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1. Hypergeometric Functions. The hypergeometric function F (a, b, c, x)
is defined as the unique solution y(x) of the equation

x(1− x)y′′ +
(
c− (a + b + 1)x

)
y′ − aby = 0 (1.1)

of the form

y(x) =
∞∑

n=0

anxn, a0 = 1 (1.2)

(See, for example, Magnus, Oberhettinger, and Soni, 1966.) Substitut-
ing (1.2) into (1.1)

∞∑
n=1

n(n− 1)anxn−1 −
∞∑

n=0

n(n− 1)anxn

+ c

∞∑
n=0

nanxn−1 − (a + b + 1)
∞∑

n=0

nanxn + ab

∞∑
n=0

anxn

=
∞∑

n=1

n(n− 1 + c)anxn−1 −
∞∑

n=0

(
n(n + a + b) + ab

)
anxn

=
∞∑

n=0

(
(n + 1)(n + c)an+1 − (n + a)(n + b)an

)
xn = 0

leads to the recurrence

an+1 =
(n + a)(n + b)
(n + 1)(n + c)

an

Assuming c > 0 and a0 = 1,

an =
n−1∏

k=0

(k + a)(k + b)
(k + c)(k + 1)

(1.3)

=
a(a + 1) . . . (a + n− 1)b(b + 1) . . . (b + n− 1)

c(c + 1) . . . (c + n− 1)n!

=
a(n)b(n)

c(n) n!
, a(n) = a(a + 1) . . . (a + n− 1)
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Thus the hypergeometric function has the series representation

F (a, b, c, x) =
∞∑

n=1

a(n)b(n)

c(n)n!
= 1 +

ab

c
x +

a(a + 1)b(b + 1)
c(c + 1)

x2

2

+
a(a + 1)(a + 2)b(b + 1)(b + 2)

c(c + 1)(c + 2)
x3

6
+ . . . (1.4)

In particular
(i) F (a, b, c, x) = F (b, a, c, x)
(ii) F (a, b, c, x) = 1 if and only if a = 0 or b = 0
(iii) F (a, b, c, x) is a nonconstant polynomial if and only if a or b is a negative

integer
(iv) In all other cases, F (a, b, c, x) has radius of convergence exactly one.
By (1.4)

F (0, b, c, x) = 1

F (−1, b, c, x) = 1− b

c
x

F (−2, b, c, x) = 1− 2b

c
x +

2b(b + 1)
c(c + 1)

x2

2

and in general

F (−n, b, c, x) =
n∑

k=0

(−n)(k)b(k)

c(k)k!
xk

=
n∑

k=0

(−n)(−n + 1) . . . (−n + k − 1) b(k)

c(k)k!
xk

=
n∑

k=0

(−1)k

(
n

k

)
b(k)

c(k)

xk

k!
(1.5)

Special cases of polynomials (1.5) are

Tn(1− 2x) = F (−n, n,
1
2
, x)

Pn(1− 2x) = F (−n, n + 1, 1, x)

Cλ
n(1− 2x) =

(2λ)(n)

n!
F (−n, n + 2λ, λ +

1
2
, x)

P (α,β)
n (1− 2x) =

(1 + α)(n)

n!
F (−n, n + α + β + 1, α + 1, x)
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where Tn(x), Pn(x), Cn(x), and P
(α,β)
n (x) are the Chebyshev, Legendre,

Gegenbauer, and Jacobi polynomials, respectively, defined on the interval
(−1, 1). Note that every polynomial (1.5) can be written as a constant times
a Jacobi polynomial for some values of α and β.

A large number of identities are known for F (a, b, c, x), for example

F (a, b, c, x) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

yb−1(1− y)c−b−1(1− xy)−ady

which implies in particular

F (a, b, c, 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

2. Jacobi Polynomials. The Jacobi polynomials are defined by

P (α,β)
n (x) =

(1 + α)(n)

n!
F

(
−n, n + α + β + 1, α + 1,

1− x

2

)
(2.1)

so that P
(α,β)
n (1) = (1 + α)(n)/n! = Γ(α + n)/(Γ(α + 1)/n!). In particular

P
(α,β)
0 (x) = 1

P
(α,β)
1 (x) =

(
α− β

2

)
+

(
2 + α + β

2

)
x

The Jacobi polynomials are orthogonal with respect to the weight w(x) =
(1− x)α(1 + x)β on (−1, 1) with

∫ 1

−1

P (α,β)
n (x)P (α,β)

m (x) (1− x)α(1 + x)β dx

= δnm
Γ(α + n + 1)Γ(β + n + 1)

n! Γ(α + β + n + 1)
2α+β+1

α + β + 2n + 1
or

∫ 1

0

P (α,β)
n (1− 2x)P (α,β)

m (1− 2x) xα(1− x)β dx (2.2)

