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1.1. Introduction

One of the strongest influences on the growth and behavior of most living
creatures is the genetic material or DNA located in their chromosomes.

Bacteria tend to have a single circular chromosome. Most higher plants and
animal have a number of pairs of long linear molecules. In either case, the
chromosome or chromosomes can be thought of as a string of letters from the
alphabet T, C, A,G, where each letter corresponds to a specific nucleotide.
From this point of view, a mouse is the same as a tomato to a geneticist,
since both have about the same amount of DNA.

By definition, a gene or genetic locus is a segment of a chromosome
that is associated with a particular trait. This typically consists of one or
more coding regions for a protein or RNA enzyme along with recognition
sites for regulatory molecules. Proteins are composed of strings of amino
acids. There are around 20 different amino acids, as opposed to 4 different
nucleotides. Coding regions for genes are built up from consecutive triplets
of nucleotides that are called codons. Codons are mapping to amino acids by
RNA translation enzymes. Since the number of possible codons is 43 = 64,
there are enough codons to describe all amino acids with plenty of room to
spare. Most amino acids are described by more than one codon. Codons
that are not assigned to an amino acid tell the RNA translation enzyme to
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stop, so that the codon language has verbs as well as nouns.
Most genes are templates for enzymes or proteins that control or take

part in biochemical processes. In most plants and animals, the DNA is
arranged in a number of pairs of chromosomes. Such creatures are called
diploid . Creatures that have non-paired chromosomes (such as bacteria)
are called haploid . Some domesticated plants such as corn are tetraploid ,
which means that their chromosomes occur in groups of four. There are 23
chromosome pairs in man (and so 46 chromosomes), 4 pairs in Drosophila
(fruit flies), and other numbers in other creatures.

In humans, 22 of the 23 chromosome pairs are composed of two chro-
mosomes that are more-or-less the same size and have the same genetic loci.
These are called autosomal loci. The remaining chromosome pair has two
different types of chromosomes, one (type X) about six times the size of
the other (type Y ). The 23rd chromosome pair in humans has two X chro-
mosomes in females and one X and one Y in males. These are called sex
chromosomes (or the sex-chromosome pair).

An Example: There is some evidence that blue vs. brown eye color in
humans is governed by a single genetic locus with two possible types of genes,
which we’ll call U and W . (There is also some evidence that the genetics of
human eye color is more complicated, but let’s ignore this for the moment.)
Since this locus occurs on both chromosomes of one of the chromosome pairs
(that is, it is an autosomal locus), there are four possibilities (or genotypes)
for individuals: UU , UW , WU , and WW . In almost all cases the action
of genes is independent of the chromosome in which they occur, so that the
number of possibilities reduces to three: UU , UW , and WW . In this case,
both UW and WW carrying individuals have brown eyes. Brown eye color
might be due to a particular protein pigment, and one copy of the W gene
might produce enough pigment to cause the trait. Individuals without this
pigment might have blue eyes.

In general, if there are two types of genes (say A and B) for which AB
has the same effect as AA, then A is said to be dominant with respect to B,
and B is recessive with respect to A. Typically this is because A produces a
protein in sufficient quantities from one gene. The recessive gene is often a
damaged version of the dominant gene. It is useful to use the word allele for
a genetic type (as opposed to gene, which will refer to a piece of a particular
molecule). In many allele classifications such as U/W , each ‘allele’ will be a
collection of slightly different alleles with the same gross properties.

ABO Blood groups: As a second example, the ABO blood group in hu-
mans is governed by a single genetic locus with three alleles, which are called
A, B, and O. Since this locus also occurs on both chromosomes of one of
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the chromosome pairs, there are six genotypes: AA, AB, BB, AO, BO,
and OO. Both alleles A and B are dominant with respect to O, but neither
are dominant with respect to the other. This leads to four ‘blood types’: A
(AA or AO), B (BB or BO), O (OO) and AB (AB). The alleles A and B
produce proteins which can cause dangerous immune reactions if blood con-
taining that protein is given in a transfusion to an individual who does not
have that protein. Thus an AB could receive blood from anyone without
worrying about this immune reaction, while an AO would be endangered by
a transfusion from a BB, BO, or AB.

By definition, a genotype is a heterozygote if it has two different alleles
(such as AB, AO, or BO) and homozygote for genotypes with two copies of
the same allele (such as AA, BB, and OO). Thus the six possible genotypes
at the ABO locus are composed of three heterozygotes and three homozy-
gotes.

Sickle-cell anemia: This is a disease controlled by a genetic locus with
two alleles that are called S (for “sickling”) and N (for “normal”), respec-
tively. Since this locus occurs is also autosomal, individuals can be of three
genotypes, NN , SN , and SS. Individuals with genotype SS have sickle-cell
anemia and are usually very ill, often dying before the end of their twenties.
Individuals of genotype SN have ‘sickle-cell trait’ and appear to suffer no ill
effects, although there has been some concern about relatively anoxic envi-
ronments such as airplane cockpits. However, SN people have a markedly
higher resistance to malaria. Thus, in a malarial area, villages would have a
tendency to have a high proportion of genotype SN , since the other geno-
types would tend to die off. As we will see below, the children of two SN -
individuals will be on the average 25% NN , 25% SS, and only 50% SN .
Thus villages could not remain totally of genotype SN indefinitely. This is
an example of what is called heterozygote advantage or overdominance, in
which a variety of genotypes is kept at a particular locus due to the most
successful genotype not breeding to form.

More about sex chromosomes: As mentioned before, the human X chro-
mosome is about 6 times the length of the Y and is among the largest human
chromosomes. The Y chromosome is one of the three smallest chromosomes.
Human females have two X chromosomes (i.e., are XX) while males are XY .
(Male frogs, however, are the analog of XX while females are XY , so that
the situation is not uniform across species.) Human males (and presum-
ably also female frogs) are then especially vulnerable to defective copies
of X-chromosome genes for which there is no ‘backup copy’ on the other
chromosome. The genes associated with some of the most common types of
hemophilia and for the pigments necessary for perceiving red and green colors
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are located on the X-chromosome in humans. (The gene for the blue pig-
ment is autosomal.) As expected, hemophilia and red/green color blindness
are much more common in males than in females.

One sex or two? In most higher animals and some plants, the popula-
tion is split into two sexes and mating occurs between members of opposite
sexes. Such creatures are called dioecious. Most higher plants are diploid
(that is, have chromosome pairs as opposed to a single chromosome) but are
monoecious, which means that any individual can act as either sex and can
even fertilize itself.

For all diploids, barring genetic accidents, the offspring have the same
number of chromosome pairs as their parents. In an offspring, each chromo-
some pair is composed of one copy of one of the two maternal chromosomes
and one copy of one of the two paternal chromosomes. (In monoecious plants,
the “mother” and “father” might be the same individual, but “maternal” and
“paternal” chromosomes come from different sources in the plant: Maternal
chromsomes come from seeds and paternal chromosomes from pollen.)

Statistically, the two choices of which chromosome are usually indepen-
dent with equal probability for the two parents and for different chromosome
pairs. (This is the basic principle of “Mendelism”.) At an autosomal locus,
this means that the offspring inherits one maternally-derived gene and one
paternally-derived gene, with each chosen independently and at random as
a copy of one gene in each parental genotype. Thus, for example, if both
parents are of allelic type AB, an offspring will be AA, AB, or BB with
probabilities respectively 1/4, 1/2, and 1/4.

As mentioned before, sex chromosomes (in humans) are of types either
XX or XY . Since all mating is between a male and a female, with both
distributing one chromosome from each pair to each offspring, XX and XY
are the only possibilities for offspring (barring genetic accidents).

Note that genes on the Y -chromosome pass directly from fathers to sons,
avoiding all female intermediaries. In particular the Y -chromosome repro-
duces itself in a haploid rather than diploid manner, by cloning itself from
generation to generation. There is also important genetic material in mito-
chondria, which are organelles that are carried inside cells but outside the
cell nucleus. In humans and most animals, these are cloned from the mother.
Such extranuclear loci would then be carried from mothers to daughters (and
also sons) in a haploid manner. Higher plants also have chloroplasts, which
are another type of extranuclear organelle that are passed maternally.

More genetic scrambling: For most chromosome pairs, the actual situa-
tion is slightly more complicated. The chromosome donated from the mother
(for example) can be a composite copy of the two maternal chromosomes,
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Figure 1.1. Illustration of linkage.

Two chromosomes in the mother:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx first maternal
chromosome

ccccccccccccccccccccccccccccccccccccc second maternal
chromosome

Maternal chromosome in the offspring:

xxxxxxx cccccccccccccccccc xxx cccccc donated chromosome

with the donated chromosome changing from one maternal chromosome to
the other at one or more crossover points. This is illustrated by Figure 1.1,
in which the parts of the donated chromosome that come from the first ma-
ternal chromosome are marked ‘xx’ . Figure 1.1 illustrates three crossover
breaks and reattachments (or crossover events) between the two maternal
chromosomes in one chromosome pair as the donated chromosome was being
formed. This process is called recombination. In humans, there is typically
an average of about one crossover event per donated chromosome.

If we are following a single genetic locus, recombination doesn’t matter
unless there is a crossover point within the genetic locus. This is a rare
event, since genes are generally much shorter than chromosomes, but it does
happen. Crossover between X and Y chromosomes in humans can occur is
rare in regions containing genetic loci. Otherwise, there would be genes that
would occur on both X and Y chromosomes, which is rare except for genetic
accidents.

1.2. Population Genetics

Population genetics is the study of the frequencies of alleles in populations
and how they change over time or space. Three important effects that

exert an influence on allele frequencies at a genetic locus are

(i) Selection (2.1)
(ii) Mutation
(iii) Genetic drift

Selection (sometimes called Darwinian selection) refers to changes in
allele frequencies due to the effects of the gene on its host. Examples would
be effects lowering or increasing the death rate of individuals carrying the
gene, or lowering or increasing the number of its surviving offspring.
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A gene undergoes mutation if it physically changes to another allele, as
a result of an accident in replication during conception or some other cause.

