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1. Basic Assumptions. Assume that
(i) {7} is a strongly-continuous semigroup of bounded linear operators on
the Banach space

B = Cy(I) ={ f continuous on I =[0,1] : f(0) = f(1) =0}
(ii) If f(x) > 0 and f € B, then T} f(z) > 0 and T3 f(z) < maxyer f(y).

In general, the infinitesimal generator of a strongly-continuuous semi-
group of linear operators T; on any Banach space B is defined by

Af =l (T0f ~ f)/h (1.1)
on the set
D =D(A) ={f : The limit in (1.1) exists in the norm of B}

Suppose further that
(iii) The operator A and set D(A) satisfy the following conditions. Let

4 d
~ dm(z) ds(x)

for f € C%(Iy), where C?(I) is the set of all functions on Iy = (0, 1)
that are twice-continuously differentiable on Iy. In (1.2), s(x) is strictly
increasing, continuously differentiable, and bounded on (0, 1), s'(x) > 0
on (0,1), and the measure m(dz) = m(z)dzr where m(zx) is continuous
and m(x) > 0 on (0,1). Thus we can also write

1 d 1 d

(z) dx s'(x) dz
If feC?*(Ip)NCo(I) and Lf € Cy(I), then f € D(A) and Af = Lf.

(iv) Since s(x) is strictly increasing and bounded on (0,1), we can assume
without loss of generality that s(0) = s(0+) =0 and s(1) = s(1—) = 1.
We also assume

o 1
/ s(z)m(dx) + / (1—s(z))m(dz) < oo (1.4)
0 T

0

Lf(x) f(x) (1.2)

L(@) = — f(@) (13)

whenever 0 < x¢p < 1. In terms of diffusion process theory, this is the
condition that the endpoints are regular or exit.
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2. Some Useful Identities. (1) Define

(s(1) — sz v ) (s(z A y) — 5(0)

where 0 < z,y <1, z Ay = min{z,y}, and x V y = max{x, y}. Let
f@) = | gle.p)by)m(dy) (2.2
0
_s@) =s(@) [T .
=S | ) = so)htmiay
s(z) —s(0) !
+ 2= [ 6 = s)ntmiay (23
where h(y) is bounded on Iy. By (2.1)
9(z,y) < min{g(z,z), 9(y,y)} (2.4)
9(y,y) < min{s(1) —s(y), s(y) —s(0)}
If h(y) > 0, then by (2.2) and (2.4)
1
fl2) < / 9(y, ) h(y)m(dy) (2.5)

< / min{s(1) - s(y), s(y) — 5(0) h(y)m(dy)
0

| ) = s@pmian) + [ (s(0) = sw)pmiay) (20

where g is determined by s(zo) — s(0) = (1/2)(s(1) — s(0)). It then follows
from (1.4) that f(x) in (2.2) is uniformly bounded with

[f(@)] < € max]|h(y)| (2.7)

where C'is the constant on the right-hand-side value of (2.6) if A(y) is replaced
by 1. It follows similarly from (2.4) and the dominated convergence theorem
that f(z) € C(I) with f(0) = f(1) =0.

(2) If h(x) € Co(I), then f(z) in (2.2) is continuous differentiable with

e =4 ([ it ome - [ =i o)
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Hence f'(z)/s'(x) is continuously differentiable with

- by (5) -

Then, by Assumption (iii), f € D(A) and Af = Lf = —h. In fact, it is not
difficult to show that if f(z) € C?(Iy) N Co(I) and Lf = —h € Co(I), then
f(x) is given by (2.2). (Ezercise: Prove the last statement. Lemma 8.1 in
Section 8 below has a second proof using martingales.)

(3) Another useful identity is

zwmzﬂ@+AﬂMﬂmm any f € D(A) (2.8)

This follows immediately from the definition (1.1) and the strong continuity
of the semi-group.

