π)d det
(
Σ
) exp(−Si/2) where (4.1)

Si =

d∑
a=1

d∑
b=1

(
Yia − (Xβ)ia

)
Σ−1

ab

(
Yib − (Xβ)ib

)
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Since the rows of eij are independent, the likelihood function of all n obser-
vations Y in (2.1) is the product

L(β,Σ, Y ) =
1√

(2π)nd det
(
Σ
)n exp(−S/2) where (4.2)

S =
n∑

i=1

d∑
a=1

d∑
b=1

(
Yia − (Xβ)ia

)
Σ−1

ab

(
Yib − (Xβ)ib

)
(4.3)

Finding the matrix MLE β̂ is equivalent to minimizing the triple sum S
in (4.3) as a function of β. Since (Xβ)ia =

∑r
j=1 Xijβja in (4.3), setting

(∂/∂βkc)S = 0 leads to the set of equations

2
n∑

i=1

d∑
b=1

XikΣ
−1
cb

(
Yib − (Xβ)ib

)
= 2

d∑
b=1

Σ−1
cb

(
(X ′Y )kb − (X ′Xβ)kb

)
= 0

for all k and c. This is Σ−1(X ′Xβ −X ′Y )′ = 0 in matrix form. Premulti-
plying by Σ leads to the matrix “normal equations”

X ′Xβ = X ′Y or (X ′X ⊗ Id)βL = (X ′ ⊗ Id)YL

by Lemma 3.1. If the p×p design matrix X ′X is invertible, then the matrix-
valued MLE of β is

β̂ = (X ′X)−1X ′Y or β̂L =
(
(X ′X)−1X ′ ⊗ Id

)
YL (4.4)

The first formula in (4.4) is exactly the same formula as in the univariate

case (d = 1), except that now β̂ is a p × d matrix. The columns of β̂ for
individual components of Yij are formed by applying the same p× n matrix
(X ′X)−1X ′ to each of the columns of Y .

In terms of components, (4.4) implies

β̂aj = βaj +
n∑

i=1

Maieij , where M = (X ′X)−1X ′ (4.5)

Then since Cov(eia, ekb) = δikΣab by (1.4)

Cov(β̂aj , β̂bk) = Cov

(
n∑

i=1

Maieij ,

n∑
ℓ=1

Mbℓeℓk

)
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=
n∑

i=1

n∑
ℓ=1

MaiMbℓ Cov(eij , eℓk)

=

n∑
i=1

n∑
ℓ=1

MaiMbℓδiℓΣjk

=
n∑

i=1

MaiMbi Σjk = (MM ′)ab Σjk

= ((X ′X)−1)ab Σjk (4.6)

since MM ′ = (X ′X)−1X ′ X(X ′X)−1 = (X ′X)−1. Thus

Cov(β̂) = (X ′X)−1 ⊗ Σ (4.7)

We can derive (4.7) more easily using tensor products. By (4.5)

β̂L = βL + (Me)L = βL +
(
M ⊗ Id

)
eL

by Lemma 3.1, and hence (using the relation Cov(AX) = ACov(X)A′)

Cov(β̂L) = Cov
(
(M ⊗ Id) eL

)
=
(
M ⊗ Id

)
Cov(eL)

(
M ⊗ Id

)′
=
(
M ⊗ Id

)(
In ⊗ Σ

)(
M ′ ⊗ Id

)
=
(
MInM

′)⊗ (IdΣId) = MM ′ ⊗ Σ

= (X ′X)−1 ⊗ Σ

by Lemma 3.2, since MM ′ = (X ′X)−1 as in (4.6).

5. The MLE of the d × d matrix Σ . The next result shows that the
maximum likelihood estimator of the matrix Σ is essentially the sample
covariance matrix of the multivariate residuals, which is a natural gener-
alization of the corresponding one-dimensional result.

Theorem 5.1. Assume n ≥ p+d. Then, the maximum likelihood estimator
of Σ for the likelihood (4.2) is

Σ̂ab =
1

n

n∑
i=1

(
Yia − (Xβ̂)ia

)(
Yib − (Xβ̂)ib

)
(5.1)

or equivalently

Σ̂ =
1

n

n∑
i=1

(
Yi − (Xβ̂)i

)(
Yi − (Xβ̂)i

)′
(5.2)
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That is, the maximum likelihood estimator Σ̂ of the d×d covariance matrix Σ
is the sample covariance matrix of the residuals of the multivariate regression
Y = Xβ + e in Section 1 with n− 1 replaced by n.

Proof. Let Q be the d× d matrix with entries

Qab =

n∑
i=1

(
Yia − (Xβ̂)ia

)(
Yib − (Xβ̂)ib

)
(5.3)

which is the right-hand side of (5.1) multiplied by n. We show in Section 8
below that the matrix Q in (5.3) is positive definite with probability one if

n ≥ p+ d, which we assume. Then the object is to show Σ̂ = (1/n)Q.

By (4.2)–(4.3), the likelihood L(β̂,Σ, Y ) is

L(β̂,Σ, Y ) =
1√

(2π)nd det
(
Σ
)n exp(−SΣ/2) (5.4)

where by (5.3)

SΣ =
n∑

i=1

d∑
a=1

d∑
b=1

(
Yia − (Xβ̂)ia

)
Σ−1

ab

(
Yib − (Xβ̂)ib

)
=

d∑
a=1

d∑
b=1

( n∑
i=1

(
Yia − (Xβ̂)ia

)
Σ−1

ab

(
Yib − (Xβ̂)ib

))

=

d∑
a=1

d∑
b=1

QabΣ
−1
ab = tr(QΣ−1)

Thus the likelihood can be written

L(β̂,Σ, Y ) =
1√

(2π)nd det
(
Σ
)n exp

(
−1

2
tr(QΣ−1)

)
(5.5)

After taking logarithms and multiplying by 2, the maximum of (5.5) over
d× d positive definite matrices Σ can be found by maximizing

