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1. Hypergeometric Functions. The hypergeometric function F(a,b, ¢, )
is defined as the unique solution y(x) of the equation

z(1—2)y" + (c—(a+b+1)z)y —aby =0 (1.1)
of the form
= Z apx”™, ap=1 (1.2)
n=0

(See, for example, Magnus, Oberhettinger, and Soni, 1966.) Substitut-
ing (1.2) into (1.1)

i (n — Dayz™t — in(n—l)anx"
n=0

n=1
+ cZnanm”_l — (a—l—b-l—l)Znanx” + abZanx"
n=0 n=0 n=0
:Zn(n—1+can Z (n+a+b)+ab)a,z"
n=1 =
= Z((n+1)(n+c)an+1 —(n+a)(n+b)an>m" =0
n=0

leads to the recurrence

n+1 = (

Assuming ¢ > 0 and ag = 1,

T (k4 a)(k+b)
Gn = kli[o CEDICES) (13)

ala+1)...(a+n—-1b0b+1)...(b+n—-1)
clc+1)...(c+n—-1)n!

oM pm)

= Lot e =ale+ ). @tn-1)
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Thus the hypergeometric function has the series representation

= aMp™) ab ala+1)b(b+1) 22
Fla,be,z) = 712::1 cmnl L P * clc+1) 2
a(a+1)(a+2)b(b+1)(b+ 2) 23
— (1.4)
c(c+1)(c+2) 6

In particular
(i) F(a,b,c,z) = F(b,a,c,x)
(ii) F(a,b,c,x) =1if and only ifa=0o0r b =0
(iii) F(a,b,c,x) is a nonconstant polynomial if and only if a or b is a negative
integer
(iv) In all other cases, F'(a,b,c,z) has radius of convergence exactly one.
By (1.4)

F(0,b,c,z) = 1
F(-1,b,c,z) = 1—9x

c

2b 20(b+ 1) 22
F(~2,b I B Sl M
( ) 7671.) Caj—i_ C(C+1) 2

and in general

n (k)b(k)
2k
F(—n,b,c,x) Z c(k)k'
k=0
B Z”:( n)(—n+1)...(—n+k—1)bH b
o — c(B) k!
~ L () bF) xk
=) (-1 (k)@ﬁ (1.5)
k=0

Special cases of polynomials (1.5) are

1

T.1—-2z) = F(—n,n, -, )

757
P,(1-2z) = F(—n,n+1,1,2)
2)) (") 1
CHM1—2zx) = %F(—n,n—k 20 A+ 5,:1;)
n!
1 (n)
Plf) (1 —2z) = ﬂF(—n,n +a+0+1,a+1,2)

n!
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where T, (x), P,(x), Cp(z), and pld) () are the Chebyshev, Legendre,
Gegenbauer, and Jacobi polynomials, respectively, defined on the interval
(—1,1). Note that every polynomial (1.5) can be written as a constant times
a Jacobi polynomial for some values of a and S3.

A large number of identities are known for F'(a, b, ¢, x), for example

—r(b)?((i)— 3 /0 Y=y T (L - ay) T dy

which implies in particular

F(a,b,c,x) =

I'(e)I'(c—a—1b)

F(a,b,c,1) = T(c—a)T(c—b)

2. Jacobi Polynomials. The Jacobi polynomials are defined by

(1+a)™

P ) = 12
n:

1—
F(—n,n—f—a—f—ﬁ—kl,a—i—l, 2$> (2.1)

so that Péa’m(l) =14+ a)™/n! =T(a+n)/(T(a+1)/n!). In particular
P (z) = 1
a - 2
e = (557) < ()

The Jacobi polynomials are orthogonal with respect to the weight w(z) =
(1—2)*(1+x)? on (—1,1) with

1
/ P (1) PLd) () (1 — 2)*(1 + 2)P dz
-1

Fa+n+1)I(B+n+1) 20+6+1

"o nlD(a+B+n+1) a+B+2n+1
or
1
/pT(La,B)(l_zx)Pr(na’ﬂ)(l—2x)x°‘(1—w)ﬁdw (2:2)
0
s T(a+n+1D)I(B+n+1)
"a+B+2n+ D)0 T(a+B+n+1)