(4) If | T3|| < CeMt and
Ryf(z) = /OO e M, f(x)dt, A>M (2.9)
0

then applying R) to the identity (2.8) and rearranging terms implies
R\AM-A)f=f  feDA)

Similarly, if g = Ry f for f € B, it follows from the strong continuity of {7}}
that g € D(A) and Ag = A\g — f. Thus (Al — A)Rf = f forall f € B. It
follows that A\l — A on D = D(A) is a two-sided inverse of Ry on B.

3. A Probability Space for T;. By Assumptions (i) and (ii), we can
write

zwm=éf@mmww (3.1)

where P(t,z,dy) > 0 are Borel measures on the open unit interval Iy =
(0,1). The semigroup property Tiisf = T;Tsf for {T;} is equivalent to the
Chapman-Kolmogorov equations

P(t+s,z,B) = /0 P(t,y, B)P(s,x,dy) (3.2)

for P(t,z,dy). The assumptions in Section 1 imply 0 < P(t,z,Iy) < 1, but
do not exclude the possibility P(t,z, Iy) < 1.
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The first step in finding a stochastic process corresponding to the semi-
group (3.1) is to extend P(t,z,A) on Iy = (0,1) to a larger space Ia such
that (i) P(t,x,Ia) = 1 for all x € Ia and (ii) the Chapman-Kolmogorov
equations (3.2) hold on Ia. To do this, we first define an abstract “death
point” A ¢ [y and set

In=T,U{A}, Iy=(01) (3.3)
We extend P(t,z, A) for x € Iy,A C Iy to x € In, A C In by

P(t,z,{A}) = 1— P(t,z, 1)) (3.4)
Pt,A{AY) =1,  Pt,A L) = 0

Then the extended function P(t,z, A) for x € In and A C I satisfies
(i) P(t,z,A) >0, (ii) P(t,z,Ian) =1 for all x € I, and (iii) the Chapman-
Kolmogorov relations

P(t+s,z,B) :/ P(t,y, B)P(s,x,dy) (3.5)

In

for x € In and B C Ia. (Exercise: Prove (i,ii,iii) using (3.4) and (3.2)
on Io)

Let Q = {k/2™:k >0,m >0} be the set of nonnegative dyadic ratio-
nals. We will use the Kolmogorov Consistency Theorem (KCT) to construct
a probability space (2, F, P,) with random variables { X,(w) € In 1 ¢ € Q }
that form a Markov process consistent with (3.3), (3.4), and (3.5). The sub-
script  in P, is a parameter z € Ia for which P,(Xy = z) = 1. In the
Kolmogorov representation, the basic sample space is the infinite product

Q= (I)% = {w:w=wr)els, reQ} (3.6)

where I = [0,1] U {A} is a compact version of Io. The random variables
X, (w) = w(r) are the coordinate functions in the infinite product 2. The
sigma-algebra F = B{ X, : r € @ } is the smallest sigma-algebra of subsets
of 2 with respect to which all X, are measurable. This is also the sigma
algebra generated by the cylinder sets

C(ry,...,rn, A1y Ay) = {w: X, (w)eA;for1 <i<n} (3.7)

for 0 <ri <ry <...<mr,forr;, €Q, sets A; C Io, and all n. The first
step in applying the KCT is to define P, for cylinder sets. The appropriate
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definition in this case turns out to be the somewhat complex
Pw<F(r1,...,rn,Al,...,An)>

:/ / P(rl,x,dy1)P(7“2—Tl,yl,d?ﬁ)---
Al An
P(rn - Tn717ynfladyn (38)

We assume in (3.8) that P,(Xo = z) = 1 if r, = 0, P(t,0,{0}) =
P(t,1,{1}) =1for t > 0, and P(t,z,{0,1}) =0 for z € In = (0,1) U{A}.
The next step is to notice that if (for example) A;, = I¢ in (3.7),
then P,(I'(r1,...,Aq,...) is the same as if we dropped the iy-th coordinate
in (3.7) and (3.8) and computed the probability of the resulting cylinder set
with n—1 conditions. (This is the consistency condition in the KCT.) Here
the consistency condition follows from the Chapman-Kolmogorov relation

/ P(Tio+1—7“i0,y7A)P(7”io—7”io—1,iL”,dy) = P(T’io+1—7“i0—1,$,f4)

Ic

which follows from (3.5).

