Poisson Random Fields — Exercises

April 19, 2005

Prof. Sawyer — Washington University

1. Let $N = (N_1, N_2, ..., N_n)$ be *n* independent Poisson random variables with $E(N_i) = c_i$. (Recall that *N* is Poisson with mean *c* if *N* is an integer-valued random variable with $P(N = n) = e^{-c}c^n/n!$ for n = 0, 1, ...) Prove that

$$E\left(e^{\sum_{i=1}^{n}u_iN_i}\right) = e^{\sum_{i=1}^{n}c_i\left(e^{u_i}-1\right)} \tag{1}$$

for all choices of numbers u_i . Conversely, if $N = (N_1, N_2, \ldots, N_n)$ is an arbitrary set of n random variables such that (1) holds for all u_i , prove that the N_i are independent Poisson random variables with means $E(N_i) = c_i$. (*Hint*: Use the fact that if $E(e^{\sum_{i=1}^r u_i X_i}) = E(e^{\sum_{i=1}^r u_i Y_i}) < \infty$ for $-a < u_i < a$ for some a > 0 for two random vectors $X = (X_1, \ldots, X_r)$ and $Y = (Y_1, \ldots, Y_r)$, then X and Y have the same probability distribution.)

2. Let $N = (N_1, \ldots, N_n)$ be as in problem 1. Define a measure $\mu(A)$ on the set $X = \{1, 2, \ldots, n\}$ by $\mu(\{i\}) = c_i$, so that $\mu(A) = \sum_{i \in A} c_i$. Use the vector N to define a random measure N(A) on X by $N(\{i\}) = N_i$, so that $N(A) = \sum_{i \in A} N_i$ for $A \subseteq X$. Thus the random measure N(A) is purely atomic with the (random) integer-valued atom N_i at $i \in X$. Prove that

$$E\left(e^{\int_X f(y)N(dy)}\right) = e^{\int_X \left(e^{f(y)}-1\right)\mu(dy)}$$
(2)

for all bounded functions f(y) on X. Conversely, prove that if (2) holds for all bounded functions f(y) on X, then N_i are independent Poisson random variables with means $E(N_i) = c_i$.

Definition. A Poisson random field is a random measure $(X, \mathcal{F}, N(A))$ on a measure space (X, \mathcal{F}) (that is, N(A) are random variables such that, with probability one, $(X, \mathcal{F}, N(A))$ is a measure) with mean measure (X, \mathcal{F}, μ) if (2) holds whenever f(y) is a bounded \mathcal{F} -measureable function on X with $\int_X |f(y)| \mu(dy) < \infty$.

3. Assuming that we have been able to construct a Poisson random field $(X, \mathcal{F}, N(A))$ for a mean measure (X, \mathcal{F}, μ) , use (2) to prove

(i) If $\mu(A) < \infty$ for some $A \in \mathcal{F}$, then N(A) is Poisson with mean $\mu(A)$. (*Hint*: Try $f(y) = uI_A(y)$ in (2).)

(ii) If $\mu(A) < \infty$ and $\mu(B) < \infty$ for two disjoint sets $A, B \in \mathcal{F}$, then N(A) and N(B) are independent. (Note that $N(A \cup B) = N(A) + N(B)$ since N is a random measure by definition.)

(iii) If $\{A_n\}$ are disjoint with $A_n \in \mathcal{F}$ and $\mu(A_n) < \infty$, then $\{N(A_n)\}$ are independent. (Recall that an infinite set of random variables is independent if and only if every finite subset is independent.)

(iv) If $\mu(A) = \infty$ for some $A \in \mathcal{F}$ and A is sigma-finite (that is, $A = \bigcup_{i=1}^{\infty} A_n$ where $A_n \in \mathcal{F}$, $\{A_n\}$ are disjoint, and $\mu(A_n) < \infty$), then $N(A) = \infty$ almost surely. (*Hint*: By assumption, $N(A) = \sum_{i=1}^{\infty} N(A_n)$ almost surely. Consider the random events $C_n = \{N(A_n) \ge 1\}$ and see if you can use the Borel-Cantelli lemma. Are the $\{C_n\}$ independent?)

4. Let $N = (N_1, N_2, \ldots, N_n)$ be as in Problem 1. Suppose that there are N_i objects of some kind at $i \ (1 \le i \le n)$. At a particular time, all of the objects move independently of one another to points in a finite set Y. Assume that objects at $i \ (1 \le i \le n)$ move to $y \in Y$ with probability $\pi(i, y)$, where $\pi(i, y) \ge 0$ and $\sum_{y \in Y} \pi(i, y) = 1$ for each i.