The Jacobi polynomials satisfy Rodrigues’ formula

P = o e () @3
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which implies

potte) = LS (") () e

In particular
PP (—z) = (=1)"P" (x)

and, if 8 = a, P*? (x) is even if n is even and odd if n is odd. Also

Plf) (1 - 22) = i(—l)"‘T (" - O‘) (" " 5) (1—a)a""

r n—r
r=0

By (2.1) and (1.1), the function y(z) = P{*? (z) satisfies
(1—2?)y"(z) + (B—a—(a+B+2)2)y (z) + n(n+a+B+1)y(z) = 0 (2.4)
and u(z) = (1 — 2)%(1 + )PP *? (2) satisfies
(1—2*)u"(z) + (a—B—(a+B8-2)z)u' (z) + (n+1)(n+a+Bu(z) = 0
In particular, if v(z) = u(1 — 2z) = Cz*(1 — 2)8P*? (1 — 22),
z(1-z)v" () + (B—1—(a+B-2)z)v (z) + (n+1)(n+a+B)v(z) = 0 (2.5)
3. Gegenbauer Polynomials. Gegenbauer polynomials are defined by

R OV 11—
Cr(x) = o F n,n—|—2/\,)\+2, 5 (3.1)

(2>\)(n) —1/2,0—1/2
= orammts @)

where PT(La’ﬂ ) (x) are Jacobi polynomials. In particular

Co(z) =1 (3.2)
2\x
Cz) = 22\ +1)z? — A

Q
>
—~
8

I
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The Gegenbauer polynomials are orthogonal with respect to the weight
w(z) = (1 —2?)*~Y2 on (—1,1) with

7217220 (n + 2))
(A+n)n!T(N)?

1
/ C’é‘(a:)Cf,‘l(:c) (1-— 332))‘_1/2 dr = Opm
1
or

A—1/2

/1 CM1 —22)C) (1 — 2x) (z(1 —x)) dx

0
7r21_4>‘F(n +2))

= Onm 3.3
(A+n)n!T'(N)? (3:3)
The polynomials C)\ () satisfy the recurrence relation
2(n+1+X) n 42X
A A
_ _ 8 4
o) = V00 ) - P B0 e

By (2.4) and (2.5), the function y(x) = C)(x) satisfies
(1— 22y (z) — @A+ Day'(z) + nln+ Ny(z) = 0
and u(z) = (1 — 22) /20 (2) satisfies
(1—2®)u"(x) — (2A = 3)zu/(x) + (n+1)(n+ 2\ — Du(z) = 0
In particular, if v(z) = u(l — 22) = C(z(1 — 2))/2CM(1 - 22),
1=z (z) + (A=3/2)(1—22)0(2) + (n+1)(n+2A—1)v(z) = 0 (3.5)

4. Kimura’s Expansion: Sturm-Liouville Theory for the Pure-Drift
Equation. (This section and the next are essentially Kimura 1955 in a
more modern and more mathematical framework.) The pure-drift equation
in backwards form is

0 0?
au(x,t) = (1/2)x(1—m)wu(m,t) = Lu(z,t) (4.1)

This is L, = (d/dm(z))(d/ds(x)) in Feller or diffusion-process form where

2dx

s(x)=x and m(dzx)= -1

(4.2)
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are the scale function and speed measure of L,. Since both boundaries of
(0,1) are pure-exit, the boundary conditions in (4.1) should be u(0,t) =
u(1,t) = 0.