The KCT then implies that there exists a unique probability measure P,
on (Q, F) such that P, (T(...)) is given by (3.8) for cylinder sets (3.7). One
can then check from (3.8) that

P.(X, €1Ip) = 1, r€InClo, reQ
P.(X, € A) = P(r,z,A), x€In, ACIAn and
P, (X,€A|B)(w) = P(g—r, X, (w),A) (3.9)

for r,q € Q, r < ¢q, and x € In. Here B, = B{X,:a<r,acQ}
is the smallest o-algebra B, C F such that X,(w) is B,-measurable for
a<r,a€Q. Here P,(X, € A | B,)(w) is the conditional-probability ran-
dom variable. That is, g(w) = P,(X, € A | B,)(w) is the unique bounded
B,-measurable function such that

E(Ia(Xq)h) = E((P(q — 7, X,, A)h)

for all bounded B,-measurable random variables h(w). (Ezercise: Ver-
ify (3.9).)

The relations (3.9) imply that, for a set of w €  with P,-probability
one for every z € In = (0,1) U{A}, the sample paths { X, (w) : 7 € @ } start
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in and remain in In. Thus { X, : r € Q} is a Markov stochastic process
with values in In and Markov transition function P(¢,x, A).

Similarly, (3.4) implies that, again for a set of w with P,-probability one
for every z € Ian, X,(w) = A for any w implies X,(w) = A for every ¢ > r.
Set ((w) = min{r € Q : X, (w) = A}. We call ((w) the death time for a
sample path X, (w) in Iy. For these w € Q, X (r,w) = A whenever r > ((w).
Thus, within sets of probability zero,

{w:iCw)>r} ={w: X, (w)el}

This implies that by (3.1) and (3.3)—(3.4)

mezéﬂW%%MZEMUwa)
E, (f(Xr)I[C>r]) (310)

The purpose for restricting r to a countable set is so that events involving
the sample paths X,.(w) depend on at most a countably infinite number of
random variables. Otherwise, simple events involving sample-path continuity
or even Lebesgue measurability may not be measureable.

The next step will be to extend { X, : r € @} to random variables
{X¢ : t > 0} defined on the same probability space in such a way that
events involving the process { X; : t > 0} will depend only on { X,. : r € Q }.

4. Sample Path Regularity. Asin (2.2),

fwzlgmmmmmw (4.1)

=m—wm41@mmmw+4m/u—mwwmmn

for h € Cy(I). Define functions ¢n(z) € Co(I) for N > 3 such that
on(z) =0forz <1—1/N, ¢n(x) >0,

Supp(én) C (1 - % 1- %)

and fol (1 —s(y))on(y)m(dy) = 1. Define

mmzlgwwm@mw> (4.2)

Then fn € D(A), Afn(x) = —¢n(x) <0, and by (4.1)
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fn(z) =s(x) on (O, 1-— %) (4.3)

It follows from the identity (2.8) in Section 2 that
t
Tifn(z) = fn(x) +/ Ts(Afn)ds
0

— fle) - / Toén (x)ds (4.4)

Since ¢n(z) > 0 and fx(x) >0 by (4.2), 0 < Tifn(x) < fn(z) for all t >0
and x € Iy. Then by (3.10), (4.4), and the Markov property

E, (fN (Xq)I[C>q}

B, ) (@) = Tyrfn (Xn(w))) (4.5)
< N (X (@) ¢)>n

where B, = B{ X, :a <r, a € Q} as before. Since 0 < fn(z) < Cy by (4.2)
and (2.7),
YrN(w) :fN(XT(w))I[C(w)>r]7 0<r<oo, r€q

is a uniformly bounded supermartingale for each N. Moreover, it follows
from (4.3) and the conditional Fatou’s inequality

E(liminf Hy ‘ BT> < liminfE(HN ‘ Br> a.s.,

N —o00 N—oo

for arbitrary random variables Hy(w) > 0 that (4.5) also holds with fx(x)
replaced by s(x). Thus

Yr(w) = S(Xr(w))l[c(w)>r] 0<r<oo, req@ (46)

is also a uniformly bounded supermartingale.

