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1.1. Introduction

O ne of the strongest influences on the growth and behavior of most living creatures is the genetic
material or DNA located in their chromosomes. Bacteria tend to have a single circular chro-
mosome. Most higher plants and animal have a number of pairs of long linear molecules. In either
case, the chromosome or chromosomes can be thought of as a string of letters from the alphabet
T, C, A, G, where each letter corresponds to a specific nucleotide. From this point of view, a mouse
is the same as a tomato to a geneticist, since both have about the same amount of DNA.

By definition, a gene or genetic locus is a segment of a chromosome that is associated with a
particular trait. This typically consists of one or more coding regions for a protein or RNA enzyme
along with recognition sites for regulatory molecules. Proteins are composed of strings of amino
acids. There are around 20 different amino acids, as opposed to 4 different nucleotides. Coding
regions for genes are built up from consecutive triplets of nucleotides that are called codons. Codons
are mapping to amino acids by RNA translation enzymes. Since the number of possible codons is
43 = 64, there are enough codons to describe all amino acids with plenty of room to spare. Most
amino acids are described by more than one codon. Codons that are not assigned to an amino acid
tell the RNA translation enzyme to stop, so that the codon language has verbs as well as nouns.

Most genes are templates for enzymes or proteins that control or take part in biochemical pro-
cesses. In most plants and animals, the DNA is arranged in a number of pairs of chromosomes. Such
creatures are callediploid. Creatures that have non-paired chromosomes (such as bacteria) are
calledhaploid. Some domesticated plants such as corrtetraploid, which means that their chro-
mosomes occur in groups of four. There are 23 chromosome pairs in man (and so 46 chromosomes),
4 pairs inDrosophila(fruit flies), and other numbers in other creatures.

In humans, 22 of the 23 chromosome pairs are composed of two chromosomes that are more-
or-less the same size and have the same genetic loci. These araatdisaimaloci. The remaining
chromosome pair has two different types of chromosomes, one Ky@dout six times the size of
the other (typ&”). The 239 chromosome pair in humans has tWochromosomes in females and
oneX and oneY in males. These are callegx chromosomésr thesex-chromosome pair

An Example: There is some evidence that blue vs. brown eye color in humans is governed by a
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single genetic locus with two possible types of genes, which we’llidaindW. (There is also
some evidence that the genetics of human eye color is more complicated, but let’s ignore this for the
moment.) Since this locus occurs on both chromosomes of one of the chromosome pairs (that is, it
is anautosomalocus), there are four possibilities (genotypesfor individuals: UU, UW, WU,
andWW. In almost all cases the action of genes is independent of the chromosome in which they
occur, so that the number of possibilities reduces to thtdé; UW, andWW. In this case, both
UW andWW carrying individuals have brown eyes. Brown eye color might be due to a particular
protein pigment, and one copy of th& gene might produce enough pigment to cause the trait.
Individuals without this pigment might have blue eyes.

In general, if there are two types of genes (sagind B) for which AB has the same effect as
AA, thenA is said to bedominantwith respect ta3, andB is recessivavith respect tod. Typically
this is becausel produces a protein in sufficient quantities from one gene. The recessive gene is
often a damaged version of the dominant gene. Itis useful to use theall@efor a genetic type (as
opposed to gene, which will refer to a piece of a particular molecule). In many allele classifications
such asU/W, each ‘allele’ will be a collection of slightly different alleles with the same gross
properties.

ABO Blood groups: As a second example, theBO blood group in humans is governed by a single
genetic locus with three alleles, which are call&dB, andO. Since this locus also occurs on both
chromosomes of one of the chromosome pairs, there are six genotygesA B, BB, AO, BO,
andOO. Both allelesA and B are dominant with respect @, but neither are dominant with respect
to the other. This leads to four ‘blood typest (AA or AO), B (BB or BO), O (OO) and AB
(AB). The allelesA and B produce proteins which can cause dangerous immune reactions if blood
containing that protein is given in a transfusion to an individual who does not have that protein. Thus
an A B could receive blood from anyone without worrying about this immune reaction, whi&an
would be endangered by a transfusion frol B, BO, or AB.

