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Assume that we have demographic data for a population over a series of
times

0 = t0 < t1 < t2 < . . . < tr (1)

We assume that the data is longitudinal , which means that we follow that
same N = n1 individuals over r time intervals, as opposed to observing
different individuals in different time intervals. In more detail, let

ni be the number being followed (or “at risk”) just before time ti−1 ,
di be the number of observed deaths in [ti−1, ti),
ci be the number of censored individuals in [ti−1, ti), and
∆i = ti − ti−1 be the length of the ith time interval

where [ti−1, ti) means times ti−1 ≤ t < ti. Thus ni+1 = ni − di − ci and
ci is the number of individuals who were last seen at time ti−1 but are not
observed at times t ≥ ti.

The underlying probability model is that individuals die at rate αi in the
interval (ti−1, ti) (whether they are observed or not) and that they are cen-
sored (that is, drop out alive) at rate βi. The probability that an individual
survives until time t = tj is then

S(tj) =
∏

ti≤tj

e−αi∆i =
∏

ti≤tj

e−µi for µi = αi∆i (2)

Similarly, set νi = βi∆i where βi is the censoring rate. Note that the cen-
soring parameters νi and βi do not enter (2) directly. However, they enter
implicitly, since we do not know how many of the initial ni intervals in any
time interval were censored before they had time to die.

By definition, the maximum likelihood estimator (MLE) of S(t) is that
function S(t) in the class (2) that maximizes the likelihood or probability of
observing all of the data (ni, di, ci). From (2), the MLE of S(t) depends only
on the MLEs µ̂i of the µi, where µ̂i depends on the counts (ni, di, ci).

Theorem 1. The maximum likelihood estimator (MLE) for S(t) in (2) for
data (ni, di, ci) is

Ŝ(t) =
∏

ti≤t

(
1 − (di + ci)

ni

)di/(di+ci)

(3)
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Theorem 2. Within errors of the form O(1/n3
i ) for large ni, the estimator

Ŝ(t) in (3) is the same as

Ŝ(t) =
∏

ti≤t

(
1 − di

ni − (1/2)ci

)
(4)

Remarks. Equation (4) is usually called the Actuarial Estimator of S(t).
The notation O(1/n3) (due to Landau) stands for any expression that is
bounded by C/n3 for n ≥ 1 for some fixed (but unknown) constant C < ∞.

Proof of Theorem 1. Suppressing subcripts for the ith interval, the proba-
bility that any one individual out of n = ni individuals neither died nor was
censored in the time interval is exp(−µ−ν) = exp

(−(α+β)∆
)
, since α = αi

and β = βi are rates and ∆ is the length of the time interval. Thus the
probability that m = d + c individuals out of the initial n = ni individuals
either died or were censored is

n!
(n−m)! m!

(
e−µ−ν

)n−m (
1− e−µ−ν

)m (5a)

In general, the probability that a given individual eventually dies before he
or she is censored is κ = µ/(µ+ν) = α/(α+β). One way to see this is to use
the fact that if X and Y are independent exponentially-distributed random
variables with rates α and β respectively, then P (X < Y ) = κ = α/(α + β).

Thus, conditional on m = d+c individuals having died or been censored
in the time interval (ti−1, ti), the probability that we observed d died and c
censored is

m!
d! c!

(
µ

µ + ν

)d (
ν

µ + ν

)c

(5b)

Since (5b) is the probability of observing (d, c) conditional on m = d + c,
and (5a) is the probability of observing m = d+c out of n, the probability of
observing (d, c, n− d− c) for observed deaths, censoring events, and neither
is the product of (5a) and (5b), which is the trinomial probability

n!
(n− d− c)! d! c!

(
e−µ−ν

)n−d−c
[(

1− e−µ−ν
) µ

µ + ν

]d [(
1− e−µ−ν

) ν

µ + ν

]c

In terms of λ = e−µ−ν and κ = µ/(µ + ν), this is

n!
(n− d− c)! d! c!

λn−d−c (1− λ)d+c κd(1− κ)c (6)
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For given values (d, c, n), the probability in (6) is maximized when λ = λ̂ =
(n− d− c)/n and κ = κ̂ = d/(d + c). (Exercise: Prove this.)

In particular, the trinomial likelihood after (5b) is maximized for those
values µ̂ = µ and ν̂ = ν that are equivalent to λ = λ̂ = (n − d − c)/n
and κ = κ̂ = d/(d + c). Thus

µ̂ = (− log λ̂) κ̂ = − log
(

1 − d + c

n

)
d

d + c
(7)

e−µ̂ = λ̂ κ̂ =
(

1 − d + c

n

)d/d+c

This completes the proof of Theorem 1, or equivalently of equation (3).

Proof of Theorem 2. Expanding the logarithm in (7) in a power series,

µ̂ =

((
d + c

n

)
+

1
2

(
d + c

n

)2

+ O

(
1
n3

))
d

d + c

=
d

n

(
1 +

1
2

d + c

n

)
+ O

(
1
n3

)

=
d

n

(
1

1− (1/2)(d + c)/n

)
+ O

(
1
n3

)

=
d

n− (d + c)/2
+ O

(
1
n3

)
(8)

The first term on the right in (8) is the intuitive estimate for the hazard rate
µ = µi, but not for the survival probability e−µi in (2). For the latter, we
need e−µ̂i from µ̂i in (8). Thus

1− e−µ̂ = µ̂ − 1
2
µ̂2 + O(µ̂3)

=
d

n

(
1 +

1
2

(d + c)
n

− 1
2

d

n
+ O

(
1
n2

))

=
d

n

(
1 +

1
2

c

n

)
+ O

(
1
n3

)

=
d/n

1− (1/2)c/n
+ O

(
1
n3

)

=
d

n− c/2
+ O

(
1
n3

)

This implies (4), which completes the proof of Theorem 2.


