Hypergeometric Functions and Diffusion Processes

Stanley Sawyer - Washington University - Vs. November 17, 2008

1. Hypergeometric Functions. The hypergeometric function $F(a, b, c, x)$ is defined as the unique solution $y(x)$ of the equation

$$
\begin{equation*}
x(1-x) y^{\prime \prime}+(c-(a+b+1) x) y^{\prime}-a b y=0 \tag{1.1}
\end{equation*}
$$

of the form

$$
\begin{equation*}
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, \quad a_{0}=1 \tag{1.2}
\end{equation*}
$$

(See, for example, Magnus, Oberhettinger, and Soni, 1966.) Substituting (1.2) into (1.1)

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n(n-1) a_{n} x^{n-1}-\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n} \\
& \quad+c \sum_{n=0}^{\infty} n a_{n} x^{n-1}-(a+b+1) \sum_{n=0}^{\infty} n a_{n} x^{n}+a b \sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=1}^{\infty} n(n-1+c) a_{n} x^{n-1}-\sum_{n=0}^{\infty}(n(n+a+b)+a b) a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left((n+1)(n+c) a_{n+1}-(n+a)(n+b) a_{n}\right) x^{n}=0
\end{aligned}
$$

leads to the recurrence

$$
a_{n+1}=\frac{(n+a)(n+b)}{(n+1)(n+c)} a_{n}
$$

Assuming $c>0$ and $a_{0}=1$,

$$
\begin{align*}
a_{n} & =\prod_{k=0}^{n-1} \frac{(k+a)(k+b)}{(k+c)(k+1)} \tag{1.3}\\
& =\frac{a(a+1) \ldots(a+n-1) b(b+1) \ldots(b+n-1)}{c(c+1) \ldots(c+n-1) n!} \\
& =\frac{a^{(n)} b^{(n)}}{c^{(n)} n!}, \quad a^{(n)}=a(a+1) \ldots(a+n-1)
\end{align*}
$$

Hypergeometric Functions and Diffusion Processes
Thus the hypergeometric function has the series representation

$$
\begin{align*}
& F(a, b, c, x)=\sum_{n=1}^{\infty} \frac{a^{(n)} b^{(n)}}{c^{(n)} n!}=1+\frac{a b}{c} x+\frac{a(a+1) b(b+1)}{c(c+1)} \frac{x^{2}}{2} \\
& \quad+\frac{a(a+1)(a+2) b(b+1)(b+2)}{c(c+1)(c+2)} \frac{x^{3}}{6}+\ldots \tag{1.4}
\end{align*}
$$

In particular
(i) $F(a, b, c, x)=F(b, a, c, x)$
(ii) $F(a, b, c, x)=1$ if and only if $a=0$ or $b=0$
(iii) $F(a, b, c, x)$ is a nonconstant polynomial if and only if a or b is a negative integer
(iv) In all other cases, $F(a, b, c, x)$ has radius of convergence exactly one.

By (1.4)

$$
\begin{aligned}
& F(0, b, c, x)=1 \\
& F(-1, b, c, x)=1-\frac{b}{c} x \\
& F(-2, b, c, x)=1-\frac{2 b}{c} x+\frac{2 b(b+1)}{c(c+1)} \frac{x^{2}}{2}
\end{aligned}
$$

and in general

$$
\begin{align*}
& F(-n, b, c, x)=\sum_{k=0}^{n} \frac{(-n)^{(k)} b^{(k)}}{c^{(k)} k!} x^{k} \\
& \quad=\sum_{k=0}^{n} \frac{(-n)(-n+1) \ldots(-n+k-1) b^{(k)}}{c^{(k)} k!} x^{k} \\
& \quad=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{b^{(k)}}{c^{(k)}} \frac{x^{k}}{k!} \tag{1.5}
\end{align*}
$$

Special cases of polynomials (1.5) are

$$
\begin{aligned}
T_{n}(1-2 x) & =F\left(-n, n, \frac{1}{2}, x\right) \\
P_{n}(1-2 x) & =F(-n, n+1,1, x) \\
C_{n}^{\lambda}(1-2 x) & =\frac{(2 \lambda)^{(n)}}{n!} F\left(-n, n+2 \lambda, \lambda+\frac{1}{2}, x\right) \\
P_{n}^{(\alpha, \beta)}(1-2 x) & =\frac{(1+\alpha)^{(n)}}{n!} F(-n, n+\alpha+\beta+1, \alpha+1, x)
\end{aligned}
$$

where $T_{n}(x), P_{n}(x), C_{n}(x)$, and $P_{n}^{(\alpha, \beta)}(x)$ are the Chebyshev, Legendre, Gegenbauer, and Jacobi polynomials, respectively, defined on the interval $(-1,1)$. Note that every polynomial (1.5) can be written as a constant times a Jacobi polynomial for some values of α and β.

A large number of identities are known for $F(a, b, c, x)$, for example

$$
F(a, b, c, x)=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} y^{b-1}(1-y)^{c-b-1}(1-x y)^{-a} d y
$$

which implies in particular

$$
F(a, b, c, 1)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}
$$

2. Jacobi Polynomials. The Jacobi polynomials are defined by

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(x)=\frac{(1+\alpha)^{(n)}}{n!} F\left(-n, n+\alpha+\beta+1, \alpha+1, \frac{1-x}{2}\right) \tag{2.1}
\end{equation*}
$$

so that $P_{n}^{(\alpha, \beta)}(1)=(1+\alpha)^{(n)} / n!=\Gamma(\alpha+n) /(\Gamma(\alpha+1) / n!)$. In particular

$$
\begin{aligned}
P_{0}^{(\alpha, \beta)}(x) & =1 \\
P_{1}^{(\alpha, \beta)}(x) & =\left(\frac{\alpha-\beta}{2}\right)+\left(\frac{2+\alpha+\beta}{2}\right) x
\end{aligned}
$$

The Jacobi polynomials are orthogonal with respect to the weight $w(x)=$ $(1-x)^{\alpha}(1+x)^{\beta}$ on $(-1,1)$ with

$$
\begin{aligned}
& \int_{-1}^{1} P_{n}^{(\alpha, \beta)}(x) P_{m}^{(\alpha, \beta)}(x)(1-x)^{\alpha}(1+x)^{\beta} d x \\
& \quad=\delta_{n m} \frac{\Gamma(\alpha+n+1) \Gamma(\beta+n+1)}{n!\Gamma(\alpha+\beta+n+1)} \frac{2^{\alpha+\beta+1}}{\alpha+\beta+2 n+1}
\end{aligned}
$$

or

$$
\begin{align*}
& \int_{0}^{1} P_{n}^{(\alpha, \beta)}(1-2 x) P_{m}^{(\alpha, \beta)}(1-2 x) x^{\alpha}(1-x)^{\beta} d x \tag{2.2}\\
& \quad=\delta_{n m} \frac{\Gamma(\alpha+n+1) \Gamma(\beta+n+1)}{(\alpha+\beta+2 n+1) n!\Gamma(\alpha+\beta+n+1)}
\end{align*}
$$

