
The Singular-Value Theorem for m × n Matrices,
Canonical Correlations, and Moore-Penrose Inverses

Stanley Sawyer — Washington University — January 8, 2007

1. Introduction We first prove the singular value decomposition theorem
for matrices and then give two applications in statistics.

Theorem 1. (Singular-Value Decomposition) Let A be an arbitrary m×n
matrix. Then there exist positive constants λ1 ≥ λ2 ≥ . . . ≥ λr > 0 for some
integer r such that

A = R1DR′2 (1.1)

where R1 and R2 are orthogonal matrices (R1 is m × m and R2 is n × n)
and D is the m× n matrix

D =




λ1 0 0 0 0 . . . 0
0 λ2 0 0 0 . . . 0

. . . . . . . . . . . .
0 0 . . . λr 0 . . . 0
0 0 . . . 0 0 . . . 0

. . . . . . . . . . . . . . .




(1.2)

The matrices R1, D,R2 are unique except for rotations of eigenspaces.

Proof. By the spectral theorem for symmetric matrices, there exist or-
thonormal bases x1, . . . , xm in Rm and y1, . . . , yn in Rn such that

(AA′)xi = µixi (1 ≤ i ≤ m) and

(A′A)yj = νjyj (1 ≤ j ≤ n) (1.3)

In (1.3), µ1 ≥ µ2 ≥ . . . µr1 > 0 and µi = 0 for r1 < i ≤ n for some r1 ≤ n
with eigenvalues repeated according to multiplicity. Similarly, ν1 ≥ ν2 ≥
. . . νr2 > 0 and νj = 0 for r2 < j ≤ m for some r2 ≤ m. Assume x′ixi = 1
and y′jyj = 1 for definiteness.

Let zj = Ayj for some j ≤ r2. Then (AA′)zj = A(A′A)yj = Aνjyj =
νjAyj = νjzj , so that (AA′)zj = νjzj . Also,

z′jzj = (Ayj)′(Ayj) = y′j(A
′Ayj) = νjy

′
iyi = νj > 0

so that zj 6= 0. Thus zj = Ayj is an eigenvector of AA′ with eigenvalue νj .
This means that νj = µk for some k ≤ r1 and that zj = Ayj is in the
eigenspace of AA′ for µk.
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Similarly, wi = A′xi satisfies (A′A)wi = A′(AA′)xi = A′µixi = µiA
′xi =

µiwi and w′iwi = x′i(AA′xi) = µix
′
ixi = µi > 0. Thus wi = A′xi is an eigen-

vector of A′A with eigenvalue µi, so that µi = νk for some k ≤ r2.
This implies that the sets {µi} = {νj} for positive eigenvalues, but we

cannot yet conclude that µi = νi without accounting for multiple linearly-
independent eigenvectors for the same eigenvalue. Assume that ya, yb are
orthogonal eigenvectors of A′A for the same eigenvalue and set za = Aya

and zb = Ayb. Then z′azb = y′a(A′A)yb = νjy
′
ayb = 0. This implies that

the mapping y → Ay maps a basis for the eigenspace of νj for A′A onto a
basis for a subspace of the eigenspace for AA′ for the same eigenvalue. The
mapping x → A′x behaves similarly for eigenspaces of AA′. This means that
the positive eigenvalues of A′A and AA′ also correspond taking into account
multiplicity. Thus r1 = r2 = r where r is the common value and µi = νi for
1 ≤ i ≤ r. The other eigenvalues of A′A and AA′ are zero.

Since y → Ay maps a basis for any positive eigenspace of A′A onto
a basis for eigenspace for the same eigenvalue for AA′, it follows that we
can assume that Ayi = cixi for xi, yi in (1.3) for constants ci 6= 0. Then
(Ayi)′Ayi = y′i(A

′Ayi) = y′iνiyi = νi > 0 since y′iyi = 1 and (cixi)′cixi =
c2
i x
′
ixi = c2

i since x′ixi = 1. Thus c2
i = νi for 1 ≤ i ≤ r. Since xi in (1.3)

could have been replaced by −xi, we can assume ci > 0, so that ci =
√

νi.
Exactly the same argument holds for the mapping x → A′x. Thus we have
shown that

Ayi = λixi and A′xi = λiyi for λi =
√

µi, 1 ≤ i ≤ r (1.4)

We can use the Gramm-Schmidt process to extend yj to a basis for Rm such
that Ayi = 0 for r < j ≤ m and xi to a basis for Rn such that A′xi = 0 for
r < i ≤ n.

