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1. Basic Assumptions. Assume that
(i) {Tt} is a strongly-continuous semigroup of bounded linear operators on

the Banach space

B = C0(I) = { f continuous on I = [0, 1] : f(0) = f(1) = 0 }
(ii) If f(x) ≥ 0 and f ∈ B, then Ttf(x) ≥ 0 and Ttf(x) ≤ maxy∈I f(y).

In general, the infinitesimal generator of a strongly-continuuous semi-
group of linear operators Tt on any Banach space B is defined by

Af = lim
h→0

(Thf − f)/h (1.1)

on the set

D = D(A) = {f : The limit in (1.1) exists in the norm of B}
Suppose further that
(iii) The operator A and set D(A) satisfy the following conditions. Let

Lf(x) =
d

dm(x)
d

ds(x)
f(x) (1.2)

for f ∈ C2(I0), where C2(I0) is the set of all functions on I0 = (0, 1)
that are twice-continuously differentiable on I0. In (1.2), s(x) is strictly
increasing, continuously differentiable, and bounded on (0, 1), s′(x) > 0
on (0, 1), and the measure m(dx) = m(x)dx where m(x) is continuous
and m(x) > 0 on (0, 1). Thus we can also write

Lf(x) =
1

m(x)
d

dx

1
s′(x)

d

dx
f(x) (1.3)

If f ∈ C2(I0) ∩ C0(I) and Lf ∈ C0(I), then f ∈ D(A) and Af = Lf .
(iv) Since s(x) is strictly increasing and bounded on (0, 1), we can assume

without loss of generality that s(0) = s(0+) = 0 and s(1) = s(1−) = 1.
We also assume

∫ x0

0

s(x)m(dx) +
∫ 1

x0

(
1− s(x)

)
m(dx) < ∞ (1.4)

whenever 0 < x0 < 1. In terms of diffusion process theory, this is the
condition that the endpoints are regular or exit.
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2. Some Useful Identities. (1) Define

g(x, y) =

(
s(1)− s(x ∨ y)

)(
s(x ∧ y)− s(0)

)

s(1)− s(0)
(2.1)

where 0 ≤ x, y ≤ 1, x ∧ y = min{x, y}, and x ∨ y = max{x, y}. Let

f(x) =
∫ 1

0

g(x, y)h(y)m(dy) (2.2)

=
s(1)− s(x)
s(1)− s(0)

∫ x

0

(s(y)− s(0))h(y)m(dy)

+
s(x)− s(0)
s(1)− s(0)

∫ 1

x

(s(1)− s(y))h(y)m(dy) (2.3)

where h(y) is bounded on I0. By (2.1)

g(x, y) ≤ min{g(x, x), g(y, y)} (2.4)
g(y, y) ≤ min{s(1)− s(y), s(y)− s(0)}

If h(y) ≥ 0, then by (2.2) and (2.4)

f(x) ≤
∫ 1

0

g(y, y)h(y)m(dy) (2.5)

≤
∫ 1

0

min{s(1)− s(y), s(y)− s(0)}h(y)m(dy)

=
∫ x0

0

(
s(y)− s(0)

)
h(y)m(dy) +

∫ 1

x0

(
s(1)− s(y)

)
h(y)m(dy) (2.6)

where x0 is determined by s(x0)− s(0) = (1/2)
(
s(1)− s(0)

)
. It then follows

from (1.4) that f(x) in (2.2) is uniformly bounded with

|f(x)| ≤ C max
y
|h(y)| (2.7)

where C is the constant on the right-hand-side value of (2.6) if h(y) is replaced
by 1. It follows similarly from (2.4) and the dominated convergence theorem
that f(x) ∈ C(I) with f(0) = f(1) = 0.

(2) If h(x) ∈ C0(I), then f(x) in (2.2) is continuous differentiable with

f ′(x) = s′(x)
(∫ 1

x

s(1)− s(y)
s(1)− s(0)

h(y)m(dy) −
∫ x

0

s(y)− s(0)
s(1)− s(0)

h(y)m(dy)
)
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Hence f ′(x)/s′(x) is continuously differentiable with

Lf(x) =
1

m(x)
d

dx

(
f ′(x)
s′(x)

)
= −h(x)

Then, by Assumption (iii), f ∈ D(A) and Af = Lf = −h. In fact, it is not
difficult to show that if f(x) ∈ C2(I0) ∩ C0(I) and Lf = −h ∈ C0(I), then
f(x) is given by (2.2). (Exercise: Prove the last statement. Lemma 8.1 in
Section 8 below has a second proof using martingales.)

(3) Another useful identity is

Ttf(x) = f(x) +
∫ t

0

Ts(Af)(x)ds, any f ∈ D(A) (2.8)

This follows immediately from the definition (1.1) and the strong continuity
of the semi-group.