The Jacobi polynomials satisfy Rodrigues' formula

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(x)=\frac{(-1)^{n}}{n!2^{n}} \frac{1}{(1-x)^{\alpha}(1+x)^{\beta}} \frac{d^{n}}{d x^{n}}\left((1-x)^{\alpha+n}(1+x)^{\beta+n}\right) \tag{2.3}
\end{equation*}
$$

which implies

$$
P_{n}^{(\alpha, \beta)}(x)=\frac{1}{2^{n}} \sum_{r=0}^{n}\binom{n+\alpha}{r}\binom{n+\beta}{n-r}(x+1)^{r}(x-1)^{n-r}
$$

In particular

$$
P_{n}^{(\alpha, \beta)}(-x)=(-1)^{n} P_{n}^{(\beta, \alpha)}(x)
$$

and, if $\beta=\alpha, P_{n}^{(\alpha, \beta)}(x)$ is even if n is even and odd if n is odd. Also

$$
P_{n}^{(\alpha, \beta)}(1-2 x)=\sum_{r=0}^{n}(-1)^{n-r}\binom{n+\alpha}{r}\binom{n+\beta}{n-r}(1-x)^{r} x^{n-r}
$$

By (2.1) and (1.1), the function $y(x)=P_{n}^{(\alpha, \beta)}(x)$ satisfies

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}(x)+(\beta-\alpha-(\alpha+\beta+2) x) y^{\prime}(x)+n(n+\alpha+\beta+1) y(x)=0 \tag{2.4}
\end{equation*}
$$

and $u(x)=(1-x)^{\alpha}(1+x)^{\beta} P_{n}^{(\alpha, \beta)}(x)$ satisfies
$\left(1-x^{2}\right) u^{\prime \prime}(x)+(\alpha-\beta-(\alpha+\beta-2) x) u^{\prime}(x)+(n+1)(n+\alpha+\beta) u(x)=0$
In particular, if $v(x)=u(1-2 x)=C x^{\alpha}(1-x)^{\beta} P_{n}^{(\alpha, \beta)}(1-2 x)$,

$$
\begin{equation*}
x(1-x) v^{\prime \prime}(x)+(\beta-1-(\alpha+\beta-2) x) v^{\prime}(x)+(n+1)(n+\alpha+\beta) v(x)=0 \tag{2.5}
\end{equation*}
$$

3. Gegenbauer Polynomials. Gegenbauer polynomials are defined by

$$
\begin{align*}
C_{n}^{\lambda}(x) & =\frac{(2 \lambda)^{(n)}}{n!} F\left(-n, n+2 \lambda, \lambda+\frac{1}{2}, \frac{1-x}{2}\right) \tag{3.1}\\
& =\frac{(2 \lambda)^{(n)}}{(\lambda+(1 / 2))^{(n)}} P^{(\lambda-1 / 2, \lambda-1 / 2)}(x)
\end{align*}
$$

where $P_{n}^{(\alpha, \beta)}(x)$ are Jacobi polynomials. In particular

$$
\begin{align*}
& C_{0}^{\lambda}(x)=1 \tag{3.2}\\
& C_{1}^{\lambda}(x)=2 \lambda x \\
& C_{2}^{\lambda}(x)=2 \lambda(\lambda+1) x^{2}-\lambda
\end{align*}
$$

The Gegenbauer polynomials are orthogonal with respect to the weight $w(x)=\left(1-x^{2}\right)^{\lambda-1 / 2}$ on $(-1,1)$ with

$$
\int_{-1}^{1} C_{n}^{\lambda}(x) C_{m}^{\lambda}(x)\left(1-x^{2}\right)^{\lambda-1 / 2} d x=\delta_{n m} \frac{\pi 2^{1-2 \lambda} \Gamma(n+2 \lambda)}{(\lambda+n) n!\Gamma(\lambda)^{2}}
$$

or

$$
\begin{align*}
& \int_{0}^{1} C_{n}^{\lambda}(1-2 x) C_{m}^{\lambda}(1-2 x)(x(1-x))^{\lambda-1 / 2} d x \\
& \quad=\delta_{n m} \frac{\pi 2^{1-4 \lambda} \Gamma(n+2 \lambda)}{(\lambda+n) n!\Gamma(\lambda)^{2}} \tag{3.3}
\end{align*}
$$

The polynomials $C_{n}^{\lambda}(x)$ satisfy the recurrence relation

$$
\begin{equation*}
C_{n+2}^{\lambda}(x)=\frac{2(n+1+\lambda)}{n+2} x C_{n+1}^{\lambda}(x)-\frac{n+2 \lambda}{n+2} C_{n}(x) \tag{3.4}
\end{equation*}
$$

By (2.4) and (2.5), the function $y(x)=C_{n}^{\lambda}(x)$ satisfies

$$
\left(1-x^{2}\right) y^{\prime \prime}(x)-(2 \lambda+1) x y^{\prime}(x)+n(n+\lambda) y(x)=0
$$

and $u(x)=\left(1-x^{2}\right)^{\lambda-1 / 2} C_{n}^{\lambda}(x)$ satisfies

$$
\left(1-x^{2}\right) u^{\prime \prime}(x)-(2 \lambda-3) x u^{\prime}(x)+(n+1)(n+2 \lambda-1) u(x)=0
$$

In particular, if $v(x)=u(1-2 x)=C(x(1-x))^{\lambda-1 / 2} C_{n}^{\lambda}(1-2 x)$,

$$
\begin{equation*}
x(1-x) v^{\prime \prime}(x)+(\lambda-3 / 2)(1-2 x) v^{\prime}(x)+(n+1)(n+2 \lambda-1) v(x)=0 \tag{3.5}
\end{equation*}
$$

4. Kimura's Expansion: Sturm-Liouville Theory for the Pure-Drift Equation. (This section and the next are essentially Kimura 1955 in a more modern and more mathematical framework.) The pure-drift equation in backwards form is

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)=(1 / 2) x(1-x) \frac{\partial^{2}}{\partial x^{2}} u(x, t)=L_{x} u(x, t) \tag{4.1}
\end{equation*}
$$

This is $L_{x}=(d / d m(x))(d / d s(x))$ in Feller or diffusion-process form where

$$
\begin{equation*}
s(x)=x \quad \text { and } \quad m(d x)=\frac{2 d x}{x(1-x)} \tag{4.2}
\end{equation*}
$$

are the scale function and speed measure of L_{x}. Since both boundaries of $(0,1)$ are pure-exit, the boundary conditions in (4.1) should be $u(0, t)=$ $u(1, t)=0$.