By definition, a genotype is heterozygotéf it has two different alleles (such a4dB, AO,
or BO) andhomozygotéor genotypes with two copies of the same allele (suchasB B, andOO).
Thus the six possible genotypes at the ABO locus are composed of three heterozygotes and three
homozygotes.

Sickle-cell anemia: This is a disease controlled by a genetic locus with two alleles that are called
S (for “sickling”) and N (for “normal”), respectively. Since this locus occurs is also autosomal,
individuals can be of three genotyp@éN, SN, andS'S. Individuals with genotypé&'S have sickle-

cell anemia and are usually very ill, often dying before the end of their twenties. Individuals of
genotypeS N have ‘sickle-cell trait’ and appear to suffer no ill effects, although there has been some
concern about relatively anoxic environments such as airplane cockpits. Howai@eople have

a markedly higher resistance to malaria. Thus, in a malarial area, villages would have a tendency to
have a high proportion of genoty&V, since the other genotypes would tend to die off. As we will
see below, the children of tw8/N-individuals will be on the average 25% N, 25%5'S, and only

50% SN. Thus villages could not remain totally of genoty§é& indefinitely. This is an example

of what is callecheterozygote advantage overdominancein which a variety of genotypes is kept

at a particular locus due to the most successful genotype not breeding to form.

More about sex chromosomes:As mentioned before, the humah chromosome is about 6 times

the length of th& and is among the largest human chromosomes.YThleromosome is one of the

three smallest chromosomes. Human females havektwhromosomes (i.e., at€ X) while males

areXY. (Male frogs, however, are the analogXfX while females ar&Y, so that the situation is

not uniform across species.) Human males (and presumably also female frogs) are then especially
vulnerable to defective copies &f-chromosome genes for which there is no ‘backup copy’ on the
other chromosome. The genes associated with some of the most common types of hemophilia and
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for the pigments necessary for perceiving red and green colors are locatedXfctiremosome in
humans. (The gene for the blue pigment is autosomal.) As expected, hemophilia and red/green color
blindness are much more common in males than in females.

One sex or two? In most higher animals and some plants, the population is split into two sexes
and mating occurs between members of opposite sexes. Such creatures adiaatieds Most

higher plants are diploid (that is, have chromosome pairs as opposed to a single chromosome) but
aremonoeciouswhich means that any individual can act as either sex and can even fertilize itself.

For all diploids, barring genetic accidents, the offspring have the same number of chromosome
pairs as their parents. In an offspring, each chromosome pair is composed of one copy of one
of the two maternal chromosomes and one copy of one of the two paternal chromosomes. (In
monoecious plants, the “mother” and “father” might be the same individual, but “maternal” and
“paternal” chromosomes come from different sources in the plant: Maternal chromsomes come from
seeds and paternal chromosomes from pollen.)

Statistically, the two choices of which chromosome are usually independent with equal prob-
ability for the two parents and for different chromosome pairs. (This is the basic principle of
“Mendelism”.) At an autosomal locus, this means that the offspring inherits one maternally-derived
gene and one paternally-derived gene, with each chosen independently and at random as a copy of
one gene in each parental genotype. Thus, for example, if both parents are of allelitRyppe
offspring will be AA, AB, or BB with probabilities respectively/4, 1/2, and1/4.

As mentioned before, sex chromosomes (in humans) are of types Eiffiesr XY'. Since all
mating is between a male and a female, with both distributing one chromosome from each pair to
each offspring X X and XY are the only possibilities for offspring (barring genetic accidents).