= δnm
Γ(α + n + 1)Γ(β + n + 1)

(α + β + 2n + 1) n! Γ(α + β + n + 1)

The Jacobi polynomials satisfy Rodrigues’ formula

P (α,β)
n (x) =

(−1)n

n! 2n

1
(1− x)α(1 + x)β

dn

dxn

(
(1− x)α+n(1 + x)β+n

)
(2.3)
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which implies

P (α,β)
n (x) =

1
2n

n∑
r=0

(
n + α

r

)(
n + β

n− r

)
(x + 1)r(x− 1)n−r

In particular

P (α,β)
n (−x) = (−1)nP (β,α)

n (x)

and, if β = α, P
(α,β)
n (x) is even if n is even and odd if n is odd. Also

P (α,β)
n (1− 2x) =

n∑
r=0

(−1)n−r

(
n + α

r

)(
n + β

n− r

)
(1− x)rxn−r

By (2.1) and (1.1), the function y(x) = P
(α,β)
n (x) satisfies

(1−x2)y′′(x) +
(
β−α−(α+β+2)x

)
y′(x) + n(n+α+β+1)y(x) = 0 (2.4)

and u(x) = (1− x)α(1 + x)βP
(α,β)
n (x) satisfies

(1−x2)u′′(x) +
(
α−β− (α+β− 2)x

)
u′(x) + (n+1)(n+α+β)u(x) = 0

In particular, if v(x) = u(1− 2x) = Cxα(1− x)βP
(α,β)
n (1− 2x),

x(1−x)v′′(x) +
(
β−1−(α+β−2)x

)
v′(x) + (n+1)(n+α+β)v(x) = 0 (2.5)

3. Gegenbauer Polynomials. Gegenbauer polynomials are defined by

Cλ
n(x) =

(2λ)(n)

n!
F

(
−n, n + 2λ, λ +

1
2
,
1− x

2

)
(3.1)

=
(2λ)(n)

(λ + (1/2))(n)
P (λ−1/2,λ−1/2)(x)

where P
(α,β)
n (x) are Jacobi polynomials. In particular

Cλ
0 (x) = 1 (3.2)

Cλ
1 (x) = 2λx

Cλ
2 (x) = 2λ(λ + 1)x2 − λ
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The Gegenbauer polynomials are orthogonal with respect to the weight
w(x) = (1− x2)λ−1/2 on (−1, 1) with

∫ 1

−1

Cλ
n(x)Cλ

m(x) (1− x2)λ−1/2 dx = δnm
π21−2λΓ(n + 2λ)
(λ + n)n! Γ(λ)2

or
∫ 1

0

Cλ
n(1− 2x)Cλ

m(1− 2x)
(
x(1− x)

)λ−1/2
dx

= δnm
π21−4λΓ(n + 2λ)
(λ + n)n! Γ(λ)2

(3.3)

The polynomials Cλ
n(x) satisfy the recurrence relation

Cλ
n+2(x) =

2(n + 1 + λ)
n + 2

xCλ
n+1(x) − n + 2λ

n + 2
Cn(x) (3.4)

By (2.4) and (2.5), the function y(x) = Cλ
n(x) satisfies

(1− x2)y′′(x) − (2λ + 1)xy′(x) + n(n + λ)y(x) = 0

and u(x) = (1− x2)λ−1/2Cλ
n(x) satisfies

(1− x2)u′′(x) − (2λ− 3)xu′(x) + (n + 1)(n + 2λ− 1)u(x) = 0

In particular, if v(x) = u(1− 2x) = C
(
x(1− x)

)λ−1/2
Cλ

n(1− 2x),

x(1−x)v′′(x) + (λ−3/2)(1−2x)v′(x) + (n+1)(n+2λ−1)v(x) = 0 (3.5)

4. Kimura’s Expansion: Sturm-Liouville Theory for the Pure-Drift
Equation. (This section and the next are essentially Kimura 1955 in a
more modern and more mathematical framework.) The pure-drift equation
in backwards form is

∂

∂t
u(x, t) = (1/2)x(1− x)

∂2

∂x2
u(x, t) = Lxu(x, t) (4.1)

This is Lx = (d/dm(x))(d/ds(x)) in Feller or diffusion-process form where

s(x) = x and m(dx) =
2dx

x(1− x)
(4.2)
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are the scale function and speed measure of Lx. Since both boundaries of
(0, 1) are pure-exit, the boundary conditions in (4.1) should be u(0, t) =
u(1, t) = 0.

