The Singular-Value Theorem for $m \times n$ Matrices, Canonical Correlations, and Moore-Penrose Inverses

Stanley Sawyer - Washington University - January 8, 2007

1. Introduction We first prove the singular value decomposition theorem for matrices and then give two applications in statistics.

Theorem 1. (Singular-Value Decomposition) Let A be an arbitrary $m \times n$ matrix. Then there exist positive constants $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}>0$ for some integer r such that

$$
\begin{equation*}
A=R_{1} D R_{2}^{\prime} \tag{1.1}
\end{equation*}
$$

where R_{1} and R_{2} are orthogonal matrices (R_{1} is $m \times m$ and R_{2} is $n \times n$) and D is the $m \times n$ matrix

$$
D=\left(\begin{array}{ccccccc}
\lambda_{1} & 0 & 0 & 0 & 0 & \ldots & 0 \tag{1.2}\\
0 & \lambda_{2} & 0 & 0 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & & & \\
0 & 0 & \ldots & \lambda_{r} & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & &
\end{array}\right)
$$

The matrices R_{1}, D, R_{2} are unique except for rotations of eigenspaces.
Proof. By the spectral theorem for symmetric matrices, there exist orthonormal bases x_{1}, \ldots, x_{m} in R^{m} and y_{1}, \ldots, y_{n} in R^{n} such that

$$
\begin{array}{ll}
\left(A A^{\prime}\right) x_{i}=\mu_{i} x_{i} & (1 \leq i \leq m) \quad \text { and } \\
\left(A^{\prime} A\right) y_{j}=\nu_{j} y_{j} & (1 \leq j \leq n) \tag{1.3}
\end{array}
$$

In (1.3), $\mu_{1} \geq \mu_{2} \geq \ldots \mu_{r_{1}}>0$ and $\mu_{i}=0$ for $r_{1}<i \leq n$ for some $r_{1} \leq n$ with eigenvalues repeated according to multiplicity. Similarly, $\nu_{1} \geq \nu_{2} \geq$ $\ldots \nu_{r_{2}}>0$ and $\nu_{j}=0$ for $r_{2}<j \leq m$ for some $r_{2} \leq m$. Assume $x_{i}^{\prime} x_{i}=1$ and $y_{j}^{\prime} y_{j}=1$ for definiteness.

Let $z_{j}=A y_{j}$ for some $j \leq r_{2}$. Then $\left(A A^{\prime}\right) z_{j}=A\left(A^{\prime} A\right) y_{j}=A \nu_{j} y_{j}=$ $\nu_{j} A y_{j}=\nu_{j} z_{j}$, so that $\left(A A^{\prime}\right) z_{j}=\nu_{j} z_{j}$. Also,

$$
z_{j}^{\prime} z_{j}=\left(A y_{j}\right)^{\prime}\left(A y_{j}\right)=y_{j}^{\prime}\left(A^{\prime} A y_{j}\right)=\nu_{j} y_{i}^{\prime} y_{i}=\nu_{j}>0
$$

so that $z_{j} \neq 0$. Thus $z_{j}=A y_{j}$ is an eigenvector of $A A^{\prime}$ with eigenvalue ν_{j}. This means that $\nu_{j}=\mu_{k}$ for some $k \leq r_{1}$ and that $z_{j}=A y_{j}$ is in the eigenspace of $A A^{\prime}$ for μ_{k}.

Similarly, $w_{i}=A^{\prime} x_{i}$ satisfies $\left(A^{\prime} A\right) w_{i}=A^{\prime}\left(A A^{\prime}\right) x_{i}=A^{\prime} \mu_{i} x_{i}=\mu_{i} A^{\prime} x_{i}=$ $\mu_{i} w_{i}$ and $w_{i}^{\prime} w_{i}=x_{i}^{\prime}\left(A A^{\prime} x_{i}\right)=\mu_{i} x_{i}^{\prime} x_{i}=\mu_{i}>0$. Thus $w_{i}=A^{\prime} x_{i}$ is an eigenvector of $A^{\prime} A$ with eigenvalue μ_{i}, so that $\mu_{i}=\nu_{k}$ for some $k \leq r_{2}$.