ϕ(Σ) = n log det(Σ−1)− tr(QΣ−1) (5.6)

Define A = Q1/2Σ−1Q1/2. Then Σ−1 = Q−1/2AQ−1/2 and

ϕ(Σ) = n log det(Q−1/2AQ−1/2) − tr(QQ−1/2AQ−1/2)

= n log det(A)− n log det(Q1/2)2 − tr(AQ−1/2QQ−1/2)

= −n log det(Q) + n log det(A)− tr(A)
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where Q in (5.3) is fixed. By the spectral theorem, A = Q1/2Σ−1Q1/2 =
RDR′ whereD is diagonal andR is orthogonal. Then det(A) = det(RDR′) =
det(D) and tr(A) = tr(RDR′) = tr(D). Thus if D = diag(v1, v2, . . . , vd) are
the eigenvalues of A,

ϕ(Σ) = −n log det(Q) +
d∑

i=1

(
n log(vi)− vi

)
The expression on the right above is maximized over either A or Σ when
vi = n for all i. This implies D = nId and A = RDR′ = RnIdR

′ = nId.
Thus ϕ(Σ) and L(β̂,Σ, Y ) are maximized at

Σ̂ = Q1/2A−1Q1/2 = (1/n)Q

for Q in (5.3). This completes the proof of Theorem 5.1.

6. Hypothesis Testing: A natural generalization of univariate tests for
whether or not coefficients in the regression Y = Xβ+ e in (2.1) are nonzero
is

H0(a) : βaj = 0, 1 ≤ j ≤ d (6.1)

or

H0(a) : β̃a = 0

where β̃a is the ath row of the p × d matrix β. This is equivalent to saying
that the ath covariate column in Xia does not affect any of the components
of Y = Xβ + e, or the data matrix {Yi ∈ Rd : 1 ≤ i ≤ n } does not depend
on the ath covariate.

A natural generalization of (6.1) is

H0 : h′β = 0, h is p× 1 (6.2)

where h is a p× 1 column vector. This is equivalent to

(h′β)j =

p∑
a=1

haβaj = 0, 1 ≤ j ≤ d (6.3)

or
∑p

a=1 haβ̃a = 0. Equivalently, this says that the same linear relation-
ship (6.3) holds for the coefficients βaj in the d componentwise univariate
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regressions (1 ≤ j ≤ d) that are implicit in the multivariate regression
Y = Xβ + e.

If d = 1, the usual way to test h′β =
∑p

a=1 haβa = 0 (or βa = 0 for a
single value of a) is to use the identity

Var(h′β̂) = h′ Cov(β̂)h = σ2h′(X ′X)−1h (d = 1)

If d = 1 and H0 : h′β = 0, the one-dimensional test statistic

T =
h′β̂√

(MSE)h′(X ′X)−1h
where (6.4)

MSE =
1

n− p

n∑
i=1

(Yi − (Xβ̂)i)
2 (6.5)

has a Student’s t distribution with n− p degrees of freedom.
If d > 1, then h′β =

∑p
a=1 haβ̃a is a 1 × d row vector, and a plausible

generalization is to compare the d× d matrix

Hh = (h′β̂)′(h′β̂)/(h′(X ′X)−1h) (6.6)

= (β̂′h)(β̂′h)′/(h′(X ′X)−1h)

with the d× d residual error matrix

E = (Y −Xβ̂)′(Y −Xβ̂) (6.7)

with entries

Eab =

n∑
i=1

(Yia − (Xβ̂)ia)(Yib − (Xβ̂)ib) (6.8)

The matrix E in (6.8) is sometimes called an SSCP matrix, for “Sum of
Squares and Cross Products”, to distinguish it from the “Sum of Squares of
Errors” (or SSE) for univariate regressions.

If d = 1, then Hh/E = t2/(n − p) for t in (6.4), which has distribution
F1,n−p/(n− p) if h′β = 0.

If d > 1, the fact that Hh/E is the ratio of the matrices (6.6) and (6.7)
is made even more awkward by the fact that the three matrices

HhE
−1 E−1Hh E−1/2HhE

−1/2 (6.9)
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are in general different. However, the eigenvalues of the three matrices
in (6.9) are exactly the same. This follows because all three matrices have
the same characteristic polynomial (for example for E−1Hh)

f(λ) = det
(
(E−1Hh)− λI

)
= det

(
E−1(Hh − λE)

)
= det(Hh − λE)/det(E) (6.10)

Note that the matrix Hh in (6.6) has rank(Hh) = 1, since Hh is the outer

product Hh = ww′ for w = (β̂′h)/
√
h′(X ′X)−1h . In addition

Lemma 6.1. For w = (β̂′h)/
√

h′(X ′X)−1h as above,
(i) The three matrices in (6.9) have the same unique nonzero eigenvalue

λ1 = w′E−1w =
(β̂′h)′E−1β̂′h

h′(X ′X)−1h
(6.11)

(ii) The matrices A1 = HhE
−1, A2 = E−1Hh, and A3 = E−1/2HhE

−1/2

have eigenvectors w1 = w, w2 = E−1w, and w3 = E−1/2w, respec-
tively, for λ1, and

(iii) If H0 : h′β = 0 and n ≥ p+ d, the eigenvalue λ1 has the distribution

λ1 = w′E−1w ≈ d

n− p− d+ 1
Fd,n−p−d−1 (6.12)

Thus the hypothesis H0 : h′β = 0 has a test based on a F distribution for a
test statistic that is essentially λ1. We defer the proof of part (iii) to Sections
8 and 10.

Proof. First, I claim that a d× d matrix A has rank(A) = 1 if and only if
A = uv′ is the outer product of two non-zero vectors u, v ∈ Rd. (Exercise:
Prove this.)