I claim that the inverse of the operator L_{x} in (4.1) on $I_{0}=(0,1)$ with zero boundary conditions on $I=[0,1]$ is $-G_{x}$ where

$$
\begin{equation*}
G_{x} f(x)=\int_{0}^{1} g(x, y) f(y) m(d y) \tag{4.3}
\end{equation*}
$$

where in general

$$
g(x, y)=\frac{s(x \wedge y)(s(1)-s(x \vee y))}{s(1)-s(0)}
$$

where $x \wedge y=\min \{x, y\}$ and $x \vee y=\max \{x, y\}$, and since $s(x)=x$

$$
\begin{align*}
g(x, y) & =x(1-y), \quad 0 \leq x \leq y \leq 1 \tag{4.4}\\
& =y(1-x), \quad 0 \leq y \leq x \leq 1 \\
& \leq \min \{g(x, x), g(y, y)\}
\end{align*}
$$

By (4.3) and (4.4)

$$
\begin{equation*}
G_{x} f(x)=(1-x) \int_{0}^{x} y f(y) m(d y)+x \int_{x}^{1}(1-y) f(y) m(d y) \tag{4.5}
\end{equation*}
$$

Given $f \in C(I)$, it follows from (4.5) that the unique solution of

$$
\begin{equation*}
L_{x} u(x)=(1 / 2) x(1-x) u^{\prime \prime}(x)=-f(x), \quad u(0)=u(1)=0 \tag{4.6}
\end{equation*}
$$

for $u \in C^{2}\left(I_{0}\right) \cap C(I)$ is $u(x)=G_{x} f(x)$.
I claim that G_{x} is a Hilbert-Schmidt operator in the Hilbert space $L^{2}(I, d m)$. Clearly $g(x, y)=g(y, x)$, and by (4.4)

$$
\begin{align*}
& \int_{0}^{1} g(x, y)^{2} m(d y)=(1-x)^{2} \int_{0}^{x} y^{2} \frac{2 d y}{y(1-y)}+x^{2} \int_{x}^{1}(1-y)^{2} \frac{2 d y}{y(1-y)} \\
& \quad \leq(1-x) \int_{0}^{x} 2 y d y+x \int_{x}^{1} 2(1-y) d y \\
& \quad=(1-x) x^{2}+x(1-x)^{2}=x(1-x), \quad 0 \leq x \leq 1 \tag{4.7}
\end{align*}
$$

Thus

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1} g(x, y)^{2} m(d y) m(d x)<\int_{0}^{1} x(1-x) \frac{2 d x}{x(1-x)}=2<\infty \tag{4.8}
\end{equation*}
$$

which is the condition that $g(x, y)$ be Hilbert-Schmidt.
It follows that there exists a complete orthogonal system of eigenvectors $v_{n}(x)$ in $L^{2}(I, d m)$ with eigenvalues μ_{n} satisfying the equations

$$
\begin{equation*}
G_{x} v_{n}(x)=\int_{0}^{1} g(x, y) v_{n}(y) m(d y)=\mu_{n} v_{n}(x) \tag{4.9}
\end{equation*}
$$

(Riesz and Nagy, 1955, Chapter 6). It follows from (4.5)-(4.6) that (4.9) is equivalent to

$$
\begin{equation*}
\mu_{n}(1 / 2) x(1-x) v_{n}^{\prime \prime}(x)=-v_{n}(x), \quad v_{n}(0)=v_{n}(1)=0 \tag{4.10}
\end{equation*}
$$

for $v_{n} \in C^{2}\left(I_{0}\right) \cap C(I)$.
I claim that $\mu_{n}>0$ in (4.9) and (4.10). If $v_{n}(x) \not \equiv 0$, we can assume that $\max _{0 \leq x \leq 1} v_{n}(x)=v_{n}\left(x_{1}\right)>0$ where $0<x_{1}<1$. Then $v_{n}^{\prime \prime}\left(x_{1}\right) \leq 0$, which implies that $\mu_{n}>0$ in (4.10). Thus all eigenvalues $\mu_{n}>0$ in (4.9) and (4.10), and (4.10) is equivalent to

$$
\begin{equation*}
(1 / 2) x(1-x) v_{n}^{\prime \prime}(x)=-\lambda_{n} v_{n}(x), \quad v_{n}(0)=v_{n}(1)=0 \tag{4.11}
\end{equation*}
$$

for $\lambda_{n}=1 / \mu_{n}$.
Since $\mu_{n}>0$ and $g(x, y) \in C(I \times I)$, it follows from Mercer's Theorem (Riesz and Nagy ibid.) that

$$
g(x, y)=\sum_{n=1}^{\infty} \frac{v_{n}(x) v_{n}(y)}{\lambda_{n} Q_{n}}, \quad Q_{n}=\int_{0}^{1} v_{n}(z)^{2} m(d z)
$$

converges uniformly absolutely on I^{2}. This implies that

$$
\begin{equation*}
p(t, x, y)=\sum_{n=1}^{\infty} e^{-\lambda_{n} t} \frac{v_{n}(x) v_{n}(y)}{Q_{n}} \tag{4.12}
\end{equation*}
$$

converges uniformly absolutely for $t \geq \epsilon>0$ and $0 \leq x, y \leq 1$. It is proven in OneDimDiffuseOps.tex that

$$
p(t, x, y) \geq 0, \quad \int_{0}^{1} p(t, x, z) m(d z) \leq 1
$$

for $t>0$ and $0 \leq x \leq 1$, but this will not be needed in the following.
It follows from (4.7), (4.9), and Cauchy's inequality that

$$
\begin{equation*}
\left|v_{n}(x)\right| \leq \lambda_{n} \sqrt{x(1-x)} \sqrt{Q_{n}} \tag{4.13}
\end{equation*}
$$

Thus again by (4.9) and by (4.4) and (4.2)

$$
\begin{align*}
\left|v_{n}(x)\right| & \leq \lambda_{n} \int_{0}^{1} g(x, y)\left|v_{n}(y)\right| m(d y) \\
& \leq \lambda_{n}^{2} \int_{0}^{1} g(x, y) \sqrt{y(1-y)} m(d y) \sqrt{Q_{n}} \\
& =\lambda_{n}^{2} g(x, x) \int_{0}^{1} \frac{2 \sqrt{Q_{n}}}{\sqrt{y(1-y)}} d y \\
& =\lambda_{n}^{2} x(1-x) \pi \sqrt{Q_{n}} \tag{4.14}
\end{align*}
$$

This implies by (4.12)

$$
\begin{equation*}
p(t, x, y) \leq x(1-x) y(1-y) \pi \sum_{n=1}^{\infty} \lambda_{n}^{4} e^{-\lambda_{n} t} \tag{4.15}
\end{equation*}
$$

Since $\sum_{n=1}^{\infty}\left(1 / \lambda_{n}^{2}\right)<2$ by (4.8) and $\sum_{n=1}^{\infty}\left(1 / \lambda_{n}\right)=2$ by Mercer's Theorem and (4.4), this provides a second proof that the series (4.12) converges uniformly for $0 \leq x, y \leq 1$ and $t \geq \epsilon>0$.
5. Eigenpolynomials of a Sturm-Liouville Expansion. By (3.5), the functions $v_{n}(x)=x(1-x) C_{n}(1-2 x)$ for Gegenbauer polynomials $C_{n}(x)=$ $C_{n}^{\lambda}(x)$ with $\lambda=3 / 2$ satisfy

$$
\begin{equation*}
x(1-x) v_{n}^{\prime \prime}(x)+(n+1)(n+2) v_{n}(x)=0 \tag{5.1}
\end{equation*}
$$

with $v_{n}(0)=v_{n}(1)=0$. Thus $v_{n}(x)=x(1-x) C_{n}(1-2 x)$ are eigenfunctions of the equations (4.9) and (4.11) with eigenvalues $\lambda_{n}=(n+1)(n+2) / 2$, where now $n \geq 0$ as opposed to $n \geq 1$ in (4.9), (4.11), and (4.12). In particular, the first few eigenvalues are $\lambda_{0}=1, \lambda_{1}=3, \lambda_{2}=6$, and $\lambda_{3}=10$.