(4) If ‖Tt‖ ≤ CeMt and

Rλf(x) =
∫ ∞

0

e−λtTtf(x)dt, λ > M (2.9)

then applying Rλ to the identity (2.8) and rearranging terms implies

Rλ

(
λI −A

)
f = f, f ∈ D(A)

Similarly, if g = Rλf for f ∈ B, it follows from the strong continuity of {Tt}
that g ∈ D(A) and Ag = λg − f . Thus (λI − A)Rλf = f for all f ∈ B. It
follows that λI −A on D = D(A) is a two-sided inverse of Rλ on B.

3. A Probability Space for Tt. By Assumptions (i) and (ii), we can
write

Ttf(x) =
∫ 1

0

f(y)P (t, x, dy) (3.1)

where P (t, x, dy) ≥ 0 are Borel measures on the open unit interval I0 =
(0, 1). The semigroup property Tt+sf = TtTsf for {Tt} is equivalent to the
Chapman-Kolmogorov equations

P (t + s, x, B) =
∫ 1

0

P (t, y, B)P (s, x, dy) (3.2)

for P (t, x, dy). The assumptions in Section 1 imply 0 ≤ P (t, x, I0) ≤ 1, but
do not exclude the possibility P (t, x, I0) < 1.
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The first step in finding a stochastic process corresponding to the semi-
group (3.1) is to extend P (t, x, A) on I0 = (0, 1) to a larger space I∆ such
that (i) P (t, x, I∆) = 1 for all x ∈ I∆ and (ii) the Chapman-Kolmogorov
equations (3.2) hold on I∆. To do this, we first define an abstract “death
point” ∆ /∈ I0 and set

I∆ = I0 ∪ {∆}, I0 = (0, 1) (3.3)

We extend P (t, x,A) for x ∈ I0, A ⊆ I0 to x ∈ I∆, A ⊆ I∆ by

P (t, x, {∆}) = 1− P (t, x, I0) (3.4)

P (t, ∆, {∆}) = 1, P (t,∆, I0) = 0

Then the extended function P (t, x,A) for x ∈ I∆ and A ⊆ I∆ satisfies
(i) P (t, x,A) ≥ 0, (ii) P (t, x, I∆) = 1 for all x ∈ I∆, and (iii) the Chapman-
Kolmogorov relations

P (t + s, x, B) =
∫

I∆

P (t, y, B)P (s, x, dy) (3.5)

for x ∈ I∆ and B ⊆ I∆. (Exercise: Prove (i,ii,iii) using (3.4) and (3.2)
on I0.)

Let Q = { k/2m : k ≥ 0,m ≥ 0 } be the set of nonnegative dyadic ratio-
nals. We will use the Kolmogorov Consistency Theorem (KCT) to construct
a probability space (Ω,F , Px) with random variables {Xq(ω) ∈ I∆ : q ∈ Q }
that form a Markov process consistent with (3.3), (3.4), and (3.5). The sub-
script x in Px is a parameter x ∈ I∆ for which Px(X0 = x) = 1. In the
Kolmogorov representation, the basic sample space is the infinite product

Ω = (IC)Q = {ω : ω = ω(r) ∈ IC , r ∈ Q } (3.6)

where IC = [0, 1] ∪ {∆} is a compact version of I∆. The random variables
Xr(ω) = ω(r) are the coordinate functions in the infinite product Ω. The
sigma-algebra F = B{Xr : r ∈ Q } is the smallest sigma-algebra of subsets
of Ω with respect to which all Xr are measurable. This is also the sigma
algebra generated by the cylinder sets

Γ(r1, . . . , rn, A1, . . . , An) = {ω : Xri(ω) ∈ Ai for 1 ≤ i ≤ n } (3.7)

for 0 ≤ r1 < r2 < . . . < rn for ri ∈ Q, sets Ai ⊆ IC , and all n. The first
step in applying the KCT is to define Px for cylinder sets. The appropriate
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definition in this case turns out to be the somewhat complex

Px

(
Γ(r1, . . . , rn, A1, . . . , An)

)

=
∫

A1

. . .

∫

An

P (r1, x, dy1)P (r2 − r1, y1, dy2) . . .

. . . P (rn − rn−1, yn−1, dyn (3.8)

We assume in (3.8) that Px(X0 = x) = 1 if r1 = 0, P (t, 0, {0}) =
P (t, 1, {1}) = 1 for t ≥ 0, and P (t, x, {0, 1}) = 0 for x ∈ I∆ = (0, 1) ∪ {∆}.

The next step is to notice that if (for example) Ai0 = IC in (3.7),
then Px(Γ(r1, . . . , A1, . . .) is the same as if we dropped the i0-th coordinate
in (3.7) and (3.8) and computed the probability of the resulting cylinder set
with n−1 conditions. (This is the consistency condition in the KCT.) Here
the consistency condition follows from the Chapman-Kolmogorov relation

∫

IC

P (ri0+1−ri0 , y, A)P (ri0−ri0−1, x, dy) = P (ri0+1−ri0−1, x, A)

which follows from (3.5).
The KCT then implies that there exists a unique probability measure Px

on (Ω,F) such that Px

(
Γ(. . .)