I claim that the inverse of the operator Lx in (4.1) on I0 = (0, 1) with
zero boundary conditions on I = [0, 1] is −Gx where

Gxf(x) =
∫ 1

0

g(x, y)f(y)m(dy) (4.3)

where in general

g(x, y) =
s(x ∧ y) (s(1)− s(x ∨ y))

s(1)− s(0)

where x ∧ y = min{x, y} and x ∨ y = max{x, y}, and since s(x) = x

g(x, y) = x(1− y), 0 ≤ x ≤ y ≤ 1 (4.4)
= y(1− x), 0 ≤ y ≤ x ≤ 1

≤ min
{
g(x, x), g(y, y)

}

By (4.3) and (4.4)

Gxf(x) = (1− x)
∫ x

0

yf(y)m(dy) + x

∫ 1

x

(1− y)f(y)m(dy) (4.5)

Given f ∈ C(I), it follows from (4.5) that the unique solution of

Lxu(x) = (1/2)x(1− x)u′′(x) = −f(x), u(0) = u(1) = 0 (4.6)

for u ∈ C2(I0) ∩ C(I) is u(x) = Gxf(x).
I claim that Gx is a Hilbert-Schmidt operator in the Hilbert space

L2
(
I, dm

)
. Clearly g(x, y) = g(y, x), and by (4.4)

∫ 1

0

g(x, y)2m(dy) = (1− x)2
∫ x

0

y2 2dy

y(1− y)
+ x2

∫ 1

x

(1− y)2
2dy

y(1− y)

≤ (1− x)
∫ x

0

2ydy + x

∫ 1

x

2(1− y)dy

= (1− x)x2 + x(1− x)2 = x(1− x), 0 ≤ x ≤ 1 (4.7)

Thus
∫ 1

0

∫ 1

0

g(x, y)2m(dy)m(dx) <

∫ 1

0

x(1− x)
2dx

x(1− x)
= 2 < ∞ (4.8)
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which is the condition that g(x, y) be Hilbert-Schmidt.
It follows that there exists a complete orthogonal system of eigenvectors

vn(x) in L2
(
I, dm

)
with eigenvalues µn satisfying the equations

Gxvn(x) =
∫ 1

0

g(x, y)vn(y)m(dy) = µnvn(x) (4.9)

(Riesz and Nagy, 1955, Chapter 6). It follows from (4.5)–(4.6) that (4.9) is
equivalent to

µn(1/2)x(1− x)v′′n(x) = −vn(x), vn(0) = vn(1) = 0 (4.10)

for vn ∈ C2(I0) ∩ C(I).
I claim that µn > 0 in (4.9) and (4.10). If vn(x) 6≡ 0, we can assume

that max0≤x≤1 vn(x) = vn(x1) > 0 where 0 < x1 < 1. Then v′′n(x1) ≤ 0,
which implies that µn > 0 in (4.10). Thus all eigenvalues µn > 0 in (4.9)
and (4.10), and (4.10) is equivalent to

(1/2)x(1− x)v′′n(x) = −λnvn(x), vn(0) = vn(1) = 0 (4.11)

for λn = 1/µn.
Since µn > 0 and g(x, y) ∈ C(I × I), it follows from Mercer’s Theorem

(Riesz and Nagy ibid.) that

g(x, y) =
∞∑

n=1

vn(x)vn(y)
λnQn

, Qn =
∫ 1

0

vn(z)2m(dz)

converges uniformly absolutely on I2. This implies that

p(t, x, y) =
∞∑

n=1

e−λnt vn(x)vn(y)
Qn

(4.12)

converges uniformly absolutely for t ≥ ε > 0 and 0 ≤ x, y ≤ 1. It is proven
in OneDimDiffuseOps.tex that

p(t, x, y) ≥ 0,

∫ 1

0

p(t, x, z)m(dz) ≤ 1

for t > 0 and 0 ≤ x ≤ 1, but this will not be needed in the following.
It follows from (4.7), (4.9), and Cauchy’s inequality that

|vn(x)| ≤ λn

√
x(1− x)

√
Qn (4.13)
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Thus again by (4.9) and by (4.4) and (4.2)

|vn(x)| ≤ λn

∫ 1

0

g(x, y)|vn(y)|m(dy)

≤ λ2
n

∫ 1

0

g(x, y)
√

y(1− y)m(dy)
√

Qn

= λ2
n g(x, x)

∫ 1

0

2
√

Qn√
y(1− y)

dy

= λ2
n x(1− x)π

√
Qn (4.14)

This implies by (4.12)

p(t, x, y) ≤ x(1− x)y(1− y)π

∞∑
n=1

λ4
ne−λnt (4.15)

Since
∑∞

n=1(1/λ2
n) < 2 by (4.8) and

∑∞
n=1(1/λn) = 2 by Mercer’s Theo-

rem and (4.4), this provides a second proof that the series (4.12) converges
uniformly for 0 ≤ x, y ≤ 1 and t ≥ ε > 0.

