Sample Path Regularity for One-Dimensional Diffusion Processes

Stanley Sawyer - Washington University - Vs. September 17, 2007

1. Basic Assumptions. Assume that
(i) $\left\{T_{t}\right\}$ is a strongly-continuous semigroup of bounded linear operators on the Banach space

$$
B=C_{0}(I)=\{f \text { continuous on } I=[0,1]: f(0)=f(1)=0\}
$$

(ii) If $f(x) \geq 0$ and $f \in B$, then $T_{t} f(x) \geq 0$ and $T_{t} f(x) \leq \max _{y \in I} f(y)$.

In general, the infinitesimal generator of a strongly-continuuous semigroup of linear operators T_{t} on any Banach space B is defined by

$$
\begin{equation*}
A f=\lim _{h \rightarrow 0}\left(T_{h} f-f\right) / h \tag{1.1}
\end{equation*}
$$

on the set

$$
\mathcal{D}=\mathcal{D}(A)=\{f: \text { The limit in (1.1) exists in the norm of } B\}
$$

Suppose further that
(iii) The operator A and set $\mathcal{D}(A)$ satisfy the following conditions. Let

$$
\begin{equation*}
L f(x)=\frac{d}{d m(x)} \frac{d}{d s(x)} f(x) \tag{1.2}
\end{equation*}
$$

for $f \in C^{2}\left(I_{0}\right)$, where $C^{2}\left(I_{0}\right)$ is the set of all functions on $I_{0}=(0,1)$ that are twice-continuously differentiable on I_{0}. In (1.2), s(x) is strictly increasing, continuously differentiable, and bounded on $(0,1), s^{\prime}(x)>0$ on $(0,1)$, and the measure $m(d x)=m(x) d x$ where $m(x)$ is continuous and $m(x)>0$ on $(0,1)$. Thus we can also write

$$
\begin{equation*}
L f(x)=\frac{1}{m(x)} \frac{d}{d x} \frac{1}{s^{\prime}(x)} \frac{d}{d x} f(x) \tag{1.3}
\end{equation*}
$$

If $f \in C^{2}\left(I_{0}\right) \cap C_{0}(I)$ and $L f \in C_{0}(I)$, then $f \in \mathcal{D}(A)$ and $A f=L f$.
(iv) Since $s(x)$ is strictly increasing and bounded on (0,1), we can assume without loss of generality that $s(0)=s(0+)=0$ and $s(1)=s(1-)=1$. We also assume

$$
\begin{equation*}
\int_{0}^{x_{0}} s(x) m(d x)+\int_{x_{0}}^{1}(1-s(x)) m(d x)<\infty \tag{1.4}
\end{equation*}
$$

whenever $0<x_{0}<1$. In terms of diffusion process theory, this is the condition that the endpoints are regular or exit.

Sample Path Regularity for One-Dimensional Diffusions
2. Some Useful Identities. (1) Define

$$
\begin{equation*}
g(x, y)=\frac{(s(1)-s(x \vee y))(s(x \wedge y)-s(0))}{s(1)-s(0)} \tag{2.1}
\end{equation*}
$$

where $0 \leq x, y \leq 1, x \wedge y=\min \{x, y\}$, and $x \vee y=\max \{x, y\}$. Let

$$
\begin{align*}
f(x)= & \int_{0}^{1} g(x, y) h(y) m(d y) \tag{2.2}\\
= & \frac{s(1)-s(x)}{s(1)-s(0)} \int_{0}^{x}(s(y)-s(0)) h(y) m(d y) \\
& \quad+\frac{s(x)-s(0)}{s(1)-s(0)} \int_{x}^{1}(s(1)-s(y)) h(y) m(d y) \tag{2.3}
\end{align*}
$$

where $h(y)$ is bounded on I_{0}. By (2.1)

$$
\begin{align*}
g(x, y) & \leq \min \{g(x, x), g(y, y)\} \tag{2.4}\\
g(y, y) & \leq \min \{s(1)-s(y), s(y)-s(0)\}
\end{align*}
$$

If $h(y) \geq 0$, then by (2.2) and (2.4)

$$
\begin{align*}
f(x) & \leq \int_{0}^{1} g(y, y) h(y) m(d y) \tag{2.5}\\
& \leq \int_{0}^{1} \min \{s(1)-s(y), s(y)-s(0)\} h(y) m(d y) \\
& =\int_{0}^{x_{0}}(s(y)-s(0)) h(y) m(d y)+\int_{x_{0}}^{1}(s(1)-s(y)) h(y) m(d y) \tag{2.6}
\end{align*}
$$

where x_{0} is determined by $s\left(x_{0}\right)-s(0)=(1 / 2)(s(1)-s(0))$. It then follows from (1.4) that $f(x)$ in (2.2) is uniformly bounded with

$$
\begin{equation*}
|f(x)| \leq C \max _{y}|h(y)| \tag{2.7}
\end{equation*}
$$

where C is the constant on the right-hand-side value of (2.6) if $h(y)$ is replaced by 1 . It follows similarly from (2.4) and the dominated convergence theorem that $f(x) \in C(I)$ with $f(0)=f(1)=0$.
(2) If $h(x) \in C_{0}(I)$, then $f(x)$ in (2.2) is continuous differentiable with

$$
f^{\prime}(x)=s^{\prime}(x)\left(\int_{x}^{1} \frac{s(1)-s(y)}{s(1)-s(0)} h(y) m(d y)-\int_{0}^{x} \frac{s(y)-s(0)}{s(1)-s(0)} h(y) m(d y)\right)
$$

Sample Path Regularity for One-Dimensional Diffusions
Hence $f^{\prime}(x) / s^{\prime}(x)$ is continuously differentiable with

$$
L f(x)=\frac{1}{m(x)} \frac{d}{d x}\left(\frac{f^{\prime}(x)}{s^{\prime}(x)}\right)=-h(x)
$$

Then, by Assumption (iii), $f \in \mathcal{D}(A)$ and $A f=L f=-h$. In fact, it is not difficult to show that if $f(x) \in C^{2}\left(I_{0}\right) \cap C_{0}(I)$ and $L f=-h \in C_{0}(I)$, then $f(x)$ is given by (2.2). (Exercise: Prove the last statement. Lemma 8.1 in Section 8 below has a second proof using martingales.)
(3) Another useful identity is

$$
\begin{equation*}
T_{t} f(x)=f(x)+\int_{0}^{t} T_{s}(A f)(x) d s, \quad \text { any } f \in \mathcal{D}(A) \tag{2.8}
\end{equation*}
$$