)
is given by (3.8) for cylinder sets (3.7). One

can then check from (3.8) that

Px(Xr ∈ I∆) = 1, x ∈ I∆ ⊂ IC , r ∈ Q

Px(Xr ∈ A) = P (r, x, A), x ∈ I∆, A ⊆ I∆ and

Px(Xq ∈ A | Br)(ω) = P (q − r,Xr(ω), A) (3.9)

for r, q ∈ Q, r < q, and x ∈ I∆. Here Br = B{Xa : a ≤ r, a ∈ Q }
is the smallest σ-algebra Br ⊆ F such that Xa(ω) is Br-measurable for
a ≤ r, a ∈ Q. Here Px(Xq ∈ A | Br)(ω) is the conditional-probability ran-
dom variable. That is, g(ω) = Px(Xq ∈ A | Br)(ω) is the unique bounded
Br-measurable function such that

E
(
IA(Xq)h

)
= E(

(
P (q − r,Xr, A)h

)

for all bounded Br-measurable random variables h(ω). (Exercise: Ver-
ify (3.9).)

The relations (3.9) imply that, for a set of ω ∈ Ω with Px-probability
one for every x ∈ I∆ = (0, 1)∪{∆}, the sample paths {Xr(ω) : r ∈ Q } start
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in and remain in I∆. Thus {Xr : r ∈ Q } is a Markov stochastic process
with values in I∆ and Markov transition function P (t, x, A).

Similarly, (3.4) implies that, again for a set of ω with Px-probability one
for every x ∈ I∆, Xr(ω) = ∆ for any ω implies Xq(ω) = ∆ for every q > r.
Set ζ(ω) = min{ r ∈ Q : Xr(ω) = ∆ }. We call ζ(ω) the death time for a
sample path Xr(ω) in I0. For these ω ∈ Ω, X(r, ω) = ∆ whenever r > ζ(ω).
Thus, within sets of probability zero,

{ω : ζ(ω) > r } = {ω : Xr(ω) ∈ I0 }

This implies that by (3.1) and (3.3)–(3.4)

Trf(x) =
∫ 1

0

f(y)P (r, x, dy) = Ex

(
f(Xr)I[Xr∈I0]

)

= Ex

(
f(Xr)I[ζ>r]

)
(3.10)

The purpose for restricting r to a countable set is so that events involving
the sample paths Xr(ω) depend on at most a countably infinite number of
random variables. Otherwise, simple events involving sample-path continuity
or even Lebesgue measurability may not be measureable.

The next step will be to extend {Xr : r ∈ Q } to random variables
{Xt : t ≥ 0 } defined on the same probability space in such a way that
events involving the process {Xt : t ≥ 0 } will depend only on {Xr : r ∈ Q }.

4. Sample Path Regularity. As in (2.2),

f(x) =
∫ 1

0

g(x, y)h(y)m(dy) (4.1)

=
(
1− s(x)

) ∫ x

0

s(y)h(y)m(dy) + s(x)
∫ 1

x

(1− s(y))h(y)m(dy)

for h ∈ C0(I). Define functions φN (x) ∈ C0(I) for N ≥ 3 such that
φN (x) = 0 for x < 1− 1/N , φN (x) ≥ 0,

Supp(φN ) ⊆
(
1− 1

N
, 1− 1

2N

)

and
∫ 1

0

(
1− s(y)

)
φN (y)m(dy) = 1. Define

fN (x) =
∫ 1

0

g(x, y)φN (y)m(dy) (4.2)

Then fN ∈ D(A), AfN (x) = −φN (x) ≤ 0, and by (4.1)
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fN (x) = s(x) on
(
0, 1− 1

N

)
(4.3)

It follows from the identity (2.8) in Section 2 that

TtfN (x) = fN (x) +
∫ t

0

Ts(AfN )ds

= fN (x)−
∫ t

0

TsφN (x)ds (4.4)

Since φN (x) ≥ 0 and fN (x) ≥ 0 by (4.2), 0 ≤ TtfN (x) ≤ fN (x) for all t ≥ 0
and x ∈ I0. Then by (3.10), (4.4), and the Markov property

Ex

(
fN (Xq)I[ζ>q]

∣∣∣ Br

)
(ω) = Tq−rfN

(
Xr(ω)

)
) (4.5)

≤ fN

(
Xr(ω)

)
I[ζ(ω)>r]

where Br = B{Xa : a ≤ r, a ∈ Q } as before. Since 0 ≤ fN (x) ≤ CN by (4.2)
and (2.7),

Y N
r (ω) = fN

(
Xr(ω)

)
I[ζ(ω)>r], 0 ≤ r < ∞, r ∈ Q

is a uniformly bounded supermartingale for each N . Moreover, it follows
from (4.3) and the conditional Fatou’s inequality

