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1. Introduction We first prove the singular value decomposition theorem
for matrices and then give two applications in statistics.

Theorem 1. (Singular-Value Decomposition) Let A be an arbitrary m xn
matrix. Then there exist positive constants A\; > Ao > ... > A, > 0 for some
integer r such that

A= RiDR) (1.1)

where Ry and Ry are orthogonal matrices (R; is m x m and Ry is n X n)
and D is the m X n matrix

M 0 0 O O ... 0
0 X 0 0 0 0

D=1"% A 0 0 (1.2)
0 0 0 0 0

The matrices Ry, D, R are unique except for rotations of eigenspaces.

Proof. By the spectral theorem for symmetric matrices, there exist or-
thonormal bases z1,...,x,, in R™ and y1,...,y, in R™ such that

(AANT; = piz; (1 <i<m) and
(A'Ay; =vjy; (1<j<n) (1.3)

In (1.3), pg > po > ...y, > 0 and p; = 0 for r1 < i < n for some r; < n
with eigenvalues repeated according to multiplicity. Similarly, v; > vo >
...Vp, > 0and v; =0 for ry < j < m for some ro < m. Assume rix; =1
and y}yj =1 for definiteness.

Let z; = Ay, for some j < r5. Then (AA")z; = A(A'A)y; = Avjy; =
l/jij =Vjz5, SO that (AA/)ZJ =VjZj. AISO,

2525 = (Ay;) (Ay;) = y;(A'Ay;) = vyyiyi = v; > 0

so that z; # 0. Thus z; = Ay, is an eigenvector of AA" with eigenvalue v;.
This means that v; = p; for some £ < r; and that z; = Ay; is in the
eigenspace of AA’ for py.
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Similarly, w; = A’x; satisfies (A’ A)w; = A'(AA)x; = A'px; = pAle; =
piw; and wiw; = ¢ (AA'x;) = pixix; = p; > 0. Thus w; = A’z; is an eigen-
vector of A’A with eigenvalue p;, so that p; = vy for some k < ry.

This implies that the sets {u;} = {v;} for positive eigenvalues, but we
cannot yet conclude that pu; = v; without accounting for multiple linearly-
independent eigenvectors for the same eigenvalue. Assume that y,,y;, are
orthogonal eigenvectors of A’A for the same eigenvalue and set z, = Ay,
and z, = Ayp. Then 2z, = v, (A’A)ypy = vjy,ys = 0. This implies that
the mapping y — Ay maps a basis for the eigenspace of v; for A’A onto a
basis for a subspace of the eigenspace for AA’ for the same eigenvalue. The
mapping x — A’x behaves similarly for eigenspaces of AA’. This means that
the positive eigenvalues of A’A and AA’ also correspond taking into account
multiplicity. Thus r; = ro = r where r is the common value and u; = v; for
1 < i < r. The other eigenvalues of A’A and AA’ are zero.

Since y — Ay maps a basis for any positive eigenspace of A’A onto
a basis for eigenspace for the same eigenvalue for AA’, it follows that we
can assume that Ay, = c¢;x; for x;,y; in (1.3) for constants ¢; # 0. Then
(Ayi)' Ay = yi(A'Ay;) = yiviyi = v; > 0 since yjy; = 1 and (c;z;) oy =
cixlz; = 7 since zix; = 1. Thus ¢ = v; for 1 < i < r. Since z; in (1.3)
could have been replaced by —x;, we can assume ¢; > 0, so that ¢; = /v;.
Exactly the same argument holds for the mapping x — A’x. Thus we have
shown that

Ay, =Nz and  Awy =Ny, for =, 1<i<r (1.4)

We can use the Gramm-Schmidt process to extend y; to a basis for R™ such
that Ay; = 0 for r < 7 < m and z; to a basis for R"™ such that A’x; = 0 for
r<i<n.