Doob’s Upcrossing Inequality now applies to the finite subsets Qnyr =
{k/2N :0 <k < M} of Q with a uniform upper bound. This in turn implies
that there exists a single null set E € F such that for w ¢ E, the limits

lim X,(w) =X+ (w), lim X, (w) =X (w) (4.7)

q>t,qlt q<t,qTt

exist for all real values t < ((w), where the first limit exists for ¢ = 0, and
the second limit exists at ¢ = ((w). It follows from (4.7) that the set

{t:t<(W), Xig(w) # Xi—(w) }



Sample Path Regularity for One-Dimensional Diffusions.................. 8

is at most countably infinite for each such w, even though the set of possible ¢
in (4.7) is uncountably infinite. Since X, (w) = A almost surely for r > ((w),
it follows that (4.7) holds for all real t > 0 and w ¢ FE; for a larger null
set F1.

We now define random variables X(w) for all real ¢ > 0 in terms of the
random variables { X,.(w) : 7 € @ } by

Xi(w) = lim X, (w) = Xip(w), 0<t<((w) (4.8)

r>t, rlt
= A, ((w)<t<o

Note that this defines an uncountable number of random variables { X;(w)} in
terms of a countable set { X, (w) : r € @ }. The first relation in (4.7) implies
that X;(w) is right-continuous in ¢ for all real ¢ > 0. The relations (4.7)
and (4.8) do not exclude X;(w) # X, (w) for ¢ = r. However, the strong
continuity condition on T (x) in Section 1 implies

lim qu(x) = lim F, (f(Xq)I[C>q]> = Trf(x> =k, (f(X?")I[<>T])

q>r,qlr g>r,qlr

uniformly in € Iy for all f € B = Cy(I). This implies limgs, qr Xq = X,
weakly P, for all z € (0,1). Since the same limit converges a.s. to X; by (4.7),
it follows that P,(X; = X,.) = 1 for ¢ = r. Thus, with probability one, the
sample paths { X;(w) : ¢ > 0} are right continuous in ¢. We will use another
martingale argument below to show that, in fact, almost every sample path
{X¢(w)} is continuous for ¢t < {(w).

A subtlety of the definition (4.8) is that X;(w) is not B;-measurable for
B, =B{X,:r<t}evenift =1r € Q, since it involves a right-hand limit.
However, X; is B measurable for B;; = N¢soBite. The right-continuity of
sample paths from (4.8) implies that X; is a Markov process with respect
to Bi4: That is,

Pa:<Xt—|—s cA | Bt+) = P(S,Xt(CU),A) a.s. (49)
This follows from the relation

Ep(o( Xt )V (Xiy, -, Xe,)) = Eo(Toeed( Xy, )0( X4y, ..., Xy,))  (4.10)

for all ¢ € Co(I), v € Co(I™),and 0 < t; <ty < ... <t, =t+e<t+s.
The relation (4.10) follows from (3.5) and (3.8). Finally, let ¢ — 0 in (4.10)
and use the strong continuity of {7;} and the right-continuity of sample
paths X;(w). (Ezercise: Carry out the details.)
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5. A Family of Martingales. The key step in the last step was iden-
tifying a bounded supermartingale. Most of the following results will also
depend on martingale arguments. Before continuing, we state a result about
a set of martingales that we will use several times that arises naturally for
any Markov process.

To keep things simple, first consider a discrete-time Markov proces X,
on a state space J with a transition function

P(Xn+1 € B| X, =2) =n(z,B)
Since X,, is a Markov process,
P(Xn—l—l €B |B(X17X2;---7Xn)) :W(Xn(w)7B) (51)

Define Tf(z) = [, f(y)m(z,dy) = E,(f(X1)) and Af(z) = Tf(z) — f(x).
Then T" f(x) = E, (f( )) by the Markov property, and

Lemma 5.1. For any bounded function f(z) on J, the process

- z_: Af(Xk) (5.2)
k=0

is a martingale with respect to the o-algebras B,, = B(X1, Xa,..., X,).