If A = uv′ for u, v ̸= 0 and Ax = λx for x, λ ̸= 0, then Ax = u(v′x) =
λx. Since λx ̸= 0, we must have v′x ̸= 0 and x = cu for some c ̸= 0, which
implies uc(v′u) = λcu and λ = v′u. The choice c = 1 (and hence x = u)
corresponds to the normalization v′x = λ.

Assume Hh = ww′ as above. Then A1 = HhE
−1 = ww′E−1 =

w(E−1w)′. Thus w1 = w is an eigenvector for eigenvalue λ = w′E−1w.
Similarly, A2 = E−1Hh = (E−1w)w′ has eigenvector w2 = E−1w and the
same eigenvalue. The argument for A3 is similar.

For the special case of H0(a) : βaj = 0 in (6.1), the eigenvalue is

λ1(a) = β̂aE
−1β̂′

a/
(
(X ′X)−1

)
aa

(6.13)
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where β̂a is the ath row of β̂ and E is the SSCP matrix in (6.8). Note that
the matrix X appears in the statistics λ1 in (6.11) and (6.13) only as the
scalar constant h′(X ′X)−1h, exactly as in the univariate case.

We will derive the exact distribution of λ1 given H0 : h′β = 0 in Sections
8 and 10 below. Before proceeding, let’s show how a simple multivariate two-
sample problem leads to the same test statistic (6.13).

7. A Multivariate Two-Sample t-Test: Suppose that we have two in-
dependent d-dimensional vector-valued samples

(Z1)1, (Z1)2, . . . , (Z1)n1 where (Z1)i ≈ N(µ1,Σ) (7.1)

(Z2)1, (Z2)2, . . . , (Z2)n2 where (Z2)j ≈ N(µ2,Σ)

with the same covariance matrix Σ and that we want to test H0 : µ1 = µ2.
Examples of (7.1) would be two sets of d-dimensional pollution profiles

for two different cities, d tests for two sets of students, Olympic results for
two sets of athletes from two different countries, or d physical measurements
on two sets of human skulls.

Note that this is exactly the same setup as in the classical two-sample
t-test. The only difference is that the observations Zij in (7.1) are vector-
valued with the same unknown d × d covariance matrix Σ, as opposed to
being univariate normal with the same unknown variance σ2.

We could analyze the data in (7.1) by carrying out d different two-sample
t-tests on the d components of Zij . However, this can definitely lead to mis-
leading results if the random vectors Zij have a significant vector difference
that is not aligned with one of the coordinates axes. An appropriate test
of (7.1) would take this possibility into account.

If d = 1, the standard classical test of H0 : µ1 = µ2 is based on the
statistic

T =

√
n1n2

n1 + n2

(
Z1 − Z2

)
/
√
s2 where (7.2)

s2 =
1

n1 + n2 − 2

2∑
i=1

ni∑
j=1

(Zij − Zi)
2

Here s2 is the pooled variance estimator of σ2. If µ1 = µ2, then T has a
Student’s t distribution with n1 + n2 − 2 degrees of freedom. If µ1 ̸= µ2,
then T has a noncentral Student’s t distribution with n1 + n2 − 2 degrees of
freedom.
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A generalization of T for d > 1 due to Hotelling (1931) is

T 2 =
n1n2

n1 + n2
(Z1 − Z2)

′S−1(Z1 − Z2) where (7.3)

S =
1

n1 + n2 − 2

2∑
i=1

ni∑
j=1

(Zij − Zi)(Zij − Zi)
′

Here S is called the pooled sample covariance estimator of the matrix Σ. The
statistic T 2 in (7.3) is called the Hotelling T 2-statistic for the two-sample
multivariate problem (7.1).

The data in (7.1) can be put in the form of a multivariate regression
Y = Xβ + e by rewriting the data (Z1)i, (Z2)j in (7.1) as a (n1 + n2) × d
matrix Y with entries

Yij = (Z1)ij , 1 ≤ i ≤ n1, 1 ≤ j ≤ d

Yij = (Z2)i−n1,j , n1 + 1 ≤ i ≤ n, 1 ≤ j ≤ d

for n = n1 + n2. The model (7.1) is then equivalent to

Yij = (µ1)j + eij , 1 ≤ i ≤ n1, 1 ≤ j ≤ d

Yij = (µ2)j + eij , n1 + 1 ≤ i ≤ n, 1 ≤ j ≤ d

where the rows ei of the n × d matrix e are independent random normal
vectors with distribution N(0,Σ). This can be written in matrix form as

Y = Xβ + e for X =


1 0
1 0
. . .
0 1
0 1
. . .

 and β =

(
µ1

µ2

)
(7.4)

where µ1 and µ2 are now viewed as row vectors. Here X is an n× 2 matrix
with n1 rows equal to (1 0) followed by n2 rows equal to (0 1). Notice
that this is a no-intercept regression. With only slightly more effort, we
could also have transformed the problem into a regression in which the first
column corresponds to an intercept.

If h = (1 −1)′, then h′β = µ1−µ2 in (7.4) andH0 : µ1 = µ2 is equivalent
to H0 : h′β = 0. We now apply (6.2) through (6.13) in Section 6. For X, β,
and Y in (7.4),

X ′X =

(
n1 0
0 n2

)
, β̂ = (X ′X)−1X ′Y =

(
Z1

Z2

)
(7.5)
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where Za = (1/na)
∑na

i=1 Zai are the two sample means in (7.1), now viewed

as row vectors. In particular, β̂a = Za for a = 1, 2 for the two rows of the
2× d matrix β̂. Similarly

β̂′h =

(
Z1

Z2

)′(
1

−1

)
= (Z1 − Z2)

′ and

h′(X ′X)−1h = (1 − 1)

(
1/n1 0
0 1/n2

)(
1

−1

)
=

1

n1
+

1

n2

The eigenvalue λ1 in (6.11) is now

λ1 = (β̂′h)′E−1(β̂′h)/
(
h′(X ′X)−1h

)
=

n1n2

n1 + n2
(Z1 − Z2)