5. Eigenpolynomials of a Sturm-Liouville Expansion. By (3.5), the
functions vn(x) = x(1− x)Cn(1− 2x) for Gegenbauer polynomials Cn(x) =
Cλ

n(x) with λ = 3/2 satisfy

x(1− x)v′′n(x) + (n + 1)(n + 2)vn(x) = 0 (5.1)

with vn(0) = vn(1) = 0. Thus vn(x) = x(1−x)Cn(1−2x) are eigenfunctions
of the equations (4.9) and (4.11) with eigenvalues λn = (n + 1)(n + 2)/2,
where now n ≥ 0 as opposed to n ≥ 1 in (4.9), (4.11), and (4.12). In
particular, the first few eigenvalues are λ0 = 1, λ1 = 3, λ2 = 6, and λ3 = 10.

Since the Gegenbauer polynomials C
3/2
n (x) are a complete orthogonal

system on (−1, 1) with respect to the measure ν(dx) = (1 − x2)dx, the
polynomials vn(x) = x(1 − x)Cn(1 − 2x) are complete on I with respect to
the speed measure m(dx) = 2dx/(x(1− x)) in (4.2).

By (3.3), the polynomials vn(x) satisfy the orthogonality relations
∫ 1

0

vn(x)vm(x)
2dx

x(1− x)
=

∫ 1

0

Cn(1− 2x)Cm(1− 2x) 2x(1− x) dx

= δmn
π22−6(n + 2)!

(n + 3/2)n! Γ(3/2)2

= δmnQn, Qn =
(n + 1)(n + 2)

2(2n + 3)
(5.2)
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using the fact Γ(3/2) = (1/2)Γ(1/2) = (1/2)
√

π.
This implies that the transition density (4.12) with respect to speed

measure m(dx) = 2dx/(x(1−x)) for the partial differential equation (4.1) is

p(t, x, y) =
∞∑

n=0

e−(n+1)(n+2)t/2 2(2n + 3)
(n + 1)(n + 2)

vn(x)vn(y) (5.3)

for vn(x) = x(1− x)Cn(1− 2x).
We can use inequalities for special functions to obtain better inequalities

for vn(x) than before. By Magnus et al. (1966),

max
−1≤y≤1

|Cλ
n(y)| =

(
n + 2λ− 1

n

)
=

(2λ)(n)

n!

and thus

max
−1≤y≤1

|C3/2
n (y)| =

(
n + 2

n

)
=

(n + 1)(n + 2)
2

(5.4)

Thus since vn(x) = x(1− x)Cn(1− 2x)

|vn(x)| ≤ x(1− x)
(n + 1)(n + 2)

2

and hence

|vn(x)|√
Qn

≤ x(1− x)

√
n + 1)(n + 2)(2n + 3)

2
(5.5)

This implies

p(t, x, y) =
∞∑

n=1

e−λnt vn(x)vn(y)
Qn

≤ x(1− x)y(1− y)
∞∑

n=0

e−λntλn(2n + 3) (5.6)

which provides a sharper inequality than (4.15).
In particular

p(t, x, y)
x

=
∞∑

n=1

e−λnt vn(x)
x

vn(y)
Qn

= (1− x)
∞∑

n=1

e−λntCn(1− 2x)
vn(y)
Qn
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with uniform convergence for 0 ≤ x, y ≤ 1 and t ≥ ε > 0. Thus

∂p(t, 0, y)
∂x

=
∞∑

n=1

e−λntCn(1)
vn(y)
Qn

=
∞∑

n=1

e−λntλn
y(1− y)Cn(1− 2y)

Qn
(5.7)

since Cλ
n(1) = (2λ)(n)/n! and Cn(1) = C

(3/2)
n (1) = 3(n)/n! = (n+2)!/(2n!) =

(n + 1)(n + 2)/2 = λn.
Since C0(x) = 1 by (3.2), it follows from (5.3) that

p(t, x, y) ∼ 3e−tx(1− x)y(1− y)

as t →∞ uniformly for 0 ≤ x, y ≤ 1. Similarly, the solution of

ut = (1/2)x(1− x)uxx, u(x, 0) = u0(x)

with u(0, t) = u(1, t) = 0 is

u(x, t) =
∫ 1

0

p(t, x, y)u0(y)m(dy) (5.8)

=
∞∑

n=0

e−(n+1)(n+2)t/2 4(2n + 3)
(n + 1)(n + 2)

Dnvn(x)

∼ 6x(1− x)e−tD0 as t →∞
where

Dn = (1/2)
∫ 1

0

u0(y)vn(y)m(dy) =
∫ 1

0

u0(x)Cn(1− 2x)dx (5.9)

In particular, if ζ is the first-exit time from I, so that Px(ζ > t) =∫ 1

0
p(t, x, y)m(dy) in (5.8), then

u(x, t) = P (ζ > t | X0 = x) = 6x(1− x)e−t + O
(
e−6t

)
(5.10)

The eigenvalue λ1 = 3 does not enter (5.10) since the initial function u0(y)
is even about y = 1/2 and hence Dn = 0 for odd n.