This follows immediately from the definition (1.1) and the strong continuity of the semi-group.
(4) If $\left\|T_{t}\right\| \leq C e^{M t}$ and

$$
\begin{equation*}
R_{\lambda} f(x)=\int_{0}^{\infty} e^{-\lambda t} T_{t} f(x) d t, \quad \lambda>M \tag{2.9}
\end{equation*}
$$

then applying R_{λ} to the identity (2.8) and rearranging terms implies

$$
R_{\lambda}(\lambda I-A) f=f, \quad f \in \mathcal{D}(A)
$$

Similarly, if $g=R_{\lambda} f$ for $f \in B$, it follows from the strong continuity of $\left\{T_{t}\right\}$ that $g \in \mathcal{D}(A)$ and $A g=\lambda g-f$. Thus $(\lambda I-A) R_{\lambda} f=f$ for all $f \in B$. It follows that $\lambda I-A$ on $\mathcal{D}=\mathcal{D}(A)$ is a two-sided inverse of R_{λ} on B.
3. A Probability Space for $\boldsymbol{T}_{\boldsymbol{t}}$. By Assumptions (i) and (ii), we can write

$$
\begin{equation*}
T_{t} f(x)=\int_{0}^{1} f(y) P(t, x, d y) \tag{3.1}
\end{equation*}
$$

where $P(t, x, d y) \geq 0$ are Borel measures on the open unit interval $I_{0}=$ $(0,1)$. The semigroup property $T_{t+s} f=T_{t} T_{s} f$ for $\left\{T_{t}\right\}$ is equivalent to the Chapman-Kolmogorov equations

$$
\begin{equation*}
P(t+s, x, B)=\int_{0}^{1} P(t, y, B) P(s, x, d y) \tag{3.2}
\end{equation*}
$$

for $P(t, x, d y)$. The assumptions in Section 1 imply $0 \leq P\left(t, x, I_{0}\right) \leq 1$, but do not exclude the possibility $P\left(t, x, I_{0}\right)<1$.

The first step in finding a stochastic process corresponding to the semigroup (3.1) is to extend $P(t, x, A)$ on $I_{0}=(0,1)$ to a larger space I_{Δ} such that (i) $P\left(t, x, I_{\Delta}\right)=1$ for all $x \in I_{\Delta}$ and (ii) the Chapman-Kolmogorov equations (3.2) hold on I_{Δ}. To do this, we first define an abstract "death point" $\Delta \notin I_{0}$ and set

$$
\begin{equation*}
I_{\Delta}=I_{0} \cup\{\Delta\}, \quad I_{0}=(0,1) \tag{3.3}
\end{equation*}
$$

We extend $P(t, x, A)$ for $x \in I_{0}, A \subseteq I_{0}$ to $x \in I_{\Delta}, A \subseteq I_{\Delta}$ by

$$
\begin{align*}
& P(t, x,\{\Delta\})=1-P\left(t, x, I_{0}\right) \tag{3.4}\\
& P(t, \Delta,\{\Delta\})=1, \quad P\left(t, \Delta, I_{0}\right)=0
\end{align*}
$$

Then the extended function $P(t, x, A)$ for $x \in I_{\Delta}$ and $A \subseteq I_{\Delta}$ satisfies (i) $P(t, x, A) \geq 0$, (ii) $P\left(t, x, I_{\Delta}\right)=1$ for all $x \in I_{\Delta}$, and (iii) the ChapmanKolmogorov relations

$$
\begin{equation*}
P(t+s, x, B)=\int_{I_{\Delta}} P(t, y, B) P(s, x, d y) \tag{3.5}
\end{equation*}
$$

for $x \in I_{\Delta}$ and $B \subseteq I_{\Delta}$. (Exercise: Prove (i,ii,iii) using (3.4) and (3.2) on I_{0}.)

Let $Q=\left\{k / 2^{m}: k \geq 0, m \geq 0\right\}$ be the set of nonnegative dyadic rationals. We will use the Kolmogorov Consistency Theorem (KCT) to construct a probability space $\left(\Omega, \mathcal{F}, P_{x}\right)$ with random variables $\left\{X_{q}(\omega) \in I_{\Delta}: q \in Q\right\}$ that form a Markov process consistent with (3.3), (3.4), and (3.5). The subscript x in P_{x} is a parameter $x \in I_{\Delta}$ for which $P_{x}\left(X_{0}=x\right)=1$. In the Kolmogorov representation, the basic sample space is the infinite product

$$
\begin{equation*}
\Omega=\left(I_{C}\right)^{Q}=\left\{\omega: \omega=\omega(r) \in I_{C}, r \in Q\right\} \tag{3.6}
\end{equation*}
$$

where $I_{C}=[0,1] \cup\{\Delta\}$ is a compact version of I_{Δ}. The random variables $X_{r}(\omega)=\omega(r)$ are the coordinate functions in the infinite product Ω. The sigma-algebra $\mathcal{F}=\mathcal{B}\left\{X_{r}: r \in Q\right\}$ is the smallest sigma-algebra of subsets of Ω with respect to which all X_{r} are measurable. This is also the sigma algebra generated by the cylinder sets

$$
\begin{equation*}
\Gamma\left(r_{1}, \ldots, r_{n}, A_{1}, \ldots, A_{n}\right)=\left\{\omega: X_{r_{i}}(\omega) \in A_{i} \text { for } 1 \leq i \leq n\right\} \tag{3.7}
\end{equation*}
$$

for $0 \leq r_{1}<r_{2}<\ldots<r_{n}$ for $r_{i} \in Q$, sets $A_{i} \subseteq I_{C}$, and all n. The first step in applying the KCT is to define P_{x} for cylinder sets. The appropriate

Sample Path Regularity for One-Dimensional Diffusions
definition in this case turns out to be the somewhat complex

$$
\begin{align*}
& P_{x}\left(\Gamma\left(r_{1}, \ldots, r_{n}, A_{1}, \ldots, A_{n}\right)\right) \\
& =\int_{A_{1}} \ldots \int_{A_{n}} P\left(r_{1}, x, d y_{1}\right) P\left(r_{2}-r_{1}, y_{1}, d y_{2}\right) \ldots \\
& \ldots P\left(r_{n}-r_{n-1}, y_{n-1}, d y_{n}\right. \tag{3.8}
\end{align*}
$$

We assume in (3.8) that $P_{x}\left(X_{0}=x\right)=1$ if $r_{1}=0, P(t, 0,\{0\})=$ $P(t, 1,\{1\})=1$ for $t \geq 0$, and $P(t, x,\{0,1\})=0$ for $x \in I_{\Delta}=(0,1) \cup\{\Delta\}$.