This implies that the sets $\left\{\mu_{i}\right\}=\left\{\nu_{j}\right\}$ for positive eigenvalues, but we cannot yet conclude that $\mu_{i}=\nu_{i}$ without accounting for multiple linearlyindependent eigenvectors for the same eigenvalue. Assume that y_{a}, y_{b} are orthogonal eigenvectors of $A^{\prime} A$ for the same eigenvalue and set $z_{a}=A y_{a}$ and $z_{b}=A y_{b}$. Then $z_{a}^{\prime} z_{b}=y_{a}^{\prime}\left(A^{\prime} A\right) y_{b}=\nu_{j} y_{a}^{\prime} y_{b}=0$. This implies that the mapping $y \rightarrow A y$ maps a basis for the eigenspace of ν_{j} for $A^{\prime} A$ onto a basis for a subspace of the eigenspace for $A A^{\prime}$ for the same eigenvalue. The mapping $x \rightarrow A^{\prime} x$ behaves similarly for eigenspaces of $A A^{\prime}$. This means that the positive eigenvalues of $A^{\prime} A$ and $A A^{\prime}$ also correspond taking into account multiplicity. Thus $r_{1}=r_{2}=r$ where r is the common value and $\mu_{i}=\nu_{i}$ for $1 \leq i \leq r$. The other eigenvalues of $A^{\prime} A$ and $A A^{\prime}$ are zero.

Since $y \rightarrow A y$ maps a basis for any positive eigenspace of $A^{\prime} A$ onto a basis for eigenspace for the same eigenvalue for $A A^{\prime}$, it follows that we can assume that $A y_{i}=c_{i} x_{i}$ for x_{i}, y_{i} in (1.3) for constants $c_{i} \neq 0$. Then $\left(A y_{i}\right)^{\prime} A y_{i}=y_{i}^{\prime}\left(A^{\prime} A y_{i}\right)=y_{i}^{\prime} \nu_{i} y_{i}=\nu_{i}>0$ since $y_{i}^{\prime} y_{i}=1$ and $\left(c_{i} x_{i}\right)^{\prime} c_{i} x_{i}=$ $c_{i}^{2} x_{i}^{\prime} x_{i}=c_{i}^{2}$ since $x_{i}^{\prime} x_{i}=1$. Thus $c_{i}^{2}=\nu_{i}$ for $1 \leq i \leq r$. Since x_{i} in (1.3) could have been replaced by $-x_{i}$, we can assume $c_{i}>0$, so that $c_{i}=\sqrt{\nu_{i}}$. Exactly the same argument holds for the mapping $x \rightarrow A^{\prime} x$. Thus we have shown that

$$
\begin{equation*}
A y_{i}=\lambda_{i} x_{i} \quad \text { and } \quad A^{\prime} x_{i}=\lambda_{i} y_{i} \quad \text { for } \quad \lambda_{i}=\sqrt{\mu_{i}}, \quad 1 \leq i \leq r \tag{1.4}
\end{equation*}
$$

We can use the Gramm-Schmidt process to extend y_{j} to a basis for R^{m} such that $A y_{i}=0$ for $r<j \leq m$ and x_{i} to a basis for R^{n} such that $A^{\prime} x_{i}=0$ for $r<i \leq n$.

If we write $y=\sum_{i=1}^{n} c_{i} y_{i}$ for an arbitrary $y \in R^{n}$, then

$$
A y=A\left(\sum_{i=1}^{n} c_{i} y_{i}\right)=\sum_{i=1}^{n} c_{i} A y_{i}=\sum_{i=1}^{r} c_{i} \lambda_{i} x_{i}
$$

by (1.4). Similarly, if $Q=\sum_{j=1}^{r} \lambda_{j} x_{j} y_{j}^{\prime}$,

$$
Q y=\sum_{j=1}^{r} \sum_{i=1}^{n} c_{i} \lambda_{j} x_{j} y_{j}^{\prime} y_{i}=\sum_{j=1}^{r} c_{j} \lambda_{j} x_{j}
$$

since $y_{j}^{\prime} y_{i}=0$ if $j \neq i$ and $y_{i}^{\prime} y_{i}=1$. Thus $A y=Q y$ for all $y \in R^{n}$. This implies $A=Q$ and

$$
\begin{equation*}
A=\sum_{i=1}^{r} \lambda_{i} x_{i} y_{i}^{\prime} \tag{1.5}
\end{equation*}
$$