By (3.1), the polynomials Cn(x) = C
3/2
n (x) satisfy

Cn(x) =
(n + 1)(n + 2)

2
F

(
−n, n + 3, 2,

1− x

2

)

=
(n + 2)

2
P (1,1)(x)
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for Jacobi polynomials P (1,1)(x). For λ = 3/2 in (3.1), 3(n) = (n+2)!/2 and
2(n) = (n + 1)! so that 3(n)/2(n) = (n + 2)/2.

By (3.2) and (3.4), the Cn(x) satisfy the recurrence

Cn+2(x) =
2n + 5
n + 2

xCn+1(x) − n + 3
n + 2

Cn(x) (5.11)

with initial conditions C0(x) = 1 and C1(x) = 3x. In particular (n = 0),
C2(x) = 3

2 (5x2 − 1) so that C2(1− 2x) = 6
(
1− 5x(1− x)

)
.

6. The Confluent Hypergeometric or Kummer’s Function. The
confluent hypergeometric function or Kummer’s function F (a, c, x) is defined
as the unique solution y(x) of the equation

xy′′ + (c− x)y′ − ay = 0 (6.1)

of the form

y(x) =
∞∑

n=0

anxn, a0 = 1 (6.2)

Substituting (6.2) into (6.1)

∞∑
n=1

n(n− 1)anxn−1 + c

∞∑
n=0

nanxn−1 −
∞∑

n=0

nanxn − a

∞∑
n=0

anxn

=
∞∑

n=1

n(n− 1 + c)anxn−1 −
∞∑

n=0

(n + a)anxn

=
∞∑

n=0

(
(n + 1)(n + c)an+1 − (n + a)an

)
xn = 0

This leads to the recurrence

an+1 =
(n + a)

(n + 1)(n + c)
an

Assuming c > 0 and a0 = 1,

an =
n−1∏

k=0

(k + a)
(k + c)(k + 1)

=
a(a + 1) . . . (a + n− 1)

c(c + 1) . . . (c + n− 1) n!
(6.3)

=
a(n)

c(n) n!
, a(n) = a(a + 1) . . . (a + n− 1)
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Thus the confluent hypergeometric function has the series representation

F (a, c, x) =
∞∑

n=1

a(n)

c(n)n!
= 1 +

a

c
x +

a(a + 1)
c(c + 1)

x2

2

+
a(a + 1)(a + 2)
c(c + 1)(c + 2)

x3

6
+ . . . (6.4)

In particular
(i) F (a, c, x) = 1 if and only if a = 0 or b = 0
(ii) F (a, c, x) is a nonconstant polynomial if and only if a is a negative

integer
(iii) F (a, c, x) is always an entire function of x.
As in (1.4), F (a, c, x) has the polynomial solutions

F (−n, b, c, x) =
n∑

k=0

(−n)(k)

c(k)k!
xk =

n∑

k=0

(−n)(−n + 1) . . . (−n + k − 1)
c(k)k!

xk

=
n∑

k=0

(−1)k

(
n

k

)
xk

c(k) k!

These do not appear to specialize to any classical polynomial systems. How-
ever, the moment generating function of a beta density

ϕ(s) =
Γ(a + b)
Γ(a)Γ(b)

∫ 1

0

xa−1(1− x)b−1esx dx

=
Γ(a + b)
Γ(a)Γ(b)

∞∑
n=0

sn

n!
Γ(a + n)Γ(b)
Γ(a + b + n)

=
∞∑

n=0

sn

n!
a(n)

(a + b)(n)
= F (a, a + b, s)

can be expressed in terms of the confluent hypergeometric function.

7. Sturm-Liouville Expansions for the Selection-Drift Equation.
The selection-drift equation is

∂

∂t
u(x, t) = (1/2)x(1− x)

∂2

∂x2
u(x, t) + γx(1− x)

∂

∂x
u(x, t) (7.1)

= Lxu(x, t)
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Here Lx = (d/dm(x))(d/ds(x)) for scale and speed measure

s(x) =
1− e−2γx

2γ
and m(dx) =

2e2γxdx

x(1− x)
(7.2)

where s(0) = 0 and s′(0) = 1. As in (4.3)–(4.8), the Green’s function

g(x, y, γ) =
s(x ∧ y) (s(1)− s(x ∨ y))

s(1)− s(0)

satisfies ∫ 1

0

∫ 1

0

g(x, y, γ)2m(dy)m(dx) < ∞

This implies that, for fixed γ, the system

∫ 1

0

g(x, y, γ)u(y)m(dy) = (1/λ)u(x)

or equivalently

(1/2)x(1− x)u′′(x) + γx(1− x)u′(x) = −λu(x) (7.3)

with u(0) = u(1) = 0 has a complete orthogonal set of eigenvectors un(x)
with respect to m(dx) on I.