If we write y =
∑n

i=1 ciyi for an arbitrary y ∈ Rn, then

Ay = A
( n∑

i=1

ciyi

)
=

n∑

i=1

ciAyi =
r∑

i=1

ciλixi

by (1.4). Similarly, if Q =
∑r

j=1 λjxjy
′
j ,

Qy =
r∑

j=1

n∑

i=1

ciλjxjy
′
jyi =

r∑

j=1

cjλjxj

since y′jyi = 0 if j 6= i and y′iyi = 1. Thus Ay = Qy for all y ∈ Rn. This
implies A = Q and

A =
r∑

i=1

λixiy
′
i (1.5)
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Finally, define matrices

R1 = ( x1 x2 . . . xm ) , xi ∈ Rm, and (1.6)

R2 = ( y1 y2 . . . yn ) , yj ∈ Rn

for column vectors xi, yj . Then R1 is an m ×m orthogonal matrix and R2

is an n × n orthogonal matrix. Set Q = R1D(R2)′ where D is the m × n
matrix in (1.2). I claim that Qyj = Ayj for 1 ≤ j ≤ n. This follows from

Qyj = R1D(R2)′yj = R1D




y′1
. . .
y′n


 yj = R1D




y′1yj

. . .
y′nyj


 = R1Dej

where ej is the jth unit vector in Rn. Then Dej = λjej by (1.2) and

Qyj = λjR1ej = λj ( x1 . . . xm )




0
. . .
1

. . .
0


 = λjxj

However λjxj = Ayj by (1.4), so that Ayj = Qyj for 1 ≤ j ≤ n. Thus A = Q
since {yj} is a basis and A = Q = R1D(R2)′. This completes the proof of
existence in Theorem 1.

The uniqueness of R1, D, and R2 follows from the identities

AA′ = R1(DD′)R′1 and A′A = R2(D′D)(R2)′

in Rm and Rn, respectively. Thus the uniqueness of R1 and R2 follows
from the uniqueness of the orthogonal matrix in the spectral theorem for
symmetric matrices.

An equivalent form of Theorem 1 is

Corollary 1.1. Let A be an arbitrary m × n matrix. Then, there exists
an integer r, orthonormal vectors x1, . . . , xr in Rm, orthonormal vectors
y1, . . . , yr in Rm, and positive constants λi > 0 such that

A =
r∑

i=1

λixiy
′
i (1.7)

If the λi are distinct, the vectors xi, yj and constants λi > 0 in (1.7) are
unique.
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Exercise 1.1: Prove that Corollary 1.1 implies Theorem 1. (Note that (1.7)
is the same as equation (1.5) in the proof of the theorem, so that Theorem 1
imples Corollary 1.1.)

We can use Theorem 1 to obtain an analog of the polar decomposition
of complex numbers for matrices:

Corollary 1.2. Any n× n matrix A can be written

A = UM (1.8)

where U is an n× n orthogonal matrix and M is positive semidefinite. The
matrices U and M in (1.8) are unique except for rotations of the eigenspaces
of M .

Proof. By (1.1), A = R1D(R2)′ = (R1(R2)′)(R2D(R2)′) = UM for U =
R1(R2)′ and M = R2D(R2)′.

2. Canonical Correlations Let Y ∈ Rm and X ∈ Rn be two vector-
valued random variables. Assume for definiteness that the m × m matrix
A = Var(Y ) and the n × n matrix B = Var(X) are both invertible. Let C
be the m× n matrix with entries

Cij = Cov(Yi, Xj), 1 ≤ i ≤ m, 1 ≤ j ≤ n

The first canonical correlation of the vectors Y and X is

λ1 = max
u,v

Corr(u′Y, v′X) = max
u,v

Cov(u′Y, v′X)√
Var(u′Y )Var(v′X)

(2.1)

Note λ1 ≥ 0 since the signs of u, v are arbitrary. Then

Theorem 2. The canonical correlation λ1 in (2.1) is the largest diagonal
entry λi in the matrix D in the singular value decomposition of the m × n
matrix

G = A−1/2CB−1/2 = R1D(R2)′ (2.2)

in Theorem 1. Equivalently, the principal eigenvalue of the m × m matrix
GG′ and the n× n matrix G′G is λ2

1.