E
(
lim inf
N→∞

HN

∣∣∣ Br

)
≤ lim inf

N→∞
E

(
HN

∣∣∣ Br

)
a.s.,

for arbitrary random variables HN (ω) ≥ 0 that (4.5) also holds with fN (x)
replaced by s(x). Thus

Yr(ω) = s
(
Xr(ω)

)
I[ζ(ω)>r] 0 ≤ r < ∞, r ∈ Q (4.6)

is also a uniformly bounded supermartingale.
Doob’s Upcrossing Inequality now applies to the finite subsets QNM =

{ k/2N : 0 ≤ k ≤ M } of Q with a uniform upper bound. This in turn implies
that there exists a single null set E ∈ F such that for ω /∈ E, the limits

lim
q>t, q ↓ t

Xq(ω) = Xt+(ω), lim
q<t, q ↑ t

Xq(ω) = Xt−(ω) (4.7)

exist for all real values t < ζ(ω), where the first limit exists for t = 0, and
the second limit exists at t = ζ(ω). It follows from (4.7) that the set

{ t : t < ζ(ω), Xt+(ω) 6= Xt−(ω) }
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is at most countably infinite for each such ω, even though the set of possible t
in (4.7) is uncountably infinite. Since Xr(ω) = ∆ almost surely for r ≥ ζ(ω),
it follows that (4.7) holds for all real t ≥ 0 and ω /∈ E1 for a larger null
set E1.

We now define random variables Xt(ω) for all real t ≥ 0 in terms of the
random variables {Xr(ω) : r ∈ Q } by

Xt(ω) = lim
r>t, r↓t

Xr(ω) = Xt+(ω), 0 ≤ t < ζ(ω) (4.8)

= ∆, ζ(ω) ≤ t < ∞

Note that this defines an uncountable number of random variables {Xt(ω)} in
terms of a countable set {Xr(ω) : r ∈ Q }. The first relation in (4.7) implies
that Xt(ω) is right-continuous in t for all real t ≥ 0. The relations (4.7)
and (4.8) do not exclude Xt(ω) 6= Xr(ω) for t = r. However, the strong
continuity condition on Tf (x) in Section 1 implies

lim
q>r, q↓r

Tqf(x) = lim
q>r, q↓r

Ex

(
f(Xq)I[ζ>q]

)
= Trf(x) = Ex

(
f(Xr)I[ζ>r]

)

uniformly in x ∈ I0 for all f ∈ B = C0(I). This implies limq>r, q↓r Xq = Xr

weakly Px for all x ∈ (0, 1). Since the same limit converges a.s. to Xt by (4.7),
it follows that Px(Xt = Xr) = 1 for t = r. Thus, with probability one, the
sample paths {Xt(ω) : t ≥ 0 } are right continuous in t. We will use another
martingale argument below to show that, in fact, almost every sample path
{Xt(ω)} is continuous for t < ζ(ω).

A subtlety of the definition (4.8) is that Xt(ω) is not Bt-measurable for
Bt = B{Xr : r ≤ t } even if t = r ∈ Q, since it involves a right-hand limit.
However, Xt is Bt+ measurable for Bt+ = ∩ε>0Bt+ε. The right-continuity of
sample paths from (4.8) implies that Xt is a Markov process with respect
to Bt+: That is,

Px(Xt+s ∈ A | Bt+) = P (s,Xt(ω), A) a.s. (4.9)

This follows from the relation

Ex

(
φ(Xt+s)ψ(Xt1 , . . . , Xtn)

)
= Ex

(
Ts−εφ(Xtn)ψ(Xt1 , . . . , Xtn)

)
(4.10)

for all φ ∈ C0(I), ψ ∈ C0(In), and 0 < t1 < t2 < . . . < tn = t + ε < t + s.
The relation (4.10) follows from (3.5) and (3.8). Finally, let ε → 0 in (4.10)
and use the strong continuity of {Tt} and the right-continuity of sample
paths Xt(ω). (Exercise: Carry out the details.)
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5. A Family of Martingales. The key step in the last step was iden-
tifying a bounded supermartingale. Most of the following results will also
depend on martingale arguments. Before continuing, we state a result about
a set of martingales that we will use several times that arises naturally for
any Markov process.

To keep things simple, first consider a discrete-time Markov proces Xn

on a state space J with a transition function

P (Xn+1 ∈ B | Xn = x) = π(x,B)

Since Xn is a Markov process,

P (Xn+1 ∈ B | B(X1, X2, . . . , Xn)) = π
(
Xn(ω), B

)
(5.1)

Define Tf(x) =
∫

J
f(y)π(x, dy) = Ex

(
f(X1)

)
and Af(x) = Tf(x) − f(x).

Then Tnf(x) = Ex

(
f(Xn)

)
by the Markov property, and

Lemma 5.1. For any bounded function f(x) on J , the process

Yn = f(Xn)−
n−1∑

k=0

Af(Xk) (5.2)

is a martingale with respect to the σ-algebras Bn = B(X1, X2, . . . , Xn).