I claim that the inverse of the operator L, in (4.1) on Iy = (0,1) with
zero boundary conditions on I = [0, 1] is —G, where

Got(w) = [ glau)f(u)midy (43)
where in general

sl y) (5(0) ~ s(r V)
T )

where z A y = min{z,y} and = V y = max{z,y}, and since s(z) =z

g(z,y) = z(1—y), 0<z<y<l (4.4)
=y(l—2z), 0<y<z<l

IN

min{g(% $)7 g(ya y)}

By (4.3) and (4.4)

1

Gof(z) = (1-x) /Ox yf(y)m(dy)+ﬂf/ (1 —y)f(y)m(dy) (4.5)

Given f € C(I), it follows from (4.5) that the unique solution of
Lou(z) = (1/2)z(1 - 2)u” () = = f(z),  u(0) =u(l) =0 (4.6)
for u € C%(Io) NC(I) is u(x) = G f(x).

I claim that G, is a Hilbert-Schmidt operator in the Hilbert space
L*(I,dm). Clearly g(z,y) = g(y,z), and by (4.4)

' 2 o oe [Foo 2dy 21_22dy
[y sty = 0 =a [yt [0 gt

T 1
< (1—x)/ 2ydy+x/ 2(1 — y)dy
0 T

= 1-—2)2? +z(1—2)* = 2(1 —2), 0<z<1 (4.7)

Thus

2dx

/0 /o g(xz,y) m(dy)m(dx) < /0 x(l—x)m =2 < o0 (48)
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which is the condition that g(z,y) be Hilbert-Schmidt.
It follows that there exists a complete orthogonal system of eigenvectors
vp(7) in L2 (I ) dm) with eigenvalues pu,, satisfying the equations

1
Govn(x) = / 9@, 9)ou(y)m(dy) = pnvn (@) (4.9)

(Riesz and Nagy, 1955, Chapter 6). It follows from (4.5)—(4.6) that (4.9) is
equivalent to

pn(1/2)z(1 — z)vl (x) = —vp(z),  v,(0) = v,(1) =0 (4.10)

for v, € C?(Iy) N C(I).

I claim that g, > 0 in (4.9) and (4.10). If v,(z) # 0, we can assume
that maxo<z<1 vp(z) = vp(z1) > 0 where 0 < 27 < 1. Then v/ (z1) < 0,
which implies that p,, > 0 in (4.10). Thus all eigenvalues u, > 0 in (4.9)
and (4.10), and (4.10) is equivalent to

(1/2)z(1 — 2)vl(z) = —Apvp(z),  v,(0) = v,(1) =0 (4.11)
for A\, = 1/ .

Since py, > 0 and g(z,y) € C(I x I), it follows from Mercer’s Theorem
(Riesz and Nagy ibid.) that

e’} 1
o) = 3 WD g~ [P

converges uniformly absolutely on 2. This implies that

n=1

oo

I (4.12)

n=1

converges uniformly absolutely for ¢ > € > 0 and 0 < z,y < 1. It is proven
in OneDimDiffuseOps.tex that

1
p(t,z,y) =0, / p(t,z,z)m(dz) <1
0

for t > 0 and 0 <z < 1, but this will not be needed in the following.
It follows from (4.7), (4.9), and Cauchy’s inequality that

[on(@)] < A/z(1—2)V/Qn (4.13)
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Thus again by (4.9) and by (4.4) and (4.2)

on(@)] < A / 92, 9)|oa(y) Im(dy)

IN

1
Ai/o 9(z,y)Vy(L — y)m(dy)/Qy

b2vQ,
o Vy(l—1y)

= X z(1 —2)7/Qp (4.14)

= A\ g(z, ) dy

This implies by (4.12)
pt,z,y) < z(l—x)y(l—y)m Y _ Ahe (4.15)
n=1

Since Y07 (1/X2) < 2 by (4.8) and Y>> ,(1/XA,) = 2 by Mercer’s Theo-
rem and (4.4), this provides a second proof that the series (4.12) converges
uniformly for 0 < z,y < 1land t>¢€ > 0.

5. Eigenpolynomials of a Sturm-Liouville Expansion. By (3.5), the
functions v, (x) = z(1 — 2)C, (1 — 2z) for Gegenbauer polynomials C,,(z) =
C) (x) with A\ = 3/2 satisfy

z(l—z)v) () + (n+1)(n+2)v,(z) = 0 (5.1)

with v, (0) = v,(1) = 0. Thus v, (z) = (1 —x)C),, (1 —2x) are eigenfunctions
of the equations (4.9) and (4.11) with eigenvalues A, = (n + 1)(n + 2)/2,
where now n > 0 as opposed to n > 1 in (4.9), (4.11), and (4.12). In
particular, the first few eigenvalues are A\g = 1, Ay = 3, Ao = 6, and A3 = 10.