Since the Gegenbauer polynomials $C_{n}^{3 / 2}(x)$ are a complete orthogonal system on $(-1,1)$ with respect to the measure $\nu(d x)=\left(1-x^{2}\right) d x$, the polynomials $v_{n}(x)=x(1-x) C_{n}(1-2 x)$ are complete on I with respect to the speed measure $m(d x)=2 d x /(x(1-x))$ in (4.2).

By (3.3), the polynomials $v_{n}(x)$ satisfy the orthogonality relations

$$
\begin{align*}
\int_{0}^{1} v_{n}(x) v_{m}(x) \frac{2 d x}{x(1-x)} & =\int_{0}^{1} C_{n}(1-2 x) C_{m}(1-2 x) 2 x(1-x) d x \\
& =\delta_{m n} \frac{\pi 2^{2-6}(n+2)!}{(n+3 / 2) n!\Gamma(3 / 2)^{2}} \\
& =\delta_{m n} Q_{n}, \quad Q_{n}=\frac{(n+1)(n+2)}{2(2 n+3)} \tag{5.2}
\end{align*}
$$

using the fact $\Gamma(3 / 2)=(1 / 2) \Gamma(1 / 2)=(1 / 2) \sqrt{\pi}$.
This implies that the transition density (4.12) with respect to speed measure $m(d x)=2 d x /(x(1-x))$ for the partial differential equation (4.1) is

$$
\begin{equation*}
p(t, x, y)=\sum_{n=0}^{\infty} e^{-(n+1)(n+2) t / 2} \frac{2(2 n+3)}{(n+1)(n+2)} v_{n}(x) v_{n}(y) \tag{5.3}
\end{equation*}
$$

for $v_{n}(x)=x(1-x) C_{n}(1-2 x)$.
We can use inequalities for special functions to obtain better inequalities for $v_{n}(x)$ than before. By Magnus et al. (1966),

$$
\max _{-1 \leq y \leq 1}\left|C_{n}^{\lambda}(y)\right|=\binom{n+2 \lambda-1}{n}=\frac{(2 \lambda)^{(n)}}{n!}
$$

and thus

$$
\begin{equation*}
\max _{-1 \leq y \leq 1}\left|C_{n}^{3 / 2}(y)\right|=\binom{n+2}{n}=\frac{(n+1)(n+2)}{2} \tag{5.4}
\end{equation*}
$$

Thus since $v_{n}(x)=x(1-x) C_{n}(1-2 x)$

$$
\left|v_{n}(x)\right| \leq x(1-x) \frac{(n+1)(n+2)}{2}
$$

and hence

$$
\begin{equation*}
\frac{\left|v_{n}(x)\right|}{\sqrt{Q_{n}}} \leq x(1-x) \sqrt{\frac{n+1)(n+2)(2 n+3)}{2}} \tag{5.5}
\end{equation*}
$$

This implies

$$
\begin{align*}
p(t, x, y) & =\sum_{n=1}^{\infty} e^{-\lambda_{n} t} \frac{v_{n}(x) v_{n}(y)}{Q_{n}} \\
& \leq x(1-x) y(1-y) \sum_{n=0}^{\infty} e^{-\lambda_{n} t} \lambda_{n}(2 n+3) \tag{5.6}
\end{align*}
$$

which provides a sharper inequality than (4.15).
In particular

$$
\begin{aligned}
\frac{p(t, x, y)}{x} & =\sum_{n=1}^{\infty} e^{-\lambda_{n} t} \frac{v_{n}(x)}{x} \frac{v_{n}(y)}{Q_{n}} \\
& =(1-x) \sum_{n=1}^{\infty} e^{-\lambda_{n} t} C_{n}(1-2 x) \frac{v_{n}(y)}{Q_{n}}
\end{aligned}
$$

with uniform convergence for $0 \leq x, y \leq 1$ and $t \geq \epsilon>0$. Thus

$$
\begin{align*}
\frac{\partial p(t, 0, y)}{\partial x} & =\sum_{n=1}^{\infty} e^{-\lambda_{n} t} C_{n}(1) \frac{v_{n}(y)}{Q_{n}} \\
& =\sum_{n=1}^{\infty} e^{-\lambda_{n} t} \lambda_{n} \frac{y(1-y) C_{n}(1-2 y)}{Q_{n}} \tag{5.7}
\end{align*}
$$

since $C_{n}^{\lambda}(1)=(2 \lambda)^{(n)} / n!$ and $C_{n}(1)=C_{n}^{(3 / 2)}(1)=3^{(n)} / n!=(n+2)!/(2 n!)=$ $(n+1)(n+2) / 2=\lambda_{n}$.

Since $C_{0}(x)=1$ by (3.2), it follows from (5.3) that

$$
p(t, x, y) \sim 3 e^{-t} x(1-x) y(1-y)
$$

as $t \rightarrow \infty$ uniformly for $0 \leq x, y \leq 1$. Similarly, the solution of

$$
u_{t}=(1 / 2) x(1-x) u_{x x}, \quad u(x, 0)=u_{0}(x)
$$

with $u(0, t)=u(1, t)=0$ is

$$
\begin{align*}
u(x, t) & =\int_{0}^{1} p(t, x, y) u_{0}(y) m(d y) \tag{5.8}\\
& =\sum_{n=0}^{\infty} e^{-(n+1)(n+2) t / 2} \frac{4(2 n+3)}{(n+1)(n+2)} D_{n} v_{n}(x) \\
& \sim 6 x(1-x) e^{-t} D_{0} \quad \text { as } t \rightarrow \infty
\end{align*}
$$

where

$$
\begin{equation*}
D_{n}=(1 / 2) \int_{0}^{1} u_{0}(y) v_{n}(y) m(d y)=\int_{0}^{1} u_{0}(x) C_{n}(1-2 x) d x \tag{5.9}
\end{equation*}
$$

In particular, if ζ is the first-exit time from I, so that $P_{x}(\zeta>t)=$ $\int_{0}^{1} p(t, x, y) m(d y)$ in (5.8), then

$$
\begin{equation*}
u(x, t)=P\left(\zeta>t \mid X_{0}=x\right)=6 x(1-x) e^{-t}+O\left(e^{-6 t}\right) \tag{5.10}
\end{equation*}
$$

The eigenvalue $\lambda_{1}=3$ does not enter (5.10) since the initial function $u_{0}(y)$ is even about $y=1 / 2$ and hence $D_{n}=0$ for odd n.