Let M_y be the total number of objects that end up at $y \in Y$ (that is, from all starting points *i*). Prove that $\{M_y : y \in Y\}$ are independent Poisson random variables and find $E(M_y)$. Does the form of $E(M_y)$ seem plausible? (*Hint*: Verify (1) by calculating

$$E\left(e^{\sum_{y\in Y}v_{y}M_{y}}\right) = E\left(E\left(e^{\sum_{y\in Y}v_{y}M_{y}}\mid N\right)\right)$$
(3)

for $N = (N_1, N_2, ..., N_n)$. Note that, given N, the positions of the objects in Y are independent Y-valued random variables with probability distributions depending on their initial position.)

5. Let $N = (N_1, N_2, \ldots, N_n)$ be as in Problem 1 and suppose that there are N_i objects at i, as in Problem 4. Suppose that, independently for all objects, each object at i is colored green with probability g_i and colored red with probability r_i , where $g_i + r_i \leq 1$. If an object is not colored either red or green, then it remains its original dull gray color. Let G_i be the number of green objects and R_i be the number of red objects at i.

(i) Prove that the $\{G_1, G_2, \ldots, G_n\}$ are independent Poisson random variables. Find $E(G_i)$. (This is called a *thinning* of $\{N_1, N_2, \ldots, N_n\}$.)

(ii) Prove that $\{G_1, \ldots, G_n, R_1, \ldots, R_n\}$ together are independent Poisson random variables. (In this case, $\{G_1, G_2, \ldots, G_n\}$ and $\{R_1, R_2, \ldots, R_n\}$ are called *orthogonal thinnings* of $\{N_1, N_2, \ldots, N_n\}$.)

orthogonal thinnings of $\{N_1, N_2, \dots, N_n\}$.) (iii) Let $G = \sum_{i=1}^n G_i$ and $R = \sum_{i=1}^n R_i$. Prove that G and R are independent Poisson random variables. Find E(G) and E(R).

(*Hint*: Apply Problem 4 for an appropriate choice of a set Y. Apply (2) on Y for various functions f(y). What set Y did you choose?)

6. Let $\pi(i, j)$ be a Markov transition function on the set $X = \{0, 1, 2, ..., K\}$ for some integer K. Assume that $\{1, 2, ..., K - 1\}$ are transient states and that 0, K are traps.

Suppose that, at each time n = 0, 1, 2, ..., a random number V_n of objects is placed at state $1 \in X$, where $\{V_n : n \ge 0\}$ are independent Poisson random variables with $E(V_n) = v > 0$ and there were no objects in X before time 0. Immediately after the n^{th} set of immigrants arrive $(n \ge 0)$, all objects move one step independently according to $\pi(i, j)$. In particular, the probability that one of the objects that originally arrived at 1 at time n is at i at time n + t is given by $\pi^{(t)}(1, i)$, where $\pi^{(t)}$ is the t^{th} matrix power of $\pi(i, j)$.

Let N(n, i) be the number of objects at i at time $n \ge 0$, where the population is counted in the n^{th} time step just after the arrival of the new immigrants. (Thus $N(0, 1) = V_0$ and $N(n, 1) \ge V_n \ge 0$.) Then

(i) Prove that, for each n, { N(n, i) } are independent Poisson for 0 ≤ i ≤ K.
(ii) Prove that { N(n, i) : 1 ≤ i ≤ K − 1 } converges in distribution as n → ∞ to independent Poisson random variables N(i) (1 ≤ i ≤ K − 1). Find E(N(i)).

(iii) Find an expression for

$$\nu_K = \lim_{n \to \infty} \frac{1}{n} E \left(N(n, K) \right)$$

and explain what ν_K means in terms of the objects. (*Hint*: It is the asymptotic rate at which objects are trapped at K.)

(*Hints*: Note that

$$N(n,i) = \sum_{t=0}^{n} N(t,n,i)$$
(4)

where N(t, n, i) are the objects that began at state 1 at time $t \leq n$ and then ended up at *i* at time *n*. (In particular, $\sum_{i=0}^{K} N(t, n, i) = V_t$ for $n \geq t$, since the objects don't leave $X = \{0, 1, 2, \dots, K\}$.) Argue as in Problem 4 to show that, for fixed *n* and $t, \{N(t, n, i)\}$ are independent Poisson for $0 \leq i \leq K$. Use the independence of the V_t to conclude that $\{N(t, n, i)\}$ are also independent for $0 \leq t \leq n$ and $0 \leq i \leq K$. Use (4) to conclude that $\{N(n, i)\}$ ($0 \leq i \leq K$) are independent Poisson for each *n*. Finally, use either (1) or (2) and take limits as $n \to \infty$.)