Since the Gegenbauer polynomials C’f’/ 2(x) are a complete orthogonal
system on (—1,1) with respect to the measure v(dz) = (1 — x2?)dz, the
polynomials v, (z) = (1 — z)C,, (1 — 2z) are complete on I with respect to
the speed measure m(dz) = 2dxz/(x(1 — z)) in (4.2).

By (3.3), the polynomials v, (x) satisfy the orthogonality relations

! 2dx !
/0 vn(x)vm(x)m = /0 Cn(1—22)C,, (1 — 22) 22(1 — x) dx
_ 5 72276(n + 2)!
" (n+3/2)n!T(3/2)2

(n+1)(n+2)
2(2n + 3)

- 5ann7 Qn - (52)
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using the fact I'(3/2) = (1/2)I'(1/2) = (1/2)/7.
This implies that the transition density (4.12) with respect to speed
measure m(dx) = 2dx/(x(1 — z)) for the partial differential equation (4.1) is

p(t,z,y) = T;)e—(n+l)(n+2)t/2 (n2—£217;(";?:22)vn(a:)vn(y) (5.3)

for v, (z) = z(1 — 2)Cp(1 — 2x).
We can use inequalities for special functions to obtain better inequalities
for v, (z) than before. By Magnus et al. (1966),

oA —1 20) ()
N G
—1<y<1 n n!
and thus
3/2 _ n—+2 _ (n+1)(n+2)
e €220 = (1) : (5.4

Thus since v, (x) = (1 — 2)C, (1 — 2x)

on(z)] < 2(1 —x) (n+1)(n+2)

2
and hence
M < :c(l—g;)\/”+1)(”+2)(2”+3) 5.5
VQn 9 .
This implies
p(t,x,y) - Ze/\"tw
< e(l=apy( =y e A0 +3) (5.6)
n=0

which provides a sharper inequality than (4.15).
In particular

—An +Un(2) vn(y)
T Qn

- 1—xi s 1—2@”22(?/)

pt,z,y)
X

|
||M8
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with uniform convergence for 0 < z,y <1 and ¢t > ¢ > 0. Thus

Ip(t,0,y) CAnt un(y)
p@xyzze)\c Qn

i Aty Y0~ y)gn(l — 2y) 5.7)

n=1

since CM (1) = (2A)™ /nl and C,, (1) = CS/? (1) = 30 /n! = (n+2)1/(2n!) =
(n+1)(n+2)/2 =\
Since Cy(x) =1 by (3.2), it follows from (5.3) that

pt,z,y) ~ 3e'z(l—2)y(l—y)

as t — oo uniformly for 0 < x,y < 1. Similarly, the solution of
= (1/2)z(1 — z)uyy, u(x,0) = ug(x)

with u(0,t) = u(1,t) =0 is

u(t) = / Pt 2,y o (y)m(dy) (5.8)
RS o (n+1)(n+2)1/2 4(2n + 3) o (2
= D et (n+1)(n+2)D” n(®)

n=0
~ 6x(1 —x)e "Dy as t — oo

where

D, = (1/2) / o (g)vm(y)m(dy) = / uo(2)Cn(1 — 20)dz  (5.9)

In particular, if ¢ is the first-exit time from I, so that P,(¢ > t) =
fo (t,z,y)m(dy) in (5.8), then

u(z,t) = P((>t|Xo=2) = 6z(1—z)e " +0 (%) (5.10)

The eigenvalue A\; = 3 does not enter (5.10) since the initial function wug(y)
is even about y = 1/2 and hence D,, = 0 for odd n.