Genetic drift is the result of probabilistic effects due to Mendelism or
to the chance effects of mating and survival in a small population. A carrier
of a particular allele may leave no surviving offspring for reasons which have
nothing to do with that allele, for example accidental death. In general,
the number of the surviving offspring of an individual can be thought of as
a random variable, with a mean given by selection, but with still a positive
probability of being zero. An allele that has a selective advantage over others
may still be lost from the population due to random effects.

The Wright-Fisher model is an attempt to model these and similar ef-
fects. The Wright-Fisher model for dioecious populations assumes that the
population is rigidly held at N1 males land N2 females over many genera-
tions. At the beginning of each generation, the population undergoes random
mating (as defined below) to produce a large number offspring. Of these, N1

males and N2 females are chosen at random to to adulthood and replace the
parents.

By “random mating” we mean the following. For each offspring, all
possible male-female pairs are equally likely to be the parents, with the
choices being independent for different offspring. This can be described by
saying that the children choose their parents independently and at random.

The standard Wright-Fisher model assumes that the population is mo-
noecious and that any parent can act as either mother or father (or both).
The population is held at N individuals and, for each offspring, the parents
are chosen independently and at random from the N individuals in the pre-
vious generation. In particular the probability that an offspring is the result
of a self-fertilization is 1/N .

At an autosomal locus, there is one maternally-derived gene and one
paternally-derived gene in any offspring. Random mating and Mendelism
together in a dioecious population imply that the maternally-derived gene in
an offspring is a copy of a randomly chosen gene from among the 2N2 genes in
the female adults in the preceding generation, and similarly the paternally-
derived gene is a copy of a randomly chosen gene from the 2N1 genes of the
male adults. In the monoecious or standard version of the Wright-Fisher
model, each gene in an offspring is a copy of a randomly chosen gene from
among the 2N genes of the preceding generation. In particular the two genes
in an offspring (or any other two genes in the new generation) come from
the same parent with probability 1/N , and are copies of the same parental
gene with probability 1/2N .

Selection can act either through genotype-dependent variation in the
survival rate of juveniles until sexual maturity (this is called viability se-
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lection), or else through differences in the number of offspring produced as
an adult, or both. The second type of selection is called fertility selection,
and would depend on potential mating pairs rather than individuals. We
will restrict ourselves to viability selection for simplicity, and assume that all
surviving juveniles are equally fertile.

1.3. Random mating and the Wright-Fisher model

The ideas in the previous section can be summarized as follows: At birth,
genes in individuals in the new generation can be found by independent

sampling from the genes in the adults in the preceding generation. If the
population is dioecious, the genes in each juvenile are found by independently
sampling one gene from the female adults and one gene from the male adults.
All sampling is with replacement.

The allelic types of genes may change (or mutate) during the process
of sampling. There may also be selection, which is implemented by biased
independent sampling based on the genotypes of the parents.

The Wright-Fisher model is usually assumed to be monoecious, with
one set of N adults that can play the role of either sex. Sampling is still
independent, so that (without selection) the probability that the two parents
are the same individual is 1/N .

Random mating is repeated binomial sampling: Note that this model
is mathematically equivalent to the following: Consider the 2N genes in
the N adults in the parental generation. Then the 2N genes in the N
adults in the next generation are found by repeated binomial sampling (with
replacement) from the 2N genes in the parental generation.

Suppose that we are following a single autosomal genetic locus in a
monoecious population of size N with two types of genes, which we will call
allele A and allele a.

Let Q(n) be the number of genes of type A at the beginning of the nth

generation. If there is no mutation or selection, the, given Q(n), the number
of A-genes at birth in the next generation is probabilistically equivalent to
the number of successes in 2N trials (corresponding to N juveniles each
choosing their parents) with probability of success p = Q(n)/2N at each
trial. Mutation is modeled by assuming that each gene, as it is sampled from
the preceding generation, changes to a different type with some probability
between zero and one. For example, if there is a mutation rate of u from a
to A and of v from A to a, then each sampled gene is A with probability
f(p) = (1 − v)p + u(1 − p). Selection can be modeled in a similar way (see
below).

In general, we assume that the probability that an A gene is sampled
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for the next generation, assuming that the current proportion of A genes is
p, is given by f(p). If there is no selection or mutation (that is, pure random
mating), then f(p) = p.

Symbolically, we can write the distribution of Q(n + 1) in the next
generation as

{Q(n + 1) | Q(n) = k } ≈ B
(
2N, f(k/2N)

)
(3.1)

where “|” means “given”, B(2N, p) denotes a binomial distribution based on
2N trials and probability of success p for reach trial, and ‘≈’ means “has the
same distribution as”. This is equivalent to saying

Pr
(
Q(n + 1) = j | Q(n) = k

)
=

(
2N

j

)
f(k/2N)j

(
1− f(k/2N)

)2N−j

for j = 0, 1, 2, . . . , 2N . In particular

E
(
Q(n + 1) | Q(n) = k

)
= 2Nf(k/2N) (3.2)

The Wright-Fisher model can be refined in many different ways. If more
than one genetic locus is being followed, the chromosomes of the juveniles
are determined by random sampling of recombined chromosomes from the
preceding generation. If the adults in the preceding generation are more
likely to mate with individuals of the same genotype as themselves (this is
called assortative mating), this can be modeled as a correlated choice for the
two genes within each new offspring.

The Probability of Fixation: In the simplest case, the model has genetic
drift only; i.e.

{Q(n + 1) | Q(n) } ≈ B

(
2N,

Q(n)
2N

)
(3.3)

The process {Q(n)} is a Markov chain with finite state space 0, 1, . . . , 2N .
The states 0 and 2N are traps, since, without mutation, if either allele is lost
from the population then it is lost forever. The Markov chain is irreducible
except for these two traps. By basic results from Markov chain theory, this
means that eventually {Q(n)} ends up at either 0 or 2N , which means that
eventually either the allele A or the allele a is lost. It is traditional to say
that the population is then fixed at the allele which is now uniform at that
locus.

Let’s see if we can calculate the probability that the Wright-Fisher model
is eventually trapped (fixed) at A. By (3.2), given Q(n) = k, the mean of the
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binomial variable Q(n + 1) is 2Np = 2N(k/2N) = k, as should be expected
from the absence of selection and mutation. Then E

(
Q(n)

)
= E

(
Q(n−1)

)
=

. . . = Q(0) by induction for all n. Note that

lim
n→∞

Q(n)/2N = 1

if the population eventually fixes at A, and limn→∞ Q(n)/2N = 0 if the
population fixes at a. Thus

Prob(Population is eventually all A′s) (3.4)

= E( lim
n→∞

Q(n)/2N) = lim
n→∞

E(Q(n)/2N) = Q(0)/2N

In other words, if Q(0) = k, the probability that the population fixes at A is
equal to k/2N , which is the same as the initial frequency ratio of A in the
population. It can also be shown that, as n → ∞, the population fixes at
the descendents of exactly one of the genes in the population at time n = 0,
with each of the initial genes being equally likely to be chosen. This also
implies that the probability of fixation at A is equal to k/2N .

The Time to Fixation: Now let’s see if we can estimate approximately
how long the population takes to fix at one of the two alleles. Let

I(n) = Pr(Two randomly chosen genes in generation n are identical)

The expression I(n) is also called the inbreeding coefficient at time n. Let
pn = Q(n)/2N be the proportion of the allele A in the nth generation. Then
H(n) = 1− I(n) is the probability that two randomly chosen genes will be
of different types. Note that we can write

H(n) = E
(
2pn(1− pn)

)
(3.5)

since, if D is the event that the two genes chosen are of different types,

H(n) = P (D) =
2N∑

k=0

P (D and pn = k/2N)

=
2N∑

k=0

P (D | pn = k/2N)P (pn = k/2N)

=
2N∑

k=0

2(k/2N)(1− (k/2N))P (pn = k/2N)

= E
(
2pn(1− pn)

)
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The function H(n) in (3.5) is called the probability of heterozygosity . This
term comes from the fact that, by the properties of random mating, it is also
the probability that a randomly chosen individual is heterozygous (that is,
Aa, as opposed to AA or aa).

The two randomly chosen genes in generation n + 1 came from the
same parental gene in generation n with probability 1/2N , and sampled two
different randomly chosen genes in generation n with probability 1− 1/2N .
This implies the equation

I(n + 1) = 1/2N + (1− 1/2N)I(n) (3.6)

Since H(n) = 1− I(n)

H(n + 1) = (1− 1/2N)H(n)

and

H(n) = (1− 1/2N)H(n− 1) = . . .

= (1− 1/2N)nH(0) ≈ exp(−n/2N)H(0) (3.7)

if N is large. This suggests that the population begins to fix at around
n ≈ 2N generations, in the sense that H(n) is close to H(0) if n/2N is small
and close to zero if n/2N is large. More precisely, we can say that n = 2N
is the relaxation time of H(n) for large N . This means that n = 2N is the
additional time required for H(n) to decrease by a factor of e.

Equation (3.7) does not address the question of whether the population
fixes at either all As or all as. Let T2N be the number of generations until the
population is fixed at either A or a. Then T2N > n if and only if 0 < pn < 1,
so that P (T2N > n) = P (0 < pn < 1). Since pn = k/2N where k is
an integer, we have that pn(1 − pn) ≥ (1/2N)(1 − (1/2N)) if 0 < pn < 1.
(Exercise: Prove this.) This implies

(2N + 2)pn(1− pn) ≥
(

1 +
2

2N

)(
1− 1

2N

)
= 1 +

(
1

2N

(
1− 1

N

))
≥ 1

if N ≥ 1 and 0 < pn < 1. Similarly pn(1 − pn) < 1 if 0 < pn < 1. Thus
by (3.5)

H(n) ≤ 2P (0 < pn < 1) ≤ (2N + 2)H(n) ≤ (2N + 2)(1− 1/2N)n (3.8)

since H(0) ≤ 1. This implies the approximate inequality

P (T2N > n) = P (0 < pn < 1) ≤ (N + 1) exp(−n/2N)
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This implies P (T2N > n) < 1/2N for n ≥ 4N log(2N), which is only a
slightly slower rate of fixation than 2N . However, a stronger result can be
proven. Let W2N be the number of generations until a population that begins
with every gene a different type fixes at one of the 2N types. Then it can be
shown that

P (W2N > n) ≤ 3
(
1− 1

2N

)n

(3.9)

for all n and N (Kingman 1980, Appendix II, pp63–66). Thus the time to
fixation is of the order of 2N generations.