Consider solutions of (7.3) of the form

u(x, γ, λ) =
∞∑

n=0

an(γ, λ)xn+r (7.4)

with a0(γ, λ) = 1. Substituting (7.4) into (7.3)

∞∑
n=0

(n + r)(n + r − 1)anxn+r−1 −
∞∑

n=0

(n + r)(n + r − 1)anxn+r

+ 2γ

∞∑
n=0

(n + r)anxn+r − 2γ

∞∑
n=0

(n + r)anxn+r+1 + 2λ

∞∑
n=0

anxn+r

=
∞∑

n=0

(n + r)(n + r − 1)anxn+r−1

−
∞∑

n=0

(
(n + r)(n + r − 1− 2γ)− 2λ

)
anxn+r − 2γ

∞∑
n=0

(n + r)anxn+r+1
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=
∞∑

n=−2

(n + r + 2)(n + r + 1)an+2x
n+r+1

−
∞∑

n=−1

(
(n + r + 1)(n + r − 2γ)− 2λ

)
an+1x

n+r+1 − 2γ

∞∑
n=0

(n + r)anxn+r+1

= r(r − 1)a0x
r−1 +

(
(r + 1)ra1 −

(
r(r − 1− 2γ)− 2λ

)
a0

)
xr

+
∞∑

n=0

(
(n + r + 2)(n + r + 1)an+2

− (
(n + r + 1)(n + r − 2γ)− 2λ

)
an+1 − 2γ(n + r)an

)
xn+r+1 = 0

Since a0 = 1 by assumption, the first term of the indicial equation

r(r − 1)a0x
r−1 +

(
(r + 1)ra1 −

(
r(r − 1− 2γ)− 2λ

)
a0

)
xr = 0

implies r = 0 or r = 1. However, r = 0 in the second term implies λ = 0,
which violates λn > 0. The only solution with λ 6= 0 is r = 1. This has a
unique solution with a0 = 1, a1 = −(γ + λ), and

an+2 =
(n + 2)(n + 1− 2γ)− 2λ

(n + 3)(n + 2)
an+1 +

2γ(n + 1)
(n + 3)(n + 2)

an (7.5)

for n ≥ 0.
By induction, an = an(γ, λ) is a polynomial in γ and λ of degree n in

either γ or λ unless λ = ((m + 2)(m + 1− 2γ)/2 for some integer m ≥ 0, in
which case an(γ, λ) is a polynomial of degree n− 1 for n ≥ m− 2.

Note that u(x, γ, λ) cannot be a polynomial in x for any γ 6= 0. This
follows from the fact that an+2 = an+1 = 0 in (7.5) implies an = 0, and by
induction an = 0 for all n ≥ 0.

Writing (7.5) as an+2 = Anan+1 + Bnan, we have

|An − 1| ≤ DM

n
, |Bn| ≤ DM

n
(7.6)

for constants DM > 0 for |γ| ≤ M , |λ| ≤ M , and n ≥ 1. Then by induction

|an(γ, λ)| ≤ C0

n∏

k=1

(
1 +

2DM

k

)

= C0 exp

(
n∑

k=1

log
(

1 +
2DM

k

))
≤ C1n

2DM (7.7)

uniformly for |γ| ≤ M , |λ| ≤ M , and n ≥ 1. Thus the power series u(x, γ, λ)
in (7.4) has a radius of convergence at least one.
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8. Eigenfunctions of the Selection-Drift Equation are Entire Func-
tions. Given the solution u(x) of Lxu + λu = 0 in (7.4), we can find a
second solution by setting w(x) = u(x)v(x) and solving Lxw + λw = 0 for
v(x). Specifically

(Lx + λ)w(x) = v(x)(Lx + λ)u(x)

+ (1/2)x(1− x)
(
2v′u′ + v′′u + 2γv′u′

)
= 0

Since Lxu+λu = 0, this is equivalent to v′′(x)+((2u′(x)/u(x))+2γ)v′(x) = 0.
If u(x) > 0 for 0 < x < c, this is solvable in that range with

w(x) = C1u(x) + C2u(x)
∫ c

x

e−2γy

u(y)2
dy (8.1)

Recall u(x) = x(1 + a1x + a2x
2 + . . .) by (7.4), which corresponds to C2 = 0

in (8.1). Thus a second linearly independent solution of Lxu + λu = 0 is

u2(x) = u(x)
(

1
x

+ 2λ log(1/x) + C3 + . . .

)

=
u(x)

x

(
1 + 2λx log(1/x) + C3x + . . .