By (3.1), the polynomials C),(z) = 02/2(:10) satisfy

o) = T 1)2(””)5’ (—n,n-l—?), 2, 1;’”)

— (n —2|_ 2) P(l’l)(l‘)
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for Jacobi polynomials PV (z). For A = 3/2 in (3.1), 3" = (n+2)!/2 and
2(") = (n 4+ 1)! so that 3(™ /2(") = (n +2)/2.
By (3.2) and (3.4), the C),(x) satisfy the recurrence

2n + 5 n-+3
C, —
n—|—2x +1(x) n-+ 2

Chyo(x) = Ch(x) (5.11)
with initial conditions Cy(z) = 1 and Ci(z) = 3:1: In particular (n = 0),
Ca(z) = 2(52% — 1) so that Ca(1 — 22) = 6(1 — bz (1 — x)).

6. The Confluent Hypergeometric or Kummer’s Function. The
confluent hypergeometric function or Kummer’s function F'(a, ¢, x) is defined
as the unique solution y(x) of the equation

zy' +(c—x)y —ay=0 (6.1)
of the form
y(x) = Z anz", ag=1 (6.2)
n=0

Substituting (6.2) into (6.1)

o0 o0 o0 o
Z nin — Daz™ ' + ¢ Z napz" "t — Z na,x" — a Z anx”
n=1 n=0 n=0 n=0

o0 o

= Z n(n—1+c)a,z" ' — Z(n + a)a,a”

n=1 n=0
o0

= Z <(n +1)(n+c)ant1 — (n+ a)an):c" =0

n=0
This leads to the recurrence
(n+a)

An+1 =

n

(n+1)(n+c)

Assuming ¢ > 0 and ag = 1,

- " (k+a) _afa+1)...(a+n-1)
an = ,}_[()(k+c)(k+1) " cle+1) ... (c+n—1)n! (6.3)
a(™

= —— o™ =a(a+1)...(a+n-1)
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Thus the confluent hypergeometric function has the series representation

— al (a+1)a?
a a ala Xz
Fla,c,z) = Zlcmm! = b+ et clc+1) 2
1 2) 23
alat+la+2)z” (6.4)

clc+1)(c+2) 6

In particular
(i) F(a,c,z) =1if and onlyifa=00rb=0
(ii) F(a,c,x) is a nonconstant polynomial if and only if a is a negative
integer
(iii) F(a,c,x) is always an entire function of z.

Asin (1.4), F(a,c,x) has the polynomial solutions

(—n)®) _ i(—n)(—n—l—l)...(—n-i—k:—l) &

Flomb.ew) = ) = gye RO g
k=0 k=0
n k
- Kk n xXr
=2 (k) ROy

k=0

These do not appear to specialize to any classical polynomial systems. How-
ever, the moment generating function of a beta density

o(s) = F(a—;b)/o 2271 — z)" e da
I'(a+0b) o= s"T'(a+n)(b
e S oncany

> S
- ZH(a+b)<n_> = Fla,a+b,5)

can be expressed in terms of the confluent hypergeometric function.
7. Sturm-Liouville Expansions for the Selection-Drift Equation.
The selection-drift equation is

gu(x,t) = (1/2)z(1 — x)aa—u(x,t) + ~yx(1l — x)%u(w,t) (7.1)

ot x2
= Lyu(z,t)
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Here L, = (d/dm(x))(d/ds(z)) for scale and speed measure

1—e 2= 2277 dy
_ _ e ar 2
s(z) > and  m(dz) P (7.2)
where s(0) = 0 and s'(0) = 1. As in (4.3)—(4.8), the Green’s function
_ s(@Ay) (1) —s(zVy))
g(l‘,y,’y) - S(l) o S(O)
satisfies
1,1
|| swptmidgmids) < o
0o Jo
This implies that, for fixed 7, the system
1
| st pnuwmids) = (1/3u(z)
0
or equivalently
(1/2)x(1 — z)u”(z) + yz(1 — 2)u/(x) = —Au(x) (7.3)

with u(0) = u(1) = 0 has a complete orthogonal set of eigenvectors wu,(z)
with respect to m(dx) on I.
Consider solutions of (7.3) of the form

u(, 7, A Zan 7, Az (7.4)

with ag(y,A) = 1. Substituting (7.4) into (7.3)