′E−1(Z1 − Z2) (7.6)

where E = (Y −Xβ̂)′(Y −Xβ̂) is the residual error matrix in (6.7)–(6.8) for
n = n1 + n2, with Za now viewed as column vectors. By (7.4), the matrix
of fitted values is

(Xβ̂)ij =

{
(Z1)j 1 ≤ i ≤ n1, 1 ≤ j ≤ d

(Z2)j n1 + 1 ≤ i ≤ n, 1 ≤ j ≤ d

so that the residual error matrix (6.8) is

E =

n1∑
i=1

(Z1i − Z1)(Z1i − Z1)
′ +

n2∑
i=1

(Z2i − Z2)(Z2i − Z2)
′ (7.7)

Thus the pooled covariance matrix S in the two-sample Hotelling T 2 statistic
in (7.3) is S = E/(n1 + n2 − 2) for E in (7.6), and the eigenvalue λ1 in (7.6)
can be written

λ1 =
n1n2

n1 + n2
(Z1 − Z2)

′E−1(Z1 − Z2)

=
1

n1 + n2 − 2
T 2 (7.8)

where T 2 is the two-sample Hotelling T 2 statistic in (7.3).

8. The Distribution of λ1 for “rank one” tests H0 : h′β = 0:
The test procedure of Section 6 compares the d× d rank-one matrix

Hh = (β̂′h)(β̂′h)′/(h′(X ′X)−1h) (8.1)

with the d× d residual error matrix
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E = (Y −Xβ̂)′(Y −Xβ̂) (8.2)

We show below that the matrix E is invertible with probability one if
n ≥ p+ d. By Lemma 6.1 in Section 6, the three matrices HhE

−1, E−1Hh,
and E−1/2HhE

−1/2 have the single nonzero eigenvalue

λ1 = (β̂′h)′E−1β̂′h/
(
h′(X ′X)−1h

)
(8.3)

We next derive a representation of the distribution of the test statistic λ1

in (8.3) given H0 : h′β = 0. By (7.6), this will also give us the distribution
of the two-sample Hotelling T 2 statistic (7.3).

Theorem 8.1. We can write E in (8.2) as

E =

n−p∑
i=1

ZiZ
′
i (8.4)

where Z1, . . . , Zn−p are independent N(0,Σ). If β′h = 0, the eigenvalue λ1

in (8.3) can be written

λ1 = Z ′
0

(
n−p∑
i=1

ZiZ
′
i

)−1

Z0 (8.5)

where Z0, Z1, . . . , Zn−p are independent N(0,Σ).

Remarks. (1) It follows from (8.4) that the d × d matrix E is invertible
with probability one if and only if n ≥ p+ d. (Exercise: Prove this.)

(2) By Lemma 9.2 in Section 9 below, the distribution in (8.5) does not
depend on Σ.

Proof of Theorem 8.1. Since (β̂′h)j =
∑p

a=1 haβ̂aj , it follows from (4.6)
that

Cov(β̂′h)jk =

p∑
a=1

p∑
b=1

hahb Cov(β̂aj , β̂bk) =

p∑
a=1

p∑
b=1

hahb

(
X ′X)−1

)
ab
Σjk

and
Cov(β̂′h) =

(
h′(X ′X)−1h

)
Σ

Thus the column vector β̂′h has the multivariate normal distribution

β̂′h ≈ N
(
β′h,

(
h′(X ′X)−1h

)
Σ
)
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and hence

Z0 = (β̂′h− β′h)/
√
h′(X ′X)−1h ≈ N(0,Σ) (8.6)

If h′β = 0, it follows that the eigenvalue λ1 in (8.3) can be written

λ1 = Z ′
0E

−1Z0 (8.7)

where E = (Y −Xβ̂)′(Y −Xβ̂) is the residual error matrix.
The next step is to find the distribution of the residual error matrix E.

The fitted value matrix satisfies

Xβ̂ = X((X ′X)−1X ′Y ) = X(X ′X)−1X ′(Xβ + e) = Xβ +Ke (8.8)

where K = X(X ′X)−1X ′ is n × n and K = K2 = K ′. It follows from the
spectral theorem that

K = R′DR, D =

(
Ik 0
0 0

)
(8.9)

where R is an n × n orthogonal matrix and k is the number of nonzero
eigenvalues of K. Since tr(K) = tr(R′DR) = tr(DRR′) = tr(D) = k and
tr(K) = tr(X(X ′X)−1X ′) = tr((X ′X)−1X ′X) = tr(Ip) = p, it follows that
k = p.

Let Z = Re for the n× n matrix R in (8.9), so that

Zij =
n∑

a=1

Riaeaj , 1 ≤ i ≤ n, 1 ≤ j ≤ d (8.10)

Thus the same n × n matrix R is applied to each column of e. It follows
from Lemma 3.3 in Section 3 that the matrix Z has the same distribution
as e. In particular, the n rows of Z are independent random vectors with
distribution Zi ≈ N(0,Σ).

By (8.8) and (8.9), the fitted values matrix is

Xβ̂ = Xβ +Ke = Xβ +R′DRe = Xβ + (R′D)Z

and

β̂ = (X ′X)−1X ′X β̂

= β + (X ′X)−1X ′(R′D)Z = β +A(DZ) (8.11)
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where A = (X ′X)−1X ′R′. By (8.8), the residual values matrix Y −Xβ̂ is

Y −Xβ̂ = (Xβ + e)− (Xβ +Ke)

= (In −K)e = R′(In −D)Re = R′(In −D)Z

and

E = (Y −Xβ̂)′(Y −Xβ̂)

= Z ′(In −D)′RR′(In −D)Z = Z ′(In −D)Z (8.12)

If we write β̂ and E in terms of their components,

β̂aj = βaj +
n∑

i=1

Aai

n∑
k=1

DikZkj = βaj +

p∑
i=1

AaiZij and

Eab =

n∑
i=1

Zia

n∑
k=1

(In −D)ikZkb =

n∑
i=p+1

ZiaZib (8.13)

This means that β̂ and β̂′h depend on only the first p rows of Z, while E
depends only on the last n − p rows of Z. In particular, (i) β̂ and E are
independent and (ii) E =

∑n
i=p+1 ZiZ

′
i where Zi is the ith row of Z viewed

as a column vector.
Since Z0 in (8.6) is a linear function of β̂, it follows from (8.13) that

Z0, Zp+1, . . . , Zn are independent random vectors. The relations (8.6), (8.7),
and (8.13) complete the proof of Theorem 8.1.