Comments about real populations: Fixation by random genetic drift
can take a very long time for a population of reasonable size with a long
generation time. For example, a random mating population of 100 individ-
uals with a generation time of 17 years would take ≈ 3500 years to fix at
any given locus. However, most biological populations have a large number
of loci with deleterious recessive alleles, so that deleterious effects may show
up considerable sooner, and, if population sizes and generation times are
smaller, fixation may happen much faster.

If the population had two sexes—that is, was dioecious rather than
monoecious—one has to distinguish between genes within the same individ-
ual and genes in separate individuals in defining the analog of the recur-
sion (3.6). For example, genes in the same individual have probability zero
of having a common parental gene in the previous generation. (See the next
section.)

Offspring distributions in real populations: An unrealistic aspect of
random mating (that is, of the Wright-Fisher model) is that individuals in
real populations may have an unusually large number of offspring for reasons
independent of genotype, for example as result of being the first-born in a
litter. In this case, the choices of parents by various offspring would not be
independent, since a parent that fathered (or mothered) one offspring would
be more likely to parent others.

Statistically, this would show up as a larger variance in the offspring
distribution. If choices of parents are independent, the number of surviving
offspring of an individual is a binomial random variable, for which the ratio
of variance to mean is always less than one. There is evidence that this ratio
in real populations is usually greater than one, with ratios of three or more
for fruit flies in one study (Crow and Morton 1955). Conjecture among some
biologists is that, in fact, the female fruit fly that lays her eggs closest to
the light bulb in the experimental cage has a disproportionate number of
surviving offspring.



Population Genetics — Chapter 1 — S. Sawyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

1.4. Random Mating with Two Sexes

The standard Wright-Fisher model assumes a population with only one
sex (that is, monoecious) such that, in each generation, the probability

of selfing (that is, that the same individual is both mother and father) is
exactly 1/N . How reasonable are the conclusions for a more realistic model
of mating, for example a dioecious population?

One immediate difference is that, in any population in which selfing is
excluded, the two genes in one individual have probability zero of coming
from the same gene or individual in the previous generation. Thus we must
consider two different inbreeding coefficients, one (call it I1(n)) for a ran-
domly chosen pair of genes from different individuals in the nth generation
and the second (call it I2(n)) for the two genes in one randomly chosen
individual.

Since individuals of different sexes choose their parents in the same way
under random mating, I1(n) (for two individuals) will be the same whether
the two individuals are both male, are both female, or are from different
sexes, at least for generations n ≥ 1. Similarly, I2(n) (for one individual)
will be the same for individuals from either sex (also for n ≥ 1).

Now assume that the population is held at exactly N1 males and N2

females in each generation. Let’s derive equations for how the probabilities(
I1(n + 1), I2(n + 2)

)
depends on

(
I1(n), I2(n)

)
from the previous genera-

tion. First, consider two randomly chosen genes from different individuals in
generation n+1. It doesn’t matter whether these are randomly chosen from
males only, from females only, or from the entire population; the recurrence
for I1(n + 1) will be the same. With probability 1/4, the two genes came
from two male parents, with probability 1/4 from two female parents, and
with probability 1/2 from parents of different sexes. If they came from the
same sex (for example, males), then the (conditional) probability that they
came from the same individual is 1/N1 and are the same gene is 1/2N1. If
they came from different sexes, then they must have come from different
individuals. Similarly, I2(n + 1) is the same as the probability that two
genes from different sexes in the previous generation are the same, so that
I2(n + 1) = I1(n) (if n ≥ 1). This leads to the recurrence

I1(n + 1) = A + BI1(n) + CI2(n) (4.1)
I2(n + 1) = I1(n)

where

A = (1/4)(1/2N1) + (1/4)(1/2N2) (4.2)

B = (1/4)(1− 1/N1) + (1/4)(1− 1/N2) + (1/2)
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= 1− (1/4)(1/N1)− (1/4)(1/N2)

C = A = (1/4)(1/2N1) + (1/4)(1/2N2)

In (4.1), I1(n) on the right-hand side of the equation is for a randomly chosen
pair of gene from different sexes from the parents, since each individual in a
doecious population has two parents, one of each sex. In contrast, I1(n + 1)
on the left-hand side is for any two individual offspring, whether two males,
two females, one of each sex, or a random pair from the entire population.
This means that I1(n) is the same for two male offspring, for two females,
or for one of each sex for n ≥ 1, assuming that the initial state is n = 0.
Similarly, I2(n) for generations n ≥ 1 is the same for the two genes in one
male, in one female, or from a randomized choice from all offspring.

Continuing, we can write (4.1) in matrix notation as
(

I1(n + 1)
I2(n + 1)

)
=

(
A
0

)
+

(
B C
1 0

)(
I1(n)
I2(n)

)
(4.3)

Since A + B + C = 1 in (4.2) and(4.3), we can also write
(

1
1

)
=

(
A
0

)
+

(
B C
1 0

)(
1
1

)

Let H1(n) = 1− I1(n) and H2(n) = 1− I2(n). Then by subtraction
(

H1(n + 1)
H2(n + 1)

)
=

(
B C
1 0

)(
H1(n)
H2(n)

)
= M

(
H1(n)
H2(n)

)

where M =
(

B C
1 0

)
. Thus by induction

(
H1(n + 1)
H2(n + 1)

)
= Mn

(
H1(1)
H2(1)

)
(4.4)

This implies that (H1(n),H2(n)) → 0 at a rate that is determined by the
largest eigenvalue of M .

The characteristic polynomial of M is

φ(λ) = det(M − λI) = (B − λ)(−λ)− C = λ2 −Bλ− C

for B, C in (4.2). The eigenvalues of M are

λ1 =
B +

√
B2 + 4C

2
and λ2 =

B −√B2 + 4C

2
(4.5)
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where B > 0 and C > 0. In particular, λ2 < 0 and |λ2| < λ1. If N1 and N2

are large, then λ1 is close to one and λ2 is close to zero.
It follows from (4.4) that

(
H1(n)
H2(n)

)
∼ C1λ1

(
u1

u2

)
where M

(
u1

u2

)
= λ1

(
u1

u2

)
(4.6)

for some C1 > 0. It is customary to say that a population genetics model
with a property like (4.6) is like the standard Wright-Fisher model, but, in
analogy with equation (3.7)

(
H(n + 1) = (1− 1/2N)H(n)

)
, has an effective

(Wright-Fisher) population size of Ne instead of N , where Ne is defined by

λ1 = 1− 1/2Ne (4.7)

(More precisely, Ne is the inbreeding effective population size.)
If N1 and N2 are large, then B in (4.2) and (4.5) is close to one and A

and C are small. One can show that
√

1 + x = 1 + x/2 + O(x2) for small x,
where O(x) denotes an arbitrary expression that is bounded by a constant
times x. (This is called Landau’s big-O notation.) By (4.2),

B = 1 + O(kN ), A = O(kN ), C = O(kN )

for kN = (1/N1) + (1/N2). In particular, within terms that are O(k2
N ),

√
B2 + 4C = B

√
1 + 4C/B2 = B(1 + 2C/B2)

= B + 2C/B = B + 2C

Thus

λ1 =
B +

√
B2 + 4C

2
=

B + B + 2C

2
= B + C = 1−A + O(k2

N )

in the same sense. By the same reasoning,

λ2 =
B −√B2 + 4C

2
=

B − (B + 2C)
2

= −C + O(k2
N )

It follows that the effective population size for a dioecious population is
approximately

Ne ≈ 1
2(1− λ1)

≈ 1
2A

=
4

1/N1 + 1/N2
=

4N1N2

N1 + N2
(4.8)
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In particular, if the subpopulations of the two sexes are the same size with
N1 = N2 = m, then Ne = 4m2/(2m) = 2m = N1 +N2 and Ne is the same as
the total population size. However, I claim that (4.8) is a more reasonable
definition of the population size in general than N = N1 +N2 from the point
of view of the random fixation of genes.

For example, assume that N1 ¿ N2 (that is, N1 is much smaller than
N2), as would be the case for animals in which only a few dominant males
have most of the offspring and most males do not contribute to the next
generation. Then

Ne ≈ 4N1N2

N1 + N2
= 4N1

(
1 + O

(
(N1/N2)

)) ≈ 4N1

and Ne is essentially determined by the male population size. This is because,
due to the smaller male population, most random fixation of genes occur in
the male population, and fixations in the much larger female population can
essentially be ignored. The factor of 4 in (4.8) corresponds to the fact that,
in the ancestry of a pair of genes, the two ancestral genes will both be in the
male population about 1/4 of the time. Of course, random fixations can still
occur in the female population as long as N2 < ∞. This shows up in (4.8)
as the fact that Ne is slightly smaller than 4N1 if N1 ¿ N2.

Exercise 4.1. Prove (4.6).

1.5. Mutation

Mutation is an error of replication between a gene in an offspring and the
corresponding parental gene, which could be due to either a change

occurring at conception or else a change in a germ cell while being carried
by the parent.

Assume we are following an autosomal locus with two selectively equiv-
alent alleles, A and a, in a diploid monoecious population held at N indi-
viduals. For each juvenile gene in each generation, assume that there is a
probability u of a mutation from an a to an A (i.e., of a juvenile receiving
an A in place of an original parental a), and a probability v of a mutation
from an A to an a. Let Q(n) be the number of genes of type A at the
beginning of the nth generation. As in Section 3, the distribution of the fre-
quency ratio pn+1 = Q(n + 1)/2N given pn = Q(n)/2N can be represented
symbolically as

{ pn+1 | pn = p } ≈ B
(
2N, f(p)

)

2N
(5.1)
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where B(2N, p) denotes a binomial distribution and

f(p) = (1− v)p + u(1− p) (5.2)

= (1− u− v)p + u

By (5.1), {pn} is a Markov chain with state space S(2N) = {0, 1/2N, . . . , 1}.
If u, v > 0, the Markov chain has no traps. Then {pn} is an irreducible
Markov chain on S(2N) and thus has a stationary distribution µ(2N, dp)
on S(2N). Stationarity means that if ZN is a random variable with dis-
tribution µ(2N, dp) on SN that is independent of pn, then the conditional
distribution of pn+1

{ pn+1 | pn = ZN } ≈ ZN ≈ pn (5.3)

is the same as pn. Since S(2N) is a subset of the unit interval [0,1], the
stationary distribution µ(2N, dp) can be viewed as a probability measure
on [0,1].