Note that genes on the-chromosome pass directly from fathers to sons, avoiding all female
intermediaries. In particular thE-chromosome reproduces itself in a haploid rather than diploid
manner, by cloning itself from generation to generation. There is also important genetic material
in mitochondrig which are organelles that are carried inside cells but outside the cell nucleus. In
humans and most animals, these are cloned from the mother. Such extranuclear loci would then
be carried from mothers to daughters (and also sons) in a haploid manner. Higher plants also have
chloroplasts which are another type of extranuclear organelle that are passed maternally.

Figure 1.1. lllustration of linkage.

Two chromosomes in the mother:

first maternal

)0.0.0.0.:0.0.0.0.0.0.9.0.0.0.9.0.0.0.0.0.00.09.0.00.00.00.0)04
chromosome

CCCCCCCCCCCCCeeceececeeecececcecedee Second maternal
chromosome

Maternal chromosome in the offspring:

[ XXXXXX}CCCCCCCCCCCCCCCefXXX|CCCCCC|  donated chromosome |

More genetic scrambling: For most chromosome pairs, the actual situation is slightly more compli-
cated. The chromosome donated from the mother (for example) can be a composite copy of the two
maternal chromosomes, with the donated chromosome changing from one maternal chromosome to
the other at one or moi@ossover pointsThis is illustrated by Figure 1.1, in which the parts of the
donated chromosome that come from the first maternal chromosome are arkeBigure 1.1
illustrates threerossover breakand reattachments (grossover eventbetween the two maternal
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chromosomes in one chromosome pair as the donated chromosome was being formed. This process
is calledrecombination In humans, there is typically an average of about one crossover event per
donated chromosome.

If we are following a single genetic locus, recombination doesn’'t matter unless there is a
crossover point within the genetic locus. This is a rare event, since genes are generally much shorter
than chromosomes, but it does happen. Crossover betWesmdY chromosomes in humans can
occur is rare in regions containing genetic loci. Otherwise, there would be genes that would occur
on bothX andY chromosomes, which is rare except for genetic accidents.

1.2. Population Genetics

opulation genetics is the study of the frequencies of alleles in populations and how they change
over time or space. Three important effects that exert an influence on allele frequencies at a
genetic locus are

(i) Selection (2.1)
(i) Mutation
(i) Genetic drift

Selectionsometimes calle®arwinian selectiohrefers to changes in allele frequencies due to
the effects of the gene on its host. Examples would be effects lowering or increasing the death rate
of individuals carrying the gene, or lowering or increasing the number of its surviving offspring.

A gene undergoesutationif it physically changes to another allele, as a result of an accident
in replication during conception or some other cause.

Genetic driftis the result of probabilistic effects due to Mendelism or to the chance effects of
mating and survival in a small population. A carrier of a particular allele may leave no surviving
offspring for reasons which have nothing to do with that allele, for example accidental death. In
general, the number of the surviving offspring of an individual can be thought of as a random
variable, with a mean given by selection, but with still a positive probability of being zero. An allele
that has a selective advantage over others may still be lost from the population due to random effects.

TheWright-Fishermodel is an attempt to model these and similar effects. The Wright-Fisher
model for dioecious populations assumes that the population is rigidly hé\d atales landN,
females over many generations. At the beginning of each generation, the population undergoes
random matingas defined below) to produce a large number offspring. Of théseyales andV,
females are chosen at random to to adulthood and replace the parents.

By “random mating” we mean the following. For each offspring, all possible male-female pairs
are equally likely to be the parents, with the choices being independent for different offspring. This
can be described by saying that the children choose their parents independently and at random.

The standard Wright-Fisher model assumes that the population is monoecious and that any
parent can act as either mother or father (or both). The population is haldratividuals and, for
each offspring, the parents are chosen independently and at random frévnitiokviduals in the
previous generation. In particular the probability that an offspring is the result of a self-fertilization
is1/N.