If we write y = > | ¢;y; for an arbitrary y € R", then

Ay = A(i Ciyi> = i c;Ay; = icﬁ\ﬂ?i
i=1 i=1 i1

by (1.4). Similarly, if @ = 3>7_, Ajz;y/},

T omn T
Qy = Z Zci)\jxjy;yi = ch)\jxj
j=1

j=1i=1

since yiy; = 0 if j # i and yjy; = 1. Thus Ay = Qy for all y € R". This
implies A = Q) and

A= Z)\ixiyg (1.5)
i=1
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Finally, define matrices

Ri=(x1 = ... xy,), z;€R™, and (1.6)
Re=(y1 v2 - Yn), y;E€R"

for column vectors x;,y;. Then R; is an m x m orthogonal matrix and Ry
is an n x n orthogonal matrix. Set @@ = R;D(Rs)" where D is the m x n
matrix in (1.2). I claim that Qy; = Ay, for 1 < j < n. This follows from

/

Y1 yllyj
Qyj — RlD(RQ)Iy] = RID . yj = RlD — RlDej

Yn YnYj
where e; is the j*' unit vector in R™. Then De; = \je; by (1.2) and

0
Qu; = NjRiej = Nj(x1 ... zp) 1 = A\,
However \jx; = Ay; by (1.4), so that Ay; = Qy; for 1 < j <n. Thus A =Q
since {y;} is a basis and A = @) = R;D(R2)’. This completes the proof of

existence in Theorem 1.
The uniqueness of Ri, D, and Ry follows from the identities

AA' = R{(DD")R, and A’A = Ry(D'D)(Ry)

in R™ and R", respectively. Thus the uniqueness of R; and Ry follows
from the uniqueness of the orthogonal matrix in the spectral theorem for
symmetric matrices.

An equivalent form of Theorem 1 is

Corollary 1.1. Let A be an arbitrary m X n matrix. Then, there exists

an integer r, orthonormal vectors zi,...,x, in R™, orthonormal vectors
Y1,...,Y in R™, and positive constants A\; > 0 such that
T
A = Z)\z’xz’yg (1.7)
i=1

If the \; are distinct, the vectors x;,y; and constants A; > 0 in (1.7) are
unique.
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Ezxercise 1.1: Prove that Corollary 1.1 implies Theorem 1. (Note that (1.7)
is the same as equation (1.5) in the proof of the theorem, so that Theorem 1
imples Corollary 1.1.)

We can use Theorem 1 to obtain an analog of the polar decomposition

of complex numbers for matrices:

Corollary 1.2. Any n X n matrix A can be written
A=UM (1.8)

where U is an n x n orthogonal matrix and M is positive semidefinite. The
matrices U and M in (1.8) are unique except for rotations of the eigenspaces
of M.

Proof. By (11), A= RlD(Rg)/ = (R1(32)1)<R2D(R2)/) =UM for U =
Ri(R») and M = RyD(Ry)'.

2. Canonical Correlations Let Y € R™ and X € R"™ be two vector-
valued random variables. Assume for definiteness that the m x m matrix
A = Var(Y) and the n x n matrix B = Var(X) are both invertible. Let C
be the m x n matrix with entries

Cij = Cov(Y;, Xj), 1<i<m, 1<5<n

The first canonical correlation of the vectors Y and X is

C Y, ' X
A1 = maxCorr(v'Y,v'X) = m ov(uy, v'X)

ax 2.1
u,v wv /Var(w'Y) Var(v' X) 21)

Note A1 > 0 since the signs of u, v are arbitrary. Then

Theorem 2. The canonical correlation A; in (2.1) is the largest diagonal
entry \; in the matrix D in the singular value decomposition of the m x n
matrix

G =A"12CB Y2 = R D(R,) (2.2)

in Theorem 1. Equivalently, the principal eigenvalue of the m x m matrix
GG’ and the n x n matrix G'G is \3.