Proof. Assume n < m. Clearly B, C B,, and Y,, is B,-measurable. Thus
it only remains to prove E(Y,, | B,) =Y, in order to show that {Y,,, 5, } is
a martingale. By (5.2)

Vo = f(Xm) — mz_:lAf(Xk) - nz_:lAf(Xk)
_ vy yﬂ<3)__ Y® k:O
Then
E(Y\V | B,) = E( (Xn) | Bn) = Tm-nf(Xn)
E(Y? |B,) = ZE Af(Xy) | By) ZTk RAf(X

by (5.1) and the Markov property for X,,. Since Af =Tf — f,

E(Y\ | By) = EY,D | B,) = T" " f(X ZTk "Af(X,)
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m—1
- Tm— nf Z Tlc n—|—1f ) Tk—nf(Xn))
k=n
= f(Xn)
and E(Y\") — v, | B,) = f(X,). Since Y,\¥) = SUTLAF(Xy) is B-
measurable,

E(Ym | Bn) = FE Y’n(’Ll) - Yrg) | Bn) - E(Yn(z?)) | Bn)
n—1

- f(Xn) - g(Xk) =Yn

o
o

This completes the proof that {Y,,, B, } is a martingale.

Lemma 5.2. For any function f € D(A), the process

tAC(w)
B = D) ws = [ AW (53

is a martingale with respect to the sigma-algebras {B;, }.

Proof. By (2.8)

Tf(x) = f(z) + /O T, Af()ds (5.4)

for any f € D(A). Since A is a trap, any f € D(A) for the semigroup
T, f(x) for f(x) on Iy = (0,1) can be extended to f € D(A) for f(x) on
In = (0,1) U{A} by setting f(A) = 0. By essentially the same argument
as in the proof of Lemma 5.1 with (5.4) replacing a telescoping sum, this
implies that the process

Y, = F(X,) - /0 AF(X2)ds (5.5)

is a continuous-parameter martingale with respect to B;;. Since A is a trap,
Af(A) =0 for any f € D(A). Thus the martingale (5.5) is the same as the
process in (5.3).

Exercise. Complete the proof that (5.5) is a continuous-time martingale
with respect to B:y. Give justifications for interchanging the order of inte-
grals and conditional expectations.
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6. An Upper Bound for Exit and Death Times. Let

Tn(w) = min{ t:t<((w), Xi(w) € (0, %) U <1 - %, 1> } (6.1)
be the first time that X;(w) exits from the closed interval [1/N,1 — 1/N],
assuming that it remains within Iy = (0,1).

We make the the convention that Txn(w) = oo if the right-hand side
of (6.1) is empty; that is, if X;(w) ¢ (0,1/N)U (1 —1/N,1) for all t < {(w).
If Tn(w) < o0, then T (w) < ((w).

Note that {w : Ty (w) >t} € B;1. We may not have {w : Ty(w) >t} €
B, in general, either because ¢ ¢ @ (recall B, = B{X,:q <t,qe Q}) or
because t = ¢ € Q but X; = X, # X,. Thus Ty may not be a B;-stopping
time, but is a B;,-stopping time. However, Lemma 5.2 implies that Y;(w)
are martingales with respect to By, so that this is enough.

We then have

Theorem 6.1. If C is the constant in (2.7),

max F,.(Too N() < C, Too(w) =supTy(w) (6.2)
0<z<1 N
where Too A ¢ = min{7T, (}.

Thus, with P,-probability one for any x € Iy, either T, (w) < oo or
((w) < oo. In particular, the only way that T, (w) = oo can happen is if
((w) < 0.