At an autosomal locus, there is one maternally-derived gene and one paternally-derived gene
in any offspring. Random mating and Mendelism together in a dioecious population imply that the
maternally-derived gene in an offspring is a copy of a randomly chosen gene from amag,;the
genes in the female adults in the preceding generation, and similarly the paternally-derived gene
is a copy of a randomly chosen gene from #g, genes of the male adults. In the monoecious
or standard version of the Wright-Fisher model, each gene in an offspring is a copy of a randomly
chosen gene from among th& genes of the preceding generation. In particular the two genes in an
offspring (or any other two genes in the new generation) come from the same parent with probability



12— Population GONEEICS e e 5

1/N, and are copies of the same parental gene with probabylityv.

Selection can act either through genotype-dependent variation in the survival rate of juveniles
until sexual maturity (this is calledability selection), or else through differences in the number of
offspring produced as an adult, or both. The second type of selection is fealiéty selection, and
would depend on potential mating pairs rather than individuals. We will restrict ourselves to viability
selection for simplicity, and assume that all surviving juveniles are equally fertile.

1.3. Random mating and the Wright-Fisher model

he ideas in the previous section can be summarized as follows: At birth, genes in individuals
in the new generation can be found by independent sampling from the genes in the adults in

the preceding generation. If the population is dioecious, the genes in each juvenile are found by
independently sampling one gene from the female adults and one gene from the male adults. All
sampling is with replacement.

The allelic types of genes may change ifautat§ during the process of sampling. There may
also beselection which is implemented by biased independent sampling based on the genotypes of
the parents.

The Wright-Fisher model is usually assumed tarimoeciouswith one set ofV adults that can
play the role of either sex. Sampling is still independent, so that (without selection) the probability
that the two parents are the same individudl/i8/.

Random mating is repeated binomial sampling: Note that this model is mathematically equivalent

tothe following: Considerth2N genesinthév adultsinthe parental generation. Then2iégenes

in the N adults in the next generation are found by repeated binomial sampling (with replacement)
from the2 N genes in the parental generation.

Suppose that we are following a single autosomal genetic locus in a monoecious population of
size N with two types of genes, which we will call allel¢ and allelea.

Let Q(n) be the number of genes of typkat the beginning of the'® generation. If there is
no mutation or selection, the, givép(n), the number ofd-genes at birth in the next generation is
probabilistically equivalent to the number of successesirtrials (corresponding t&/ juveniles each
choosing their parents) with probability of success Q(n)/2N at each trial. Mutation is modeled
by assuming that each gene, as it is sampled from the preceding generation, changes to a different
type with some probability between zero and one. For example, if there is a mutationwditerofa
to A and ofv from A to a, then each sampled genedswith probability f (p) = (1 —v)p+u(1 —p).
Selection can be modeled in a similar way (see below).

In general, we assume that the probability that4dagene is sampled for the next generation,
assuming that the current proportion Afgenes i, is given by f(p). If there is no selection or
mutation (that is, pure random mating), thép) = p.

Symbolically, we can write the distribution 6f(n + 1) in the next generation as

{Q(n+1) | Q(n)=k} ~ B(2N, f(k/2N)) (3.1)

where 1" means “given”,B(2N, p) denotes a binomial distribution based¥ trials and probability
of succesg for reach trial, and<’ means “has the same distribution as”. This is equivalent to saying

Pr(Qn+1) = | Q(n) = k) = (2jv )f(k/m)f‘(l = f(k/2N)

2N —j

forj =0,1,2,...,2N. In particular

E(Q(n+1)|Q(n) =k) =2Nf(k/2N) (3.2)
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The Wright-Fisher model can be refined in many different ways. If more than one genetic locus is
being followed, the chromosomes of the juveniles are determined by random sampling of recombined
chromosomes from the preceding generation. If the adults in the preceding generation are more likely
to mate with individuals of the same genotype as themselves (this is eabedtative mating this

can be modeled as a correlated choice for the two genes within each new offspring.

The Probability of Fixation: In the simplest case, the model has genetic drift only; i.e.