The next step is to notice that if (for example) $A_{i_{0}}=I_{C}$ in (3.7), then $P_{x}\left(\Gamma\left(r_{1}, \ldots, A_{1}, \ldots\right)\right.$ is the same as if we dropped the i_{0}-th coordinate in (3.7) and (3.8) and computed the probability of the resulting cylinder set with $n-1$ conditions. (This is the consistency condition in the KCT.) Here the consistency condition follows from the Chapman-Kolmogorov relation

$$
\int_{I_{C}} P\left(r_{i_{0}+1}-r_{i_{0}}, y, A\right) P\left(r_{i_{0}}-r_{i_{0}-1}, x, d y\right)=P\left(r_{i_{0}+1}-r_{i_{0}-1}, x, A\right)
$$

which follows from (3.5).
The KCT then implies that there exists a unique probability measure P_{x} on (Ω, \mathcal{F}) such that $P_{x}(\Gamma(\ldots))$ is given by (3.8) for cylinder sets (3.7). One can then check from (3.8) that

$$
\begin{align*}
& P_{x}\left(X_{r} \in I_{\Delta}\right)=1, \quad x \in I_{\Delta} \subset I_{C}, r \in Q \\
& P_{x}\left(X_{r} \in A\right)=P(r, x, A), \quad x \in I_{\Delta}, A \subseteq I_{\Delta} \quad \text { and } \\
& P_{x}\left(X_{q} \in A \mid \mathcal{B}_{r}\right)(\omega)=P\left(q-r, X_{r}(\omega), A\right) \tag{3.9}
\end{align*}
$$

for $r, q \in Q, r<q$, and $x \in I_{\Delta}$. Here $\mathcal{B}_{r}=\mathcal{B}\left\{X_{a}: a \leq r, a \in Q\right\}$ is the smallest σ-algebra $\mathcal{B}_{r} \subseteq \mathcal{F}$ such that $X_{a}(\omega)$ is \mathcal{B}_{r}-measurable for $a \leq r, a \in Q$. Here $P_{x}\left(X_{q} \in A \mid \mathcal{B}_{r}\right)(\omega)$ is the conditional-probability random variable. That is, $g(\omega)=P_{x}\left(X_{q} \in A \mid \mathcal{B}_{r}\right)(\omega)$ is the unique bounded \mathcal{B}_{r}-measurable function such that

$$
E\left(I_{A}\left(X_{q}\right) h\right)=E\left(\left(P\left(q-r, X_{r}, A\right) h\right)\right.
$$

for all bounded \mathcal{B}_{r}-measurable random variables $h(\omega)$. (Exercise: Verify (3.9).)

The relations (3.9) imply that, for a set of $\omega \in \Omega$ with P_{x}-probability one for every $x \in I_{\Delta}=(0,1) \cup\{\Delta\}$, the sample paths $\left\{X_{r}(\omega): r \in Q\right\}$ start
in and remain in I_{Δ}. Thus $\left\{X_{r}: r \in Q\right\}$ is a Markov stochastic process with values in I_{Δ} and Markov transition function $P(t, x, A)$.

Similarly, (3.4) implies that, again for a set of ω with P_{x}-probability one for every $x \in I_{\Delta}, X_{r}(\omega)=\Delta$ for any ω implies $X_{q}(\omega)=\Delta$ for every $q>r$. Set $\zeta(\omega)=\min \left\{r \in Q: X_{r}(\omega)=\Delta\right\}$. We call $\zeta(\omega)$ the death time for a sample path $X_{r}(\omega)$ in I_{0}. For these $\omega \in \Omega, X(r, \omega)=\Delta$ whenever $r>\zeta(\omega)$. Thus, within sets of probability zero,

$$
\{\omega: \zeta(\omega)>r\}=\left\{\omega: X_{r}(\omega) \in I_{0}\right\}
$$

This implies that by (3.1) and (3.3)-(3.4)

$$
\begin{align*}
T_{r} f(x) & =\int_{0}^{1} f(y) P(r, x, d y)=E_{x}\left(f\left(X_{r}\right) I_{\left[X_{r} \in I_{0}\right]}\right) \\
& =E_{x}\left(f\left(X_{r}\right) I_{[\zeta>r]}\right) \tag{3.10}
\end{align*}
$$

The purpose for restricting r to a countable set is so that events involving the sample paths $X_{r}(\omega)$ depend on at most a countably infinite number of random variables. Otherwise, simple events involving sample-path continuity or even Lebesgue measurability may not be measureable.

The next step will be to extend $\left\{X_{r}: r \in Q\right\}$ to random variables $\left\{X_{t}: t \geq 0\right\}$ defined on the same probability space in such a way that events involving the process $\left\{X_{t}: t \geq 0\right\}$ will depend only on $\left\{X_{r}: r \in Q\right\}$.
4. Sample Path Regularity. As in (2.2),

$$
\begin{align*}
f(x) & =\int_{0}^{1} g(x, y) h(y) m(d y) \tag{4.1}\\
& =(1-s(x)) \int_{0}^{x} s(y) h(y) m(d y)+s(x) \int_{x}^{1}(1-s(y)) h(y) m(d y)
\end{align*}
$$

for $h \in C_{0}(I)$. Define functions $\phi_{N}(x) \in C_{0}(I)$ for $N \geq 3$ such that $\phi_{N}(x)=0$ for $x<1-1 / N, \phi_{N}(x) \geq 0$,

$$
\operatorname{Supp}\left(\phi_{N}\right) \subseteq\left(1-\frac{1}{N}, 1-\frac{1}{2 N}\right)
$$

and $\int_{0}^{1}(1-s(y)) \phi_{N}(y) m(d y)=1$. Define

$$
\begin{equation*}
f_{N}(x)=\int_{0}^{1} g(x, y) \phi_{N}(y) m(d y) \tag{4.2}
\end{equation*}
$$

Then $f_{N} \in \mathcal{D}(A), A f_{N}(x)=-\phi_{N}(x) \leq 0$, and by (4.1)

Sample Path Regularity for One-Dimensional Diffusions \qquad

$$
\begin{equation*}
f_{N}(x)=s(x) \quad \text { on } \quad\left(0,1-\frac{1}{N}\right) \tag{4.3}
\end{equation*}
$$

It follows from the identity (2.8) in Section 2 that

$$
\begin{align*}
T_{t} f_{N}(x) & =f_{N}(x)+\int_{0}^{t} T_{s}\left(A f_{N}\right) d s \\
& =f_{N}(x)-\int_{0}^{t} T_{s} \phi_{N}(x) d s \tag{4.4}
\end{align*}
$$

Since $\phi_{N}(x) \geq 0$ and $f_{N}(x) \geq 0$ by (4.2), $0 \leq T_{t} f_{N}(x) \leq f_{N}(x)$ for all $t \geq 0$ and $x \in I_{0}$. Then by (3.10), (4.4), and the Markov property

$$
\begin{align*}
E_{x}\left(f_{N}\left(X_{q}\right) I_{[\zeta>q]} \mid \mathcal{B}_{r}\right)(\omega) & \left.=T_{q-r} f_{N}\left(X_{r}(\omega)\right)\right) \tag{4.5}\\
& \leq f_{N}\left(X_{r}(\omega)\right) I_{[\zeta(\omega)>r]}
\end{align*}
$$

where $\mathcal{B}_{r}=\mathcal{B}\left\{X_{a}: a \leq r, a \in Q\right\}$ as before. Since $0 \leq f_{N}(x) \leq C_{N}$ by (4.2) and (2.7),

$$
Y_{r}^{N}(\omega)=f_{N}\left(X_{r}(\omega)\right) I_{[\zeta(\omega)>r]}, \quad 0 \leq r<\infty, r \in Q
$$

is a uniformly bounded supermartingale for each N. Moreover, it follows from (4.3) and the conditional Fatou's inequality

$$
E\left(\liminf _{N \rightarrow \infty} H_{N} \mid \mathcal{B}_{r}\right) \leq \liminf _{N \rightarrow \infty} E\left(H_{N} \mid \mathcal{B}_{r}\right) \text { a.s. }
$$