Proof of Theorem 6.1. Define continuous functions ¥y € Cy(I) such
that 0 < ¢¥n(y) <1 and Yn(y)=1on (1/N,1—-1/N). If

() = / o,y (y)m(dy) (6.3)

then hy € D(A) and Ahy = —¢ny < 0. In particular, Ahy(z) = —1 on
(1/N,1—1/N). Thus by Lemma 5.2

tAC
VN = hn(Xe) sy + YN (X,)ds (6.4)
0

is a nonnegative martingale for any N > 3. Then by the Optional Stopping
Theorem,

N tATNNC
Yiary = hn(Xiarn ) c>iarn) + / Y (Xs)ds
0

= hn(Xiearw Mestary] + tATN AC



Sample Path Regularity for One-Dimensional Diffusions................. 12

are also martingales, since ¥(X;) = 1 for 0 < s < Ty A (. This in turn
implies

E,(t ANTn NC) = hn(z) — By (hn(Xiaryac)) < C (6.5)
since 0 < ¥y (z) < 1 implies 0 < hy(z) < C by (6.3) where C is the same
constant as in (2.7). Fatou’s theorem applied to ¢t and N (in any order) then
implies (6.2).

7. Exit Times are Less Than Death Times. Death times ((w) are nec-

essary for general Markov processes, but can be shown to be less mysterious
here. As in (6.1), let

Tn(w) = min{ t:t<((w), Xi(w) e (0, %) U <1 - %, 1> } (7.1)

We show below that P,(Tn < ¢) = 1, so that Ty (w) < ((w) almost surely.
This implies that T (w) = supy Tn(w) < ((w) with probability one. We
will show in a later section that, in fact, T (w) = ((w) almost surely.

The same argument as in Theorem 7.1 can also be used to show that the
sample paths {X;(w)} are continuous for 0 <t < ((w) (see Theorem 7.2).

Theorem 7.1. For the process { X; } defined above,
Po(Ty <¢)=1 forallz e (0,1) (7.2)
Corollary 7.1.

max F,(Tw) < C, Too(w) =supTn(w) (7.3)
0<<1 N

Morever, limy_. o X7, (w) = A exists almost surely where A (depending

on w) is either 0 or 1.

Proof. Equations (6.2) and (7.2) imply (7.3), limy_c X7, exists a.s.
by (4.7), and X7, € (0,1/N)U(1 — 1/N, 1) by right-continuity of the sample
paths.

Proof of Theorem 7.1. It is sufficient to assume 1/N < x < 1 —1/N
since Ty (w) = 0if z € (0,1/N)U (1 —1/N,1). It follows from (3.10) and
the strong continuity of the semi-group {7;} that P, (¢ > 0) = 1 for arbitrary
X € Io.

Let vy (x) € Co(I) N C3(I) such that 0 < ¢n(z) < 1, ¥ny(z) = 1 on
(1/N,1 —1/N), and 0 < ¢(x) < 1 on (0,1/N)U (1 — 1/N,1). (See the
Exercise below.) Then ¢ € D(A) with AYy(x) = Liyn(z). By Lemma 5.2

tAC(w)
YN (W) = v (Xew) ewy>y — /O Ly (Xs(w))ds (7.4)
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is a martingale. By the Optional Stopping Theorem

Eo (Yl ) = B (n (Xiary @) st ) = Un(@)  (75)

since AYn(Xs) = LYy (Xs) =0for 0 < s <tATy.

Let gy (t,w) be the integrand in (7.5). Note that 0 <t ATy < Ty. If
Tn < ¢, then limy o gn (t,w) = YN = YN (X1 ). TN > ¢, then ((w) < 00
by (6.2) and lim;_,o gn(t,w) = 0. In either case

Un(z) = Ey <7ZNI[C(UJ)>TN]) (7.6)

where JN = 0 (for example) if Ty > (. If 1/N < x < 1—1/N, then the
expected value ¥y (x) = 1. Since the integrand of (7.6) is bounded by one, it
must be equal to one a.s. This implies P,(((w) > Tn) = 1, which completes
the proof of Theorem 7.1.