A Singular-Value Theorem and Two Applications
Finally, define matrices

$$
\begin{align*}
& R_{1}=\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{m}
\end{array}\right), \quad x_{i} \in R^{m}, \quad \text { and } \tag{1.6}\\
& R_{2}=\left(\begin{array}{llll}
y_{1} & y_{2} & \ldots & y_{n}
\end{array}\right), \quad y_{j} \in R^{n}
\end{align*}
$$

for column vectors x_{i}, y_{j}. Then R_{1} is an $m \times m$ orthogonal matrix and R_{2} is an $n \times n$ orthogonal matrix. Set $Q=R_{1} D\left(R_{2}\right)^{\prime}$ where D is the $m \times n$ matrix in (1.2). I claim that $Q y_{j}=A y_{j}$ for $1 \leq j \leq n$. This follows from

$$
Q y_{j}=R_{1} D\left(R_{2}\right)^{\prime} y_{j}=R_{1} D\left(\begin{array}{c}
y_{1}^{\prime} \\
\ldots \\
y_{n}^{\prime}
\end{array}\right) y_{j}=R_{1} D\left(\begin{array}{c}
y_{1}^{\prime} y_{j} \\
\ldots \\
y_{n}^{\prime} y_{j}
\end{array}\right)=R_{1} D e_{j}
$$

where e_{j} is the $j^{\text {th }}$ unit vector in R^{n}. Then $D e_{j}=\lambda_{j} e_{j}$ by (1.2) and

$$
Q y_{j}=\lambda_{j} R_{1} e_{j}=\lambda_{j}\left(\begin{array}{lll}
x_{1} & \ldots & x_{m}
\end{array}\right)\left(\begin{array}{c}
0 \\
\ldots \\
1 \\
\ldots \\
0
\end{array}\right)=\lambda_{j} x_{j}
$$

However $\lambda_{j} x_{j}=A y_{j}$ by (1.4), so that $A y_{j}=Q y_{j}$ for $1 \leq j \leq n$. Thus $A=Q$ since $\left\{y_{j}\right\}$ is a basis and $A=Q=R_{1} D\left(R_{2}\right)^{\prime}$. This completes the proof of existence in Theorem 1.

The uniqueness of R_{1}, D, and R_{2} follows from the identities

$$
A A^{\prime}=R_{1}\left(D D^{\prime}\right) R_{1}^{\prime} \quad \text { and } \quad A^{\prime} A=R_{2}\left(D^{\prime} D\right)\left(R_{2}\right)^{\prime}
$$

in R^{m} and R^{n}, respectively. Thus the uniqueness of R_{1} and R_{2} follows from the uniqueness of the orthogonal matrix in the spectral theorem for symmetric matrices.

An equivalent form of Theorem 1 is
Corollary 1.1. Let A be an arbitrary $m \times n$ matrix. Then, there exists an integer r, orthonormal vectors x_{1}, \ldots, x_{r} in R^{m}, orthonormal vectors y_{1}, \ldots, y_{r} in R^{m}, and positive constants $\lambda_{i}>0$ such that

$$
\begin{equation*}
A=\sum_{i=1}^{r} \lambda_{i} x_{i} y_{i}^{\prime} \tag{1.7}
\end{equation*}
$$

If the λ_{i} are distinct, the vectors x_{i}, y_{j} and constants $\lambda_{i}>0$ in (1.7) are unique.

Exercise 1.1: Prove that Corollary 1.1 implies Theorem 1. (Note that (1.7) is the same as equation (1.5) in the proof of the theorem, so that Theorem 1 imples Corollary 1.1.)

We can use Theorem 1 to obtain an analog of the polar decomposition of complex numbers for matrices:

Corollary 1.2. Any $n \times n$ matrix A can be written

$$
\begin{equation*}
A=U M \tag{1.8}
\end{equation*}
$$

where U is an $n \times n$ orthogonal matrix and M is positive semidefinite. The matrices U and M in (1.8) are unique except for rotations of the eigenspaces of M.