Proof. Assume n < m. Clearly Bn ⊆ Bm and Yn is Bn-measurable. Thus
it only remains to prove E(Ym | Bn) = Yn in order to show that {Yn,Bn } is
a martingale. By (5.2)

Ym = f(Xm) −
m−1∑

k=n

Af(Xk) −
n−1∑

k=0

Af(Xk)

= Y (1)
m − Y (2)

m − Y (3)
m

Then

E(Y (1)
m | Bn) = E

(
f(Xn) | Bn

)
= Tm−nf(Xn)

E(Y (2)
m | Bn) =

n−1∑

k=n

E
(
Af(Xk) | Bn

)
=

n−1∑

k=n

Tk−nAf(Xn)

by (5.1) and the Markov property for Xn. Since Af = Tf − f ,

E(Y (1)
m | Bn)− E(Y (2)

m | Bn) = Tm−nf(Xn) −
m−1∑

k=n

T k−nAf(Xn)
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= Tm−nf(Xn) −
m−1∑

k=n

(
T k−n+1f(Xn)− T k−nf(Xn)

)

= f(Xn)

and E(Y (1)
m − Y

(2)
m | Bn) = f(Xn). Since Y

(3)
m =

∑n−1
k=0 Af(Xk) is Bn-

measurable,

E(Ym | Bn) = E(Y (1)
m − Y (2)

m | Bn)− E(Y (3)
m | Bn)

= f(Xn) −
n−1∑

k=0

g(Xk) = Yn

This completes the proof that {Yn,Bn } is a martingale.

Lemma 5.2. For any function f ∈ D(A), the process

Yt(ω) = f
(
Xt(ω)

)
I[ζ(ω)>t] −

∫ t∧ζ(ω)

0

Af
(
Xs(ω)

)
ds (5.3)

is a martingale with respect to the sigma-algebras {Bt+}.
Proof. By (2.8)

Ttf(x) = f(x) +
∫ t

0

TsAf(x)ds (5.4)

for any f ∈ D(A). Since ∆ is a trap, any f ∈ D(A) for the semigroup
Ttf(x) for f(x) on I0 = (0, 1) can be extended to f ∈ D(A) for f(x) on
I∆ = (0, 1) ∪ {∆} by setting f(∆) = 0. By essentially the same argument
as in the proof of Lemma 5.1 with (5.4) replacing a telescoping sum, this
implies that the process

Yt = f(Xt)−
∫ t

0

Af(Xs)ds (5.5)

is a continuous-parameter martingale with respect to Bt+. Since ∆ is a trap,
Af(∆) = 0 for any f ∈ D(A). Thus the martingale (5.5) is the same as the
process in (5.3).

Exercise. Complete the proof that (5.5) is a continuous-time martingale
with respect to Bt+. Give justifications for interchanging the order of inte-
grals and conditional expectations.
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6. An Upper Bound for Exit and Death Times. Let

TN (ω) = min
{

t : t < ζ(ω), Xt(ω) ∈
(
0,

1
N

)
∪

(
1− 1

N
, 1

) }
(6.1)

be the first time that Xt(ω) exits from the closed interval [1/N, 1 − 1/N ],
assuming that it remains within I0 = (0, 1).

We make the the convention that TN (ω) = ∞ if the right-hand side
of (6.1) is empty; that is, if Xt(ω) /∈ (0, 1/N) ∪ (1− 1/N, 1) for all t < ζ(ω).
If TN (ω) < ∞, then TN (ω) < ζ(ω).

Note that {ω : TN (ω) > t } ∈ Bt+. We may not have {ω : TN (ω) > t } ∈
Bt in general, either because t /∈ Q (recall Bt = B{Xq : q ≤ t, q ∈ Q }) or
because t = q ∈ Q but Xt = Xq+ 6= Xq. Thus TN may not be a Bt-stopping
time, but is a Bt+-stopping time. However, Lemma 5.2 implies that Yt(ω)
are martingales with respect to Bt+, so that this is enough.

We then have

Theorem 6.1. If C is the constant in (2.7),

max
0≤x≤1

Ex(T∞ ∧ ζ) ≤ C, T∞(ω) = sup
N

TN (ω) (6.2)

where T∞ ∧ ζ = min{T∞, ζ}.
Thus, with Px-probability one for any x ∈ I0, either T∞(ω) < ∞ or

ζ(ω) < ∞. In particular, the only way that T∞(ω) = ∞ can happen is if
ζ(ω) < ∞.