)
(8.2)

Thus, in contrast with u1(0) = 0 and u′1(0) = 1 for the power-series so-
lution (7.4) with r = 1, the second solution satisfies u2(0+) = 1 and
u′2(x) ∼ 2λ log(1/x) as x → 0. We can use (8.1)–(8.2) to show

Theorem 8.1. Assume λ = λ(γ) 6= 0 and u(x) = u(x, λ, γ) is a solution of
the equation

(1/2)x(1− x)u′′(x) + γx(1− x)u′(x) + λu(x) = 0 (8.3)

for 0 < x < 1. Then u(0+) = u(1−) = 0 if and only if u(x) is an entire
function of x, in which case u(0) = u(1) = 0.

Proof. If u(x) is an entire function of x that is a solution of (8.3), then
u(0) = u(1) = 0 by (8.3) since λ 6= 0. Conversely, let u(x) be a solution
of (8.3) for 0 < x < 1 that satisfies

lim
x>0
x→0

u(x) = lim
x<1
x→1

u(x) = 0 (8.4)

Note that (8.3) has two linearly independent solutions u1(x), u2(x) in any
open subinterval (a, 1−a) for a > 0. It follows from (8.1) and (8.2) that any
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solution u(x) of (8.3) that satisfies (8.4) can be analytically continued into a
neighborhood of x = 0 with radius at least one, and by a similar argument
u(x) can be analytically continued into a neighborhood of x = 1 with radius
at least one.

Write (8.3) in the form

u′′(x) + 2γu′(x) +
2λ

x(1− x)
u(x) = 0 (8.4)

Since x = 0 and x = 1 are the only singularities of (8.3) in the form (8.4), it
follows from the following lemma (Lemma 8.1) that u(x) can be analytically
continued to the entire complex plane. Thus u(x) is entire, which completes
the proof of Theorem 8.1 once we have proven Lemma 8.1.

Lemma 8.1. Consider the equation

y′′(x) + a(x)y′(x) + b(x)y(x) = 0 (8.5)

where a(x) and b(x) have power-series expansions about a point x = x0 with
radii of convergence at least R > 0. Then there are two linearly independent
solutions of (8.5) for |x − x0| < R that are representable as power series
about x = x0 with radius of convergence at least R.

Proof of Lemma 8.1. Assume x0 = 0 for definiteness. Write (8.5) as the
system (

y′(x)
y(x)

)′
= A(x)

(
y′(x)
y(x)

)
(8.6)

where A(x) is the matrix-valued function

A(x) =
(−a(x) −b(x)

1 0

)
=

∞∑
n=0

Anxn

Here An are 2× 2 matrices with ‖An‖ ≤ Cρn for any ρ < 1/R, where ‖An‖
means (for example) the sum of the absolute value of the matrix entries. By
Picard iteration, the unique solution of (8.6) is

(
y′(x)
y(x)

)
= exp

(∫ x

0

A(y)dy

)(
y′(0)
y(0)

)

= exp

( ∞∑
n=0

An
xn+1

n + 1

)(
y′(0)
y(0)

)
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where
∫ x

0
A(y)dy means component by component and

eB = I + B +
B2

2
+

B3

3!
+ . . . +

Bn

n!
+ . . .

This expresses the solution of (8.5) in terms of power series about x = x0 with
radius of convergence at least R, which completes the proof of Lemma 8.1.

Corollary 8.1. Suppose that a(x) = a(x, z) and b(x) = b(x, z) in
Lemma 8.1 have convergent power series in x and z for |x − x0| < R and
|z| < M . Then the solution y(x) = y(x, z) also has a convergent power series
in x and z for |x− x0| < R and |z| < M .

9. An Inequality for the Coefficients of u(x, γ, λ). Recall that by
definition in (7.4)

u(x, γ, λ) = x

∞∑
n=0

an(γ, λ)xn (9.1)

where an(γ, λ) are polynomials of degree n in γ and λ. Recall also that
|an(γ, λ)| ≤ Cn2DM for |γ| ≤ M and |λ| ≤ M by (7.7). The purpose here is
to show that moreover

Theorem 9.1. If an(γ, λ) are the coefficients in (9.1), then

|an(γ, λ)| ≤ CM

n2
(9.2)

uniformly for |γ| ≤ M and |λ| ≤ M for any M < ∞.

Remark. This implies that u(x, γ, λ) is an entire function of γ and λ for
any fixed x with |x| ≤ 1. In particular, for fixed γ, the eigenvalues λn are
the zeros of an entire function u(1, γ, λ).