Proof. By (1.1), $A=R_{1} D\left(R_{2}\right)^{\prime}=\left(R_{1}\left(R_{2}\right)^{\prime}\right)\left(R_{2} D\left(R_{2}\right)^{\prime}\right)=U M$ for $U=$ $R_{1}\left(R_{2}\right)^{\prime}$ and $M=R_{2} D\left(R_{2}\right)^{\prime}$.
2. Canonical Correlations Let $Y \in R^{m}$ and $X \in R^{n}$ be two vectorvalued random variables. Assume for definiteness that the $m \times m$ matrix $A=\operatorname{Var}(Y)$ and the $n \times n$ matrix $B=\operatorname{Var}(X)$ are both invertible. Let C be the $m \times n$ matrix with entries

$$
C_{i j}=\operatorname{Cov}\left(Y_{i}, X_{j}\right), \quad 1 \leq i \leq m, 1 \leq j \leq n
$$

The first canonical correlation of the vectors Y and X is

$$
\begin{equation*}
\lambda_{1}=\max _{u, v} \operatorname{Corr}\left(u^{\prime} Y, v^{\prime} X\right)=\max _{u, v} \frac{\operatorname{Cov}\left(u^{\prime} Y, v^{\prime} X\right)}{\sqrt{\operatorname{Var}\left(u^{\prime} Y\right) \operatorname{Var}\left(v^{\prime} X\right)}} \tag{2.1}
\end{equation*}
$$

Note $\lambda_{1} \geq 0$ since the signs of u, v are arbitrary. Then
Theorem 2. The canonical correlation λ_{1} in (2.1) is the largest diagonal entry λ_{i} in the matrix D in the singular value decomposition of the $m \times n$ matrix

$$
\begin{equation*}
G=A^{-1 / 2} C B^{-1 / 2}=R_{1} D\left(R_{2}\right)^{\prime} \tag{2.2}
\end{equation*}
$$

in Theorem 1. Equivalently, the principal eigenvalue of the $m \times m$ matrix $G G^{\prime}$ and the $n \times n$ matrix $G^{\prime} G$ is λ_{1}^{2}.

Remark. The matrix $E=\operatorname{Corr}(Y, X)$ with entries $E_{i j}=\operatorname{Corr}\left(Y_{i}, X_{j}\right)$ can be written $E=(\operatorname{Diag}(A))^{-1 / 2} C(\operatorname{Diag}(B))^{-1 / 2}$, which is not the same as the matrix G in (2.2). This is not a contradiction since, among other reasons, $\operatorname{Corr}\left(u^{\prime} Y, v^{\prime} X\right)$ is not a linear function of u and v.

A Singular-Value Theorem and Two Applications
Proof of Theorem 2. This will depend on
Lemma 2.1. If C is an arbitrary $m \times n$ matrix, then

$$
\begin{equation*}
\max _{u, v} \frac{u^{\prime} C v}{\sqrt{\left(u^{\prime} u\right)\left(v^{\prime} v\right)}}=\lambda_{1} \tag{2.3}
\end{equation*}
$$

where λ_{1}^{2} is the largest eigenvalue of the matrices $C^{\prime} C$ and $C C^{\prime}$.
Proof of Theorem 2 given Lemma 2.1. If $A=\operatorname{Var}(Y), B=\operatorname{Var}(X)$, and $C=\operatorname{Cov}(Y, X)$ as before, then

$$
\begin{aligned}
& \max _{u, v} \frac{\operatorname{Cov}\left(u^{\prime} Y, v^{\prime} X\right)}{\sqrt{\operatorname{Var}\left(u^{\prime} Y\right) \operatorname{Var}\left(v^{\prime} X\right)}}=\max _{u, v} \frac{u^{\prime} C v}{\sqrt{\left(u^{\prime} A u\right)\left(v^{\prime} B v\right)}} \\
& \quad=\max _{u, v} \frac{\left(A^{1 / 2} u\right)^{\prime}\left(A^{-1 / 2} C B^{-1 / 2}\right)\left(B^{1 / 2} v\right)}{\sqrt{\left(A^{1 / 2} u\right)^{\prime}\left(A^{1 / 2} u\right)} \sqrt{\left(B^{1 / 2} v\right)^{\prime}\left(B^{1 / 2} v\right)}} \\
& \quad=\max _{u_{1}, v_{1}} \frac{u_{1}^{\prime} G v_{1}}{\sqrt{\left(u_{1}^{\prime} u_{1}\right)\left(v_{1}^{\prime} v_{1}\right)}}=\lambda_{1}
\end{aligned}
$$

for G in (2.2), where λ_{1}^{2} is the principal eigenvalue of $G G^{\prime}$ and $G^{\prime} G$ by Lemma 2.1.