Remark. The matrix E = Corr(Y, X) with entries Eij = Corr(Yi, Xj) can
be written E =

(
Diag(A)

)−1/2
C

(
Diag(B)

)−1/2, which is not the same as the
matrix G in (2.2). This is not a contradiction since, among other reasons,
Corr(u′Y, v′X) is not a linear function of u and v.
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Proof of Theorem 2. This will depend on

Lemma 2.1. If C is an arbitrary m× n matrix, then

max
u,v

u′Cv√
(u′u)(v′v)

= λ1 (2.3)

where λ2
1 is the largest eigenvalue of the matrices C ′C and CC ′.

Proof of Theorem 2 given Lemma 2.1. If A = Var(Y ), B = Var(X),
and C = Cov(Y, X) as before, then

max
u,v

Cov(u′Y, v′X)√
Var(u′Y )Var(v′X)

= max
u,v

u′Cv√
(u′Au)(v′Bv)

= max
u,v

(A1/2u)′(A−1/2CB−1/2)(B1/2v)√
(A1/2u)′(A1/2u)

√
(B1/2v)′(B1/2v)

= max
u1,v1

u′1Gv1√
(u′1u1)(v′1v1)

= λ1

for G in (2.2), where λ2
1 is the principal eigenvalue of GG′ and G′G by

Lemma 2.1.

This reduces the proof of Theorem 2 to the proof of Lemma 2.1, for
which we give two proofs:

First Proof of Lemma 2.1. It is sufficient to restrict u, v in (2.3) so that
u′u = v′v = 1. Then, by the method of Lagrange multipliers, the maximum
is attained at a stationary point of

φ(u, v) = u′Cv − λ(u′u)− µ(v′v)

for constants λ and µ. At such a stationary point,

∂φ

∂ui
= (Cv)i − 2λui = 0 and

∂φ

∂vj
= (u′C)j − 2µvj = 0

Thus Cv = 2λu and C ′u = 2µv. Since u′Cv = (C ′u)′v,

u′Cv = u′(2λu) = 2λ(u′u) = 2λ (2.4)

= (C ′u)′v = (2µv)′v = 2µ(v′v) = 2µ
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Hence the maximum in (2.3) is u′Cv = λ1 = 2λ = 2µ and λ = µ. Similarly

(C ′C)v = C ′(Cv) = 2λC ′u = 4λµv = λ2
1v

(CC ′)u = C(C ′u) = 2µCv = 4λµu = λ2
1u

Thus λ2
1 is the common largest eigenvalue of C ′C and CC ′.

Second Proof of Lemma 2.1. By Theorem 1, we can write

C = R′1DR2

where R1 and R2 are orthogonal and D is as in (1.2). Then

max
u,v

u′Cv√
(u′u)(v′v)

= max
u,v

(R1u)′D(R2v)√
(u′u)(v′v)

= max
u1,v1

u′1Dv1√
(u′1u1)(v′1v1)

where u1 = R1u and v1 = R2v. However, it follows from (1.2) that

max {u′1Dv1 : u′1u1 = v′1v1 = 1 } = λ1

where λ1 is the largest value in the matrix D. It then follows from the proof
of Theorem 1 that λ2

1 is the largest eigenvalue of both C ′C and CC ′.

Let u1 ∈ Rm and v1 ∈ Rn be vectors at which the maximum defining
the first canonical correlation in (2.1) is attained. The second canonical
correlation is

λ2 = max
u,v

{
Corr(u′Y, v′X)

∣∣ u′u1 = v′v1 = 0
}

(2.5)

Exercise 2.1: Show that if λ2 is the second canonical correlation defined
in (2.5), then λ2

2 is the second-largest eigenvalue of the matrices G′G and
GG′ for G in (2.2).

Exercise 2.2: Show that Theorem 2 remains valid if one or both of the ma-
trices A and B are not invertible. (Hint : Show that you can use appropriate
generalized inverses of A and B.)

3. Moore-Penrose Inverses By definition, if A is an m×n matrix, then G
is a Moore-Penrose generalized inverse of A if G is n×m and A and G satisfy
the four conditions:

(i) AGA = A
(ii) GAG = G
(iii) (AG)′ = AG
(iv) (GA)′ = GA

(3.1)
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Condition (i) in (3.1) implies that AGAG = AG and GAGA = GA, so that
AG and GA are both projections (in Rm and Rn, respectively). Conditions
(iii-iv) then say that AG and GA are both orthogonal projections.