By (3.1), the polynomials $C_{n}(x)=C_{n}^{3 / 2}(x)$ satisfy

$$
\begin{aligned}
C_{n}(x) & =\frac{(n+1)(n+2)}{2} F\left(-n, n+3,2, \frac{1-x}{2}\right) \\
& =\frac{(n+2)}{2} P^{(1,1)}(x)
\end{aligned}
$$

for Jacobi polynomials $P^{(1,1)}(x)$. For $\lambda=3 / 2$ in (3.1), $3^{(n)}=(n+2)!/ 2$ and $2^{(n)}=(n+1)$! so that $3^{(n)} / 2^{(n)}=(n+2) / 2$.

By (3.2) and (3.4), the $C_{n}(x)$ satisfy the recurrence

$$
\begin{equation*}
C_{n+2}(x)=\frac{2 n+5}{n+2} x C_{n+1}(x)-\frac{n+3}{n+2} C_{n}(x) \tag{5.11}
\end{equation*}
$$

with initial conditions $C_{0}(x)=1$ and $C_{1}(x)=3 x$. In particular ($n=0$), $C_{2}(x)=\frac{3}{2}\left(5 x^{2}-1\right)$ so that $C_{2}(1-2 x)=6(1-5 x(1-x))$.
6. The Confluent Hypergeometric or Kummer's Function. The confluent hypergeometric function or Kummer's function $F(a, c, x)$ is defined as the unique solution $y(x)$ of the equation

$$
\begin{equation*}
x y^{\prime \prime}+(c-x) y^{\prime}-a y=0 \tag{6.1}
\end{equation*}
$$

of the form

$$
\begin{equation*}
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, \quad a_{0}=1 \tag{6.2}
\end{equation*}
$$

Substituting (6.2) into (6.1)

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n(n-1) a_{n} x^{n-1}+c \sum_{n=0}^{\infty} n a_{n} x^{n-1}-\sum_{n=0}^{\infty} n a_{n} x^{n}-a \sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=1}^{\infty} n(n-1+c) a_{n} x^{n-1}-\sum_{n=0}^{\infty}(n+a) a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left((n+1)(n+c) a_{n+1}-(n+a) a_{n}\right) x^{n}=0
\end{aligned}
$$

This leads to the recurrence

$$
a_{n+1}=\frac{(n+a)}{(n+1)(n+c)} a_{n}
$$

Assuming $c>0$ and $a_{0}=1$,

$$
\begin{align*}
& a_{n}=\prod_{k=0}^{n-1} \frac{(k+a)}{(k+c)(k+1)}=\frac{a(a+1) \ldots(a+n-1)}{c(c+1) \ldots(c+n-1) n!} \tag{6.3}\\
& =\frac{a^{(n)}}{c^{(n)} n!}, \quad a^{(n)}=a(a+1) \ldots(a+n-1)
\end{align*}
$$

Thus the confluent hypergeometric function has the series representation

$$
\begin{gather*}
F(a, c, x)=\sum_{n=1}^{\infty} \frac{a^{(n)}}{c^{(n)} n!}=1+\frac{a}{c} x+\frac{a(a+1)}{c(c+1)} \frac{x^{2}}{2} \\
\quad+\frac{a(a+1)(a+2)}{c(c+1)(c+2)} \frac{x^{3}}{6}+\ldots \tag{6.4}
\end{gather*}
$$

In particular
(i) $F(a, c, x)=1$ if and only if $a=0$ or $b=0$
(ii) $F(a, c, x)$ is a nonconstant polynomial if and only if a is a negative integer
(iii) $F(a, c, x)$ is always an entire function of x.

As in (1.4), $F(a, c, x)$ has the polynomial solutions

$$
\begin{aligned}
& F(-n, b, c, x)=\sum_{k=0}^{n} \frac{(-n)^{(k)}}{c^{(k)} k!} x^{k}=\sum_{k=0}^{n} \frac{(-n)(-n+1) \ldots(-n+k-1)}{c^{(k)} k!} x^{k} \\
& \quad=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{x^{k}}{c^{(k)} k!}
\end{aligned}
$$

These do not appear to specialize to any classical polynomial systems. However, the moment generating function of a beta density

$$
\begin{aligned}
\varphi(s) & =\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \int_{0}^{1} x^{a-1}(1-x)^{b-1} e^{s x} d x \\
& =\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \sum_{n=0}^{\infty} \frac{s^{n}}{n!} \frac{\Gamma(a+n) \Gamma(b)}{\Gamma(a+b+n)} \\
& =\sum_{n=0}^{\infty} \frac{s^{n}}{n!} \frac{a^{(n)}}{(a+b)^{(n)}}=F(a, a+b, s)
\end{aligned}
$$

can be expressed in terms of the confluent hypergeometric function.

7. Sturm-Liouville Expansions for the Selection-Drift Equation.

 The selection-drift equation is$$
\begin{align*}
\frac{\partial}{\partial t} u(x, t) & =(1 / 2) x(1-x) \frac{\partial^{2}}{\partial x^{2}} u(x, t)+\gamma x(1-x) \frac{\partial}{\partial x} u(x, t) \tag{7.1}\\
& =L_{x} u(x, t)
\end{align*}
$$

Here $L_{x}=(d / d m(x))(d / d s(x))$ for scale and speed measure

$$
\begin{equation*}
s(x)=\frac{1-e^{-2 \gamma x}}{2 \gamma} \quad \text { and } \quad m(d x)=\frac{2 e^{2 \gamma x} d x}{x(1-x)} \tag{7.2}
\end{equation*}
$$

where $s(0)=0$ and $s^{\prime}(0)=1$. As in (4.3)-(4.8), the Green's function

$$
g(x, y, \gamma)=\frac{s(x \wedge y)(s(1)-s(x \vee y))}{s(1)-s(0)}
$$

satisfies

$$
\int_{0}^{1} \int_{0}^{1} g(x, y, \gamma)^{2} m(d y) m(d x)<\infty
$$

This implies that, for fixed γ, the system

$$
\int_{0}^{1} g(x, y, \gamma) u(y) m(d y)=(1 / \lambda) u(x)
$$

or equivalently

$$
\begin{equation*}
(1 / 2) x(1-x) u^{\prime \prime}(x)+\gamma x(1-x) u^{\prime}(x)=-\lambda u(x) \tag{7.3}
\end{equation*}
$$

with $u(0)=u(1)=0$ has a complete orthogonal set of eigenvectors $u_{n}(x)$ with respect to $m(d x)$ on I.