This reduces the proof of Theorem 2 to the proof of Lemma 2.1, for which we give two proofs:

First Proof of Lemma 2.1. It is sufficient to restrict u, v in (2.3) so that $u^{\prime} u=v^{\prime} v=1$. Then, by the method of Lagrange multipliers, the maximum is attained at a stationary point of

$$
\phi(u, v)=u^{\prime} C v-\lambda\left(u^{\prime} u\right)-\mu\left(v^{\prime} v\right)
$$

for constants λ and μ. At such a stationary point,

$$
\frac{\partial \phi}{\partial u_{i}}=(C v)_{i}-2 \lambda u_{i}=0 \quad \text { and } \quad \frac{\partial \phi}{\partial v_{j}}=\left(u^{\prime} C\right)_{j}-2 \mu v_{j}=0
$$

Thus $C v=2 \lambda u$ and $C^{\prime} u=2 \mu v$. Since $u^{\prime} C v=\left(C^{\prime} u\right)^{\prime} v$,

$$
\begin{align*}
u^{\prime} C v & =u^{\prime}(2 \lambda u)=2 \lambda\left(u^{\prime} u\right)=2 \lambda \tag{2.4}\\
& =\left(C^{\prime} u\right)^{\prime} v=(2 \mu v)^{\prime} v=2 \mu\left(v^{\prime} v\right)=2 \mu
\end{align*}
$$

Hence the maximum in (2.3) is $u^{\prime} C v=\lambda_{1}=2 \lambda=2 \mu$ and $\lambda=\mu$. Similarly

$$
\begin{aligned}
& \left(C^{\prime} C\right) v=C^{\prime}(C v)=2 \lambda C^{\prime} u=4 \lambda \mu v=\lambda_{1}^{2} v \\
& \left(C C^{\prime}\right) u=C\left(C^{\prime} u\right)=2 \mu C v=4 \lambda \mu u=\lambda_{1}^{2} u
\end{aligned}
$$

Thus λ_{1}^{2} is the common largest eigenvalue of $C^{\prime} C$ and $C C^{\prime}$.
Second Proof of Lemma 2.1. By Theorem 1, we can write

$$
C=R_{1}^{\prime} D R_{2}
$$

where R_{1} and R_{2} are orthogonal and D is as in (1.2). Then

$$
\max _{u, v} \frac{u^{\prime} C v}{\sqrt{\left(u^{\prime} u\right)\left(v^{\prime} v\right)}}=\max _{u, v} \frac{\left(R_{1} u\right)^{\prime} D\left(R_{2} v\right)}{\sqrt{\left(u^{\prime} u\right)\left(v^{\prime} v\right)}}=\max _{u_{1}, v_{1}} \frac{u_{1}^{\prime} D v_{1}}{\sqrt{\left(u_{1}^{\prime} u_{1}\right)\left(v_{1}^{\prime} v_{1}\right)}}
$$

where $u_{1}=R_{1} u$ and $v_{1}=R_{2} v$. However, it follows from (1.2) that

$$
\max \left\{u_{1}^{\prime} D v_{1}: u_{1}^{\prime} u_{1}=v_{1}^{\prime} v_{1}=1\right\}=\lambda_{1}
$$

where λ_{1} is the largest value in the matrix D. It then follows from the proof of Theorem 1 that λ_{1}^{2} is the largest eigenvalue of both $C^{\prime} C$ and $C C^{\prime}$.