Z(n +r)(n+r—1)az" Tt — Z(n +7r)(n+r—1az"""
n=0 n=0
272 n+ranx —272 n+ranx"+r+1 +2)\Zan
n=0 n=0 n=0

o0
Z n47r)(n+r—1)a,z" 1

Z n+r)(n+r—1-=2y) —2X)a,z"*" —272n+r Tl

n=0
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oo

= Z (n474+2)(n+7+ ayz
n=—2
— Z (n+r+1)(n+r—2y) =2 ) appz" T — 2y Z(n +1)a,x" T
n=—1 n=0

= r(r—1agz" ' + ((7" + Dra; — (T(T —1-2y) - 2>\)a0)$r

+ Z((n+r +2)(n+7+ 1)anto
n=0

—((n+r+1)(n+r—29) =2 ) apns1 — 2v(n+71)a,) 2" = 0
Since ag = 1 by assumption, the first term of the indicial equation
r(r—Daoz” "+ ((r+ L)ra; — (r(r — 1 —2y) —2X)ag)z” = 0

implies 7 = 0 or r = 1. However, » = 0 in the second term implies A = 0,
which violates A, > 0. The only solution with A # 0 is » = 1. This has a

unique solution with ag =1, a; = —(y + A), and
(n+2)(n+1—2y) -2\ 2y(n+1)
Qn - (07 Qp 7.5
2 (n+3)(n+2) T n+3)(n+2) (7.5)
for n > 0.

By induction, a,, = a, (7, ) is a polynomial in v and A of degree n in
either v or A unless A = ((m + 2)(m + 1 — 2)/2 for some integer m > 0, in
which case a, (7, A) is a polynomial of degree n — 1 for n > m — 2.

Note that u(z,~y,\) cannot be a polynomial in x for any « # 0. This
follows from the fact that a,42 = a,4+1 = 0 in (7.5) implies a,, = 0, and by
induction a,, = 0 for all n > 0.

Writing (7.5) as an42 = Apany1 + Bray,, we have

D D
4, -1 <=2 B, <X (7.6)
n n

for constants Dy > 0 for |y| < M, |A\| < M, and n > 1. Then by induction

an(v. N < coH (1+2D—M)

2D
= Cpexp (Z log (1 + TM)> < Cn*Pm (7.7)

k=1

uniformly for |y| < M, |A\| < M, and n > 1. Thus the power series u(x, vy, \)
in (7.4) has a radius of convergence at least one.
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8. Eigenfunctions of the Selection-Drift Equation are Entire Func-
tions. Given the solution u(x) of Lyu + Au = 0 in (7.4), we can find a
second solution by setting w(x) = u(x)v(z) and solving L,w + Aw = 0 for
v(x). Specifically

(Ly + Nw(z) = v(z)(Ls + Nu(z)
+ (1/2)z(1 — z) (20" +v"u+ 290'u') = 0

Since L,u~+Au = 0, this is equivalent to v" ()4 ((2u/(z) /u(x))+2v)v'(x) = 0.
If u(z) > 0 for 0 < = < ¢, this is solvable in that range with

c 6—2~yy

w(z) = Clu(ac)+02u(a7)/ Wdy (8.1)

Recall u(z) = x(1 + a;x + agx? +...) by (7.4), which corresponds to Cy = 0
in (8.1). Thus a second linearly independent solution of L,u + Au = 0 is

w(x) = u(x) (i%—?)\log(l/w)—l—Cg—l—...)

_ ) (1+ 2 zlog(l/z) + Csz +...) (8.2)

Xz

u
u

Thus, in contrast with u;(0) = 0 and «}(0) = 1 for the power-series so-
lution (7.4) with » = 1, the second solution satisfies us(0+) = 1 and
uh(z) ~ 2X\log(1l/x) as © — 0. We can use (8.1)—(8.2) to show

Theorem 8.1. Assume A\ = A\(7) # 0 and u(x) = u(z, A, ) is a solution of
the equation

(1/2)z(1 — 2)u" (z) + yz(1 — 2)u'(z) + Au(z) =0 (8.3)
for 0 < x < 1. Then u(0+) = u(l—) = 0 if and only if u(x) is an entire
function of x, in which case u(0) = u(1) = 0.

