Poisson Random Fields - Exercises

April 19, 2005
Prof. Sawyer - Washington University

1. Let $N=\left(N_{1}, N_{2}, \ldots, N_{n}\right)$ be n independent Poisson random variables with $E\left(N_{i}\right)=c_{i}$. (Recall that N is Poisson with mean c if N is an integer-valued random variable with $P(N=n)=e^{-c} c^{n} / n$! for $n=0,1, \ldots$.) Prove that

$$
\begin{equation*}
E\left(e^{\Sigma_{i=1}^{n} u_{i} N_{i}}\right)=e^{\Sigma_{i=1}^{n} c_{i}\left(e^{u_{i}}-1\right)} \tag{1}
\end{equation*}
$$

for all choices of numbers u_{i}. Conversely, if $N=\left(N_{1}, N_{2}, \ldots, N_{n}\right)$ is an arbitrary set of n random variables such that (1) holds for all u_{i}, prove that the N_{i} are independent Poisson random variables with means $E\left(N_{i}\right)=c_{i}$. (Hint: Use the fact that if $E\left(e^{\Sigma_{i=1}^{r} u_{i} X_{i}}\right)=E\left(e^{\Sigma_{i=1}^{r} u_{i} Y_{i}}\right)<\infty$ for $-a<u_{i}<a$ for some $a>0$ for two random vectors $X=\left(X_{1}, \ldots, X_{r}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{r}\right)$, then X and Y have the same probability distribution.)
2. Let $N=\left(N_{1}, \ldots, N_{n}\right)$ be as in problem 1. Define a measure $\mu(A)$ on the set $X=\{1,2, \ldots, n\}$ by $\mu(\{i\})=c_{i}$, so that $\mu(A)=\sum_{i \in A} c_{i}$. Use the vector N to define a random measure $N(A)$ on X by $N(\{i\})=N_{i}$, so that $N(A)=\sum_{i \in A} N_{i}$ for $A \subseteq X$. Thus the random measure $N(A)$ is purely atomic with the (random) integer-valued atom N_{i} at $i \in X$. Prove that

$$
\begin{equation*}
E\left(e^{\int_{X} f(y) N(d y)}\right)=e^{\int_{X}\left(e^{f(y)}-1\right) \mu(d y)} \tag{2}
\end{equation*}
$$

for all bounded functions $f(y)$ on X. Conversely, prove that if (2) holds for all bounded functions $f(y)$ on X, then N_{i} are independent Poisson random variables with means $E\left(N_{i}\right)=c_{i}$.

Definition. A Poisson random field is a random measure $(X, \mathcal{F}, N(A))$ on a measure space (X, \mathcal{F}) (that is, $N(A)$ are random variables such that, with probability one, $(X, \mathcal{F}, N(A))$ is a measure) with mean measure (X, \mathcal{F}, μ) if (2) holds whenever $f(y)$ is a bounded \mathcal{F}-measureable function on X with $\int_{X}|f(y)| \mu(d y)<\infty$.
3. Assuming that we have been able to construct a Poisson random field $(X, \mathcal{F}, N(A))$ for a mean measure (X, \mathcal{F}, μ), use (2) to prove
(i) If $\mu(A)<\infty$ for some $A \in \mathcal{F}$, then $N(A)$ is Poisson with mean $\mu(A)$. (Hint: Try $f(y)=u I_{A}(y)$ in (2).)
(ii) If $\mu(A)<\infty$ and $\mu(B)<\infty$ for two disjoint sets $A, B \in \mathcal{F}$, then $N(A)$ and $N(B)$ are independent. (Note that $N(A \cup B)=N(A)+N(B)$ since N is a random measure by definition.)
(iii) If $\left\{A_{n}\right\}$ are disjoint with $A_{n} \in \mathcal{F}$ and $\mu\left(A_{n}\right)<\infty$, then $\left\{N\left(A_{n}\right)\right\}$ are independent. (Recall that an infinite set of random variables is independent if and only if every finite subset is independent.)
(iv) If $\mu(A)=\infty$ for some $A \in \mathcal{F}$ and A is sigma-finite (that is, $A=\cup_{i=1}^{\infty} A_{n}$ where $A_{n} \in \mathcal{F},\left\{A_{n}\right\}$ are disjoint, and $\left.\mu\left(A_{n}\right)<\infty\right)$, then $N(A)=\infty$ almost surely. (Hint: By assumption, $N(A)=\sum_{i=1}^{\infty} N\left(A_{n}\right)$ almost surely. Consider the random events $C_{n}=\left\{N\left(A_{n}\right) \geq 1\right\}$ and see if you can use the Borel-Cantelli lemma. Are the $\left\{C_{n}\right\}$ independent?)
4. Let $N=\left(N_{1}, N_{2}, \ldots, N_{n}\right)$ be as in Problem 1. Suppose that there are N_{i} objects of some kind at $i(1 \leq i \leq n)$. At a particular time, all of the objects move independently of one another to points in a finite set Y. Assume that objects at $i(1 \leq i \leq n)$ move to $y \in Y$ with probability $\pi(i, y)$, where $\pi(i, y) \geq 0$ and $\sum_{y \in Y} \pi(i, y)=1$ for each i.

