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1. Let N = (N1, N2, . . . , Nn) be n independent Poisson random variables with
E(Ni) = ci. (Recall that N is Poisson with mean c if N is an integer-valued
random variable with P (N = n) = e−ccn/n! for n = 0, 1, . . ..) Prove that

E
(
eΣn

i=1uiNi

)
= eΣn

i=1ci

(
eui−1

)
(1)

for all choices of numbers ui. Conversely, if N = (N1, N2, . . . , Nn) is an arbitrary
set of n random variables such that (1) holds for all ui, prove that the Ni are
independent Poisson random variables with means E(Ni) = ci. (Hint: Use the fact
that if E(eΣr

i=1uiXi) = E(eΣr
i=1uiYi) < ∞ for −a < ui < a for some a > 0 for two

random vectors X = (X1, . . . , Xr) and Y = (Y1, . . . , Yr), then X and Y have the
same probability distribution.)

2. Let N = (N1, . . . , Nn) be as in problem 1. Define a measure µ(A) on the set
X = { 1, 2, . . . , n } by µ({i}) = ci, so that µ(A) =

∑
i∈A ci. Use the vector N to

define a random measure N(A) on X by N({i}) = Ni, so that N(A) =
∑

i∈A Ni

for A ⊆ X. Thus the random measure N(A) is purely atomic with the (random)
integer-valued atom Ni at i ∈ X. Prove that

E

(
e

∫
X

f(y)N(dy)
)

= e

∫
X

(
ef(y)−1

)
µ(dy) (2)

for all bounded functions f(y) on X. Conversely, prove that if (2) holds for all
bounded functions f(y) on X, then Ni are independent Poisson random variables
with means E(Ni) = ci.

Definition. A Poisson random field is a random measure
(
X,F , N(A)

)
on a mea-

sure space (X,F) (that is, N(A) are random variables such that, with probability
one,

(
X,F , N(A)

)
is a measure) with mean measure (X,F , µ) if (2) holds whenever

f(y) is a bounded F-measureable function on X with
∫

X
|f(y)|µ(dy) < ∞.

3. Assuming that we have been able to construct a Poisson random field(
X,F , N(A)

)
for a mean measure (X,F , µ), use (2) to prove

(i) If µ(A) < ∞ for some A ∈ F , then N(A) is Poisson with mean µ(A). (Hint:
Try f(y) = uIA(y) in (2).)
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(ii) If µ(A) < ∞ and µ(B) < ∞ for two disjoint sets A,B ∈ F , then N(A) and
N(B) are independent. (Note that N(A∪B) = N(A) + N(B) since N is a random
measure by definition.)

(iii) If {An } are disjoint with An ∈ F and µ(An) < ∞, then {N(An) } are
independent. (Recall that an infinite set of random variables is independent if and
only if every finite subset is independent.)

(iv) If µ(A) = ∞ for some A ∈ F and A is sigma-finite (that is, A = ∪∞i=1An

where An ∈ F , {An} are disjoint, and µ(An) < ∞), then N(A) = ∞ almost surely.
(Hint: By assumption, N(A) =

∑∞
i=1 N(An) almost surely. Consider the random

events Cn = {N(An) ≥ 1 } and see if you can use the Borel-Cantelli lemma. Are
the {Cn } independent?)

4. Let N = (N1, N2, . . . , Nn) be as in Problem 1. Suppose that there are Ni

objects of some kind at i (1 ≤ i ≤ n). At a particular time, all of the objects
move independently of one another to points in a finite set Y . Assume that objects
at i (1 ≤ i ≤ n) move to y ∈ Y with probability π(i, y), where π(i, y) ≥ 0 and∑

y∈Y π(i, y) = 1 for each i.
Let My be the total number of objects that end up at y ∈ Y (that is, from

all starting points i). Prove that {My : y ∈ Y } are independent Poisson random
variables and find E(My). Does the form of E(My) seem plausible? (Hint: Verify (1)
by calculating

E
(
eΣy∈Y vyMy

)
= E

(
E

(
eΣy∈Y vyMy | N))

(3)

for N = (N1, N2, . . . , Nn). Note that, given N , the positions of the objects in Y are
independent Y -valued random variables with probability distributions depending
on their initial position.)