Consider solutions of (7.3) of the form

$$
\begin{equation*}
u(x, \gamma, \lambda)=\sum_{n=0}^{\infty} a_{n}(\gamma, \lambda) x^{n+r} \tag{7.4}
\end{equation*}
$$

with $a_{0}(\gamma, \lambda)=1$. Substituting (7.4) into (7.3)

$$
\begin{aligned}
& \sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-1}-\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r} \\
& \quad+2 \gamma \sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r}-2 \gamma \sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r+1}+2 \lambda \sum_{n=0}^{\infty} a_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-1} \\
& \quad-\sum_{n=0}^{\infty}((n+r)(n+r-1-2 \gamma)-2 \lambda) a_{n} x^{n+r}-2 \gamma \sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r+1}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{n=-2}^{\infty}(n+r+2)(n+r+1) a_{n+2} x^{n+r+1} \\
& -\sum_{n=-1}^{\infty}((n+r+1)(n+r-2 \gamma)-2 \lambda) a_{n+1} x^{n+r+1}-2 \gamma \sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r+1} \\
= & r(r-1) a_{0} x^{r-1}+\left((r+1) r a_{1}-(r(r-1-2 \gamma)-2 \lambda) a_{0}\right) x^{r} \\
& +\sum_{n=0}^{\infty}\left((n+r+2)(n+r+1) a_{n+2}\right. \\
& \left.\quad-((n+r+1)(n+r-2 \gamma)-2 \lambda) a_{n+1}-2 \gamma(n+r) a_{n}\right) x^{n+r+1}=0
\end{aligned}
$$

Since $a_{0}=1$ by assumption, the first term of the indicial equation

$$
r(r-1) a_{0} x^{r-1}+\left((r+1) r a_{1}-(r(r-1-2 \gamma)-2 \lambda) a_{0}\right) x^{r}=0
$$

implies $r=0$ or $r=1$. However, $r=0$ in the second term implies $\lambda=0$, which violates $\lambda_{n}>0$. The only solution with $\lambda \neq 0$ is $r=1$. This has a unique solution with $a_{0}=1, a_{1}=-(\gamma+\lambda)$, and

$$
\begin{equation*}
a_{n+2}=\frac{(n+2)(n+1-2 \gamma)-2 \lambda}{(n+3)(n+2)} a_{n+1}+\frac{2 \gamma(n+1)}{(n+3)(n+2)} a_{n} \tag{7.5}
\end{equation*}
$$

for $n \geq 0$.
By induction, $a_{n}=a_{n}(\gamma, \lambda)$ is a polynomial in γ and λ of degree n in either γ or λ unless $\lambda=((m+2)(m+1-2 \gamma) / 2$ for some integer $m \geq 0$, in which case $a_{n}(\gamma, \lambda)$ is a polynomial of degree $n-1$ for $n \geq m-2$.

Note that $u(x, \gamma, \lambda)$ cannot be a polynomial in x for any $\gamma \neq 0$. This follows from the fact that $a_{n+2}=a_{n+1}=0$ in (7.5) implies $a_{n}=0$, and by induction $a_{n}=0$ for all $n \geq 0$.

Writing (7.5) as $a_{n+2}=A_{n} a_{n+1}+B_{n} a_{n}$, we have

$$
\begin{equation*}
\left|A_{n}-1\right| \leq \frac{D_{M}}{n}, \quad\left|B_{n}\right| \leq \frac{D_{M}}{n} \tag{7.6}
\end{equation*}
$$

for constants $D_{M}>0$ for $|\gamma| \leq M,|\lambda| \leq M$, and $n \geq 1$. Then by induction

$$
\begin{align*}
\left|a_{n}(\gamma, \lambda)\right| & \leq C_{0} \prod_{k=1}^{n}\left(1+\frac{2 D_{M}}{k}\right) \\
& =C_{0} \exp \left(\sum_{k=1}^{n} \log \left(1+\frac{2 D_{M}}{k}\right)\right) \leq C_{1} n^{2 D_{M}} \tag{7.7}
\end{align*}
$$

uniformly for $|\gamma| \leq M,|\lambda| \leq M$, and $n \geq 1$. Thus the power series $u(x, \gamma, \lambda)$ in (7.4) has a radius of convergence at least one.

Hypergeometric Functions and Diffusion Processes

8. Eigenfunctions of the Selection-Drift Equation are Entire Func-

 tions. Given the solution $u(x)$ of $L_{x} u+\lambda u=0$ in (7.4), we can find a second solution by setting $w(x)=u(x) v(x)$ and solving $L_{x} w+\lambda w=0$ for $v(x)$. Specifically$$
\begin{aligned}
\left(L_{x}+\lambda\right) w(x)= & v(x)\left(L_{x}+\lambda\right) u(x) \\
& +(1 / 2) x(1-x)\left(2 v^{\prime} u^{\prime}+v^{\prime \prime} u+2 \gamma v^{\prime} u^{\prime}\right)=0
\end{aligned}
$$

Since $L_{x} u+\lambda u=0$, this is equivalent to $v^{\prime \prime}(x)+\left(\left(2 u^{\prime}(x) / u(x)\right)+2 \gamma\right) v^{\prime}(x)=0$. If $u(x)>0$ for $0<x<c$, this is solvable in that range with

$$
\begin{equation*}
w(x)=C_{1} u(x)+C_{2} u(x) \int_{x}^{c} \frac{e^{-2 \gamma y}}{u(y)^{2}} d y \tag{8.1}
\end{equation*}
$$

Recall $u(x)=x\left(1+a_{1} x+a_{2} x^{2}+\ldots\right)$ by (7.4), which corresponds to $C_{2}=0$ in (8.1). Thus a second linearly independent solution of $L_{x} u+\lambda u=0$ is

$$
\begin{align*}
u_{2}(x) & =u(x)\left(\frac{1}{x}+2 \lambda \log (1 / x)+C_{3}+\ldots\right) \\
& =\frac{u(x)}{x}\left(1+2 \lambda x \log (1 / x)+C_{3} x+\ldots\right) \tag{8.2}
\end{align*}
$$

Thus, in contrast with $u_{1}(0)=0$ and $u_{1}^{\prime}(0)=1$ for the power-series solution (7.4) with $r=1$, the second solution satisfies $u_{2}(0+)=1$ and $u_{2}^{\prime}(x) \sim 2 \lambda \log (1 / x)$ as $x \rightarrow 0$. We can use (8.1)-(8.2) to show
Theorem 8.1. Assume $\lambda=\lambda(\gamma) \neq 0$ and $u(x)=u(x, \lambda, \gamma)$ is a solution of the equation

$$
\begin{equation*}
(1 / 2) x(1-x) u^{\prime \prime}(x)+\gamma x(1-x) u^{\prime}(x)+\lambda u(x)=0 \tag{8.3}
\end{equation*}
$$

for $0<x<1$. Then $u(0+)=u(1-)=0$ if and only if $u(x)$ is an entire function of x, in which case $u(0)=u(1)=0$.

Proof. If $u(x)$ is an entire function of x that is a solution of (8.3), then $u(0)=u(1)=0$ by (8.3) since $\lambda \neq 0$. Conversely, let $u(x)$ be a solution of (8.3) for $0<x<1$ that satisfies

$$
\begin{equation*}
\lim _{\substack{x>0 \\ x \rightarrow 0}} u(x)=\lim _{\substack{x<1 \\ x \rightarrow 1}} u(x)=0 \tag{8.4}
\end{equation*}
$$

Note that (8.3) has two linearly independent solutions $u_{1}(x), u_{2}(x)$ in any open subinterval $(a, 1-a)$ for $a>0$. It follows from (8.1) and (8.2) that any
solution $u(x)$ of (8.3) that satisfies (8.4) can be analytically continued into a neighborhood of $x=0$ with radius at least one, and by a similar argument $u(x)$ can be analytically continued into a neighborhood of $x=1$ with radius at least one.