Let M_{y} be the total number of objects that end up at $y \in Y$ (that is, from all starting points i). Prove that $\left\{M_{y}: y \in Y\right\}$ are independent Poisson random variables and find $E\left(M_{y}\right)$. Does the form of $E\left(M_{y}\right)$ seem plausible? (Hint: Verify (1) by calculating

$$
\begin{equation*}
E\left(e^{\Sigma_{y \in Y} v_{y} M_{y}}\right)=E\left(E\left(e^{\Sigma_{y \in Y} v_{y} M_{y}} \mid N\right)\right) \tag{3}
\end{equation*}
$$

for $N=\left(N_{1}, N_{2}, \ldots, N_{n}\right)$. Note that, given N, the positions of the objects in Y are independent Y-valued random variables with probability distributions depending on their initial position.)
5. Let $N=\left(N_{1}, N_{2}, \ldots, N_{n}\right)$ be as in Problem 1 and suppose that there are N_{i} objects at i, as in Problem 4. Suppose that, independently for all objects, each object at i is colored green with probability g_{i} and colored red with probability r_{i}, where $g_{i}+r_{i} \leq 1$. If an object is not colored either red or green, then it remains its original dull gray color. Let G_{i} be the number of green objects and R_{i} be the number of red objects at i.
(i) Prove that the $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ are independent Poisson random variables. Find $E\left(G_{i}\right)$. (This is called a thinning of $\left\{N_{1}, N_{2}, \ldots, N_{n}\right\}$.)
(ii) Prove that $\left\{G_{1}, \ldots, G_{n}, R_{1}, \ldots, R_{n}\right\}$ together are independent Poisson random variables. (In this case, $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ and $\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ are called orthogonal thinnings of $\left\{N_{1}, N_{2}, \ldots, N_{n}\right\}$.)
(iii) Let $G=\sum_{i=1}^{n} G_{i}$ and $R=\sum_{i=1}^{n} R_{i}$. Prove that G and R are independent Poisson random variables. Find $E(G)$ and $E(R)$.
(Hint: Apply Problem 4 for an appropriate choice of a set Y. Apply (2) on Y for various functions $f(y)$. What set Y did you choose?)
6. Let $\pi(i, j)$ be a Markov transition function on the set $X=\{0,1,2, \ldots, K\}$ for some integer K. Assume that $\{1,2, \ldots, K-1\}$ are transient states and that $0, K$ are traps.

Suppose that, at each time $n=0,1,2, \ldots$, a random number V_{n} of objects is placed at state $1 \in X$, where $\left\{V_{n}: n \geq 0\right\}$ are independent Poisson random variables with $E\left(V_{n}\right)=v>0$ and there were no objects in X before time 0 . Immediately after the $n^{\text {th }}$ set of immigrants arrive ($n \geq 0$), all objects move one step independently according to $\pi(i, j)$. In particular, the probability that one of the objects that originally arrived at 1 at time n is at i at time $n+t$ is given by $\pi^{(t)}(1, i)$, where $\pi^{(t)}$ is the $t^{\text {th }}$ matrix power of $\pi(i, j)$.

Let $N(n, i)$ be the number of objects at i at time $n \geq 0$, where the population is counted in the $n^{\text {th }}$ time step just after the arrival of the new immigrants. (Thus $N(0,1)=V_{0}$ and $N(n, 1) \geq V_{n} \geq 0$.) Then
(i) Prove that, for each $n,\{N(n, i)\}$ are independent Poisson for $0 \leq i \leq K$.
(ii) Prove that $\{N(n, i): 1 \leq i \leq K-1\}$ converges in distribution as $n \rightarrow \infty$ to independent Poisson random variables $N(i)(1 \leq i \leq K-1)$. Find $E(N(i))$.
(iii) Find an expression for

$$
\nu_{K}=\lim _{n \rightarrow \infty} \frac{1}{n} E(N(n, K))
$$

and explain what ν_{K} means in terms of the objects. (Hint: It is the asymptotic rate at which objects are trapped at K.)
(Hints: Note that

$$
\begin{equation*}
N(n, i)=\sum_{t=0}^{n} N(t, n, i) \tag{4}
\end{equation*}
$$

where $N(t, n, i)$ are the objects that began at state 1 at time $t \leq n$ and then ended up at i at time n. (In particular, $\sum_{i=0}^{K} N(t, n, i)=V_{t}$ for $n \geq t$, since the objects don't leave $X=\{0,1,2, \ldots, K\}$.) Argue as in Problem 4 to show that, for fixed n and $t,\{N(t, n, i)\}$ are independent Poisson for $0 \leq i \leq K$. Use the independence of the V_{t} to conclude that $\{N(t, n, i)\}$ are also independent for $0 \leq t \leq n$ and $0 \leq i \leq K$. Use (4) to conclude that $\{N(n, i)\}(0 \leq i \leq K)$ are independent Poisson for each n. Finally, use either (1) or (2) and take limits as $n \rightarrow \infty$.)