It follows from (i) that if y is in the range of A, then x = Gy is a solution
of Ax = y. A necessary and sufficient condition for y being in the range of A
is that (AG)y = y.

Our next result states that Moore-Penrose inverses always exist:

Lemma 3.1. (Moore-Penrose Inverses) Let A = R1D(R2)′ be the m × n
matrix in (1.1) and let G be the n×m matrix

G = R2E
′(R1)′ (3.2)

In (3.2), E is the same as D in (1.2) except that each positive constant λi > 0
is replaced by 1/λi > 0 in E. Then G is a Moore-Penrose generalized inverse
of A.

Proof. Note AGA = R1D(R2)′R2E
′(R1)′R1D(R2)′ = R1DE′D(R2)′ =

R1D(R2)′ = A and similarly GAG = G. Also AG = R1D(R2)′R2E
′(R1)′ =

R1DE′(R1)′, which is an orthogonal projection of rank r in Rm. Similarly,
GA = R2E

′(R1)′R1D(R2)′ = R2E
′D(R2)′ is an orthogonal projection in Rn.

Theorem 3. (Uniqueness of Moore-Penrose Inverses) Let A be an arbi-
trary m×n matrix. Then, the matrix G in (3.2) is the unique Moore-Penrose
inverse of A.

Proof. Assume that G satisfies the conditions (i-iv) of the definition. Let
y1, . . . , yn and x1, . . . , xm be the orthonormal bases in the proof of Theorem 1
for the singular-value decomposition applied to A. In particular Ayi = λixi

and A′xi = λiyi by (1.4). Since y1, . . . , yn is a basis for Rn, we can write

Gxi =
n∑

k=1

cikyk, 1 ≤ i ≤ m (3.3)

The proof will be to show that, in fact,

Gxi =
{

(1/λi)yi if 1 ≤ i ≤ r

0 r + 1 ≤ i ≤ m

This implies that G = R2E
′(R1)′ exactly as in the proof of A = R1D(R2)′

in Theorem 1. We will use the four conditions (i-iv) in the definition of a
Moore-Penrose inverse in turn.
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From AGA = A and Ayi = λixi, it follows that AGAyi = λiAGxi =
Ayi = λixi and

(AG)xi = xi, 1 ≤ i ≤ r (3.4)

Thus by (3.3) xi = A(Gxi) =
∑n

k=1 cikAyk =
∑r

k=1 cikλkxk = xi. Since
{xk} is a basis, this implies cik = 0 for 1 ≤ i ≤ r for k 6= i and cii = 1/λi.
Thus by (3.3)

Gxi =
1
λi

yi +
n∑

k=r+1

cikyk, 1 ≤ i ≤ r (3.5)

From AG = (AG)′ and (3.4), it follows that AG must preserve the vector
space spanned by xr+1, . . . , xm. Thus by (3.3)

(AG)xi =
m∑

k=r+1

dikxk, r + 1 ≤ i ≤ m,

= A(Gxi) = A
( n∑

k=1

cikyk

)
=

n∑

k=1

cikAyk =
r∑

k=1

λkcikxk

Thus (AG)xi = 0 for r +1 ≤ i ≤ m and also cik = 0 in (3.3) for 1 ≤ k ≤ r <
i ≤ m. In particular

Gxi =
n∑

k=r+1

cikyk, r + 1 ≤ i ≤ m (3.6)

From (AG)xi = xi (1 ≤ i ≤ r) and (AG)xi = 0 (r < i ≤ m) it follows that
AG = R1(DE′)(R1)′, but we will not need this.

From GAG = G and (3.6), it follows that

Gxi = GAGxi =
n∑

k=r+1

cikGAyk = 0, r + 1 ≤ i ≤ m (3.7)

From GA = (GA)′ and GAyj = G(Ayj) = 0 for r + 1 ≤ j ≤ n, it follows
that

λiGxi = GAyi =
r∑

k=1

dikyk, 1 ≤ i ≤ r (3.8)

Thus Gxi = (1/λi)yi for 1 ≤ i ≤ r by (3.5), and

Gxi =
{

(1/λi)xi for 1 ≤ i ≤ r, by (3.5) and (3.8),

0 r + 1 ≤ i ≤ m by (3.7)

This implies that G = R2E
′(R1)′ by arguing as in the proof of Theorem 1.