Write (8.3) in the form

$$
\begin{equation*}
u^{\prime \prime}(x)+2 \gamma u^{\prime}(x)+\frac{2 \lambda}{x(1-x)} u(x)=0 \tag{8.4}
\end{equation*}
$$

Since $x=0$ and $x=1$ are the only singularities of (8.3) in the form (8.4), it follows from the following lemma (Lemma 8.1) that $u(x)$ can be analytically continued to the entire complex plane. Thus $u(x)$ is entire, which completes the proof of Theorem 8.1 once we have proven Lemma 8.1.

Lemma 8.1. Consider the equation

$$
\begin{equation*}
y^{\prime \prime}(x)+a(x) y^{\prime}(x)+b(x) y(x)=0 \tag{8.5}
\end{equation*}
$$

where $a(x)$ and $b(x)$ have power-series expansions about a point $x=x_{0}$ with radii of convergence at least $R>0$. Then there are two linearly independent solutions of (8.5) for $\left|x-x_{0}\right|<R$ that are representable as power series about $x=x_{0}$ with radius of convergence at least R.

Proof of Lemma 8.1. Assume $x_{0}=0$ for definiteness. Write (8.5) as the system

$$
\begin{equation*}
\binom{y^{\prime}(x)}{y(x)}^{\prime}=A(x)\binom{y^{\prime}(x)}{y(x)} \tag{8.6}
\end{equation*}
$$

where $A(x)$ is the matrix-valued function

$$
A(x)=\left(\begin{array}{cc}
-a(x) & -b(x) \\
1 & 0
\end{array}\right)=\sum_{n=0}^{\infty} A_{n} x^{n}
$$

Here A_{n} are 2×2 matrices with $\left\|A_{n}\right\| \leq C \rho^{n}$ for any $\rho<1 / R$, where $\left\|A_{n}\right\|$ means (for example) the sum of the absolute value of the matrix entries. By Picard iteration, the unique solution of (8.6) is

$$
\begin{aligned}
\binom{y^{\prime}(x)}{y(x)} & =\exp \left(\int_{0}^{x} A(y) d y\right)\binom{y^{\prime}(0)}{y(0)} \\
& =\exp \left(\sum_{n=0}^{\infty} A_{n} \frac{x^{n+1}}{n+1}\right)\binom{y^{\prime}(0)}{y(0)}
\end{aligned}
$$

where $\int_{0}^{x} A(y) d y$ means component by component and

$$
e^{B}=I+B+\frac{B^{2}}{2}+\frac{B^{3}}{3!}+\ldots+\frac{B^{n}}{n!}+\ldots
$$

This expresses the solution of (8.5) in terms of power series about $x=x_{0}$ with radius of convergence at least R, which completes the proof of Lemma 8.1.
Corollary 8.1. Suppose that $a(x)=a(x, z)$ and $b(x)=b(x, z)$ in Lemma 8.1 have convergent power series in x and z for $\left|x-x_{0}\right|<R$ and $|z|<M$. Then the solution $y(x)=y(x, z)$ also has a convergent power series in x and z for $\left|x-x_{0}\right|<R$ and $|z|<M$.
9. An Inequality for the Coefficients of $\boldsymbol{u}(\boldsymbol{x}, \gamma, \boldsymbol{\lambda})$. Recall that by definition in (7.4)

$$
\begin{equation*}
u(x, \gamma, \lambda)=x \sum_{n=0}^{\infty} a_{n}(\gamma, \lambda) x^{n} \tag{9.1}
\end{equation*}
$$

where $a_{n}(\gamma, \lambda)$ are polynomials of degree n in γ and λ. Recall also that $\left|a_{n}(\gamma, \lambda)\right| \leq C n^{2 D_{M}}$ for $|\gamma| \leq M$ and $|\lambda| \leq M$ by (7.7). The purpose here is to show that moreover

Theorem 9.1. If $a_{n}(\gamma, \lambda)$ are the coefficients in (9.1), then

$$
\begin{equation*}
\left|a_{n}(\gamma, \lambda)\right| \leq \frac{C_{M}}{n^{2}} \tag{9.2}
\end{equation*}
$$

uniformly for $|\gamma| \leq M$ and $|\lambda| \leq M$ for any $M<\infty$.
Remark. This implies that $u(x, \gamma, \lambda)$ is an entire function of γ and λ for any fixed x with $|x| \leq 1$. In particular, for fixed γ, the eigenvalues λ_{n} are the zeros of an entire function $u(1, \gamma, \lambda)$.
Proof of Theorem 9.1. Let $a_{n+2}=A_{n} a_{n+1}+B_{n} a_{n}$ be the recurrence (7.5) and let $c_{n}=a_{n+1} / a_{n}$ if $a_{n} \neq 0$. Then

$$
\begin{equation*}
c_{n+1}=A_{n}+\frac{B_{n}}{c_{n}}, \quad n \geq 1 \tag{9.3}
\end{equation*}
$$

We break up the rest of the proof into several lemmas.
Lemma 9.1. For each (γ, λ), either

$$
\begin{align*}
& \text { (i) } \lim _{n \rightarrow \infty} c_{n}=1 \quad \text { or else } \tag{9.4a}\\
& \text { (ii) } \lim _{n \rightarrow \infty} n c_{n}=-2 \gamma \tag{9.4b}
\end{align*}
$$

If (9.4a) holds for some value $(\gamma, \lambda)=\left(\gamma_{0}, \lambda_{0}\right)$, then (9.4a) holds uniformly in some neighborhood of $\left(\gamma_{0}, \lambda_{0}\right)$.

Proof of Lemma 9.1. Recall that $\left|A_{n}-1\right| \leq D / n$ and $\left|B_{n}\right| \leq D / n$ by (7.6). For any $\delta>0$, choose $n_{\delta} \geq(D+D \delta) /(\delta(1-\delta))$. Now assume $\left|c_{n}\right| \geq \delta$ for some $n \geq n_{\delta}$. Then by (9.3)

$$
\left|c_{n+1}\right| \geq 1-\frac{D}{n}-\frac{D}{n \delta}=1-\frac{1}{n \delta}(D+D \delta) \geq \delta
$$

since this is equivalent to $1-\delta \geq(1 / n \delta)(D+D \delta)$ or $n \geq(D+D \delta) /(\delta(1-\delta))$.
This implies that if $\left|c_{n}\right| \geq \delta$ for any $n \geq n_{\delta}$, then $\left|c_{m}\right| \geq \delta$ for all $m \geq n$. This in turn implies $\lim _{n \rightarrow \infty} c_{n}=1$ since $A_{n} \rightarrow 1, B_{n} \rightarrow 0$, and $\left|1 / c_{n}\right| \leq 1 / \delta$ in (9.3).