Let p∞ be the fixed point of f(p) in (5.2); i.e. the solution of

p∞ = f(p∞) = (1− u− v)p∞ + u (5.4)

which is p∞ = u/(u + v). For an infinitely large population, that is in the
limit as 2N → ∞, the frequency ratios pn in (5.1) become a deterministic
sequence with pn+1 = f(pn). Then by subtracting (5.4) from (5.2)

pn+1 − p∞ = (1− u− v)(pn − p∞)

= (1− u− v)n+1(p0 − p∞)

In particular, pn → p∞ for p∞ = u/(u + v) in (5.4). The time scale of this
convergence is of order n ≈ 1/(u + v) with relaxation time n = 1/(u + v) for
small u, v, exactly as in (3.7).

There are ≈ 2N(u + v) mutations on the average in each generation.
The mutation rates u, v for a genetic locus may be in the range 10−4−10−6,
depending on the organism. Mutation rates per site can be much smaller, for
example u, v ≈ 10−10 for fruit flies. The population size 2N can be of order
103 − 106 for endangered or semi-endangered species or ≈ 109 for a local
population of a bacterium like Escherichia coli . In most cases, 2N is large,
u, v are small, but 2N(u + v) (the number of mutations per generations)
is of order one. Thus it is natural to scale the mutations rates u, v by the
population size, as in

u ∼ α

2N
and v ∼ β

2N
as 2N →∞ where α, β > 0 (5.5)

Mutation and genetic drift then act on the same time scale, and so should
have about the same strength. Thus, for large 2N , the stationary distribution
µ(2N, dp) for (5.1) should show the effects of both mutation and genetic drift.
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1.6. Approximating µ(2N, dp) for large N

The stationary distribution µ(2N, dp) of (5.1) can be found explicitly only
for small values of 2N . However, it turns out that, if the mutation rates

are scaled by (5.5), the probability measures µ(2N, dp) converge as 2N →∞
to a limiting continuous probability measure µ(dp) on [0, 1] that one can
calculate.

Consider stationary probability measures µ(2N, dp) for a sequence of
values

(
N(k), u(k), v(k)

)
that satisfy (5.5) for N(k) →∞ as k →∞. By the

Helly-Bray theorem, some subsequence of these measures will have a limiting
probability measure µ(dp) on [0,1]. If the limiting probability measure µ(dp)
is the same for all sequences

(
N(k), u(k), v(k)

)
(that is, if µ(dp) is unique),

then the sequence µ(2N, dp) will itself converges to µ(dp).
The limiting probability measure µ(dp) will turn out to be a continous

measure in this case; specifically, µ(dp) = f(p)dp for some function f(p).
This means that the probability distribution of the proportion p of genes of
type A for large N will be approximately µ(dp) = f(p)dp. The next step
will be to derive an equation for f(p).

Let ZN be a random variable with distribution µ(2N, dp). Then,
by (5.3), if g(p) is an arbitrary three-times continuously differentiable func-
tion on [0,1],

E
(
E(g(pn+1) | pn ≈ ZN )

)− E
(
g(ZN )

)
= 0 (6.1)

=
∫ 1

0

E
(
g(pn+1)− g(pn) | pn = p

)
µ(2N, dp)

It follows from (5.1), (5.2), (5.5), and the identity E(X2) = Var(X)+E(X)2

that as N →∞ (or k →∞)

2N E( pn+1 − p | pn = p) = 2N
(
f(p)− p

)

→ m(p) = α− (α + β)p

2N E
(
(pn+1 − p)2 | pn = p

)
= f(p)

(
1− f(p)

)
+ 2N

(
f(p)− p)

)2

→ a(p) = p(1− p), and

2N E
( |pn+1 − p|3 | pn = p

) → 0 (6.2)

uniformly in p as 2N → ∞. If we expand g(p) in the identity (6.1) in a
four-term Taylor expansion about p and apply (6.2), we conclude

2N

∫ 1

0

E
(
g(pn+1)− g(pn) | pn = p

)
µ(2N, dp)

→
∫ 1

0

(
1/2a(p)g′′(p) + m(p)g′(p)

)
µ(dp) = 0 (6.3)
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Equation (6.3) holds for all functions g(p) on [0,1] that are three times con-
tinuously differentiable. The integration by parts formula∫ 1

0

g′(p)m(p)µ(dp) = g′(1)
∫ 1

0

m(x)µ(dx)−
∫ 1

0

g′′(p)
∫ p

0

m(x)µ(dx) dp

(6.4)
holds for arbitrary measures µ(dp) on [0,1], providing that the integrals
in (6.4) are over closed intervals to allow for possible atoms of µ(dp) at
the endpoints. Substituting (6.4) in (6.3),
∫ 1

0

g′′(p)
(

1/2a(p)µ(dp)−
∫ p

0

m(x)µ(dx) dp

)
+ g′(1)

∫ 1

0

m(x)µ(dx) = 0

(6.5)
The substitution g(p) =

∫ 1

p
(y − p)f(y)dy yields
∫ 1

0

f(p)κ(dp) = 0

for arbitrary smooth functions f(p) on [0,1] where

κ(dp) = 1/2a(p)µ(dp)−
∫ p

0

m(x)µ(dx) dp

is the measure in the first integral in (6.5). Since this holds for all smooth
functions on [0,1], the measure κ(dp) = 0. After dividing by 1/2a(p), the
measure

µ(dp) = f(p) dp for f(p) =
2

a(p)

∫ p

0

m(x)µ(dx)

for a(p) and m(p) in (6.2) (0 < x < 1). Similarly

f(p) =
2

a(p)

∫ p

0

m(x)f(x) dx

and hence f(x) is a solution of the differential equation
1/2

(
a(p)f(p)

)′ −m(p)f(p) = 0
again for a(p) and m(p) in (6.2). If we solve this equation for f(p) with
the constant of integration determined by

∫ 1

0
µ(dp) =

∫ 1

0
f(p)dp = 1, we

conclude

f(p) =
Γ(2α+2β)

Γ(2α)Γ(2β)
p2α−1(1− p)2β−1 (6.6)

where Γ(α) =
∫∞
0

xα−1e−x dx is the gamma function.
The density in (6.6) is called the beta distribution with parameters 2α

and 2β. We have now shown that any limiting distribution of µ(2N(k), dp)
as 2N(k) → ∞ with u(k), v(k) subject to (5.5) must be the beta distri-
bution (6.6). Hence, by uniqueness, the full sequence µ(2N, dp) converges
weakly to the beta distribution (6.6).
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Examples: (i) If α, β = 2Nu, 2Nv ¿ 1 and 2N is large, the beta den-
sity (6.6) (and a posteriori the stationary distribution µ(2N, dp) for large
N) is concentrated near the endpoints. In that case the frequency pn of the
allele A is most likely to be close to either zero or one—i.e., the population
spends most of its time essentially fixed at either one allele or the other (but
not always the same allele). In general

lim E(pn) =
∫ 1

0

ph(p)dp =
α

α + β
(6.7)

by (6.6), where the limit is taken as n → ∞ and then N → ∞. This
suggests that, for large n and N , the population will be nearly fixed for A
with probability α/(α+β) and nearly fixed for a with probability β/(α+β).

(ii) If 2Nu, 2Nv À 1 and 2N is large, most of the time is spent near
p∞ = u/(u + v). Note that this is also consistent with (6.7).

Migration and Mutation: The results in this section can be viewed in
another way. Suppose we have an island which is situated between two
mainlands. One mainland is fixed at the allele A; the other is fixed at a.
Juveniles from both mainlands migrate to the island in sufficient number
so that fractions u, v of the total number of juveniles on the island are
migrants from the two mainlands respectively. In each generation, a total of
2N haploid juveniles survive to become adults.

These represent a random choice from the juveniles which are present at
the beginning of the generation. Assume for definiteness that the frequency
of genes of type A at the beginning of the nth generation is p. Then the
total number of A-genes at the beginning of the next generation is a binomial
variable based on 2N trials with probability of success (1−u−v)p+u, which
is exactly the same as (5.2). Thus this kind of migration is mathematically
equivalent to mutation.

Thus, if u, v satisfy (5.5) and 2N is large, the frequency of the subpop-
ulation of the island which originally came from the first mainland randomly
varies and has the beta distribution (6.6). Note that (5.5) implies that, on
the average, α ≈ 2Nu juvenile immigrants from the first mainland survive
to adulthood, and β ≈ 2Nv from the second. Thus, no matter how large
2N is, a few surviving immigrants per generation keep the island population
from fixing at one allele or the other. If we had two islands rather than one
island and two mainlands, this would suggest

General Principle. The exchange of one or two migrants per generation
is enough to keep the genetic structure of two random-mating populations
from becoming quite different by genetic drift.
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Exercise 6.1. Prove the relations (6.2). (The third relation is the hardest.)

Exercise 6.2. Verify the integration by parts formula (6.4).

1.7. The Method of Diffusion Approximation

Another way of viewing the Kolmogorov relations (6.2) is that they relate
the Markov chain pn with a diffusion process Xt for t ≈ n/2N whose

infinitesimal generator is

LX g(p) = 1/2 a(p) g′′(p) + m(p) g′(p) (7.1)

There is a general theory about diffusion processes of this type. In this
case, the diffusion process Xt with generator LX can be shown to have the
beta distribution (6.6) as its stationary distribution. Quantities such as the
expected time to fixation of one allele in the absence of mutation, or the
relative probabilities of fixation as a function of the initial frequency, can
also be approximated by the limiting diffusion process. This is called the
method of diffusion approximation (of Markov chains), and is widely used in
population genetics and in applied mathematics generally.