Proof. If u(x) is an entire function of = that is a solution of (8.3), then
u(0) = u(1) = 0 by (8.3) since A # 0. Conversely, let u(x) be a solution
of (8.3) for 0 < x < 1 that satisfies

:lgr% u(x) = }zlinll u(z) =0 (8.4)

Note that (8.3) has two linearly independent solutions us(z),uz(x) in any
open subinterval (a,1 —a) for a > 0. It follows from (8.1) and (8.2) that any
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solution u(z) of (8.3) that satisfies (8.4) can be analytically continued into a
neighborhood of x = 0 with radius at least one, and by a similar argument
u(x) can be analytically continued into a neighborhood of x = 1 with radius
at least one.

Write (8.3) in the form

2\

' (z) + 2vu' () + 20 —1)

u(z) =0 (8.4)

Since x = 0 and x = 1 are the only singularities of (8.3) in the form (8.4), it
follows from the following lemma (Lemma 8.1) that u(z) can be analytically
continued to the entire complex plane. Thus u(z) is entire, which completes
the proof of Theorem 8.1 once we have proven Lemma 8.1.

Lemma 8.1. Consider the equation

y"(x) + a(z)y' (z) + b(x)y(z) =0 (8.5)

where a(z) and b(z) have power-series expansions about a point = xg with
radii of convergence at least R > 0. Then there are two linearly independent
solutions of (8.5) for |z — z¢g| < R that are representable as power series
about x = x¢ with radius of convergence at least R.

Proof of Lemma 8.1. Assume xg = 0 for definiteness. Write (8.5) as the

system
y'(@)\ _ Al (V) (8.6)

Alz) = (_al(x) _béx)> ~ nij:OAn:r”

Here A,, are 2 x 2 matrices with ||A,| < Cp™ for any p < 1/R, where ||A,||
means (for example) the sum of the absolute value of the matrix entries. By
Picard iteration, the unique solution of (8.6) is

(117) = ([ ) (20
- e (S5 ()

@
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where me A(y)dy means component by component and

B2 B3 B™
P = I+B+—+— .. +— +...
2 3! n!

This expresses the solution of (8.5) in terms of power series about z = zo with
radius of convergence at least R, which completes the proof of Lemma 8.1.

Corollary 8.1. Suppose that a(r) = a(z,2z) and b(x) = b(z,z) in
Lemma 8.1 have convergent power series in z and z for |z — 9| < R and

|z| < M. Then the solution y(z) = y(z, z) also has a convergent power series
in z and z for |z — x| < R and |z| < M.

9. An Inequality for the Coefficients of u(x,~, ). Recall that by
definition in (7.4)

u(x,y,\) = xZan('y, A)z" (9.1)
n=0

where a, (v, ) are polynomials of degree n in 7 and A. Recall also that
lan (v, \)| < Cn?PM for |[y] < M and |\| < M by (7.7). The purpose here is
to show that moreover

Theorem 9.1. If a,, (7, A) are the coefficients in (9.1), then
Cum

n2

|an (v, A)] < (9.2)

uniformly for |y| < M and |A\| < M for any M < oc.

Remark. This implies that u(z,v, ) is an entire function of v and A for
any fixed x with |z| < 1. In particular, for fixed v, the eigenvalues A, are
the zeros of an entire function u(1,~, A).

Proof of Theorem 9.1. Let a,+2 = Anan+1 + Bpa, be the recur-
rence (7.5) and let ¢, = ap41/ay if a, # 0. Then
B,
Cnt1 = An + —, n>1 (9.3)
Cn

We break up the rest of the proof into several lemmas.