The only alternative is $\lim _{n \rightarrow \infty}\left|c_{n}\right|=0$. Then $\lim _{n \rightarrow \infty} B_{n} / c_{n}=-1$ by (9.3) and $c_{n} \sim-2 \gamma / n$ by (7.6) and (7.5). Thus, one of the alternatives (9.4) must occur.

To prove local uniformity, assume $\lim \sup _{n \rightarrow \infty}\left|c_{n}\right|>0$. If then $\left|c_{n}\right| \geq 2 \delta$ for some $n \geq(D+D \delta) /(\delta(1-\delta))$, then $\lim _{n \rightarrow \infty} c_{n}=1$ as above. However, $\left|c_{n}\left(\gamma_{0}, \lambda_{0}\right)\right| \geq 2 \delta$ implies $\left|c_{n}(\gamma, \lambda)\right| \geq \delta$ for $\left|\gamma-\gamma_{0}\right|<r,\left|\lambda-\lambda_{0}\right|<r$ for some $r>0$. The argument above then shows that $\lim _{n \rightarrow \infty} c_{n}=1$ uniformly for $\left|\gamma-\gamma_{0}\right|<r$ and $\left|\lambda-\lambda_{0}\right|<r$, which proves local uniformity.

Note that if (9.4b) holds, then $u(x, \gamma, \lambda)$ is automatically an entire function of x and hence λ is an eigenvalue by Theorem 8.1. Thus (9.4a) holds for each λ on the complement of a discrete countable set of λ. The next result is

Lemma 9.2. Assume that (9.4a) holds for some $(\gamma, \lambda)=\left(\gamma_{0}, \lambda_{0}\right)$. Then $\left|a_{n}(\gamma, \lambda)\right| \leq C_{M} / n^{2}$ uniformly in some neighborhood of $\left(\gamma_{0}, \lambda_{0}\right)$.

Proof of Lemma 9.2. By (7.5)

$$
\begin{align*}
A_{n} & =\frac{(n+2)(n+1-2 \gamma)-2 \lambda}{(n+3)(n+2)} \tag{9.5}\\
& =1+\frac{(n+2)(n+1-2 \gamma)-2 \lambda-(n+3)(n+2)}{(n+3)(n+2)} \\
& =1+\frac{(3-2 \gamma) n-4 \gamma-2 \lambda-5 n-6}{(n+3)(n+2)} \\
& =1-\frac{2(1+\gamma)}{n}+O\left(\frac{1}{n^{2}}\right)
\end{align*}
$$

and similarly

$$
B_{n}=\frac{2 \gamma(n+1)}{(n+3)(n+2)} a_{n}=\frac{2 \gamma}{n}+O\left(\frac{1}{n^{2}}\right)
$$

If $c_{n} \rightarrow 1$, then since $c_{n+1}=A_{n}+B_{n} / c_{n}$,

Hypergeometric Functions and Diffusion Processes

$$
c_{n+1}=1-\frac{2(1+\gamma)}{n}+\frac{2 \gamma}{n c_{n}}+O\left(\frac{1}{n^{2}}\right)
$$

This implies $c_{n}=1+O(1 / n)$, which in turn implies

$$
\begin{equation*}
c_{n+1}=1-\frac{2(1+\gamma)}{n}+\frac{2 \gamma}{n}+O\left(\frac{1}{n^{2}}\right)=1-\frac{2}{n}+O\left(\frac{1}{n^{2}}\right) \tag{9.6}
\end{equation*}
$$

By Lemma 9.1, (9.6) holds uniformly in a neighborhood of (γ_{0}, λ_{0}). In this neighborhood, for all $n \geq n_{0}$ and some constant $d \geq 0$,

$$
1-\frac{2}{n}-\frac{d}{n^{2}} \leq \frac{a_{n+1}}{a_{n}} \leq 1-\frac{2}{n}+\frac{d}{n^{2}}
$$

This implies

$$
\prod_{k=n_{0}}^{n}\left(1-\frac{2}{k}-\frac{d}{k^{2}}\right) \leq \frac{a_{n+1}}{a_{n_{0}}} \leq \prod_{k=n_{0}}^{n}\left(1-\frac{2}{k}+\frac{d}{k^{2}}\right)
$$

However

$$
\begin{aligned}
& \prod_{k=n_{0}}^{n}\left(1-\frac{2}{k} \pm \frac{d}{k^{2}}\right)=\exp \left(\sum_{k=n_{0}}^{n} \log \left(1-\frac{2}{k} \pm \frac{d}{k^{2}}\right)\right) \\
& =\exp \left(-2 \sum_{k=n_{0}}^{n} \frac{1}{k}+O\left(\sum_{k=n_{0}}^{n} \frac{1}{k^{2}}\right)\right) \\
& =\frac{1}{n^{2}} \exp (O(1))
\end{aligned}
$$

This completes the proof of Lemma 9.2.
Finally, since the set of λ such that (9.4b) holds for $\gamma=\gamma_{0}$ is discrete, we can choose a large $R>0$ such that there are no eigenvalues λ for $\gamma=\gamma_{0}$ on $\partial N(0, R)$. Since $a_{n}(\gamma, \lambda)$ are polynomials in λ

$$
\begin{equation*}
a_{n}(\gamma, \lambda)=\frac{1}{2 \pi i} \int_{\partial N(0, R)} \frac{a_{n}(\gamma, z) d z}{z-\lambda}, \quad|\lambda|<R \tag{9.7}
\end{equation*}
$$

By assumption, the circle $|z|=R$ contains no eigenvalues for $\gamma=\gamma_{0}$. This implies by Lemma 9.2 and compactness that

$$
\left|a_{n}(\gamma, z)\right| \leq \frac{C_{R}}{n^{2}}
$$

uniformly for $|z|=R$ and $\left|\gamma-\gamma_{0}\right|<r$ for some $r>0$. Then by (9.7)

$$
\left|a_{n}(\gamma, \lambda)\right| \leq \frac{R}{2 \pi} \frac{C_{R}}{n^{2}} \int_{0}^{2 \pi} \frac{d \theta}{\left|R e^{i \theta}-\lambda\right|} \leq \frac{2 C_{R}}{n^{2}}
$$

uniformly for $|\lambda|<R / 2$ and $\left|\gamma-\gamma_{0}\right|<r$. A second application of compactness completes the proof of Theorem 9.1.

References.

1. Kimura, M. (1955) Solution of a process of random genetic drift with a continuous model. Proc. Nat. Acad. Sci. USA 41, 144-150.
2. Kimura, M. (1968) Evolutionary rate at the molecular level. Nature 217, 624-626.
3. Magnus, W., F. Oberhettinger, and R. P. Soli (1966) Formulas and theorems for the special functions of mathematical physics. Springer-Verlag.
4. Riesz, Frigyes, and Bela Sz.Nagy (1955) Functional Analysis. Frederick Ungar Publishing, New York (6th printing, 1972).