5. Let N = (N1, N2, . . . , Nn) be as in Problem 1 and suppose that there are Ni

objects at i, as in Problem 4. Suppose that, independently for all objects, each
object at i is colored green with probability gi and colored red with probability ri,
where gi + ri ≤ 1. If an object is not colored either red or green, then it remains
its original dull gray color. Let Gi be the number of green objects and Ri be the
number of red objects at i.

(i) Prove that the {G1, G2, . . . , Gn } are independent Poisson random vari-
ables. Find E(Gi). (This is called a thinning of {N1, N2, . . . , Nn }.)

(ii) Prove that {G1, . . . , Gn, R1, . . . , Rn } together are independent Poisson
random variables. (In this case, {G1, G2, . . . , Gn } and {R1, R2, . . . , Rn } are called
orthogonal thinnings of {N1, N2, . . . , Nn }.)

(iii) Let G =
∑n

i=1 Gi and R =
∑n

i=1 Ri. Prove that G and R are independent
Poisson random variables. Find E(G) and E(R).

(Hint: Apply Problem 4 for an appropriate choice of a set Y . Apply (2) on Y
for various functions f(y). What set Y did you choose?)
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6. Let π(i, j) be a Markov transition function on the set X = { 0, 1, 2, . . . , K } for
some integer K. Assume that { 1, 2, . . . , K − 1 } are transient states and that 0,K
are traps.

Suppose that, at each time n = 0, 1, 2, . . ., a random number Vn of objects
is placed at state 1 ∈ X, where {Vn : n ≥ 0 } are independent Poisson random
variables with E(Vn) = v > 0 and there were no objects in X before time 0.
Immediately after the nth set of immigrants arrive (n ≥ 0), all objects move one
step independently according to π(i, j). In particular, the probability that one of
the objects that originally arrived at 1 at time n is at i at time n + t is given by
π(t)(1, i), where π(t) is the tth matrix power of π(i, j).

Let N(n, i) be the number of objects at i at time n ≥ 0, where the population
is counted in the nth time step just after the arrival of the new immigrants. (Thus
N(0, 1) = V0 and N(n, 1) ≥ Vn ≥ 0.) Then

(i) Prove that, for each n, {N(n, i) } are independent Poisson for 0 ≤ i ≤ K.
(ii) Prove that {N(n, i) : 1 ≤ i ≤ K − 1 } converges in distribution as n →∞

to independent Poisson random variables N(i) (1 ≤ i ≤ K − 1). Find E
(
N(i)

)
.

(iii) Find an expression for

νK = lim
n→∞

1
n

E
(
N(n,K)

)

and explain what νK means in terms of the objects. (Hint: It is the asymptotic
rate at which objects are trapped at K.)

(Hints: Note that

N(n, i) =
n∑

t=0

N(t, n, i) (4)

where N(t, n, i) are the objects that began at state 1 at time t ≤ n and then ended
up at i at time n. (In particular,

∑K
i=0 N(t, n, i) = Vt for n ≥ t, since the objects

don’t leave X = { 0, 1, 2, . . . ,K }.) Argue as in Problem 4 to show that, for fixed n
and t, {N(t, n, i) } are independent Poisson for 0 ≤ i ≤ K. Use the independence
of the Vt to conclude that {N(t, n, i) } are also independent for 0 ≤ t ≤ n and
0 ≤ i ≤ K. Use (4) to conclude that {N(n, i) } (0 ≤ i ≤ K) are independent
Poisson for each n. Finally, use either (1) or (2) and take limits as n →∞.)