{Qin+1) | Q(n)} = B(?N, %g:?) (3.3)

The proces$Q(n)} is a Markov chain with finite state spa@gl, . .., 2N. The state§ and2N are
traps, since, without mutation, if either allele is lost from the population then it is lost forever. The
Markov chain is irreducible except for these two traps. By basic results from Markov chain theory,
this means that eventualfy)(n)} ends up at eithey or 2V, which means that eventually either the
allele A or the allelea is lost. It is traditional to say that the population is tHewd at the allele
which is now uniform at that locus.

Let's see if we can calculate the probability that the Wright-Fisher model is eventually trapped
(fixed) at A. By (3.2), givenQ(n) = k, the mean of the binomial variabl®(n + 1) is
2Np = 2N(k/2N) = k, as should be expected from the absence of selection and mutation. Then
E(Q(n)) = E(Q(n—1)) = ... = Q(0) by induction for alln. Note that

lim Q(n)/2N =1

n—oo

if the population eventually fixes at, andlim,,_.., Q(n)/2N = 0 if the population fixes at.
Thus

Prob(Population is eventually all’s) (3.4)
= B(lim Q(n)/2N) = lm_E(Q(n)/2N) = Q(0)/2N

In other words, i{Q(0) = k, the probability that the population fixes Atis equal tok /2N, which is

the same as the initial frequency ratio4fn the population. It can also be shown thatpas- oo,

the population fixes at the descendents of exactly one of the genes in the populationrattite

with each of the initial genes being equally likely to be chosen. This also implies that the probability
of fixation atA is equal tok/2N.

The Time to Fixation: Now let’s see if we can estimate approximately how long the population
takes to fix at one of the two alleles. Let

I(n) = Pr(Two randomly chosen genes in generatioare identica)

The expressiot(n) is also called thénbreeding coefficienat timen. Letp,, = Q(n)/2N be the
proportion of the alleled in then'® generation. Theil (n) = 1 — I(n) is the probability that two
randomly chosen genes will be of different types. Note that we can write

H(n) = E(Qpn(l_pn)) (3.5)

since, if D is the event that the two genes chosen are of different types,
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2N
> P(D andp, = k/2N)
k=0
2N
> P(D | pn =k/2N) P(p, = k/2N)
k=0
2N
3" 2(k/2N)(1 — (k/2N))P(p, = k/2N)
k=0
= E(2pn(1 _pn)>

The functionH (n) in (3.5) is called thg@robability of heterozygosityT his term comes from the fact
that, by the properties of random mating, it is also the probability that a randomly chosen individual
is heterozygous (that isja, as opposed td A or aa).

The two randomly chosen genes in generation 1 came from the same parental gene in
generatiom with probability1 /2N, and sampled two different randomly chosen genes in generation
n with probability1 — 1/2N. This implies the equation

I(n+1) = 1/2N + (1 —1/2N)I(n) (3.6)

)
<
I
g
5
I

SinceH(n) =1—1I(n)
H(n+1) = (1-1/2N)H(n)
and
H(n) = 1-1/2N)H(n—-1) = ...
= (1-1/2N)"H(0) ~ exp(—n/2N)H(0) (3.7)
if N is large. This suggests that the population begins to fix at arau®N generations, in the
sense thall (n) is close toH (0) if n/2N is small and close to zeroiif/2N is large. More precisely,
we can say that = 2N is therelaxation timeof H(n) for large N. This means that = 2N is the
additional time required foH (n) to decrease by a factor ef
Equation (3.7) does not address the question of whether the population fixes at eitteoall
all as. LetTy N be the number of generations until the population is fixed at either a. Then
Tony > nifand only if 0 < p, < 1, so thatP(Toy > n) = P(0 < p, < 1). Sincep,, = k/2N
wherek is an integer, we have that, (1 — p,) > (1/2N)(1 — (1/2N)) if 0 < p, < 1. (Exercise:
Prove this.) This implies