Remark. The matrix E = Corr(Y, X) with entries E;; = Corr(Y;, X,) can

be written E = (Diag(A)) _I/ZC(Diag(B)) ~2 Wwhich is not the same as the
matrix G in (2.2). This is not a contradiction since, among other reasons,
Corr(v'Y, v’ X) is not a linear function of v and v.
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Proof of Theorem 2. This will depend on

Lemma 2.1. If C is an arbitrary m X n matrix, then

/
maxu—cv =M\ (2.3)
RN/ e oy

where \? is the largest eigenvalue of the matrices C’C and CC’.

Proof of Theorem 2 given Lemma 2.1. If A = Var(Y), B = Var(X),
and C' = Cov(Y, X) as before, then

. Cov(u'Y,v'X) ~ max u'Cv
uv \/Var(w'Y) Var(v' X) wo o\ /(u Au)(v' B)
(Al/Qu)/(A—l/QCB—1/2)(Bl/Qv)
max
wo \/(AV24) (A1) /(B1/20) (B1/20)
u) Guy

= max = A\
vt/ (uyug ) (vivr)

for G in (2.2), where \? is the principal eigenvalue of GG’ and G'G by
Lemma 2.1.

This reduces the proof of Theorem 2 to the proof of Lemma 2.1, for
which we give two proofs:

First Proof of Lemma 2.1. It is sufficient to restrict w, v in (2.3) so that
u'u = v'v = 1. Then, by the method of Lagrange multipliers, the maximum
is attained at a stationary point of

d(u,v) = u'Cv — Au'u) — p(v'v)
for constants A and p. At such a stationary point,

99 _ o 00 o
o, (Cv); —2Xu; =0 and o (W'C); —2pv; =0

Thus Cv = 2\u and C'u = 2uw. Since u'Cv = (C'u) v,

W' Cv=u'(2Mu) = 2\ (v'u) = 2\ (2.4)
= (C'u)'v = (2uv)'v = 2u(v'v) = 2u
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Hence the maximum in (2.3) is ©/Cv = A\y = 2\ = 2p and A = p. Similarly
(C'CYyv = C'(Cv) = 2XC"u = 4 \pv = v
(CCYu = C(C'u) = 2uCv = A \pu = Nu
Thus A} is the common largest eigenvalue of C'C and CC’.
Second Proof of Lemma 2.1. By Theorem 1, we can write
C = R\DRy
where Ry and Ry are orthogonal and D is as in (1.2). Then

s u'Cv B (Riu)' D(Rov) u) Dvq

————— = max =
weoy(Wu)(ve) e (W) (ve) e y/(uhun) (Vi)

where u; = Ryu and v; = Ryv. However, it follows from (1.2) that
max { v} Dvy s vju; =vjvy =1} = N

where \; is the largest value in the matrix D. It then follows from the proof
of Theorem 1 that A\? is the largest eigenvalue of both C'C and C'C’.

Let u; € R™ and vy € R™ be vectors at which the maximum defining
the first canonical correlation in (2.1) is attained. The second canonical
correlation is

A2 = max{ Corr(v'Y,v'X) | v'uy =v'v; =0} (2.5)

FEzxercise 2.1: Show that if Ay is the second canonical correlation defined
in (2.5), then A3 is the second-largest eigenvalue of the matrices G'G and
GG’ for G in (2.2).

Exercise 2.2: Show that Theorem 2 remains valid if one or both of the ma-
trices A and B are not invertible. (Hint: Show that you can use appropriate
generalized inverses of A and B.)

3. Moore-Penrose Inverses By definition, if A is an m xn matrix, then G
is a Moore-Penrose generalized inverse of A if G is n xm and A and G satisfy
the four conditions:

) AGA=A
(i) GAG=G

(i) (AG) = AG (3-1)
(iv) (GA) = GA
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Condition (i) in (3.1) implies that AGAG = AG and GAGA = GA, so that
AG and GA are both projections (in R™ and R"™, respectively). Conditions
(iii-iv) then say that AG and G'A are both orthogonal projections.