Lemma 9.1. For each (v, \), either

(i) lim ¢, =1 or else (9.4a)
(i) lim ne, = —2v (9.4b)

If (9.4a) holds for some value (y,A) = (70, Ao), then (9.4a) holds uniformly
in some neighborhood of (7o, Ag).
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Proof of Lemma 9.1. Recall that |4, — 1| < D/n and |B,| < D/n
by (7.6). For any 6 > 0, choose ns > (D + Dd)/(6(1 — 0)). Now assume
|cn| > 0 for some n > ns. Then by (9.3)

cny1| > 1—%—% = 1—%(D—|—D5) > 0
since this is equivalent to 1—4§ > (1/nd)(D+Dd) or n > (D+D3d)/(6(1—4)).

This implies that if |c,| > 0 for any n > ng, then |¢,,| > § for all m > n.
This in turn implies lim,, . ¢, = 1 since A, — 1, B,, — 0, and |1/¢,| < 1/6
in (9.3).

The only alternative is lim,,_,« |¢,| = 0. Then lim,, o B,/¢, = —1
by (9.3) and ¢, ~ —2v/n by (7.6) and (7.5). Thus, one of the alterna-
tives (9.4) must occur.

To prove local uniformity, assume limsup,, . |¢,| > 0. If then |¢,| > 260
for some n > (D + DJ§)/(6(1 — 9)), then lim,,_, ¢, = 1 as above. However,
len (70, Ao)| = 26 implies |, (7, A)| > 0 for |y — 0| <7, [A = Ao| < r for some
r > 0. The argument above then shows that lim,, .. ¢,, = 1 uniformly for
|v — 70| < r and |\ — A\g| < 7, which proves local uniformity.

Note that if (9.4b) holds, then u(zx,~, \) is automatically an entire func-
tion of x and hence A is an eigenvalue by Theorem 8.1. Thus (9.4a) holds for
each A on the complement of a discrete countable set of A\. The next result
is

Lemma 9.2. Assume that (9.4a) holds for some (v,A) = (70, A0). Then
lan (v, A)] < Car/n? uniformly in some neighborhood of (o, Ag)-

Proof of Lemma 9.2. By (7.5)

(n+2)(n+1—2y)—2X
A = (n+3)(n+2) (9:5)
m+2)(n+1-2y) =2\ — (n+3)(n+2)
(n+3)(n+2)
(3—2y)n—4y—2\—5n—6
(n+3)(n+2)
2(1+7)

1
= io(x)

B 2v(n+1) 2y 1
" d)m ™ ?w(_)

If ¢,, — 1, then since ¢,,+1 = A, + B, /cn,

= 1+

= 1+

- 11—

and similarly
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2(1 + 2 1
n ne,, n

This implies ¢, = 1+ O(1/n), which in turn implies

Crit = 1—2(1—+7)+2%+0(i) _ 1—3+0(i> (9.6)

n n?

By Lemma 9.1, (9.6) holds uniformly in a neighborhood of (7o, Ag). In this
neighborhood, for all n > ng and some constant d > 0,

1_g_i < dnt1 < 1_2+i
n  n2 an, n n?

This implies

- 2 d Unt1 - 2 d
[ (-Fge) <5< (7 )

Qn,

k=no k=ng
However
a 2 d = 2 d
k=ngo k=ngo
= exp | —2 z”: = +0 z”: 1
N P k=n k k=n k:2

1
= exp(O(1))
This completes the proof of Lemma 9.2.

Finally, since the set of A such that (9.4b) holds for v = = is discrete,
we can choose a large R > 0 such that there are no eigenvalues A for v = g
on ON(0, R). Since a,(7y,\) are polynomials in A

1 an (7, z) dz
JA) = — —_— A <R 9.7
R = T S (9.7)
By assumption, the circle |z| = R contains no eigenvalues for v = 7. This
implies by Lemma 9.2 and compactness that

Cr
lan(y,2)] < o

uniformly for |z| = R and |y — 79| < r for some r > 0. Then by (9.7)

RCgr [*™ df 20k
< - <
e N < 5ok [ ey < 5

uniformly for |A\| < R/2 and |y — 7| < r. A second application of compact-
ness completes the proof of Theorem 9.1.

21 n2
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