(2N +2)pn(1 —pn) > (1+2?V> (1—2}) =1+ (2;{ <1—;])> >1

if N >1and0 < p, < 1. Similarlyp,,(1 —p,) < 1if 0 < p,, < 1. Thus by (3.5)
H(n) <2P(0 < p, <1) < (2N +2)H(n) < (2N +2)(1 — 1/2N)" (3.8)
sinceH (0) < 1. This implies the approximate inequality
P(Ton >n) = P(O<p, <1) < (N+1)exp(—n/2N)

This impliesP(Tay > n) < 1/2N for n > 4N log(2N), which is only a slightly slower rate of
fixation than2 V. However, a stronger result can be proven. B&ty be the number of generations
until a population that begins with every gene a different type fixes at one @fNhypes. Then it
can be shown that

P(Way >n) < 3(1- %)" (3.9)

for all n and N (Kingman 1980, Appendix Il, pp63—66). Thus the time to fixation is of the order of
2N generations.
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Comments about real populations: Fixation by random genetic drift can take a very long time for a
population of reasonable size with a long generation time. For example, a random mating population
of 100 individuals with a generation time of 17 years would tak8500 years to fix at any given

locus. However, most biological populations have a large number of loci with deleterious recessive
alleles, so that deleterious effects may show up considerable sooner, and, if population sizes and
generation times are smaller, fixation may happen much faster.

If the population had two sexes—that is, was dioecious rather than monoecious—one has to
distinguish between genes within the same individual and genes in separate individuals in defining
the analog of the recursion (3.6). For example, genes in the same individual have probability zero of
having a common parental gene in the previous generation. (See the next section.)

Offspring distributions in real populations: An unrealistic aspect of random mating (that is, of

the Wright-Fisher model) is that individuals in real populations may have an unusually large number
of offspring for reasons independent of genotype, for example as result of being the first-born in a
litter. In this case, the choices of parents by various offspring would not be independent, since a
parent that fathered (or mothered) one offspring would be more likely to parent others.

Statistically, this would show up as a larger variance in the offspring distribution. If choices of
parents are independent, the number of surviving offspring of an individual is a binomial random
variable, for which the ratio of variance to mean is always less than one. There is evidence that this
ratio in real populations is usually greater than one, with ratios of three or more for fruit flies in one
study (Crow and Morton 1955). Conjecture among some biologists is that, in fact, the female fruit
fly that lays her eggs closest to the light bulb in the experimental cage has a disproportionate number
of surviving offspring.

1.4. Random Mating with Two Sexes

he standard Wright-Fisher model assumes a population with only one sex (that is, monoecious)

such that, in each generation, the probability of selfing (that is, that the same individual is both
mother and father) is exactly/ N. How reasonable are the conclusions for a more realistic model
of mating, for example a dioecious population?

One immediate difference is that, in any population in which selfing is excluded, the two genes
in one individual have probability zero of coming from the same gene or individual in the previous
generation. Thus we must considero differentinbreeding coefficients, one (call It (n)) for a
randomly chosen pair of genes fratifferent individualsin thent" generation and the second (call
it I5(n)) for the two genes imnerandomly chosen individual.

Since individuals of different sexes choose their parents in the same way under random mating,
I, (n) (fortwo individuals) will be the same whether the two individuals are both male, are both female,
or are from different sexes, at least for generations 1. Similarly, I3(n) (for one individual) will
be the same for individuals from either sex (alsorfop 1).

Now assume that the population is held at exadtlymales andV, females in each generation.
Let's derive equations for how the probabiliti€s (n + 1), I>(n + 2)) depends or{I;(n), I>(n))
from the previous generation. First, consider two randomly chosen genes from different individuals
in generatiom + 1. It doesn’t matter whether these are randomly chosen from males only, from
females only, or from the entire population; the recurrencelfén + 1) will be the same. With
probability 1 /4, the two genes came from two male parents, with probahijityfrom two female
parents, and with probability/2 from parents of different sexes. If they came from the same sex
(for example, males), then the (conditional) probability that they came from the same individual is
1/N; and are the same geneli®N; . If they came from different sexes, then they must have come
from different individuals. Similarly/>(n + 1) is the same as the probability that two genes from
different sexes in the previous generation are the same, s@(het 1) = I (n) (if n > 1). This
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leads to the recurrence