Let $u_{1} \in R^{m}$ and $v_{1} \in R^{n}$ be vectors at which the maximum defining the first canonical correlation in (2.1) is attained. The second canonical correlation is

$$
\begin{equation*}
\lambda_{2}=\max _{u, v}\left\{\operatorname{Corr}\left(u^{\prime} Y, v^{\prime} X\right) \mid u^{\prime} u_{1}=v^{\prime} v_{1}=0\right\} \tag{2.5}
\end{equation*}
$$

Exercise 2.1: Show that if λ_{2} is the second canonical correlation defined in (2.5), then λ_{2}^{2} is the second-largest eigenvalue of the matrices $G^{\prime} G$ and $G G^{\prime}$ for G in (2.2).

Exercise 2.2: Show that Theorem 2 remains valid if one or both of the matrices A and B are not invertible. (Hint: Show that you can use appropriate generalized inverses of A and B.)
3. Moore-Penrose Inverses By definition, if A is an $m \times n$ matrix, then G is a Moore-Penrose generalized inverse of A if G is $n \times m$ and A and G satisfy the four conditions:

$$
\begin{array}{ll}
\text { (i) } & A G A=A \\
\text { (ii) } & G A G=G \tag{3.1}\\
\text { (iii) } & (A G)^{\prime}=A G \\
\text { (iv) } & (G A)^{\prime}=G A
\end{array}
$$

Condition (i) in (3.1) implies that $A G A G=A G$ and $G A G A=G A$, so that $A G$ and $G A$ are both projections (in R^{m} and R^{n}, respectively). Conditions (iii-iv) then say that $A G$ and $G A$ are both orthogonal projections.

It follows from (i) that if y is in the range of A, then $x=G y$ is a solution of $A x=y$. A necessary and sufficient condition for y being in the range of A is that $(A G) y=y$.

Our next result states that Moore-Penrose inverses always exist:
Lemma 3.1. (Moore-Penrose Inverses) Let $A=R_{1} D\left(R_{2}\right)^{\prime}$ be the $m \times n$ matrix in (1.1) and let G be the $n \times m$ matrix

$$
\begin{equation*}
G=R_{2} E^{\prime}\left(R_{1}\right)^{\prime} \tag{3.2}
\end{equation*}
$$

In (3.2), E is the same as D in (1.2) except that each positive constant $\lambda_{i}>0$ is replaced by $1 / \lambda_{i}>0$ in E. Then G is a Moore-Penrose generalized inverse of A.

Proof. Note $A G A=R_{1} D\left(R_{2}\right)^{\prime} R_{2} E^{\prime}\left(R_{1}\right)^{\prime} R_{1} D\left(R_{2}\right)^{\prime}=R_{1} D E^{\prime} D\left(R_{2}\right)^{\prime}=$ $R_{1} D\left(R_{2}\right)^{\prime}=A$ and similarly $G A G=G$. Also $A G=R_{1} D\left(R_{2}\right)^{\prime} R_{2} E^{\prime}\left(R_{1}\right)^{\prime}=$ $R_{1} D E^{\prime}\left(R_{1}\right)^{\prime}$, which is an orthogonal projection of rank r in R^{m}. Similarly, $G A=R_{2} E^{\prime}\left(R_{1}\right)^{\prime} R_{1} D\left(R_{2}\right)^{\prime}=R_{2} E^{\prime} D\left(R_{2}\right)^{\prime}$ is an orthogonal projection in R^{n}.

Theorem 3. (Uniqueness of Moore-Penrose Inverses) Let A be an arbitrary $m \times n$ matrix. Then, the matrix G in (3.2) is the unique Moore-Penrose inverse of A.

Proof. Assume that G satisfies the conditions (i-iv) of the definition. Let y_{1}, \ldots, y_{n} and x_{1}, \ldots, x_{m} be the orthonormal bases in the proof of Theorem 1 for the singular-value decomposition applied to A. In particular $A y_{i}=\lambda_{i} x_{i}$ and $A^{\prime} x_{i}=\lambda_{i} y_{i}$ by (1.4). Since y_{1}, \ldots, y_{n} is a basis for R^{n}, we can write

$$
\begin{equation*}
G x_{i}=\sum_{k=1}^{n} c_{i k} y_{k}, \quad 1 \leq i \leq m \tag{3.3}
\end{equation*}
$$

The proof will be to show that, in fact,

$$
G x_{i}= \begin{cases}\left(1 / \lambda_{i}\right) y_{i} & \text { if } 1 \leq i \leq r \\ 0 & r+1 \leq i \leq m\end{cases}
$$

This implies that $G=R_{2} E^{\prime}\left(R_{1}\right)^{\prime}$ exactly as in the proof of $A=R_{1} D\left(R_{2}\right)^{\prime}$ in Theorem 1. We will use the four conditions (i-iv) in the definition of a Moore-Penrose inverse in turn.