The argument from (6.3)–(6.6) is a special case of a more general pro-
cedure. If the relation (6.3)

∫ 1

0

(
1/2a(p)g′′(p) + m(p)g′(p)

)
µ(dp) = 0 (7.2)

holds for all smooth functions g(p) that vanish near the endpoints, then the
measure µ(dp) is said to be a weak solution of the equation

L∗Xµ(dp) = 0 where (7.3)

L∗Xh(p) = 1/2
(
a(p)h(p)

)′′ − (
m(p)h(p)

)′

Note that if we did have µ(dp) = h(p) dp where h(p) was smooth, then (7.2)
and integration by parts would imply

∫ 1

0

g(p)L∗Xh(p) dp = 0

for all smooth g(p), which would imply L∗Xh(x) = 0.
If a(p) and m(p) are smooth, then Weyl’s Lemma states that all weak

solutions of (7.3) are in fact of the form µ(dp) = h(p)dp where h(p) is a
smooth solution of L∗Xh(p) = 0 (see e.g. McKean 1969, p85). (In fact,
Weyl’s Lemma holds in an arbitrary number of dimensions.) In our case,
(7.2) holds for all smooth functions on [0,1], which allowed us to eliminate
one of the constants of integration in (7.3).
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1.8. Selection and the Hardy-Weinberg Law

Consider an autosomal genetic locus with two alleles A, a in a population
which is held at N1 males and N2 females. Darwinian selection means

that the population proportion of an allele in the adults of the next generation
can depend on the effects of that allele on the individuals which carry it.

This can be modeled in the Wright-Fisher model by assuming that genes
in offspring are found by biased independent random sampling from genes in
the parental generation, where the bias depends on the genotypes at birth
in the parental generation. Let p(z,AA), p(z, Aa), and p(z, aa) be the pop-
ulation proportions of the genotypes AA, Aa, and aa at birth in the two
sexes, where z = ‘m’ or ‘f ’ for ‘mother’ or ‘father’. In general, the fitness of
a gene or genotype is the relative number of surviving offspring in the next
generation that are descendents of that gene or genotype. In this context, we
implement selection by defining fitness constants w(AA), w(Aa), and w(aa)
for the three genotypes and assume that a particular juvenile has a mother
of type AA with probability w(AA)p(m, AA)/C(m), where

C(m) = w(AA)p(m,AA) + w(Aa)p(m,Aa) + w(aa)p(m, aa)

is a normalizing constant. (For simplicity, we assume that the fitness con-
stants w(AA), w(Aa), w(aa) do not depend on sex.)

If the mother is Aa, the probability that the maternally-derived gene
for that juvenile is A is 1/2 by Mendelism. In general, let pn(z,G) be the
probability that the z-derived gene in a newborn is G, where G = A or a.
Then

pn(m,A) =
(
w(AA)p(m,AA) + 1/2w(Aa)p(m, Aa)

)
/C(m) (8.1)

We assume that the choices of the two parents are independent. This
amounts to assuming that selection acts on potential parents individually
rather than as mating pairs, as well as a lack of mating preferences that
depend on genotype. In particular, this model would apply to both via-
bility and fertility selection, as long as either type of selection depends on
individual parents and not on mating pairs.

Since a juvenile genotype has a maternally-derived gene and a paternally-
derived gene, the probability distribution of the genotypes of newborns of
either sex is then

pn(AA) = pn(m,A)pn(f, A) (8.2)
pn(Aa) = pn(m,A)pn(f, a) + pn(m, a)pn(f, A)
pn(aa) = pn(m, a) pn(f, a)
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If the frequencies of the parental genotypes are independent of sex, then
by (8.1)

pn(AA) = pn(A)2, (8.3)
pn(Aa) = 2 pn(A) qn(A), qn(A) = 1− pn(A),
pn(aa) = qn(A)2

where pn(A) = pn(f, A) = pn(m,A) and qn(A) = pn(f, a) = pn(m, a). The
relations (8.3) are known as the Hardy-Weinberg law.

If pn(m,A) 6= pn(f, A), then (8.3) has no obvious meaning since it is
not clear what pn(A) might mean if the sexes have different population sizes.
In general, we say that genotype frequencies pn(AA), pn(Aa), pn(aa) are in
Hardy-Weinberg proportions if

pn(AA) = r2 (8.4)
pn(Aa) = 2rs

pn(aa) = s2

for numbers r, s ≥ 0. It follows from (8.4) that

pn(AA) + pn(Aa) + pn(aa) = 1 = r2 + 2rs + s2 = (r + s)2 = 1

so that r + s = 1. Then r = pn(AA) + 1/2pn(Aa) by addition in (8.4).
However, if (8.4) and

pn(AA) = pn(m,A)pn(f, A) (8.5)
pn(Aa) = pn(m,A)pn(f, a) + pn(m, a)pn(f, A)
pn(aa) = pn(m, a) pn(f, a)

both hold, then one can prove pn(m,A) = pn(f,A) = r so that the Hardy-
Weinberg law (8.3) holds unambiguously. (See Exercise 8.1 below.)

The Hardy-Weinberg law (8.3) implies that genotype frequencies are a
function of gene frequencies, and that one can follow the fate of genes in
populations and not worry about the genotypes that carry them. If the
Hardy-Weinberg laws hold for the parental genotype frequencies as well, so
that p(m,AA) = p(f, AA) = p2, p(m,Aa) = p(f, Aa) = 2p(1 − p) etc. in
(8.1), then pn(A) in (8.3) equals

pn(A) = p
w(AA)p + w(Aa)q

w(AA)p2 + w(Aa)2pq + w(aa)q2
(8.6)
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where q = 1− p.
If the population size is infinite, the probabilities pn(AA), . . . in (8.2)

are the frequencies in the next generation. Then if the parental genotype fre-
quencies p(z, AA), . . . are independent of sex, the Hardy-Weinberg law (8.3)
holds after one generation. If p(z,AA) etc. do depend on sex, then by (8.2)
they are independent of sex after one generation (assuming sex-independent
fitnesses), and (8.3) holds after two generations.

If the fitnesses w(AA), w(Aa), w(aa) refer to actual parental survival and
not to differences in fertility, note that the Hardy-Weinberg law (8.3) does
not hold in general for the parental genotypes at the mating stage; i.e., after
viability selection has been applied. These adult population proportions are

p(AA) =
w(AA)p2

C
, p(Aa) =

w(Aa)2pq

C
, p(aa) =

w(aa)q2

C

These will satisfy the Hardy-Weinberg law (8.3) if and only if the fitnesses
are multiplicative functions of the alleles in the genotype; that is, if

w(AA) = w(A)2, w(Aa) = w(A)w(a), and w(aa) = w(a)2 (8.7)

The case (8.7) is called genic selection as opposed to genotypic selection.
For finite populations, the offspring probabilities pn(AA), pn(a), etc.

are probabilities and not actual frequencies. The true genotype and gene fre-
quencies among the juvenile population will be random variables with these
numbers as expected values given the previous generation. Thus (8.2)–(8.3)
will almost never be true for the genotype frequencies themselves. Similarly,
although the genotype frequencies for the different sexes may have the same
means given the preceding generation, they will usually be different.

While this model of viability selection is conceptually simple and easy
to work with, it is not realistic for many situations in which selection occurs.
The fitness of an adult may depend not only on its genotype, but also on
the genotypes of the other adults. This would lead to frequency-dependent
fitnesses that depend on the population proportions of genotypes.

Examples:
Altruism: One example of frequency-dependent fitnesses is altruism. Sup-
pose that fitnesses depend on the behavior of pairs of individuals, either of
which can help the other. If a helpful individual links with a non-helpful
individual, the fitness of the helpful individual is decreased and that of the
non-helpful individual is increased. However, if both are helpful, the fitness
of both individuals is greatly increased. Suppose that ‘helpfulness’ is gov-
erned by a locus with two alleles, where AA-individuals are always helpful,
aa-individuals are never helpful, and, for definiteness, Aa’s are sometimes
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helpful and sometimes not. Then, if the allele A is rare, individuals carrying
it will be selected against, since they will be taken advantage of. However,
if genes of type A are common, then AA and Aa individuals will often find
valuable liaisons and have a great selective advantage.

Toxic bacteria: A similar example occurs in bacteria. Suppose that one
genotype excretes a particular poison or toxin to which it itself is immune,
but, due to the effort involved in making and defending against the toxin,
is otherwise less fit than normal bacteria. If this genotype is common, this
strategy may succeed. However, if it is rare, there will be a lower level of toxin
in the environment. The lower level of toxin may not cause enough damage
to the normal bacteria to compensate for the upkeep in making the toxin,
so that the toxin-producing genotype will be at a net selective disadvantage.
(This is also a kind of altruism.)

In both these examples, geographical distribution may be quite impor-
tant if genes of type A are rare. By chance (e.g. genetic drift) the non-normal
genotypes may find themselves in the majority in a localized area, and take
it over. They may then spread throughout the habitat by having a sufficient
frequency in border areas, and in this way an allele which is disadvantageous
when rare may eventually dominate the population. As an example, many
ecologists feel that new species of animals or plants cannot arise without geo-
graphical effects, essentially because the first representatives of an emerging
species would have too much difficulty finding mates.

Sickle-cell anemia: A final example concerns sickle-cell anemia. Assume
that the sickling gene S is relatively rare in a malarial area. By itself, an
individual of type SS will have a very low fitness. However, the two parents
of the individuals were probably both SN , which suggests that a type-S
individual has a relatively larger percentage of close relatives who are of
the relatively rare type SN . Thus, if the individual is able to live long
enough to have children, and the aunts and uncles of these children are willing
to help look after them, then offspring of type SS individuals may have a
much higher probability of surviving than the offspring of NN individuals.
This may result in a higher fitness of SS individuals than of normal NN
individuals, even though most SS individuals may be sickly throughout life
and die at a relatively young age. All three of these examples show the
difficulty of applying näıve Darwinian arguments to social species.

Exercise 8.1. (i) Show that Hardy-Weinberg proportion (8.4) is equivalent
to the relation pn(Aa)2 = 2pn(AA)pn(aa).