Proof of Theorem 6.1. Define continuous functions ψN ∈ C0(I) such
that 0 ≤ ψN (y) ≤ 1 and ψN (y) = 1 on (1/N, 1− 1/N). If

hN (x) =
∫ 1

0

g(x, y)ψN (y)m(dy) (6.3)

then hN ∈ D(A) and AhN = −ψN ≤ 0. In particular, AhN (x) = −1 on
(1/N, 1− 1/N). Thus by Lemma 5.2

Y N
t = hN (Xt)I[ζ>t] +

∫ t∧ζ

0

ψN (Xs)ds (6.4)

is a nonnegative martingale for any N ≥ 3. Then by the Optional Stopping
Theorem,

Y N
t∧TN

= hN (Xt∧TN
)I[ζ>t∧TN ] +

∫ t∧TN∧ζ

0

ψN (Xs)ds

= hN (Xt∧TN )I[ζ>t∧TN ] + t ∧ TN ∧ ζ
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are also martingales, since ψ(Xs) = 1 for 0 ≤ s < TN ∧ ζ. This in turn
implies

Ex(t ∧ TN ∧ ζ) = hN (x)− Ex

(
hN (Xt∧TN∧ζ)

) ≤ C (6.5)

since 0 ≤ ψN (x) ≤ 1 implies 0 ≤ hN (x) ≤ C by (6.3) where C is the same
constant as in (2.7). Fatou’s theorem applied to t and N (in any order) then
implies (6.2).

7. Exit Times are Less Than Death Times. Death times ζ(ω) are nec-
essary for general Markov processes, but can be shown to be less mysterious
here. As in (6.1), let

TN (ω) = min
{

t : t < ζ(ω), Xt(ω) ∈
(
0,

1
N

)
∪

(
1− 1

N
, 1

) }
(7.1)

We show below that Px(TN < ζ) = 1, so that TN (ω) < ζ(ω) almost surely.
This implies that T∞(ω) = supN TN (ω) ≤ ζ(ω) with probability one. We
will show in a later section that, in fact, T∞(ω) = ζ(ω) almost surely.

The same argument as in Theorem 7.1 can also be used to show that the
sample paths {Xt(ω)} are continuous for 0 ≤ t < ζ(ω) (see Theorem 7.2).

Theorem 7.1. For the process {Xt } defined above,

Px(TN < ζ) = 1 for all x ∈ (0, 1) (7.2)

Corollary 7.1.

max
0≤x≤1

Ex(T∞) ≤ C, T∞(ω) = sup
N

TN (ω) (7.3)

Morever, limN→∞XTN
(ω) = A exists almost surely where A (depending

on ω) is either 0 or 1.

Proof. Equations (6.2) and (7.2) imply (7.3), limN→∞XTN
exists a.s.

by (4.7), and XTN
∈ (0, 1/N)∪(1− 1/N, 1) by right-continuity of the sample

paths.

Proof of Theorem 7.1. It is sufficient to assume 1/N < x < 1 − 1/N
since TN (ω) = 0 if x ∈ (0, 1/N) ∪ (1 − 1/N, 1). It follows from (3.10) and
the strong continuity of the semi-group {Tt} that Px(ζ > 0) = 1 for arbitrary
x ∈ I0.

Let ψN (x) ∈ C0(I) ∩ C2(I) such that 0 ≤ ψN (x) ≤ 1, ψN (x) = 1 on
(1/N, 1 − 1/N), and 0 ≤ ψ(x) < 1 on (0, 1/N) ∪ (1 − 1/N, 1). (See the
Exercise below.) Then ψN ∈ D(A) with AψN (x) = LψN (x). By Lemma 5.2

Y N
t (ω) = ψN

(
Xt(ω)

)
I[ζ(ω)>t] −

∫ t∧ζ(ω)

0

LψN

(
Xs(ω)

)
ds (7.4)
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is a martingale. By the Optional Stopping Theorem

Ex

(
Y N

t∧TN

)
= Ex

(
ψN

(
Xt∧TN

(ω)
)
I[ζ(ω)>t∧TN ]

)
= ψN (x) (7.5)

since AψN (Xs) = LψN (Xs) = 0 for 0 ≤ s < t ∧ TN .
Let qN (t, ω) be the integrand in (7.5). Note that 0 ≤ t ∧ TN ≤ TN . If

TN < ζ, then limt→∞ qN (t, ω) = ψ̃N = ψN (XTN
). If TN ≥ ζ, then ζ(ω) < ∞

by (6.2) and limt→∞ qN (t, ω) = 0. In either case

ψN (x) = Ex

(
ψ̃NI[ζ(ω)>TN ]

)
(7.6)

where ψ̃N = 0 (for example) if TN ≥ ζ. If 1/N < x < 1 − 1/N , then the
expected value ψN (x) = 1. Since the integrand of (7.6) is bounded by one, it
must be equal to one a.s. This implies Px(ζ(ω) > TN ) = 1, which completes
the proof of Theorem 7.1.