for arbitrary random variables $H_{N}(\omega) \geq 0$ that (4.5) also holds with $f_{N}(x)$ replaced by $s(x)$. Thus

$$
\begin{equation*}
Y_{r}(\omega)=s\left(X_{r}(\omega)\right) I_{[\zeta(\omega)>r]} \quad 0 \leq r<\infty, r \in Q \tag{4.6}
\end{equation*}
$$

is also a uniformly bounded supermartingale.
Doob's Upcrossing Inequality now applies to the finite subsets $Q_{N M}=$ $\left\{k / 2^{N}: 0 \leq k \leq M\right\}$ of Q with a uniform upper bound. This in turn implies that there exists a single null set $E \in \mathcal{F}$ such that for $\omega \notin E$, the limits

$$
\begin{equation*}
\lim _{q>t, q \downarrow t} X_{q}(\omega)=X_{t+}(\omega), \quad \lim _{q<t, q \uparrow t} X_{q}(\omega)=X_{t-}(\omega) \tag{4.7}
\end{equation*}
$$

exist for all real values $t<\zeta(\omega)$, where the first limit exists for $t=0$, and the second limit exists at $t=\zeta(\omega)$. It follows from (4.7) that the set

$$
\left\{t: t<\zeta(\omega), X_{t+}(\omega) \neq X_{t-}(\omega)\right\}
$$

is at most countably infinite for each such ω, even though the set of possible t in (4.7) is uncountably infinite. Since $X_{r}(\omega)=\Delta$ almost surely for $r \geq \zeta(\omega)$, it follows that (4.7) holds for all real $t \geq 0$ and $\omega \notin E_{1}$ for a larger null set E_{1}.

We now define random variables $X_{t}(\omega)$ for all real $t \geq 0$ in terms of the random variables $\left\{X_{r}(\omega): r \in Q\right\}$ by

$$
\begin{align*}
X_{t}(\omega) & =\lim _{r>t, r \downarrow t} X_{r}(\omega)=X_{t+}(\omega), \quad 0 \leq t<\zeta(\omega) \tag{4.8}\\
& =\Delta, \quad \zeta(\omega) \leq t<\infty
\end{align*}
$$

Note that this defines an uncountable number of random variables $\left\{X_{t}(\omega)\right\}$ in terms of a countable set $\left\{X_{r}(\omega): r \in Q\right\}$. The first relation in (4.7) implies that $X_{t}(\omega)$ is right-continuous in t for all real $t \geq 0$. The relations (4.7) and (4.8) do not exclude $X_{t}(\omega) \neq X_{r}(\omega)$ for $t=r$. However, the strong continuity condition on $T_{f}(x)$ in Section 1 implies

$$
\lim _{q>r, q \downarrow r} T_{q} f(x)=\lim _{q>r, q \downarrow r} E_{x}\left(f\left(X_{q}\right) I_{[\zeta>q]}\right)=T_{r} f(x)=E_{x}\left(f\left(X_{r}\right) I_{[\zeta>r]}\right)
$$

uniformly in $x \in I_{0}$ for all $f \in B=C_{0}(I)$. This implies $\lim _{q>r, q \downarrow r} X_{q}=X_{r}$ weakly P_{x} for all $x \in(0,1)$. Since the same limit converges a.s. to X_{t} by (4.7), it follows that $P_{x}\left(X_{t}=X_{r}\right)=1$ for $t=r$. Thus, with probability one, the sample paths $\left\{X_{t}(\omega): t \geq 0\right\}$ are right continuous in t. We will use another martingale argument below to show that, in fact, almost every sample path $\left\{X_{t}(\omega)\right\}$ is continuous for $t<\zeta(\omega)$.

A subtlety of the definition (4.8) is that $X_{t}(\omega)$ is not \mathcal{B}_{t}-measurable for $\mathcal{B}_{t}=\mathcal{B}\left\{X_{r}: r \leq t\right\}$ even if $t=r \in Q$, since it involves a right-hand limit. However, X_{t} is \mathcal{B}_{t+} measurable for $\mathcal{B}_{t+}=\cap_{\epsilon>0} \mathcal{B}_{t+\epsilon}$. The right-continuity of sample paths from (4.8) implies that X_{t} is a Markov process with respect to \mathcal{B}_{t+} : That is,

$$
\begin{equation*}
P_{x}\left(X_{t+s} \in A \mid \mathcal{B}_{t+}\right)=P\left(s, X_{t}(\omega), A\right) \text { a.s. } \tag{4.9}
\end{equation*}
$$

This follows from the relation

$$
\begin{equation*}
E_{x}\left(\phi\left(X_{t+s}\right) \psi\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)\right)=E_{x}\left(T_{s-\epsilon} \phi\left(X_{t_{n}}\right) \psi\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)\right) \tag{4.10}
\end{equation*}
$$

for all $\phi \in C_{0}(I), \psi \in C_{0}\left(I^{n}\right)$, and $0<t_{1}<t_{2}<\ldots<t_{n}=t+\epsilon<t+s$. The relation (4.10) follows from (3.5) and (3.8). Finally, let $\epsilon \rightarrow 0$ in (4.10) and use the strong continuity of $\left\{T_{t}\right\}$ and the right-continuity of sample paths $X_{t}(\omega)$. (Exercise: Carry out the details.)

Sample Path Regularity for One-Dimensional Diffusions
5. A Family of Martingales. The key step in the last step was identifying a bounded supermartingale. Most of the following results will also depend on martingale arguments. Before continuing, we state a result about a set of martingales that we will use several times that arises naturally for any Markov process.

To keep things simple, first consider a discrete-time Markov proces X_{n} on a state space J with a transition function

$$
P\left(X_{n+1} \in B \mid X_{n}=x\right)=\pi(x, B)
$$

Since X_{n} is a Markov process,

$$
\begin{equation*}
P\left(X_{n+1} \in B \mid \mathcal{B}\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)=\pi\left(X_{n}(\omega), B\right) \tag{5.1}
\end{equation*}
$$

Define $T f(x)=\int_{J} f(y) \pi(x, d y)=E_{x}\left(f\left(X_{1}\right)\right)$ and $A f(x)=T f(x)-f(x)$. Then $T^{n} f(x)=E_{x}\left(f\left(X_{n}\right)\right)$ by the Markov property, and

Lemma 5.1. For any bounded function $f(x)$ on J, the process

$$
\begin{equation*}
Y_{n}=f\left(X_{n}\right)-\sum_{k=0}^{n-1} A f\left(X_{k}\right) \tag{5.2}
\end{equation*}
$$

is a martingale with respect to the σ-algebras $\mathcal{B}_{n}=\mathcal{B}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
Proof. Assume $n<m$. Clearly $\mathcal{B}_{n} \subseteq \mathcal{B}_{m}$ and Y_{n} is \mathcal{B}_{n}-measurable. Thus it only remains to prove $E\left(Y_{m} \mid \mathcal{B}_{n}\right)=Y_{n}$ in order to show that $\left\{Y_{n}, \mathcal{B}_{n}\right\}$ is a martingale. By (5.2)

$$
\begin{aligned}
Y_{m} & =f\left(X_{m}\right)-\sum_{k=n}^{m-1} A f\left(X_{k}\right)-\sum_{k=0}^{n-1} A f\left(X_{k}\right) \\
& =Y_{m}^{(1)}-Y_{m}^{(2)}-Y_{m}^{(3)}
\end{aligned}
$$