It follows from (i) that if y is in the range of A, then x = Gy is a solution
of Ax = y. A necessary and sufficient condition for y being in the range of A
is that (AG)y = y.

Our next result states that Moore-Penrose inverses always exist:

Lemma 3.1. (Moore-Penrose Inverses) Let A = Ry D(R3)" be the m x n
matrix in (1.1) and let G be the n x m matrix

G = RyE'(Ry) (3.2)

In (3.2), E is the same as D in (1.2) except that each positive constant A; > 0
is replaced by 1/A; > 0 in E. Then G is a Moore-Penrose generalized inverse

of A.

Proof. Note AGA = RlD(Rg)/RgEI(Rl)/RlD(Rg)/ = RlDE/D(RQ)/ =
R1D(R3)" = A and similarly GAG = G. Also AG = RiD(R3)'R2E'(Ry) =
R1DE’(R;)’, which is an orthogonal projection of rank r in R™. Similarly,
GA = RyE'(R1)'R1D(R2)" = RoE'D(R2)’ is an orthogonal projection in R™.

Theorem 3. (Uniqueness of Moore-Penrose Inverses) Let A be an arbi-
trary m xn matrix. Then, the matrix G in (3.2) is the unique Moore-Penrose
inverse of A.

Proof. Assume that G satisfies the conditions (i-iv) of the definition. Let
Y1,--.,Yn and 1, ..., x,, be the orthonormal bases in the proof of Theorem 1
for the singular-value decomposition applied to A. In particular Ay; = \;z;
and A’'z; = \jy; by (1.4). Since y1,...,y, is a basis for R™, we can write

n

Gx; = Zcikyk, 1<i<m (3.3)
k=1

The proof will be to show that, in fact,

Gri = {(1/)\i)yi 1f1§z§7“
0 r+1<i:<m

This implies that G = RoE’(R;)’ exactly as in the proof of A = Ry D(Ry)’
in Theorem 1. We will use the four conditions (i-iv) in the definition of a
Moore-Penrose inverse in turn.
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From AGA = A and Ay; = \;jx;, it follows that AGAy;, = \;AGx; =
Ayi = )\Zﬂfl and
(AG)x; =x;, 1<i<r (3.4)

Thus by (3.3) @ = A(Gz;) = > p_ cikAyr = >y CikAkTr = x;. Since
{z1} is a basis, this implies ¢;; = 0 for 1 < i < r for k # i and ¢;; = 1/\;.
Thus by (3.3)

1 - ,
Gzx; = )\—zyZ + kz;rl Cik Yk 1<i<r (3.5)

From AG = (AG)’ and (3.4), it follows that AG must preserve the vector
space spanned by x,11,...,Zy. Thus by (3.3)

(AG)x; = Z digrr, r+1<i<m,
k=r+1

= A(Gx;) = A(}; Cikyk> = I;CikAyk = ; AKCik Tk

Thus (AG)z; =0forr+1<i<mandalsoc;y =0in (3.3) for 1 <k <r<
1 < m. In particular

Gx; = Z Cikyk, rT+H1<i<m (3.6)

From (AG)x; = x; (1 <i<r)and (AG)z; =0 (r <i < m) it follows that
AG = R1(DE')(R1)’, but we will not need this.
From GAG = G and (3.6), it follows that

Gz; = GAGz; = Z cirGAy, =0, r+1<i<m (3.7)
k=r+1

From GA = (GA)" and GAy; = G(Ay;) =0 for r+1 < j < n, it follows
that

ANiGrx;, = GAy; = Zdikyk, 1< <r (3.8)
k=1

Thus Gx; = (1/\;)y; for 1 <i <r by (3.5), and
o { (1/A)x; for1<i<wr, by (3.5)and (3.8),
Tr; =
0 r+1<i<mby (3.7)

This implies that G = RoE’(R1)" by arguing as in the proof of Theorem 1.