Exercise. Let kN (x) = Nk(Nx) for

k(x) =
{

C exp
(−1/(1− x2)

)
for |x| < 1

0 for |x| ≥ 1

where C is chosen so that
∫∞
−∞ k(y)dy = 1. Prove that (i) k(x) has contin-

uous derivatives of all orders on the real line R (that is, k ∈ C∞(R)) and
(ii) Supp(k) = [−1, 1]. Now set

ψN (x) =
∫ 1−1/2N

1/2N

k2N (x− y)dy

Prove that (iii) ψN (x) has continuous derivatives of all orders on R, (iv)
0 ≤ ψN (x) ≤ 1 for all x, (v) ψN (x) = 1 for 1/N ≤ x ≤ 1 − 1/N , and
(vi) ψN (x) = 0 if x ≤ 0 or x ≥ 1.

Remark. It follows from (7.3) that

max
0≤x≤1

Px(T∞ ≥ t0) ≤ 1/2, t0 = 2C (7.7)

This implies by the Markov property and standard arguments that

Corollary 7.2. Under the assumptions of Theorem 7.1

max
0≤x≤1

Px(T∞ ≥ t) ≤ 2e−αt, t ≥ 0 (7.8)

for α = 2C log 2 > 0, and also
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max
0≤x≤1

Ex(eaT∞) ≤ C1(a), 0 ≤ a < α (7.9)

where C1(a) < ∞ for 0 ≤ a < α.

We can use the same argument as in Theorem 7.1 to prove

Theorem 7.2. With probability one, the sample paths Xt(ω) are continu-
ous functions of t for 0 ≤ t < ζ(ω).

Proof. Since Px(TN < ζ) = 1 and Ex(ζ) ≤ C, it follows from (7.6) that
ψ̃N = ψN (XTN

) = 1 a.s. in (7.6) for 1/N < x < 1− 1/N . This implies that
XTN

(ω) ∈ {1/N, 1 − 1/N} almost surely. This means that Xt(ω) cannot
leave (1/N, 1 − 1/N) by a jump beyond the boundary of (1/N, 1 − 1/N).
This suggests that, at least, Xt(ω) cannot be discontinuous at Xt(ω) = 1/N
or Xt(ω) = 1− 1/N .

If general, define

Tab(ω) = min{ t : t < ζ(ω), Xt(ω) ∈ (0, a) ∪ (b, 1) } (7.10)

for rational values a, b with 0 < a < b < 1 with, as before, the con-
vention Tab(ω) = ∞ if the set of t on the right-hand side of (7.10) is
empty. By the same argument as in Theorem 7.1, Px(Tab < ∞) = 1 and
Px(XTab

∈ {a, b}) = 1 for 0 < a < x < b < 1.
Expand the null set E ∈ F in (4.7) to include the null set of all

ω ∈ Ω that provide counterexamples to XTab(ω)(ω) ∈ {a, b} for rational
0 < a < b < 1. It follows that, if ω /∈ E, there cannot exist any rational
values r such that Xt−(ω) < r < Xt+(ω), since we could then find a coun-
terexample to XTar(ω)(ω) ∈ {a, r} for some rational interval (a, r).

Similarly there cannot exist any rational values r such that Xt+(ω) <
r < Xt−(ω) since we could find a counterexample to XTrb(ω)(ω) ∈ {r, b} for
some rational interval (r, b). Since Xt(ω) has at worst jump discontinuities
for ω /∈ E by the argument that led up to (4.7), this implies that Xt(ω) must
be continuous in t for 0 ≤ t < ζ(ω). This completes the proof of Theorem 7.2.

8. Exit Times are Death Times. The purpose of this section is to
prove that, in fact, T∞(ω) = ζ(ω) almost surely for T∞(ω) = supN TN (ω).
We begin with two lemmas.

Lemma 8.1. If f, h ∈ C0(I), then h ∈ D(A) and Ah = −f if and only if

h(x) =
∫ 1

0

g(x, y)f(y)m(dy) (8.1)
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Proof. If h(x) is given by (8.1), then h ∈ D(A) and Ah = Lh = −f as in
Section 1. Conversely, assume h ∈ D(A) and Ah = −f . Define

h1(x) =
∫ 1

0

g(x, y)f(y)m(dy)

Then h1 ∈ D(A) and Ah1 = Lh1 = −f . Let g = h−h1. Then g ∈ D(A) and
Ag = Ah−Ah1 = 0.

If g ∈ D(A) and Ag = 0, it follows from Lemma 5.2 that g(Xt)I[ζ>t] is
a uniformly-bounded martingale. Thus

g(x) = Ex

(
g(Xt)I[ζ>t]

)

By the relation Px(TN < ζ) = 1 and the Optional Stopping Theorem,

g(x) = Ex

(
g(Xt∧TN

)
)

Since Px(TN < ∞) = 1 by Theorems 6.1 and 7.1 and g(x) is bounded, we
can let t →∞ and obtain

g(x) = Ex

(
g(XTN

)
)

However, limN→∞ g(XTN
) = 0 since g ∈ C0(I) by Corollary 7.1. This proves

that g(x) = 0 for 0 < x < 1. Since g = h−h1, it follows that h(x) = h1(x) =∫
g(x, y)f(y)m(dy). This completes the proof of the lemma.