Exercise. Let ky(z) = Nk(Nzx) for

[ Cexp(=1/(1 —2?)) for|z| <1
k(z) = {O P ) for |z| > 1

where C' is chosen so that [~ _k(y)dy = 1. Prove that (i) k(x) has contin-
uous derivatives of all orders on the real line R (that is, k € C*°(R)) and
(ii) Supp(k) = [—1,1]. Now set

1-1/2N
Yn(z) = / kon(z — y)dy
1/2N

Prove that (iii) ¢¥n(z) has continuous derivatives of all orders on R, (iv)
0 < ¢Yn(z) <1 forall z, (v) Yn(z) =1 for I/N <2 < 1-1/N, and
(vi) Yn(z) =0if x <O orz > 1.

Remark. It follows from (7.3) that

> < = .
01%13%(1 Px(TOO = to) ~ 1/2, t() 2C (7 7)

This implies by the Markov property and standard arguments that
Corollary 7.2. Under the assumptions of Theorem 7.1

max P,(Th >1t) < 2e7 ", t>0 (7.8)
0<z<1

for a = 2C'log 2 > 0, and also
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CLTOO <
jnax, E.(e*">*) < Ci(a), 0<a<a« (7.9)

where C1(a) < oo for 0 < a < a.
We can use the same argument as in Theorem 7.1 to prove

Theorem 7.2. With probability one, the sample paths X;(w) are continu-
ous functions of ¢ for 0 <t < ((w).

Proof. Since P,(Ty < ¢) =1 and E,(¢) < C, it follows from (7.6) that
Un =N (X7, ) =1 as. in (7.6) for 1/N < z < 1 —1/N. This implies that
Xry(w) € {1/N,1 — 1/N} almost surely. This means that X;(w) cannot
leave (1/N,1 — 1/N) by a jump beyond the boundary of (1/N,1 — 1/N).
This suggests that, at least, X;(w) cannot be discontinuous at X;(w) = 1/N
or Xy(w)=1-1/N.

If general, define

Top(w) =min{ t:t < ((w), X¢(w) € (0,a) U (b,1)} (7.10)

for rational values a,b with 0 < a < b < 1 with, as before, the con-
vention Typ(w) = 0o if the set of ¢ on the right-hand side of (7.10) is
empty. By the same argument as in Theorem 7.1, P,(T,, < oo) = 1 and
P,(Xr,, €{a,b})=1for0<a<z<b<]1.

Expand the null set £ € F in (4.7) to include the null set of all
w € Q that provide counterexamples to X, (,y(w) € {a,b} for rational
0<a<b<l1. It follows that, if w ¢ E, there cannot exist any rational
values r such that X;_(w) < r < X4 (w), since we could then find a coun-
terexample to Xr, (.)(w) € {a,r} for some rational interval (a,r).

Similarly there cannot exist any rational values r such that X, (w) <
r < X;_(w) since we could find a counterexample to Xr,,(.)(w) € {r,b} for
some rational interval (r,b). Since X;(w) has at worst jump discontinuities
for w ¢ E by the argument that led up to (4.7), this implies that X;(w) must
be continuous in ¢ for 0 < ¢ < ((w). This completes the proof of Theorem 7.2.

8. Exit Times are Death Times. The purpose of this section is to
prove that, in fact, T (w) = ((w) almost surely for To,(w) = supy ITn(w).
We begin with two lemmas.

Lemma 8.1. If f,h € Cy(I), then h € D(A) and Ah = —f if and only if

h(x) = / g, y) f (y)m(dy) (8.1)
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Proof. If h(z) is given by (8.1), then h € D(A) and Ah = Lh = —f as in
Section 1. Conversely, assume h € D(A) and Ah = —f. Define

hi(z) :/o g(x,y) f(y)m(dy)

Then h; € D(A) and Ahy = Lhy = —f. Let g = h—hy. Then g € D(A) and
Ag = Ah — Ah; = 0.