Then

$$
\begin{aligned}
& E\left(Y_{m}^{(1)} \mid \mathcal{B}_{n}\right)=E\left(f\left(X_{n}\right) \mid \mathcal{B}_{n}\right)=T_{m-n} f\left(X_{n}\right) \\
& E\left(Y_{m}^{(2)} \mid \mathcal{B}_{n}\right)=\sum_{k=n}^{n-1} E\left(A f\left(X_{k}\right) \mid \mathcal{B}_{n}\right)=\sum_{k=n}^{n-1} T_{k-n} A f\left(X_{n}\right)
\end{aligned}
$$

by (5.1) and the Markov property for X_{n}. Since $A f=T f-f$,

$$
E\left(Y_{m}^{(1)} \mid \mathcal{B}_{n}\right)-E\left(Y_{m}^{(2)} \mid \mathcal{B}_{n}\right)=T^{m-n} f\left(X_{n}\right)-\sum_{k=n}^{m-1} T^{k-n} A f\left(X_{n}\right)
$$

Sample Path Regularity for One-Dimensional Diffusions.

$$
\begin{align*}
& =T^{m-n} f\left(X_{n}\right)-\sum_{k=n}^{m-1}\left(T^{k-n+1} f\left(X_{n}\right)-T^{k-n} f\left(X_{n}\right)\right) \tag{10}\\
& =f\left(X_{n}\right)
\end{align*}
$$

and $E\left(Y_{m}^{(1)}-Y_{m}^{(2)} \mid \mathcal{B}_{n}\right)=f\left(X_{n}\right)$. Since $Y_{m}^{(3)}=\sum_{k=0}^{n-1} A f\left(X_{k}\right)$ is $\mathcal{B}_{n^{-}}$ measurable,

$$
\begin{aligned}
& E\left(Y_{m} \mid \mathcal{B}_{n}\right)=E\left(Y_{m}^{(1)}-Y_{m}^{(2)} \mid \mathcal{B}_{n}\right)-E\left(Y_{m}^{(3)} \mid \mathcal{B}_{n}\right) \\
& \quad=f\left(X_{n}\right)-\sum_{k=0}^{n-1} g\left(X_{k}\right)=Y_{n}
\end{aligned}
$$

This completes the proof that $\left\{Y_{n}, \mathcal{B}_{n}\right\}$ is a martingale.
Lemma 5.2. For any function $f \in \mathcal{D}(A)$, the process

$$
\begin{equation*}
Y_{t}(\omega)=f\left(X_{t}(\omega)\right) I_{[\zeta(\omega)>t]}-\int_{0}^{t \wedge \zeta(\omega)} A f\left(X_{s}(\omega)\right) d s \tag{5.3}
\end{equation*}
$$

is a martingale with respect to the sigma-algebras $\left\{\mathcal{B}_{t+}\right\}$.
Proof. By (2.8)

$$
\begin{equation*}
T_{t} f(x)=f(x)+\int_{0}^{t} T_{s} A f(x) d s \tag{5.4}
\end{equation*}
$$

for any $f \in \mathcal{D}(A)$. Since Δ is a trap, any $f \in \mathcal{D}(A)$ for the semigroup $T_{t} f(x)$ for $f(x)$ on $I_{0}=(0,1)$ can be extended to $f \in \mathcal{D}(A)$ for $f(x)$ on $I_{\Delta}=(0,1) \cup\{\Delta\}$ by setting $f(\Delta)=0$. By essentially the same argument as in the proof of Lemma 5.1 with (5.4) replacing a telescoping sum, this implies that the process

$$
\begin{equation*}
Y_{t}=f\left(X_{t}\right)-\int_{0}^{t} A f\left(X_{s}\right) d s \tag{5.5}
\end{equation*}
$$

is a continuous-parameter martingale with respect to \mathcal{B}_{t+}. Since Δ is a trap, $A f(\Delta)=0$ for any $f \in \mathcal{D}(A)$. Thus the martingale (5.5) is the same as the process in (5.3).

Exercise. Complete the proof that (5.5) is a continuous-time martingale with respect to \mathcal{B}_{t+}. Give justifications for interchanging the order of integrals and conditional expectations.

Sample Path Regularity for One-Dimensional Diffusions.
6. An Upper Bound for Exit and Death Times. Let

$$
\begin{equation*}
T_{N}(\omega)=\min \left\{t: t<\zeta(\omega), X_{t}(\omega) \in\left(0, \frac{1}{N}\right) \cup\left(1-\frac{1}{N}, 1\right)\right\} \tag{6.1}
\end{equation*}
$$

be the first time that $X_{t}(\omega)$ exits from the closed interval $[1 / N, 1-1 / N]$, assuming that it remains within $I_{0}=(0,1)$.

We make the the convention that $T_{N}(\omega)=\infty$ if the right-hand side of (6.1) is empty; that is, if $X_{t}(\omega) \notin(0,1 / N) \cup(1-1 / N, 1)$ for all $t<\zeta(\omega)$. If $T_{N}(\omega)<\infty$, then $T_{N}(\omega)<\zeta(\omega)$.

Note that $\left\{\omega: T_{N}(\omega)>t\right\} \in \mathcal{B}_{t+}$. We may not have $\left\{\omega: T_{N}(\omega)>t\right\} \in$ \mathcal{B}_{t} in general, either because $t \notin Q$ (recall $\mathcal{B}_{t}=\mathcal{B}\left\{X_{q}: q \leq t, q \in Q\right\}$) or because $t=q \in Q$ but $X_{t}=X_{q+} \neq X_{q}$. Thus T_{N} may not be a \mathcal{B}_{t}-stopping
 are martingales with respect to \mathcal{B}_{t+}, so that this is enough.

We then have
Theorem 6.1. If C is the constant in (2.7),

$$
\begin{equation*}
\max _{0 \leq x \leq 1} E_{x}\left(T_{\infty} \wedge \zeta\right) \leq C, \quad T_{\infty}(\omega)=\sup _{N} T_{N}(\omega) \tag{6.2}
\end{equation*}
$$

where $T_{\infty} \wedge \zeta=\min \left\{T_{\infty}, \zeta\right\}$.
Thus, with P_{x}-probability one for any $x \in I_{0}$, either $T_{\infty}(\omega)<\infty$ or $\zeta(\omega)<\infty$. In particular, the only way that $T_{\infty}(\omega)=\infty$ can happen is if $\zeta(\omega)<\infty$.
Proof of Theorem 6.1. Define continuous functions $\psi_{N} \in C_{0}(I)$ such that $0 \leq \psi_{N}(y) \leq 1$ and $\psi_{N}(y)=1$ on $(1 / N, 1-1 / N)$. If

$$
\begin{equation*}
h_{N}(x)=\int_{0}^{1} g(x, y) \psi_{N}(y) m(d y) \tag{6.3}
\end{equation*}
$$