Lemma 8.2. For any f ∈ C0(I) with f(x) ≥ 0,

∫ 1

0

g(x, y)f(y)m(dy) =
∫ ∞

0

Tsf(x)ds = Ex

(∫ ζ(ω)

0

f(Xs)ds
)

(8.2)

Proof. Define

hλ(x) = Rλf(x) =
∫ ∞

0

e−λsTsf(x)ds

As in Section 2, hλ(x) ∈ D(A) and (λI − A)hλ(x) = f(x). Thus Ahλ =
λhλ − f = −(f − λhλ). It then follows from Lemma 8.1 that

hλ(x) =
∫ ∞

0

e−λsTsf(x)ds =
∫ 1

0

g(x, y)
(
f(y)− λhλ(y)

)
m(dy) (8.3)

≤
∫ 1

0

g(x, y)f(y)m(dy) ≤ C sup
y

f(y)



Sample Path Regularity for One-Dimensional Diffusions . . . . . . . . . . . . . . . . .16

since f(x) ≥ 0 and hλ(y) ≥ 0, where C is the constant in (2.7). Thus
hλ(x) ≤ C1 uniformly in λ > 0. Since then λhλ(x) ≤ C1λ, taking the limit
λ → 0 in (8.3) for f(x) ≥ 0 implies

h0(x) =
∫ ∞

0

Tsf(x)ds =
∫ 1

0

g(x, y)f(y)m(dy)

= Ex

(∫ ∞

0

f(Xs)I[ζ>s]ds
)

= Ex

(∫ ζ(ω)

0

f(Xs)ds
)

This implies (8.2).

Theorem 8.1. Define TN , T∞, and ζ as before. Then Px(T∞ = ζ) = 1 for
all x ∈ I0.

Proof. Let

h(x) =
∫ 1

0

g(x, y)ψ(y)m(dy) (8.4)

for arbitrary ψ ∈ C0(I) with ψ(y) ≥ 0. Then Ah = −ψ and

Yt(ω) = h
(
Xt(ω)

)
I[ζ(ω)>t] +

∫ t∧ζ(ω)

0

ψ
(
Xs(ω)

)
ds

is a nonnegative martingale by Lemma 5.2. Thus

Ex

(
h(Xt)I[ζ>t] +

∫ t∧ζ

0

ψ(Xs)ds
)

= h(x)

for all t ≥ 0 and x ∈ I0. By the Optional Stopping Theorem

h(x) = Ex

(
h(Xt∧TN

)I[ζ>t∧TN ] +
∫ t∧TN∧ζ

0

ψ(Xs)ds
)

= Ex

(
h(Xt∧TN

) +
∫ t∧TN

0

ψ(Xs)ds
)

since Px(TN < ζ) = 1 by (7.2). Since h(x) is bounded, ψ(y) ≥ 0, and
TN < ∞ almost surely by (6.2), we can let t →∞ and conclude

h(x) = Ex

(
h(XTN

) +
∫ TN

0

ψ(Xs)ds
)

(8.5)

As N → ∞, h(XTN ) → 0 since h ∈ C0(I). Since 0 ≤ TN ↑ T∞ and
ψ(Xs) ≥ 0, we conclude from (8.5) that

h(x) = Ex

(∫ T∞(ω)

0

ψ(Xs)ds
)

(8.6)
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In contrast, by Lemma 8.2 and (8.4)

h(x) = Ex

(∫ ζ(ω)

0

ψ(Xs)ds
)

(8.7)

Recall T∞(ω) ≤ ζ(ω) almost surely by (7.2). Both integrals in in (8.6)
and (8.7) are finite since ψ(Xs) ≥ 0 and h(x) is finite. We can then sub-
tract (8.6) from (8.7) to conclude

Ex

(∫ ζ(ω)

T∞(ω)

ψ(Xs)ds
)

= 0

This holds for all ψ ∈ C0(I) with ψ(x) ≥ 0. We can approximate ψ(x) ≡ 1
by nonnegative functions ψN ∈ C0(I) by setting (for example) ψ0(x) =
2min{x, 1 − x } and ψN (x) = ψ0(x)1/N . Then 0 ≤ ψN (x) ≤ 1 and 0 ≤
ψN (x) ↑ 1 as N →∞. This implies

Ex

(
ζ(ω)− T∞(ω)

)
= 0, T∞(ω) ≤ ζ(ω) a.s. (8.8)

Thus ζ(ω)−T∞(ω) = 0 almost surely with respect to Px for all x ∈ I0. This
completes the proof of Theorem 8.1. (Exercise: Prove or disprove: (8.8)
also holds for x = ∆. Use the precise definitions of Xr(ω), Xt(ω), and TN (ω).
Discuss.)
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