(ii) Prove that equations (8.4) and (8.5) together imply that pn(m,A) =
pn(f, A) = r and pn(m, a) = pn(f, a) = s.
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Exercise 8.2. A more general model of selection would allow fitnesses
w(z,AA) (z = ‘f’ or ‘m’) that could depend on the sex of the individual car-
rying that genotype. Examples would be genes active in one sex only, for ex-
ample genes affecting courtship behavior or plumage in males, or genes affect
response to courtship behavior in females. Find the analogs of (8.1)–(8.2).

Using these equations, show that, in general, the Hardy-Weinberg law
(8.3) or (8.4) will never occur for population frequency proportions at birth
unless the parental fitnesses are in fact proportional for both sexes. That is,
if

w(m,AA)
w(f,AA)

=
w(m, Aa)
w(f,Aa)

=
w(m, aa)
w(f, aa)

= C (8.8)

Exercise 8.3. What happens if the locus is on the X-chromosome?
(i) Find the analog of (8.2). (Note that males have haploid genotypes

A and a!)
(ii) Show that, in the absence of selection, (a) the female genotype fre-

quencies pn(AA) etc. may never satisfy the Hardy-Weinberg law (8.4) for
any r, although (b) the deviation from Hardy-Weinberg proportions con-
verges to zero exponentially fast in the number of generations.

Exercise 8.4. (Part (iii) below is difficult.) Suppose that the A-allele is
represented by only one gene in a large monoecious population of N individ-
uals, but that it carries a selective advantage over the allele a in heterozygote
form. (I.e., w(Aa) = w > 1, w(aa) = 1.) The number of A-type genes in the
next generation has a binomial distribution with parameter p given by (8.1).
Let N →∞, keeping the number of genes of type A initially at one.

Note that in the second and all succeeding generations, all A-type genes
will be carried in individuals of genotype Aa because individuals who both
carry A’s will be too rare to meet. Thus all matings will be either aa × aa
or Aa× aa.

Prove that
(i) In the limit as N →∞, the number of copies X of the A-gene in the

second generation has a Poisson distribution with mean w.
(ii) If there are r different A genes in a subsequent generation, prove

that the number of descendents X1, X2, . . . , Xr of the r different A-genes
in the next generation have a joint distribution for which, in the limit as
N →∞, the X1, X2, . . . , Xr are independent Poisson.

Part (ii) means that number Q(n) of A-genes in the nth generation forms
a branching process with a Poisson offspring distribution. Using the theory of
branching processes (Karlin and Taylor 1975, Athreya and Ney 1972, Crow
and Kimura 1970, pp419–423), prove that
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(iii) If the relative fitness w = w(Aa) = 1 + s where s > 0, where
w(aa) = 1, the probability that this branching processes does not eventually
become extinct equals 2s within terms of order s2 for small s.

This is a result attributed to R. A. Fisher: Specifically, that if A is a
new, selectively advantageous allele whose heterozygote has relative fitness
w = 1 + s, then the probability that A does not become lost in the first few
generations due to genetic drift is 2s + O(s2). In fact, one can show more
exactly that the probability is 2s − (8/3)s2 + (28/9)s3 + O(s4) (A. Amei,
personal communication).

1.9. Driving Bad Genes Out of a Large Population

As mentioned earlier, one might expect that most severely deleterious
genes would be recessive. However, there do exist dominant deleteri-

ous genes in humans, for example the genes that produce achondroplastic
dwarfism, Huntington’s chorea, and certain types of muscular dystrophy. A
model that includes both dominant and recessive deleterious alleles has

w(AA) = w = 1− s, w(Aa) = 1− hs, w(aa) = 1 (9.1)

where s > 0 and the relative fitnesses have been normalized by setting
w(aa) = 1. Dominant deleterious alleles correspond to h = 1, and reces-
sives to h = 0. If the fitnesses (9.1) hold for both sexes in a large population,
the genotype frequencies at birth will be in Hardy- Weinberg equilibrium.

Let pn be the frequency of the deleterious allele A at the beginning of
the nth generation. By (8.6)

pn+1 = f(pn) = p
1− s(p + hq)

1− sp(p + 2hq)
(9.2)

= p
1− s

(
h + p(1− h)

)

1− sp
(
2h + p(1− 2h)

)

where p = pn and q = qn = 1− pn. Thus pn+1 = f(pn) = f [n+1](p0), where
f [n] denotes the nth iterate of f(p) in (9.2). If A is dominant (i.e. h = 1),

f(p) = p
1− s

1− sp(2− p)
=

wp

wp(2− p) + (1− p)2
(9.3)

If A is recessive (i.e. h = 0),

f(p) = p
1− sp

1− sp2
(9.4)
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In both cases 0 < f(p) < p < 1 for 0 < p < 1 and pn+1 = f(pn). Hence
pn ↓, and f(p) has no fixed points in the open interval (0,1). Hence pn ↓ 0
as n →∞, and the frequency of the deleterious allele A converges to zero in
either case.

Intuitively, the rate at which pn → 0 for pn = f(pn−1) will be influenced
by the value of f ′(0). Note f ′(0) = limp→0 f(p)/p = 1 − s < 1 in (9.3) if A
is dominant and f ′(0) = 1 in (9.4) if A is recessive. (In fact, f ′(0) = 1 and
f ′′(0) = −2s in (9.4).)

Biologically, a dominant deleterious allele should be lost faster than
a deleterious recessive for the following reason. By the Hardy-Weinberg
law (8.3), an allele with frequency p will be found in homozygote form with
frequency p2 and in heterozygote form with frequency 2pq. Hence rare alleles
will be found mostly in heterozygotes, which have normal fitness for a dele-
terious recessive. Thus one would expect that a deleterious recessive would
show more long-term resistance to selection than a dominant.

Theorem 9.1. Assume 0 < p < 1, and that f(p) is a three-times continu-
ously differentiable function of the unit interval [0,1] into itself such that

(i) f(0) = 0, f(1) = 1,

(ii) 0 < f(p) < p < 1 for 0 < p < 1

If 0 < f ′(0) = w < 1, then for any fixed p with 0 < p < 1,

pn = f [n](p) ∼ C1w
n for some C1 > 0 (9.5)

If f ′(0) = 1 and f ′′(0) = −α < 0,

pn = f [n](p) ∼ 2/(αn) as n →∞ (9.6)

Corollary 9.1. If A is a deleterious dominant allele as in (9.3), then pn ∼
C(1− s)n → 0 exponentially fast. If A is deleterious recessive allele as
in (9.4), pn ∼ 1/(sn) → 0 at a slower rate.

Thus a deleterious dominant will be lost fairly quickly unless it is con-
tinually renewed by mutation, while eliminating a deleterious recessive can
take a very long time. Note that there has only been at most 150 human
generations since Classical Greek times, assuming 17 years per generation.

Proof. The arguments in Theorem 9.1 are standard in the theory of branch-
ing processes, but are fairly easy to obtain. In general, since pk+1 = f(pk),

log pn = log p0 +
n−1∑

0

(log pk+1 − log pk)

= log p0 +
n−1∑

0

log
(
f(pk)/pk

)
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To prove (9.5), assume f ′(0) = w < 1. A three-term Taylor expansion
about 0 yields

log pn = log p0 +
n−1∑

0

log
(
w + 1/2pkf ′′(θk)

)
(9.7)

= log p0 + n log w +
n−1∑

0

log
(
1 + 1/2pkf ′′(θk)/w

)

where 0 < θk < pk. By (ii), pn ↓ p∞ where f(p∞) = p∞, so that pn ↓ 0.
Since f(0) = 0, pk+1 = f(pk) = f ′(θk)pk by the mean-value theorem, where
0 < θk < pk and f ′(0) = w < 1. Hence pk+1 ≤ w1pk ≤ Cwk+1

1 for all k ≥ 1
and sufficiently large C, where w < w1 < 1. In particular,

∑∞
k=1 pk < ∞.

Since f ′′(θ) is bounded by assumption, the last sum in (9.7) is absolutely
convergent. This implies that log pn = n log(w)+Cn where limn→∞ Cn = C0

converges. This, in turn, implies pn ∼ C3w
n as n →∞ for C3 = exp(C0).

To prove (9.6), assume f ′(0) = 1 and f ′′(0) = −α < 0. A four-term
Taylor expansion implies

pn+1 = f(pn) = pn

(
1− 1/2αpn + 1/6f

′′′(θn)p2
n

)

where 0 < θn < pn. The identity 1/(1− x) = 1 + x + O(x2) implies

1/pn+1 = 1/pn + 1/2α + terms of order pn (9.8)

Since pn → 0, the sum of the last two terms in (9.8) eventually becomes
bounded from below, so that 1/pn ≥ γn for sufficiently large n. Thus
pn ≤ C/n for some C. Then by (9.8)

∣∣ (
1/pn+1 − 1/pn

) − 1/2α
∣∣ ≤ C/n (9.9)

By summation in (9.9)

1/pn = 1/2αn + terms of order log n

This completes the proof of Theorem 9.1.

Exercise 9.1. The case of intermediate dominance is

w(AA) < w(Aa) < w(aa)

or 0 < h < 1 in (9.2). At what rate is the allele A driven out? If the rate is
exponential, what is the replacement for w in (9.5)? Could you have guessed
it in advance from the fact that rare genes are found mostly in heterozygotes?
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1.10. Heterozygote Advantage and Selection-Mutation Balance

Agenetic locus is said to be polymorphic in a population if there are two
or more alleles in the population at that locus. One possible cause

would be if heterozygotes were more fit than homozygotes, as in the sickle-
cell anemia example. For definiteness, consider an autosomal locus with
two possible alleles, A and a, and assume the heterozygote Aa is selectively
favored over both homozygotes AA and aa. If we normalize by setting the
heterozygote relative fitness equal to one, we would have

w(AA) = 1− s, w(Aa) = 1, w(aa) = 1− t (10.1)

where s, t > 0. Let pn be the frequency of the A-allele in the nth generation.
Then by (8.6)

pn+1 =
(1− s)p2 + pq

(1− s)p2 + 2pq + (1− t)q2

where p = pn = 1− q. Hence pn+1 = f(pn) = f [n+1](p0) for

f(p) =
p(1− sp)

1− sp2 − tq2
(10.2)

As before f(0) = 0 and f(1) = 1, but now f(p) = p has an additional root

pcent = t/(s + t)

Simple algebraic computations show

0 < p < pcent implies 0 < p < f(p) < pcent, and (10.3)

pcent < p < 1 implies pcent < f(p) < p < 1

Moreover
f ′(pcent) = R = (s + t− 2st)/(s + t− st) < 1

If 0 < p0 < 1, (10.3) implies pn → pcent. The same argument as in Theo-
rem 9.1 now implies

Theorem 10.1. Assume pn+1 = f(pn) for f(p) in (10.2). Then pn → pcent

if 0 < p0 < 1, and also

pn − pcent ∼ C2 Rn as n →∞, where R < 1

Thus, if heterozygotes are most fit and both alleles are initially present,
the frequency of A converges to an intermediate value and neither allele is
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eliminated from the population. However, at equilibrium the allele with the
fitter homozygote has proportionately the higher frequency.