9. Wishart and Hotelling T 2 Distributions: A d × d random matrix
W is said to have a Wishart distribution with parameters Σ, d, and m (ab-
breviated W ≈ W (d,m,Σ)) if W has the same distribution as the random
d× d matrix

m∑
i=1

ZiZi
′ where Z1, . . . , Zm are independent N(0,Σ) (9.1)

In particular, the Wishart distribution is a distribution of random positive
semidefinite d×dmatrices, rather than of a single univariate random variable.
The random matrix (9.1) can be shown to be positive definite and invertible
(with probability one) if and only if m ≥ d.

We can sum up many of the results in Sections 2–8 in the following
theorem.
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Theorem 9.1. Consider the multivariate regression

Y = Xβ + e, eL ≈ N(0, In ⊗ Σ) (9.2)

where Y is n × d, X is an n × p matrix of rank p, β is p × d, and AL for
a matrix A means the column vector of the matrix entries of A written in
lexicographic order. Let β̂ = (X ′X)−1X ′Y be the MLE of β (Section 4).
Then

(i) β̂L ≈ N
(
βL, (X

′X)−1 ⊗ Σ
)

(ii) E = (Y −Xβ̂)′(Y −Xβ̂) ≈ W (d, n− p,Σ)

(iii) β̂ and E are independent.

Proof. Part (i): See (4.7) or (4.12). Parts (ii,iii): See Section 8.

It follows from (7.4) that the residual error matrix in the multivariate
two-sample problem (7.1) also satisfies E ≈ W (d, n1 + n2 − 2,Σ).

The Wishart distribution is a multivariate generalization of the chi-
square distribution, but also depends on the matrix Σ. For simplicity, let
W (d,m) = W (d,m, Id) denote the Wishart distribution with Σ = Id. Then

Lemma 9.1. In terms of distributions, for any p× d matrix A,

(i) W (d,m,Σ) ≈ Σ1/2W (d,m)Σ1/2

(ii) AW (d,m,Σ)A′ ≈ W (r,m,AΣA′)

Proof. If W =
∑m

i=1 ZiZ
′
i where Zi are independent N(0,Σ), then

AWA′ = A
m∑
i=1

ZiZ
′
iA

′ =
m∑
i=1

(AZi)(AZi)
′

Since Cov(AZi) = ACov(Zi)A
′ = AΣA′ and A is p × d, it follows that

AWA′ is Wishart W (r,m,AΣA′). It follows from the same argument that
if W =

∑m
i=1 NiN

′
i for independent Ni ≈ N(0, Id) and A = Σ1/2, then

AWA ≈ W (d,m,Σ).

A random variable T is said to have a Hotelling’s T 2 distribution with
parameters (d,m) (abbreviated T ≈ T 2(d,m)) if T has the distribution

T ≈ Y ′S−1Y, S =
1

m

m∑
i=1

ZiZi
′ (9.3)

where Y, Z1, . . . , Zm are m+1 independent N(0,Σ) for some positive definite
matrix Σ, or equivalently if
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T ≈ Y ′
(

1

m
W (d,m,Σ)

)−1

Y, Y ≈ N(0,Σ) (9.4)

where Y is independent of W (d,m,Σ).

Lemma 9.2. The distribution T ≈ T 2(d,m) in (9.3) does not depend on Σ.

Proof. By (9.4) and Lemma 9.1,

S ≈ 1

m
W (d,m,Σ) ≈ Σ1/2

(
1

m
W (d,m)

)
Σ1/2

and hence

T ≈ Y ′S−1Y ≈ (Σ1/2N0)
′(Σ−1/2S−1

N Σ−1/2)Σ1/2N0

≈ N ′
0S

−1
N N0, SN =

1

m

m∑
i=1

NiN
′
i

where N0, N1, . . . , Nm are independent N(0, Id). It follows that the distri-
bution of T 2(d,m) does not depend on Σ, so that we can assume Σ = Id in
the definitions (9.3) and (9.4).

The second part of Theorem 8.1 can be stated in a second theorem.

Theorem 9.2. For the multivariate regression (9.2), consider the test
statistic λ1 in (8.3) for the hypothesis H0 : h′β = 0 for an arbitrary p × 1
column vector h. Then

λ1 ≈ T 2(d, n− p)

n− p
(9.5)

has a Hotelling T 2 distribution divided by n−p. In particular, the null distri-
bution for λ1 for the test H0 : h′β = 0 is a scaled Hotelling T 2 distribution.

We prove in the next section that Hotelling T 2(d, n) distributions are
F -distributions with

T ≈ T 2(d,m) ≈ dm

m− d+ 1
Fd,m−d+1 (9.6)

for m ≥ d. In particular T 2(d,m) ≈ d2Fd,1 if m = d. If m < d, the
matrices (9.1) are not invertible (with probability one) and (9.3) and (9.4)
cannot be defined. If m = n− p ≥ d, the eigenvalue λ1 in (9.5) satisfies

λ1 ≈ T 2(d, n− p)

n− p
≈ d

n− p− d+ 1
Fd, n−p−d+1 ≈ V1

V2
(9.7)

where V1 and V2 are independent chi-square random variables with d and
n− p− d+ 1 degrees of freedom, respectively.
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Examples of (9.6) for Tests H0 : h′β = 0: By (8.1)–(8.3) and Theo-
rem 8.1, the sole nonzero eigenvalue λ1 of the three random matrices E−1Hh,
HhE

−1, and E−1/2HhE
−1/2 in (6.9) has the distribution (9.7) if h′β = 0,

h ̸= 0, and n− p ≥ d.
Similarly, the two-sample Hotelling T 2 statistic in (7.3) has the distri-

bution

T 2 =
n1n2

n1 + n2
(Z1 − Z2)

′S−1(Z1 − Z2)

≈ (n1 + n2 − 2)λ1

≈ T 2(d, n1 + n2 − 2) ≈ d(n1 + n2 − 2)

n1 + n2 − d− 1
Fd,n1+n2−d−1

by (7.8), since n = n1 + n2 and r = 2 for λ1 in (7.6) or (7.8), and (9.7).