A Singular-Value Theorem and Two Applications
From $A G A=A$ and $A y_{i}=\lambda_{i} x_{i}$, it follows that $A G A y_{i}=\lambda_{i} A G x_{i}=$ $A y_{i}=\lambda_{i} x_{i}$ and

$$
\begin{equation*}
(A G) x_{i}=x_{i}, \quad 1 \leq i \leq r \tag{3.4}
\end{equation*}
$$

Thus by (3.3) $x_{i}=A\left(G x_{i}\right)=\sum_{k=1}^{n} c_{i k} A y_{k}=\sum_{k=1}^{r} c_{i k} \lambda_{k} x_{k}=x_{i}$. Since $\left\{x_{k}\right\}$ is a basis, this implies $c_{i k}=0$ for $1 \leq i \leq r$ for $k \neq i$ and $c_{i i}=1 / \lambda_{i}$. Thus by (3.3)

$$
\begin{equation*}
G x_{i}=\frac{1}{\lambda_{i}} y_{i}+\sum_{k=r+1}^{n} c_{i k} y_{k}, \quad 1 \leq i \leq r \tag{3.5}
\end{equation*}
$$

From $A G=(A G)^{\prime}$ and (3.4), it follows that $A G$ must preserve the vector space spanned by x_{r+1}, \ldots, x_{m}. Thus by (3.3)

$$
\begin{aligned}
& (A G) x_{i}=\sum_{k=r+1}^{m} d_{i k} x_{k}, \quad r+1 \leq i \leq m \\
& =A\left(G x_{i}\right)=A\left(\sum_{k=1}^{n} c_{i k} y_{k}\right)=\sum_{k=1}^{n} c_{i k} A y_{k}=\sum_{k=1}^{r} \lambda_{k} c_{i k} x_{k}
\end{aligned}
$$

Thus $(A G) x_{i}=0$ for $r+1 \leq i \leq m$ and also $c_{i k}=0$ in (3.3) for $1 \leq k \leq r<$ $i \leq m$. In particular

$$
\begin{equation*}
G x_{i}=\sum_{k=r+1}^{n} c_{i k} y_{k}, \quad r+1 \leq i \leq m \tag{3.6}
\end{equation*}
$$

From $(A G) x_{i}=x_{i}(1 \leq i \leq r)$ and $(A G) x_{i}=0(r<i \leq m)$ it follows that $A G=R_{1}\left(D E^{\prime}\right)\left(R_{1}\right)^{\prime}$, but we will not need this.

From $G A G=G$ and (3.6), it follows that

$$
\begin{equation*}
G x_{i}=G A G x_{i}=\sum_{k=r+1}^{n} c_{i k} G A y_{k}=0, \quad r+1 \leq i \leq m \tag{3.7}
\end{equation*}
$$

From $G A=(G A)^{\prime}$ and $G A y_{j}=G\left(A y_{j}\right)=0$ for $r+1 \leq j \leq n$, it follows that

$$
\begin{equation*}
\lambda_{i} G x_{i}=G A y_{i}=\sum_{k=1}^{r} d_{i k} y_{k}, \quad 1 \leq i \leq r \tag{3.8}
\end{equation*}
$$

Thus $G x_{i}=\left(1 / \lambda_{i}\right) y_{i}$ for $1 \leq i \leq r$ by (3.5), and

$$
G x_{i}= \begin{cases}\left(1 / \lambda_{i}\right) x_{i} & \text { for } 1 \leq i \leq r, \text { by }(3.5) \text { and }(3.8), \\ 0 & r+1 \leq i \leq m \text { by }(3.7)\end{cases}
$$

This implies that $G=R_{2} E^{\prime}\left(R_{1}\right)^{\prime}$ by arguing as in the proof of Theorem 1 .