Since an individual has two loci at a typical autosomal locus, it may
be to his advantage to have one allele that is good during cold weather, for
example, and another that is advantageous during warm weather. This may
make the heterozygote selectively more fit than either homozygote. Effects
such as this may be an important cause of polymorphism in nature. Due to its
importance, there are many synonymous terms for heterozygote advantage;
two common ones are overdominance and heterosis. A related but not quite
identical situation occurs when two separate populations have both been
subject to a great deal of inbreeding. If two individuals, one from each
population, are mated, the offspring are often observed to be healthier than
either parent (this is called “hybrid vigor”). This is most likely due to the
separate populations fixing at recessive deleterious alleles at different loci,
which then become heterozygote in the offspring.

A more common source of polymorphism is when a deleterious allele is
replenished by mutation from normal alleles, and so remains in the popu-
lation in spite of selection. This is called selection-mutation balance. For
definiteness, assume there are two alleles A and a, where A is deleterious
with respect to a. Assume that the effect on the frequency p of A of one gen-
eration of selection is given by f(p), where, for example, f(p) is (9.3) or (9.4).
Let u be the mutation rate per generation from a to A. Since deleterious
alleles are usually rare, mutation from A to a will be ignored. Depending
on whether mutation follows selection or selection follows mutation in each
generation, the frequency of A after one generation will be

(a) f(u, p) = f(p) + u
(
1− f(p)

)
= u + f(p)(1− u) (10.4)

or (b) f(u, p) = f
(
p + u(1− p)

)

In general, mutation occurs either in the germ line or basic reproduction
tissue of an individual (and then would generally not affect the individual
otherwise) or occurs in the process of meiosis (the formation of a sperm or
egg cell) or fertilization. If individuals are scored as AA, Aa, or aa at birth,
then mutation during that generation would appear to follow selection, since
later germline mutations within an individual generally do not affect a trait
undergoing selection. Then f(u, p) would be given by (10.4a).

If individuals are scored at sexual maturity instead of at birth, then
selection would follow mutation and (10.4b) would apply, although the geno-
type frequencies of the individuals would not be in Hardy-Weinberg equilib-
rium except in the case of genic selection (that is, unless (8.7) holds).

To make things even more complicated, mutation can also occur in so-
matic cells; that is, cells not in the germ line. These could affect the pheno-
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type (or physical form) of an individual but not its genotype (as determined
by its germ line), so that an individual with one (germ-line) genotype might
be subject to the selective effects of a different genotype. A somatic-cell
mutation during gestation might also cause the genotype of an individual
to be scored incorrectly at birth. To have a significant effect, a somatic-cell
mutation would have to happen within the first few cell divisions of an em-
bryo, and might even affect some parts of the body and not others. While
somatic-cell mutations in the first few embryonic cell divisions do occur (and
can sometimes lead to tragic situations), they are rare and will be ignored
here.

Generally, u is in the range 10−6−10−4, with for example s ≥ 0.01. Thus
it is usually safe to assume 0 < u ¿ s < 1. In the following, subscripts denote
partial derivatives, and O(u2) means “up to terms that can be bounded by
u2 for small u”.

Theorem 10.2. Assume f(u, p) is a three-times continuously differentiable
function of u, p ∈ [0, 1] such that

(i) 0 ≤ f(u, p) ≤ 1, u, p ∈ [0, 1], (10.5)
(ii) 0 < f(0, p) < p < 1, p ∈ (0, 1),
(iii) fu(0, 0) > 0

and assume one of the two conditions

(a) fp(0, 0) = w = 1− s < 1 or (10.6)
(b) fp(0, 0) = 1, fpp(0, 0) = −α < 0, and

fp(u, p) < 1 for 0 < u < δ, 0 < p < ε

for some δ > 0, ε > 0. Let pn+1 = f(u, pn) for n ≥ 0, where 0 < p0 < 1.
Then, there exists u0 > 0 such that limn→∞ pn = p(u) exists if 0 < u < u0,
where, if (10.6a) holds,

p(u) =
(

fu(0, 0)
1− fp(0, 0)

)
u + O(u2). (10.7)

If, instead, (10.6b) holds,

p(u) =

√
−2u

fu(0, 0)
fpp(0, 0)

+ O(u). (10.8)

Deferring the proof of Theorem 10.2 for the moment, note that (10.5)
and (10.6a) hold if A is dominant (i.e. (9.3) with (10.4a) or (10.4b)), and
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(10.5)-(10.6b) hold if A is recessive (i.e. f(p) is given by (9.4)). Thus

p(u) =
u

s
+ O(u2) A dom., mut. follows sel. (10.9)

=
u(1− s)

s
+ O(u2) A dom., sel. follows mut.

=
√

u

s
+ O(u2) A recessive

where we have abbreviated several key words by their first three letters.
Since we are assuming u ¿ s, the deleterious allele A will be rare in

either case. The frequency of Aa individuals will be be approximately twice
the values in (10.9), since each individual carries two genes at that locus
(see (8.3)). Heterozygote individuals will be affected if A is dominant, while
only homozygotes will be affected if A is recessive. Thus the frequency of
affected individuals is ≈ 2u/s if A is dominant and p(u)2 ≈ u/s if A is
recessive. Since u/s ¿

√
u/s if u ¿ s, the allele A will be much more

common (although mostly hidden) in the recessive case.
An intuitive explanation for the first two formulas in (10.9) can be given

as follows. Since A is deleterious, A genes are constantly being lost from the
population, and each A gene must have been created by mutation at some
time in the past. The set of A genes that were created n generations ago
have been exposed to selection n times. Since f(p) ≈ wp by (9.3) if A is rare,
each generation of selection will decrease the frequency of these genes by a
factor of w. If mutation follows selection, the sum of the present frequencies
of these genes is u + uw + uw2 + . . . = u/(1− w) = u/s. If selection follows
mutation, the sum is uw + uw2 + . . . + = uw/s.

Note that this argument allows us to estimate u and s separately. The
frequency at birth of Aa homozygotes whose parents are unaffected (i.e.,
both are aa) is 2u, since there are two genes that could mutate. Hence the
ratio of the frequency of Aa’s with unaffected parents (that is, the frequency
of Aa’s that are due to fresh mutations) to the frequency of all newborn Aa’s
is ≈ 2u/(2u/s) = s. In particular, if w = s = 1/2, then approximately half
of observed Aa’s are due to fresh mutations and about half have inherited
their A gene from their parents.

Proof of Theorem 10.2: For any ε > 0, (10.5ii) implies p−f(u, p) ≥ δ > 0
for all p ∈ [ε, 1 − ε] for 0 < u < δ and some δ > 0. Since we can choose
ε < 1− p0, it follows that lim supn→∞ pn ≤ ε if u < δ. First, assume (10.6a).
Then |fp(u, p)| ≤ ψ < 1 for u < δ, p < ε, and

|pn+1 − pn| = |f(u, pn)− f(u, pn−1)| ≤ ψ |pn − pn−1| ≤ ψn|p1 − p0|
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by the mean value theorem. Since ψ < 1, pn → p(u) where f(u, p(u)) = p(u),
and by Taylor’s Theorem

p(u) = fu(0, 0)u + fp(0, 0)p(u) + O(u2 + p(u)2) (10.10)

=
fu(0, 0)u

1− fp(0, 0)
+ O(u2 + p(u)2)

It only remains to prove p(u) = O(u). Since u ≤ 1, (10.10) implies p(u) ≤
Au + Bp(u)2 for constants A,B. If p(u) ≤ ε < 1/2B, we conclude p(u) ≤
Au/

(
1−Bp(u)

) ≤ 2Au. Hence p(u) = O(u) in (10.10) and (10.7) follows.
If, instead, (10.6b) holds,

pn+1 = f(u, pn) = f(u, pn)− f(0, pn) + f(0, pn) (10.11)

= u
(
fu(0, 0) + O(u + pn)

)
+ pn − 1/2αp2

n

(
1 + O(pn)

)

In particular pn ≥ γu > 0 where γ > 0. If u > 0 is assumed fixed and small,
|fp(u, p)| ≤ ψ < 1 by (10.6b) for 0 < γu ≤ p ≤ 3ε, where lim supn→∞ pn ≤ ε.
Hence pn → p(u) as before, and by (10.11)

1/2αp(u)2 = ufu(0, 0)
(
1 + O(u + pn)

)

The relation (10.8) follows.
If we had only assumed fp(0, 0) = 1 and fpp(0, 0) = −α < 0 in (10.6b),

we wouldn’t be able to show convergence of {pn}. However, (10.11) does
imply that (10.8) holds with pn in place of p(u) for all sufficiently large n,
and so (10.8) holds in this sense.

Exercise 10.1. Suppose 1− s and 1− t in (10.1) are replaced by 1 + s and
1+t respectively, where s, t > 0. Then the heterozygote is less fit than either
homozygote. This situation is called, appropriately enough, heterozygote
disadvantage or negative heterosis or sometimes even underdominance.

Whichever term you prefer, prove that there exists a critical frequency
pcrit such that if 0 < p0 < pcrit, then pn → 0, whereas if pcrit < p0 < 1, then
pn → 1.

Can you calculate the exponential rates at which these convergences
occur, using Theorem 9.1? Could you have guessed these rates in advance?