Exercise 9.1: Suppose that h′β ̸= 0 in (8.1)–(8.3). Show that

λ1 = Z0

(n−r∑
i=1

ZiZ
′
i

)−1

Z ′
0 (9.8)

where Z0, Z1, . . . , Zn−r are normally-distributed independent random vec-
tors, Z0 is N(γ, Id) for some γ ̸= 0, and Z1, . . . , Zr are N(0, Id). Find γ in
terms of h, β, and Σ.

10. The Distribution of T 2(d,m): The purpose of this section is to
prove that Hotelling distributions are F -distributions. Recall that a ran-
dom variable T is said to have a Hotelling T 2(d,m) distribution if it has the
same distribution as

T ≈ Z ′
0

(
1

m

m∑
i=1

ZiZ
′
i

)−1

Z0 (10.1)

where Z0, Z1, . . . , Zm are m+1 independent d-dimensional standard normal
vectors (that is, Zi ≈ N(0, Id)) and m ≥ d. Then

Theorem 10.1. If T ≈ T 2(d,m) as in (10.1) for m ≥ d, then T has the F
distribution

T = T 2(d,m) ≈ dm

m− d+ 1
Fd,m−d+1 (10.2)

Corollary 10.1. Given H0 : β′h = 0 and n ≥ p + d, the quantity λ1 in
Theorem 8.1 has the F distribution

λ1 ≈ T 2(d, n− p)

n− p
≈ d

n− p− d+ 1
Fd, n−p−d+1



Multivariate Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Remark. Note that (10.2) is equivalent to saying

T = T 2(d,m) ≈ m
V1

V2
(10.3)

where V1 ≈ χ2
d , V2 ≈ χ2

m−d+1, and V1 and V2 are independent.

We begin with the statements and proofs of two lemmas:

Lemma 10.1. Assume that Q and X are two arbitrary random variables
with a joint density f(q, x). (Either or both of Q and X may be vector
valued.) Suppose that the conditional distribution of Q given X = x does
not depend on x, which we can write as

fQ|X(q | x) = fQ|X(q) (10.4)

for all x. Then
(i) fQ|X(q) = fQ(q) is the same as the marginal distribution of Q and
(ii) Q and X are independent.

Proof of Lemma 10.1. The joint density f(q, x) for any two random vari-
ables Q and X can be written

f(q, x) = fX(x)fQ|X(q | x) (10.5)

where fX(x) is the marginal density of X and fQ|X(q | x) is the conditional
density of Q given X = x. By (10.4), the marginal distribution of Q is

fQ(q) =

∫
X

f(q, x) dx =

∫
X

fX(x)fQ|X(q | x) dx

=

∫
X

fX(x) dxfQ|X(q) = fQ|X(q)

so that the marginal density fQ(q) is the same as the conditional den-
sity (10.4). Thus fQ|X(q | x) dx = fQ|X(q) = fQ(q) and by (10.5)

f(q, x) = fX(x)fQ(q)

This implies that Q and X are independent, which completes the proof of
Lemma 10.1.

Lemma 10.2. Let A be an invertible d×d matrix that we write (along with
its inverse) in partitioned form as

A =

(
A11 A12

A21 A22

)
, B = A−1 =

(
B11 B12

B21 B22

)
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where A11 and B11 are d1×d1 matrices for d = d1+d2 , d1, d2 > 0. It follows
that A12, B12 are d1 × d2 matrices, A21, B21 are d2 × d1, and A22, B22 are
d2 × d2. Assume that A22 is invertible. Then

B11 =
(
A11 −A12A

−1
22 A21

)−1
(10.6)

Proof of Lemma 10.2. This is a generalization of Cramér’s rule for 2× 2
real matrices to 2× 2 partitioned matrices. By definition

AB =

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
=

(
Id1

0
0 Id2

)

=

(
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)
Thus A11B11 + A12B21 = Id1 and A21B11 + A22B21 = 0. The second rela-
tion implies A22B21 = −A21B11 and hence B21 = −A−1

22 A21B11. The first
relation then becomes

A11B11 +A12B21 = A11B11 −A12A
−1
22 A21B11

=
(
A11 −A12A

−1
22 A21

)
B11 = Id1

It follows that A11 −A12A
−1
22 A21 is invertible and (10.6) holds.