If g € D(A) and Ag = 0, it follows from Lemma 5.2 that g(X¢)Ijcsq is
a uniformly-bounded martingale. Thus

9(z) = By (9(Xe)Iic>r))
By the relation P,(Tv < ¢) = 1 and the Optional Stopping Theorem,

9(z) = Eux(9(Xinry))

Since P,(Tn < oo) = 1 by Theorems 6.1 and 7.1 and g(z) is bounded, we
can let £ — oo and obtain

g9(x) = Ei(9(Xy))

However, limy_, o g(X7, ) = 0since g € Cy(I) by Corollary 7.1. This proves
that g(x) = 0 for 0 < x < 1. Since g = h— hq, it follows that h(z) = hy(z) =
[ g9(z,y)f(y)m(dy). This completes the proof of the lemma.

Lemma 8.2. For any f € Cy(I) with f(z) >0,
1 o0 ¢(w)
| swnseman = [T = 5[ rx0as) 62)
Proof. Define
hxa(z) = Ryf(x) = / e T, f(x)ds
0

As in Section 2, hy(z) € D(A) and (A — A)hy(z) = f(x). Thus Ahy =
Ay — f=—(f — Ahy). It then follows from Lemma 8.1 that

ha() = / T fa)ds — / o, 0) (Fy) — Mia())m(dy)  (83)

1
< / g(z,9)fy)m(dy) < Csup f(z)
0

Y



Sample Path Regularity for One-Dimensional Diffusions................. 16

since f(z) > 0 and h)(y) > 0, where C is the constant in (2.7). Thus
hx(xz) < Cj uniformly in A > 0. Since then My (z) < C1 A, taking the limit
A — 0 in (8.3) for f(x) > 0 implies

wmzéﬂwmwzéamw@mm

= ([T st as) = B[ )

This implies (8.2).

Theorem 8.1. Define Ty, T, and ¢ as before. Then P, (To, = () =1 for
all z € I.

Proof. Let .
) = [ ate.nimidy (8.4)
for arbitrary ¢ € Co(I) with ¢(y) > 0. Then Ah = —1) and

tAC(w)
i) = b wsa + [ 0(Xu(e)ds

is a nonnegative martingale by Lemma 5.2. Thus

tAC

Eaz(h(Xt)I[<>t] + w(Xs)CLS) = h(x)

for all t > 0 and x € I. By the Optional Stopping Theorem
tATNAC
ho) = Bo (MXua oo + [ 0(Xo)ds)
0

= ( (Xiaty) /OtATN ¢(Xs)d5>

since P,(Ty < ¢) = 1 by (7.2). Since h(z) is bounded, ¥(y) > 0, and
Txn < oo almost surely by (6.2), we can let t — oo and conclude

TN

M) = Eo(h(Xny) + [ 0(X.)ds) (8.5)

As N — oo, h(Xp,) — 0 since h € Cy(I). Since 0 < Ty T T and
¥(Xs) > 0, we conclude from (8.5) that

0

ha) = B / T“’(w)wxs)ds) (3.6)
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In contrast, by Lemma 8.2 and (8.4)

hx) = Eaf / C(“’)mxs)ozs) (8.7)

Recall Too(w) < ((w) almost surely by (7.2). Both integrals in in (8.6)
and (8.7) are finite since (Xs) > 0 and h(z) is finite. We can then sub-
tract (8.6) from (8.7) to conclude

i, ( / . Y(X.)ds) = 0

Too (w)

This holds for all ¢» € Cy(I) with ¥(z) > 0. We can approximate ¢ (z) =
by nonnegative functions ¥y € Cy(I) by setting (for example) 1o(x)

2min{ 2,1 — z} and ¢¥n(z) = Yo(z)"/N. Then 0 < ¢y(z) < 1 and 0

Yn(z) T1as N — oo. This implies

E, <C(w) - Too(w)> =0, Tu(w) < (W) as. (8.8)

Thus ((w) — Too(w) = 0 almost surely with respect to P, for all x € Iy. This
completes the proof of Theorem 8.1. (Ezercise: Prove or disprove: (8.8)
also holds for z = A. Use the precise definitions of X, (w), X;(w), and Ty (w).
Discuss.)
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