1.11. Selection in Finite Populations

Consider a monoecious population of N individuals with two alleles A and
a at a particular locus, with fitnesses

w(AA) = 1 + s, w(Aa) = 1 + hs, w(aa) = 1
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and mutation rates u: a → A and v: A → a per gene per generation. Let pn

be the frequency of A at the beginning of the nth generation. By Section 2,
the distribution of pn+1 given pn can be represented symbolically as

{pn+1 | pn = p} ≈ B(2N, f(p))
2N

(11.1)

where B(2N, p) denotes a binomial distribution, and f(p) is the probability
of sampling an A-gene in generation n + 1 if the frequency of A was p at the
beginning of the nth generation. Let fs(p) denote the change in p due to
selection alone. Then by (9.1)–(9.2)

fs(p) = p
1 + s

(
h + p(1− h)

)

1 + sp
(
2h + p(1− 2h)

) .

If frequencies are measured at birth, and if mutation is assumed to act when
sperm and eggs are generated, then mutation appears to follow selection,
and in (11.1)

f(p) = (1− v)fs(p) + u
(
1− fs(p)

)

= (1− u− v)fs(p) + u (11.2)

Assume selection, mutation, and genetic drift all have about the same
strength. I.e.,

s ∼ σ

2N
, u ∼ α

2N
, v ∼ β

2N
, as 2N →∞ (11.3)

where α, β > 0. As in Section 3, {pn} defines a recurrent Markov chain on
{0, 1/2N, . . . , 1} if u, v > 0. We now try to find the limit of the stationary
distribution µ(2N, dp) as N →∞. Note

fs(p)− p = p
s
(
h + p(1− h)

)− sp
(
2h + p(1− 2h)

)

1 + sp
(
2h + p(1− 2h)

)

= sp(1− p)
h + p(1− 2h)

1 + sp
(
2h + p(1− 2h)

)

Thus by (11.2)

2N E( pn+1 − p | pn = p) = 2N
(
f(p)− p

)
(11.4)

→ m(p) = σp(1− p)
(
h + p(1− 2h)

)
+ α− (α + β)p
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2N E
(
(pn+1 − p)2 | pn = p

)
= f(p)

(
1− f(p)

)
+ 2N

(
f(p)− p)

)2

→ a(p) = p(1− p), and

2N E
( |pn+1 − p|3 | pn = p

) → 0

As in (6.1)–(6.6), the stationary distribution µ(2N, dp) converges as 2N →∞
to h(p)dp, where h(p) is a solution of

1/2
(
a(p)h(p)

)′ −m(p)h(p) = 0

Substituting m(p) and a(p) from (11.4)

h(p) = C p2α−1(1− p)2β−1eσp
(
2h+p(1−2h)

)

The simplest case h = 1/2 corresponds to the heterozygote having fitness
halfway between the two homozygotes. In that case

h(p) = h(p, α, β, σ) = C eσpp2α−1(1− p)2β−1 (11.5)

where we write h(p, α, β, σ) to emphasize the dependence on those parame-
ters. We can find the constant C in (11.5) in closed form:

C−1 =
∫ 1

0

eσp p2α−1(1− p)2β−1 dp

=
∞∑
0

σn

n!

∫ 1

0

pn+2α−1(1− p)2β−1 dp =
∞∑
0

σn

n!
Γ(2α+n)Γ(2β)
Γ(2α+n+2β)

=
Γ(2α)Γ(2β)
Γ(2α+2β)

∞∑
0

(2α)(n)

(2α+2β)(n)
σn

=
Γ(2α)Γ(2β)
Γ(2α+2β) 1F1(2α; 2α+2β; σ) (11.6)

where x(n) = x(x + 1) . . . (x + n − 1), In (11.6), 1F1(a; c; z) is called the
confluent hypergeometric function or Kummer’s function (Magnus et al 1966,
Chapter VI).

The same argument can be used to find the moments of the limiting
distribution h(p)dp in terms of 1F1:

∫ 1

0

pm(1− p)nh(p, α, β, σ) dp

=
(2α)(m)(2β)(n)

(2α+2β)(m+n)

1F1(2α+m; 2α+2β+m+n; σ)
1F1(2α; 2α+2β; σ)

(11.7)
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While confluent hypergeometric functions are not as easy to deal with as
trigonometric or exponential functions, an immense number of identities and
asymptotic formulas are known for them. In particular, by (11.7) and Mag-
nus et al (1966, p289),

∫ 1

0

pm(1− p)n h(p, α, β, σ) dp ∼ (2β)(n)

σn
as σ →∞ (11.8)

Exercise 11.2 shows how (11.8) can be used to find the limiting distribution
of the frequency of the allele a for large σ.

As mentioned earlier in Section 3, it can be shown that (11.4) implies
that {pn} can be approximated by a continuous-time diffusion process {Xt}
with t ≈ n/2N and ‘infinitesimal generator’

Lf(x) = 1/2a(p)f ′′(x) + m(p)f ′(x)

Now, assume there is no mutation; i.e. u = v = 0. Then 0 and 1 are traps
for {pn}. Similarly, it can be shown that with probability one Xt is trapped
for some t < ∞ at either 0 or 1. Let

s(x) = P (Xt eventually trapped at 1 | X0 = x) (11.9)

If k/2N → x as N →∞, it can be shown

lim
N→∞

P (pn event. trapped at 1 | p0 = k/2N) = s(x) (11.10)

Moreover, s(x) in (11.9) is the unique solution of Ls(x) = 0 with s(0) = 0
and s(1) = 1. If α = β = 0 and h = 1/2 in (11.4), then m(p) = 1/2σp(1− p)
and a(p) = p(1− p). Solving

Ls(x) = 1/2p(1− p)
(
s′′(x) + σs′(x)

)
= 0

and applying (11.10),

lim
N→∞

P (population eventually fixes at A | p0 = k/2N)

= s(x) =
1− e−σx

1− e−σ
. (11.11)

For example, suppose that the initial frequency of A is p0 = 0.25, and σ = 12.
Since w(AA) = 1 + s ≈ 1 + σ/2N , this could be very weak selection if 2N
is large. By (11.11), s(0.25) ≈ 0.950, and the population will eventually fix
at A with ≈ 95% probability.
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As another example, consider the problem of the fate of a new, se-
lectively advantageous gene in a large population. We would like to take
p0 = X0 = 1/2N in (11.11) for fixed s > 0. However, if s > 0 is
fixed, σ = 2Ns → ∞, while σ, α, and β are assumed fixed and finite in
(11.3)–(11.11). Also, p0 = 1/2N implies p0 → x = 0 and s(0) = 0, so a
literal use of (11.11) would give no information. While the theory does not
exactly apply to what we want, we might try p0 = 1/2N and σ = 2Ns →∞
in (11.11) as an approximation and see what happens. By (11.11),

P (population eventually fixes at A | initially one copy)

≈ s(1/2N) =
1− e−σ/2N

1− e−σ
≈ 1− e−s

1− e−2Ns
≈ s + O(s2) (11.12)

The survival probability in (11.12) can be written s + O(s2) = 2hs + O(s2),
where 1 + hs is the fitness of heterozygotes Aa. Recall that it was found by
branching process methods in Exercise 8.4 that the probability of survival
was 2s + O(s2), where 1 + s was the fitness of heterozygotes. Hence (11.12)
is consistent with Exercise 8.4.

Suppose now that (11.1) holds but s, u, and v are fixed. Suppose further
that f(p) in (11.2) has a stable fixed point γ; i.e.

|f(p)− γ| ≤ ψ |p− γ| for ψ < 1, 0 ≤ p ≤ 1

(this can usually be weakened to |f ′(γ)| < 1.) If 2N is large, pn will spend
most of its time near γ, since the deterministic forces of selection and mu-
tation are now much stronger than genetic drift. However, one can still ask
for the error in approximating pn by γ, or ask how long it will take for pn to
vary from a neighborhood of γ. It turns out that

pn ≈ γ +
Yn√
2N

where {Yn} is a sequence of correlated Gaussian random variables. More-
over, if p0 = γ and c is any preassigned constant, pn will remain within
O(

√
log 2N/2N) of γ for 0 ≤ n ≤ N c with probability 1 − O(N−c)

(Sawyer 1983). If ε > 0 is fixed and TN is the first n such that pn is outside
of (γ − ε, γ + ε), there exists a constant b > 0 (for which an expression is
found) such that

lim
N→∞

P (e(b−δ)N ≤ TN ≤ e(b+δ)N ) = 1 for all δ > 0

(Morrow and Sawyer 1987). Also, if {pn} has an equilibrium distribution in
[0,1], the equilibrium probability that pn is outside (γ − ε, γ + ε) is exponen-
tially small as a function of 2N (ibid.).



Population Genetics — Chapter 1 — S. Sawyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

There a large literature of “diffusion approximation” results in continu-
ous time in which deterministic forces are asymptotically much stronger than
random forces. In these results, the approximating process is typically a fixed
path plus a Gaussian process times a small parameter. See e.g. Kurtz (1971,
1981), Norman (1975b), Nagylaki (1986), Sawyer (1983), and Morrow and
Sawyer (1987).

Exercise 11.1. Explain in words why it is more likely that the power of σ
in (11.8) should depend on n and not m or n + m.

Exercise 11.2. A random variable Z = Z(θ, λ) is said to have a gamma
distribution with parameters θ and λ if

P
(
Z(θ, λ) ≤ z

)
=

λθ

Γ(θ)

∫ z

0

xθ−1e−λxdx for all z ≥ 0 (11.13)

In particular E
(
Z(θ, λ)

)
= θ/λ and Z(θ, λ) ≈ (1/λ)Z(θ, 1). (The latter

means that these two random variables have the same probability distribu-
tion.)

Let p∞(a) be the limiting equilibrium distribution under (11.3) of the
allele a. Use (11.8) to prove that

lim
σ→∞

P
(
σp∞(a) ≤ t

)
= P

(
Z(2β, 1) ≤ t

)
(11.14)

for all t ≥ 0, for Z(2β, 1) as in (11.13). (Hint: Write E
(
p∞(a)n

)
in terms

of (11.7). Use (11.8) to show that the moments of σp∞(a) converge to those
of Z and apply the method of moments to prove (11.14).)