Lemma 10.2 has an interesting corollary, for which we give an alternative
proof:

Corollary 10.1. Assume X ≈ N(µ,Σ) is a normally-distributed random
vector that we write in partitioned form

X =

(
Y
Z

)
µ =

(
a
b

)
Σ =

(
Σ11 Σ12

Σ21 Σ22

)
If Σ22 is invertible, then the conditional distribution

{Y | Z = z } ≈ N
(
a+Σ12Σ

−1
22 (z − b), Σ11 − Σ12Σ

−1
22 Σ21

)
(10.7)

Proof of Corollary 10.1. Write Y = Y −CZ+CZ for a matrix C. Then

Cov(Y − CX,CX) = Cov(Y,CZ)− Cov(CZ,CZ)

= Cov(Y,Z)C ′ − C Cov(Z,Z)C ′

= (Σ12 − CΣ22)C
′
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Set C = Σ12Σ
−1
22 . Then Cov(Y − CZ,CZ) = 0, which implies that Y − CZ

and CZ are independent. In turn, this implies

{Y | Z = z } ≈ {Y − CZ + CZ | Z = z } (10.8)

≈ (Y − CZ) + Cz

Thus the conditional distribution {Y | Z = z } is normal with

E(Y | Z = z) = E(Y − CZ) + Cz = a− Cb+ Cz = a+ C(z − b)

and by (10.8)

Cov(Y | Z = z) = Cov(Y − CZ) = Cov(Y − CZ, Y − CZ)

= Cov(Y )− C Cov(Z, Y )− Cov(Y, Z)C ′ + C Cov(Z,Z)C ′

= Σ11 − CΣ21 − Σ12C
′ + CΣ22C

′

= Σ11 − Σ12Σ
−1
22 Σ21

This completes the proof of the corollary.

We are now ready to begin the proof of Theorem 10.1.

Proof of Theorem 10.1. Let W =
∑m

i=1 Z
′
iZi where Z0, Z1, . . . , Zm are

independent N(0, Id). The main step is to show that the conditional distri-
bution of Z ′

0W
−1Z0 given Z0 = z0 is

{Z ′
0W

−1Z0 | Z0 = z0 } ≈ (z′0z0)/V2 (10.9)

where V2 ≈ χ2(m− d+ 1).

Proof that (10.9) implies Theorem 10.1. Since Z0 and W are inde-
pendent, the relation (10.9) implies that{

Z ′
0W

−1Z0

Z ′
0Z0

∣∣∣∣ Z0 = z0

}
≈ 1/V2, V2 ≈ χ2(n− d+ 1) (10.10)

Note that the right-hand side of (10.10) does not depend on z0. This implies
by Lemma 10.1 that

(i) The unconditioned Q = (Z ′
0W

−1Z0)/(Z
′
0Z0) has the same distri-

bution (10.10) and
(ii) Q = (Z ′

0W
−1Z0)/(Z

′
0Z0) is independent of Z0.

Since T = m(Z ′
0Z0)Q, this implies

T = m(Z ′
0Z0)Q ≈ mV1

1

V2
≈ m

V1

V2
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where V1 = Z ′
0Z0 ≈ χ2

d is independent of Q = 1/V2. This implies (10.3) and
hence (10.2), which completes the proof of Theorem 10.1 given (10.9). It
only remains to prove (10.9).

Proof of (10.9). Since Z0 and W are independent, the distribution

{ Z ′
0W

−1Z0 | Z0 = z0 } ≈ z′0W
−1z0

Let B be a d × d orthogonal matrix. Since Z1, . . . , Zm are independent
N(0, Id), it follows that BZ1, . . . , BZm are also independent N(0, Id) and

z′0W
−1z0 = z′0

(
m∑
i=1

ZiZ
′
i

)−1

z0 ≈ z′0

(
m∑
i=1

(BZi)(BZi)
′

)−1

z0

= z′0

(
B

m∑
i=1

ZiZ
′
i B

′

)−1

z0 = z′0B

(
m∑
i=1

ZiZ
′
i

)−1

B′z0

= (B′z0)
′W−1(B′z0)

Since B can depend on z0, we can choose B so that B′z0 = (
√

z′0z0) e1
where e1 is the first coordinate vector in Rd. Then

z′0W
−1z0 ≈ (B′z0)

′W−1(B′z0) = (z′0z0)
(
W−1

)
11

(10.11)

where the last expression above means the (1, 1) entry of the d× d random
matrix W−1.

Write W in the partitioned form

W =
m∑
i=1

ZiZ
′
i =

(
W11 W12

W21 W22

)
(10.12)

where W11 is 1 × 1, W12 is a 1 × r for r = d − 1, W21 = W ′
12 is r × 1, and

W22 is r × r. Lemma 10.2 above then implies(
W−1

)
11

=
(
W11 −W12W

−1
22 W21

)−1

Since W11 and W12W
−1
22 W21 are 1× 1 (that is, are numbers), (10.11) implies

z′0W
−1z0 ≈ z′0z0

W11 −W12W
−1
22 W21

(10.13)

To prove (10.9), it is now sufficient to prove

W11 −W12W
−1
22 W21 ≈ χ2

m−d+1 (10.14)
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Since W =
∑m

i=1 ZiZ
′
i where Z1, . . . , Zm are independent N(0, Id), we can

write Wab =
∑m

i=1 ZiaZib where Zia are univariate independent standard
normal random variables for 1 ≤ i ≤ m and 1 ≤ a ≤ d.

For definiteness, let Yi = Zi1 (1 ≤ i ≤ m) be the first column of Z and
let X be the n×r random matrix Xia = Zi,a+1 for 1 ≤ a ≤ r = d−1 defined
by the remaining columns. Then for 1 ≤ a ≤ r and 1 ≤ b ≤ r

W11 =

m∑
i=1

Zi1Zi1 =

m∑
i=1

Y 2
i = Y ′Y

(W12)a =

m∑
i=1

Zi1Zi,a+1 =

m∑
i=1

YiXia = (Y ′X)ia

(W22)ab =
m∑
i=1

Zi,a+1Zi,b+1 = (X ′X)ab

Since W21 = W ′
12 = X ′Y ,

W11−W12W
−1
22 W21 = Y ′Y −Y ′X(X ′X)−1X ′Y = Y ′(Im−K)Y (10.15)

where K = X(X ′X)−1X ′ is independent of Y .
Conditional on X = x ∈ Rr, K is an m × m orthogonal projection

matrix with rank(K) = r = d − 1. Similarly rank(Im − K) = m − r =
m− d+ 1. Since Yi are independent N(0, 1) for 1 ≤ i ≤ m, Y ′Y ≈ χ2

m and
Y ′(Im − K)Y ≈ χ2

m−r = χ2
m−d+1 conditional on X = x. Since the latter

distribution does not depend on x, it follows from a second application of
Lemma 10.1 that the unconditional distribution of Y ′(Im −K)Y in (10.15)
is also χ2

m−d+1.
This implies (10.14), which by (10.13) implies (10.9) and completes the

proof of Theorem 10.1.