then $h_{N} \in \mathcal{D}(A)$ and $A h_{N}=-\psi_{N} \leq 0$. In particular, $A h_{N}(x)=-1$ on $(1 / N, 1-1 / N)$. Thus by Lemma 5.2

$$
\begin{equation*}
Y_{t}^{N}=h_{N}\left(X_{t}\right) I_{[\zeta>t]}+\int_{0}^{t \wedge \zeta} \psi_{N}\left(X_{s}\right) d s \tag{6.4}
\end{equation*}
$$

is a nonnegative martingale for any $N \geq 3$. Then by the Optional Stopping Theorem,

$$
\begin{aligned}
Y_{t \wedge T_{N}}^{N} & =h_{N}\left(X_{t \wedge T_{N}}\right) I_{\left[\zeta>t \wedge T_{N}\right]}+\int_{0}^{t \wedge T_{N} \wedge \zeta} \psi_{N}\left(X_{s}\right) d s \\
& =h_{N}\left(X_{t \wedge T_{N}}\right) I_{\left[\zeta>t \wedge T_{N}\right]}+t \wedge T_{N} \wedge \zeta
\end{aligned}
$$

are also martingales, since $\psi\left(X_{s}\right)=1$ for $0 \leq s<T_{N} \wedge \zeta$. This in turn implies

$$
\begin{equation*}
E_{x}\left(t \wedge T_{N} \wedge \zeta\right)=h_{N}(x)-E_{x}\left(h_{N}\left(X_{t \wedge T_{N} \wedge \zeta}\right)\right) \leq C \tag{6.5}
\end{equation*}
$$

since $0 \leq \psi_{N}(x) \leq 1$ implies $0 \leq h_{N}(x) \leq C$ by (6.3) where C is the same constant as in (2.7). Fatou's theorem applied to t and N (in any order) then implies (6.2).
7. Exit Times are Less Than Death Times. Death times $\zeta(\omega)$ are necessary for general Markov processes, but can be shown to be less mysterious here. As in (6.1), let

$$
\begin{equation*}
T_{N}(\omega)=\min \left\{t: t<\zeta(\omega), X_{t}(\omega) \in\left(0, \frac{1}{N}\right) \cup\left(1-\frac{1}{N}, 1\right)\right\} \tag{7.1}
\end{equation*}
$$

We show below that $P_{x}\left(T_{N}<\zeta\right)=1$, so that $T_{N}(\omega)<\zeta(\omega)$ almost surely. This implies that $T_{\infty}(\omega)=\sup _{N} T_{N}(\omega) \leq \zeta(\omega)$ with probability one. We will show in a later section that, in fact, $T_{\infty}(\omega)=\zeta(\omega)$ almost surely.

The same argument as in Theorem 7.1 can also be used to show that the sample paths $\left\{X_{t}(\omega)\right\}$ are continuous for $0 \leq t<\zeta(\omega)$ (see Theorem 7.2).
Theorem 7.1. For the process $\left\{X_{t}\right\}$ defined above,

$$
\begin{equation*}
P_{x}\left(T_{N}<\zeta\right)=1 \quad \text { for all } x \in(0,1) \tag{7.2}
\end{equation*}
$$

Corollary 7.1.

$$
\begin{equation*}
\max _{0 \leq x \leq 1} E_{x}\left(T_{\infty}\right) \leq C, \quad T_{\infty}(\omega)=\sup _{N} T_{N}(\omega) \tag{7.3}
\end{equation*}
$$

Morever, $\lim _{N \rightarrow \infty} X_{T_{N}}(\omega)=A$ exists almost surely where A (depending on ω) is either 0 or 1 .
Proof. Equations (6.2) and (7.2) imply (7.3), $\lim _{N \rightarrow \infty} X_{T_{N}}$ exists a.s. by (4.7), and $X_{T_{N}} \in(0,1 / N) \cup(1-1 / N, 1)$ by right-continuity of the sample paths.
Proof of Theorem 7.1. It is sufficient to assume $1 / N<x<1-1 / N$ since $T_{N}(\omega)=0$ if $x \in(0,1 / N) \cup(1-1 / N, 1)$. It follows from (3.10) and the strong continuity of the semi-group $\left\{T_{t}\right\}$ that $P_{x}(\zeta>0)=1$ for arbitrary $x \in I_{0}$.

Let $\psi_{N}(x) \in C_{0}(I) \cap C^{2}(I)$ such that $0 \leq \psi_{N}(x) \leq 1, \psi_{N}(x)=1$ on $(1 / N, 1-1 / N)$, and $0 \leq \psi(x)<1$ on $(0,1 / N) \cup(1-1 / N, 1)$. (See the Exercise below.) Then $\psi_{N} \in \mathcal{D}(A)$ with $A \psi_{N}(x)=L \psi_{N}(x)$. By Lemma 5.2

$$
\begin{equation*}
Y_{t}^{N}(\omega)=\psi_{N}\left(X_{t}(\omega)\right) I_{[\zeta(\omega)>t]}-\int_{0}^{t \wedge \zeta(\omega)} L \psi_{N}\left(X_{s}(\omega)\right) d s \tag{7.4}
\end{equation*}
$$

is a martingale. By the Optional Stopping Theorem

$$
\begin{equation*}
E_{x}\left(Y_{t \wedge T_{N}}^{N}\right)=E_{x}\left(\psi_{N}\left(X_{t \wedge T_{N}}(\omega)\right) I_{\left[\zeta(\omega)>t \wedge T_{N}\right]}\right)=\psi_{N}(x) \tag{7.5}
\end{equation*}
$$

since $A \psi_{N}\left(X_{s}\right)=L \psi_{N}\left(X_{s}\right)=0$ for $0 \leq s<t \wedge T_{N}$.
Let $q_{N}(t, \omega)$ be the integrand in (7.5). Note that $0 \leq t \wedge T_{N} \leq T_{N}$. If $T_{N}<\zeta$, then $\lim _{t \rightarrow \infty} q_{N}(t, \omega)=\widetilde{\psi}_{N}=\psi_{N}\left(X_{T_{N}}\right)$. If $T_{N} \geq \zeta$, then $\zeta(\omega)<\infty$ by (6.2) and $\lim _{t \rightarrow \infty} q_{N}(t, \omega)=0$. In either case

$$
\begin{equation*}
\psi_{N}(x)=E_{x}\left(\tilde{\psi}_{N} I_{\left[\zeta(\omega)>T_{N}\right]}\right) \tag{7.6}
\end{equation*}
$$

where $\widetilde{\psi}_{N}=0$ (for example) if $T_{N} \geq \zeta$. If $1 / N<x<1-1 / N$, then the expected value $\psi_{N}(x)=1$. Since the integrand of (7.6) is bounded by one, it must be equal to one a.s. This implies $P_{x}\left(\zeta(\omega)>T_{N}\right)=1$, which completes the proof of Theorem 7.1.