Proof of Theorem 9.1. Let an+2 = Anan+1 + Bnan be the recur-
rence (7.5) and let cn = an+1/an if an 6= 0. Then

cn+1 = An +
Bn

cn
, n ≥ 1 (9.3)

We break up the rest of the proof into several lemmas.
Lemma 9.1. For each (γ, λ), either

(i) lim
n→∞

cn = 1 or else (9.4a)

(ii) lim
n→∞

ncn = −2γ (9.4b)

If (9.4a) holds for some value (γ, λ) = (γ0, λ0), then (9.4a) holds uniformly
in some neighborhood of (γ0, λ0).
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Proof of Lemma 9.1. Recall that |An − 1| ≤ D/n and |Bn| ≤ D/n
by (7.6). For any δ > 0, choose nδ ≥ (D + Dδ)/(δ(1 − δ)). Now assume
|cn| ≥ δ for some n ≥ nδ. Then by (9.3)

|cn+1| ≥ 1− D

n
− D

nδ
= 1− 1

nδ
(D + Dδ) ≥ δ

since this is equivalent to 1−δ ≥ (1/nδ)(D+Dδ) or n ≥ (D+Dδ)/(δ(1−δ)).
This implies that if |cn| ≥ δ for any n ≥ nδ, then |cm| ≥ δ for all m ≥ n.

This in turn implies limn→∞ cn = 1 since An → 1, Bn → 0, and |1/cn| ≤ 1/δ
in (9.3).

The only alternative is limn→∞ |cn| = 0. Then limn→∞Bn/cn = −1
by (9.3) and cn ∼ −2γ/n by (7.6) and (7.5). Thus, one of the alterna-
tives (9.4) must occur.

To prove local uniformity, assume lim supn→∞ |cn| > 0. If then |cn| ≥ 2δ
for some n ≥ (D + Dδ)/(δ(1− δ)), then limn→∞ cn = 1 as above. However,
|cn(γ0, λ0)| ≥ 2δ implies |cn(γ, λ)| ≥ δ for |γ − γ0| < r, |λ− λ0| < r for some
r > 0. The argument above then shows that limn→∞ cn = 1 uniformly for
|γ − γ0| < r and |λ− λ0| < r, which proves local uniformity.

Note that if (9.4b) holds, then u(x, γ, λ) is automatically an entire func-
tion of x and hence λ is an eigenvalue by Theorem 8.1. Thus (9.4a) holds for
each λ on the complement of a discrete countable set of λ. The next result
is

Lemma 9.2. Assume that (9.4a) holds for some (γ, λ) = (γ0, λ0). Then
|an(γ, λ)| ≤ CM/n2 uniformly in some neighborhood of (γ0, λ0).

Proof of Lemma 9.2. By (7.5)

An =
(n + 2)(n + 1− 2γ)− 2λ

(n + 3)(n + 2)
(9.5)

= 1 +
(n + 2)(n + 1− 2γ)− 2λ− (n + 3)(n + 2)

(n + 3)(n + 2)

= 1 +
(3− 2γ)n− 4γ − 2λ− 5n− 6

(n + 3)(n + 2)

= 1− 2(1 + γ)
n

+ O

(
1
n2

)

and similarly

Bn =
2γ(n + 1)

(n + 3)(n + 2)
an =

2γ

n
+ O

(
1
n2

)

If cn → 1, then since cn+1 = An + Bn/cn,
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cn+1 = 1− 2(1 + γ)
n

+
2γ

ncn
+ O

(
1
n2

)

This implies cn = 1 + O(1/n), which in turn implies

cn+1 = 1− 2(1 + γ)
n

+
2γ

n
+ O

(
1
n2

)
= 1− 2

n
+ O

(
1
n2

)
(9.6)

By Lemma 9.1, (9.6) holds uniformly in a neighborhood of (γ0, λ0). In this
neighborhood, for all n ≥ n0 and some constant d ≥ 0,

1− 2
n
− d

n2
≤ an+1

an
≤ 1− 2

n
+

d

n2

This implies
n∏

k=n0

(
1− 2

k
− d

k2

)
≤ an+1

an0

≤
n∏

k=n0

(
1− 2

k
+

d

k2

)

However
n∏

k=n0

(
1− 2

k
± d

k2

)
= exp

(
n∑

k=n0

log
(

1− 2
k
± d

k2

))

= exp

(
−2

n∑

k=n0

1
k

+ O

(
n∑

k=n0

1
k2

))

=
1
n2

exp
(
O(1)

)

This completes the proof of Lemma 9.2.

Finally, since the set of λ such that (9.4b) holds for γ = γ0 is discrete,
we can choose a large R > 0 such that there are no eigenvalues λ for γ = γ0

on ∂N(0, R). Since an(γ, λ) are polynomials in λ

an(γ, λ) =
1

2πi

∫

∂N(0,R)

an(γ, z) dz

z − λ
, |λ| < R (9.7)

By assumption, the circle |z| = R contains no eigenvalues for γ = γ0. This
implies by Lemma 9.2 and compactness that

|an(γ, z)| ≤ CR

n2

uniformly for |z| = R and |γ − γ0| < r for some r > 0. Then by (9.7)

|an(γ, λ)| ≤ R

2π

CR

n2

∫ 2π

0

dθ

|Reiθ − λ| ≤
2CR

n2

uniformly for |λ| < R/2 and |γ − γ0| < r. A second application of compact-
ness completes the proof of Theorem 9.1.
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