11. A Higher-Rank Version of H0 : h′β = 0: A natural generalization
of tests of the form H0 : h′β = 0 for the regression Y = Xβ + e is

H0 : Aβ = 0 (11.1)

where A is a q×p matrix with rank(A) = q. Since Aβ is q×d, equation (11.1)
is shorthand for q different relations of the form h′β = 0 for p × 1 column
vectors h. If q = 1, then A is 1 × p, so that A = h′ for a p × 1 column
vector h.

An example of (11.1) would be three independent vector-valued samples

(Z1)1, (Z1)2, . . . , (Z1)n1
where (Z1)i ≈ N(µ1,Σ)

(Z2)1, (Z2)2, . . . , (Z2)n2 where (Z2)j ≈ N(µ2,Σ) (11.2)

(Z3)1, (Z3)2, . . . , (Z3)n3 where (Z3)k ≈ N(µ3,Σ)
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with H0 : µ1 = µ2 = µ3. The one-way layout (11.2) can be put in the
form Y = Xβ + e as in (7.4) where now X is n × 3, β = (µ1 µ2 µ3)

′, and
n = n1 + n2 + n3. In this case, H0 : µ1 = µ2 = µ3 is equivalent to

Aβ =

(
1 −1 0
1 0 −1

)µ1

µ2

µ3

 =

(
µ1 − µ2

µ1 − µ3

)
=

(
0
0

)
(11.3)

which is H0 : Aβ = 0 for a 2× 3 matrix A.
In the univariate case (d = 1), one can show that if H0 : Aβ = 0 holds

and MSE is defined by (6.5), then

F = (Aβ̂)′(A(X ′X)−1A′)−1(Aβ̂)/MSE (11.4)

has a F -distribution with (q, n− p) degrees of freedom.

Exercise 11.1: Show that, if d = 1 and A is q × p, the matrix dimensions
in (11.4) work out so that (11.4) exists as a number.

Exercise 11.2: Prove or disprove: If d = 1 and the one-way layout (11.2)
is written as Y = Xβ + e for β = (µ1 µ2 µ3)

′ analogously to (7.4) for A
in (11.3), then F in (11.4) is the same as the classical one-way ANOVA test
statistic.

Multivariate ANOVA and Regression Tests: A multivariate (d > 1)
version of the test H0 : Aβ = 0 for rank q > 1 can be based on comparing
the d× d matrix

HA = (Aβ̂)′(A(X ′X)−1A′)−1(Aβ̂) (11.5)

with the d× d residual error matrix

E = (Y −Xβ̂)′(Y −Xβ̂)

as before. Since A is q × p and β̂ is p× d,

Cov
(
(Aβ̂)L

)
= Cov

(
(A⊗ Ip)β̂L

)
= (A⊗ Ip) Cov(β̂L)(A

′ ⊗ Ip)

= (A⊗ Ip)((X
′X)−1 ⊗ Σ)(A′ ⊗ Ip) = (A(X ′X)−1A′)⊗ Σ

as in (3.9). If d = 1, then HA and E are numbers and HA/E has an F
distribution given Aβ = 0. As in the rank-one case (q = 1), the multivariate
(d > 1) analog is more complicated, since HA and E are d× d matrices and
the three matrices

E−1HA HAE
−1 E−1/2HAE

−1/2 (11.6)
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are generally different. However, as in (6.9)–(6.10), the eigenvalues of the
three matrices (11.6) are the same. Since E−1 is invertible, the number of
nonzero eigenvalues is the same as the rank of HA, which can be shown to
be the same as q = rank(A) if β ̸= 0.

If q = rank(A) = 1, the three matrices (11.6) have a unique nonzero
eigenvalue λ1, which has the F -distribution (9.7) if h′β = 0.

If q > 1, the matrices (11.6) are generally not of rank one and have more
than one nonzero eigenvalue. Since the third matrix in (11.6) is positive
semidefinite, we can assume λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0. Tests of Aβ = 0
that do not depend on which matrix is chosen in (11.6) can be based on
expressions that depend on different functions of the eigenvalues λi.

The four most-common tests of H0 : Aβ = 0 for q > 1 and the corre-
sponding functions of λi are:

1. Wilk’s Lambda: Λ = det(E)/det(HL + E) =
∏d

i=1
1

λi+1

2. Pillai’s Trace: S1 = tr
(
HL(HL + E)−1

)
=
∑d

i=1
λi

λi+1

3. Hotelling-Lawley Trace: S2 = tr(HLE
−1) =

∑d
i=1 λi

4. Roy’s Greatest Root: S3 = λ1

The last test is named after the Indian statistician S. N. Roy, so that Roy
is not a first name. Wilk’s Lambda is essentially the likelihood ratio test
statistic for H0 : Lβ = 0.

If q = rank(L) = 1, then only one eigenvalue λ1 > 0, and that eigenvalue
has the F -distribution (9.8) if h′β = 0. In that case, the four tests above are
equivalent and have identical P-values.

If q = rank(L) > 1, the four tests use different approximations of their
test statistics in terms of F distributions and give different P -values. In this
case, the four tests can be viewed as tests of H0 : Lβ = 0 against different
alternatives.

The standard test for Roy’s Greatest Root is a little different than the
others in that the approximation only gives a lower bound for the true
P -value. That is, one concludes P ≥ 0.01 (for example) and not that P
is approximately 0.01, as is the case for the other three tests. In fact, it of-
ten happens that the P-value for Roy’s Greatest Root is significantly smaller
than the others, which could then be significantly misleading.

See the SAS documentation for references and more details, and in par-
ticular for references for approximations of the four P-values.
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