Exercise. Let $k_{N}(x)=N k(N x)$ for

$$
k(x)= \begin{cases}C \exp \left(-1 /\left(1-x^{2}\right)\right) & \text { for }|x|<1 \\ 0 & \text { for }|x| \geq 1\end{cases}
$$

where C is chosen so that $\int_{-\infty}^{\infty} k(y) d y=1$. Prove that (i) $k(x)$ has continuous derivatives of all orders on the real line R (that is, $k \in C^{\infty}(R)$) and (ii) $\operatorname{Supp}(k)=[-1,1]$. Now set

$$
\psi_{N}(x)=\int_{1 / 2 N}^{1-1 / 2 N} k_{2 N}(x-y) d y
$$

Prove that (iii) $\psi_{N}(x)$ has continuous derivatives of all orders on R, (iv) $0 \leq \psi_{N}(x) \leq 1$ for all x, (v) $\psi_{N}(x)=1$ for $1 / N \leq x \leq 1-1 / N$, and (vi) $\psi_{N}(x)=0$ if $x \leq 0$ or $x \geq 1$.

Remark. It follows from (7.3) that

$$
\begin{equation*}
\max _{0 \leq x \leq 1} P_{x}\left(T_{\infty} \geq t_{0}\right) \leq 1 / 2, \quad t_{0}=2 C \tag{7.7}
\end{equation*}
$$

This implies by the Markov property and standard arguments that
Corollary 7.2. Under the assumptions of Theorem 7.1

$$
\begin{equation*}
\max _{0 \leq x \leq 1} P_{x}\left(T_{\infty} \geq t\right) \leq 2 e^{-\alpha t}, \quad t \geq 0 \tag{7.8}
\end{equation*}
$$

for $\alpha=2 C \log 2>0$, and also

Sample Path Regularity for One-Dimensional Diffusions

$$
\begin{equation*}
\max _{0 \leq x \leq 1} E_{x}\left(e^{a T_{\infty}}\right) \leq C_{1}(a), \quad 0 \leq a<\alpha \tag{7.9}
\end{equation*}
$$

where $C_{1}(a)<\infty$ for $0 \leq a<\alpha$.
We can use the same argument as in Theorem 7.1 to prove
Theorem 7.2. With probability one, the sample paths $X_{t}(\omega)$ are continuous functions of t for $0 \leq t<\zeta(\omega)$.

Proof. Since $P_{x}\left(T_{N}<\zeta\right)=1$ and $E_{x}(\zeta) \leq C$, it follows from (7.6) that $\widetilde{\psi}_{N}=\psi_{N}\left(X_{T_{N}}\right)=1$ a.s. in (7.6) for $1 / N<x<1-1 / N$. This implies that $X_{T_{N}}(\omega) \in\{1 / N, 1-1 / N\}$ almost surely. This means that $X_{t}(\omega)$ cannot leave $(1 / N, 1-1 / N)$ by a jump beyond the boundary of $(1 / N, 1-1 / N)$. This suggests that, at least, $X_{t}(\omega)$ cannot be discontinuous at $X_{t}(\omega)=1 / N$ or $X_{t}(\omega)=1-1 / N$.

If general, define

$$
\begin{equation*}
T_{a b}(\omega)=\min \left\{t: t<\zeta(\omega), X_{t}(\omega) \in(0, a) \cup(b, 1)\right\} \tag{7.10}
\end{equation*}
$$

for rational values a, b with $0<a<b<1$ with, as before, the convention $T_{a b}(\omega)=\infty$ if the set of t on the right-hand side of (7.10) is empty. By the same argument as in Theorem 7.1, $P_{x}\left(T_{a b}<\infty\right)=1$ and $P_{x}\left(X_{T_{a b}} \in\{a, b\}\right)=1$ for $0<a<x<b<1$.

Expand the null set $E \in \mathcal{F}$ in (4.7) to include the null set of all $\omega \in \Omega$ that provide counterexamples to $X_{T_{a b}(\omega)}(\omega) \in\{a, b\}$ for rational $0<a<b<1$. It follows that, if $\omega \notin E$, there cannot exist any rational values r such that $X_{t-}(\omega)<r<X_{t+}(\omega)$, since we could then find a counterexample to $X_{T_{a r}(\omega)}(\omega) \in\{a, r\}$ for some rational interval (a, r).

Similarly there cannot exist any rational values r such that $X_{t+}(\omega)<$ $r<X_{t-}(\omega)$ since we could find a counterexample to $X_{T_{r b}(\omega)}(\omega) \in\{r, b\}$ for some rational interval (r, b). Since $X_{t}(\omega)$ has at worst jump discontinuities for $\omega \notin E$ by the argument that led up to (4.7), this implies that $X_{t}(\omega)$ must be continuous in t for $0 \leq t<\zeta(\omega)$. This completes the proof of Theorem 7.2.
8. Exit Times are Death Times. The purpose of this section is to prove that, in fact, $T_{\infty}(\omega)=\zeta(\omega)$ almost surely for $T_{\infty}(\omega)=\sup _{N} T_{N}(\omega)$. We begin with two lemmas.

Lemma 8.1. If $f, h \in C_{0}(I)$, then $h \in \mathcal{D}(A)$ and $A h=-f$ if and only if

$$
\begin{equation*}
h(x)=\int_{0}^{1} g(x, y) f(y) m(d y) \tag{8.1}
\end{equation*}
$$

Proof. If $h(x)$ is given by (8.1), then $h \in \mathcal{D}(A)$ and $A h=L h=-f$ as in Section 1. Conversely, assume $h \in \mathcal{D}(A)$ and $A h=-f$. Define

$$
h_{1}(x)=\int_{0}^{1} g(x, y) f(y) m(d y)
$$

Then $h_{1} \in \mathcal{D}(A)$ and $A h_{1}=L h_{1}=-f$. Let $g=h-h_{1}$. Then $g \in \mathcal{D}(A)$ and $A g=A h-A h_{1}=0$.

If $g \in \mathcal{D}(A)$ and $A g=0$, it follows from Lemma 5.2 that $g\left(X_{t}\right) I_{[\zeta>t]}$ is a uniformly-bounded martingale. Thus

$$
g(x)=E_{x}\left(g\left(X_{t}\right) I_{[\zeta>t]}\right)
$$

By the relation $P_{x}\left(T_{N}<\zeta\right)=1$ and the Optional Stopping Theorem,

$$
g(x)=E_{x}\left(g\left(X_{t \wedge T_{N}}\right)\right)
$$

Since $P_{x}\left(T_{N}<\infty\right)=1$ by Theorems 6.1 and 7.1 and $g(x)$ is bounded, we can let $t \rightarrow \infty$ and obtain

$$
g(x)=E_{x}\left(g\left(X_{T_{N}}\right)\right)
$$

However, $\lim _{N \rightarrow \infty} g\left(X_{T_{N}}\right)=0$ since $g \in C_{0}(I)$ by Corollary 7.1. This proves that $g(x)=0$ for $0<x<1$. Since $g=h-h_{1}$, it follows that $h(x)=h_{1}(x)=$ $\int g(x, y) f(y) m(d y)$. This completes the proof of the lemma.
Lemma 8.2. For any $f \in C_{0}(I)$ with $f(x) \geq 0$,

$$
\begin{equation*}
\int_{0}^{1} g(x, y) f(y) m(d y)=\int_{0}^{\infty} T_{s} f(x) d s=E_{x}\left(\int_{0}^{\zeta(\omega)} f\left(X_{s}\right) d s\right) \tag{8.2}
\end{equation*}
$$

Proof. Define

$$
h_{\lambda}(x)=R_{\lambda} f(x)=\int_{0}^{\infty} e^{-\lambda s} T_{s} f(x) d s
$$

As in Section 2, $h_{\lambda}(x) \in \mathcal{D}(A)$ and $(\lambda I-A) h_{\lambda}(x)=f(x)$. Thus $A h_{\lambda}=$ $\lambda h_{\lambda}-f=-\left(f-\lambda h_{\lambda}\right)$. It then follows from Lemma 8.1 that

$$
\begin{align*}
h_{\lambda}(x) & =\int_{0}^{\infty} e^{-\lambda s} T_{s} f(x) d s=\int_{0}^{1} g(x, y)\left(f(y)-\lambda h_{\lambda}(y)\right) m(d y) \tag{8.3}\\
& \leq \int_{0}^{1} g(x, y) f(y) m(d y) \leq C \sup _{y} f(y)
\end{align*}
$$

since $f(x) \geq 0$ and $h_{\lambda}(y) \geq 0$, where C is the constant in (2.7). Thus $h_{\lambda}(x) \leq C_{1}$ uniformly in $\lambda>0$. Since then $\lambda h_{\lambda}(x) \leq C_{1} \lambda$, taking the limit $\lambda \rightarrow 0$ in (8.3) for $f(x) \geq 0$ implies

$$
\begin{aligned}
h_{0}(x) & =\int_{0}^{\infty} T_{s} f(x) d s=\int_{0}^{1} g(x, y) f(y) m(d y) \\
& =E_{x}\left(\int_{0}^{\infty} f\left(X_{s}\right) I_{[\zeta>s]} d s\right)=E_{x}\left(\int_{0}^{\zeta(\omega)} f\left(X_{s}\right) d s\right)
\end{aligned}
$$

This implies (8.2).
Theorem 8.1. Define T_{N}, T_{∞}, and ζ as before. Then $P_{x}\left(T_{\infty}=\zeta\right)=1$ for all $x \in I_{0}$.

Proof. Let

$$
\begin{equation*}
h(x)=\int_{0}^{1} g(x, y) \psi(y) m(d y) \tag{8.4}
\end{equation*}
$$

for arbitrary $\psi \in C_{0}(I)$ with $\psi(y) \geq 0$. Then $A h=-\psi$ and

$$
Y_{t}(\omega)=h\left(X_{t}(\omega)\right) I_{[\zeta(\omega)>t]}+\int_{0}^{t \wedge \zeta(\omega)} \psi\left(X_{s}(\omega)\right) d s
$$

is a nonnegative martingale by Lemma 5.2. Thus

$$
E_{x}\left(h\left(X_{t}\right) I_{[\zeta>t]}+\int_{0}^{t \wedge \zeta} \psi\left(X_{s}\right) d s\right)=h(x)
$$

for all $t \geq 0$ and $x \in I_{0}$. By the Optional Stopping Theorem

$$
\begin{aligned}
h(x) & =E_{x}\left(h\left(X_{t \wedge T_{N}}\right) I_{\left[\zeta>t \wedge T_{N}\right]}+\int_{0}^{t \wedge T_{N} \wedge \zeta} \psi\left(X_{s}\right) d s\right) \\
& =E_{x}\left(h\left(X_{t \wedge T_{N}}\right)+\int_{0}^{t \wedge T_{N}} \psi\left(X_{s}\right) d s\right)
\end{aligned}
$$

since $P_{x}\left(T_{N}<\zeta\right)=1$ by (7.2). Since $h(x)$ is bounded, $\psi(y) \geq 0$, and $T_{N}<\infty$ almost surely by (6.2), we can let $t \rightarrow \infty$ and conclude

$$
\begin{equation*}
h(x)=E_{x}\left(h\left(X_{T_{N}}\right)+\int_{0}^{T_{N}} \psi\left(X_{s}\right) d s\right) \tag{8.5}
\end{equation*}
$$

As $N \rightarrow \infty, h\left(X_{T_{N}}\right) \rightarrow 0$ since $h \in C_{0}(I)$. Since $0 \leq T_{N} \uparrow T_{\infty}$ and $\psi\left(X_{s}\right) \geq 0$, we conclude from (8.5) that

$$
\begin{equation*}
h(x)=E_{x}\left(\int_{0}^{T_{\infty}(\omega)} \psi\left(X_{s}\right) d s\right) \tag{8.6}
\end{equation*}
$$

In contrast, by Lemma 8.2 and (8.4)

$$
\begin{equation*}
h(x)=E_{x}\left(\int_{0}^{\zeta(\omega)} \psi\left(X_{s}\right) d s\right) \tag{8.7}
\end{equation*}
$$

Recall $T_{\infty}(\omega) \leq \zeta(\omega)$ almost surely by (7.2). Both integrals in in (8.6) and (8.7) are finite since $\psi\left(X_{s}\right) \geq 0$ and $h(x)$ is finite. We can then subtract (8.6) from (8.7) to conclude

$$
E_{x}\left(\int_{T_{\infty}(\omega)}^{\zeta(\omega)} \psi\left(X_{s}\right) d s\right)=0
$$

This holds for all $\psi \in C_{0}(I)$ with $\psi(x) \geq 0$. We can approximate $\psi(x) \equiv 1$ by nonnegative functions $\psi_{N} \in C_{0}(I)$ by setting (for example) $\psi_{0}(x)=$ $2 \min \{x, 1-x\}$ and $\psi_{N}(x)=\psi_{0}(x)^{1 / N}$. Then $0 \leq \psi_{N}(x) \leq 1$ and $0 \leq$ $\psi_{N}(x) \uparrow 1$ as $N \rightarrow \infty$. This implies

$$
\begin{equation*}
E_{x}\left(\zeta(\omega)-T_{\infty}(\omega)\right)=0, \quad T_{\infty}(\omega) \leq \zeta(\omega) \text { a.s. } \tag{8.8}
\end{equation*}
$$

Thus $\zeta(\omega)-T_{\infty}(\omega)=0$ almost surely with respect to P_{x} for all $x \in I_{0}$. This completes the proof of Theorem 8.1. (Exercise: Prove or disprove: (8.8) also holds for $x=\Delta$. Use the precise definitions of $X_{r}(\omega), X_{t}(\omega)$, and $T_{N}(\omega)$. Discuss.)

References.

1. Feller, W. (1952) The parabolic differential equations and the associated semi-groups of transformations. Annals of Mathematics 55, 2nd Ser., 468-519.
2. Ito, K., and J. P. McKean, Jr (1965) Diffusion processes and their sample paths. Springer-Verlag.
3. Sawyer, S. A. (1974) A Fatou theorem for the general one-dimensional parabolic equation. Indiana Univ. Math. J. 24, 451-498.