Il(n—i— 1) = A—l—BIl(TL) +Clg(n> (41)
where
A = (1/4)(1/2N) + (1/4)(1/2]2) (4.2)

(1/4)(1 = 1/N1) + (1/4)(1 = 1/N2) + (1/2)
= 1— (1/4)(1/N1) = (1/4)(1/N2)
C = A = (1/4)(1/2N1) + (1/4)(1/2N2)

In (4.1), I, (n) on the right-hand side of the equation is for a randomly chosen pair of gene from
different sexefrom the parents, since each individual in a doecious population has two parents, one
of each sex. In contrask; (n + 1) on the left-hand side is for any two individual offspring, whether
two males, two females, one of each sex, or a random pair from the entire population. This means
that I; (n) is the same for two male offspring, for two females, or for one of each sex forl,
assuming that the initial statess= 0. Similarly, Ix(n) for generations: > 1 is the same for the
two genes in one male, in one female, or from a randomized choice from all offspring.

Continuing, we can write (4.1) in matrix notation as

(Re1) = (3) + (7 9)(20) 0
SinceA + B + C = 1in (4.2) and(4.3), we can also write
(1) -() (7))

Let Hi(n) =1 — I;(n) andHy(n) = 1 — I>(n). Then by subtraction

(imnin)) = (7 0) Gon) = (o)
B C

whereM = ( 10

>. Thus by induction

(H2(n+ 1)) =M <H2(1) (44)
This implies that H; (n), Hz2(n)) — 0 at a rate that is determined by the largest eigenvalud of
The characteristic polynomial @ff is

d(N) =det(M =)= (B=)\)(-\)—C =X —-Bx-C
for B, C'in (4.2). The eigenvalues dff are

B ++VB24+4C B —+v/B24+4C
- v @ and = —""— "~ (4.5)

M 2 2

whereB > 0 andC > 0. In particular,hs < 0 and|Xz| < A;. If Ny and N, are large, ther\; is
close to one ands is close to zero.
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It follows from (4.4) that

(g;g:;g) ~ Ci\ (Z;) where M (Z;) =\ (Z;) (4.6)

for someC; > 0. Itis customary to say that a population genetics model with a property like (4.6)
is like the standard Wright-Fisher model, but, in analogy with equation (@ + 1) = (1 —
1/2N)H(n)), has areffective (Wright-Fisher) population size df, instead of N, where N, is
defined by

A =1-1/2N, (4.7)

(More preciselyV. is theinbreedingeffective population size.)

If N1 andN; are large, therB in (4.2) and (4.5) is close to one andandC are small. One
can show that/1 + = = 1 + x/2 + O(=?) for smallz, whereO(z) denotes an arbitrary expression
that is bounded by a constant times(This is called_andau’s bigO notation.) By (4.2),

B=1+0(ky), A=O0(ky), C=O0(ky)

for kx = (1/N1) + (1/Nz). In particular, within terms that a@ (k% ),

VB2 +4+4C = By\/1+4C/B? = B(1+2C/B?)
= B+2C/B = B+2C

Thus

B++vB?+4C B+ B+2C
2 B 2
in the same sense. By the same reasoning,

_ B—-vB*+4C  B-(B+20)
B 2 B 2
It follows that the effective population size for a dioecious population is approximately

1 1 4 4N1No
N~ ——— ~ — = = 4.8
2(1—X\) 2A 1/N1 +1/Ny Ny + N, (48)

AL =

= B+C =1-A+0(k%)

Ao = —C+O(k%)

In particular, if the subpopulations of the two sexes are the same sizeMyite N, = m, then
N, = 4m?/(2m) = 2m = N; + N, and N, is the same as the total population size. However, |
claim that (4.8) is a more reasonable definition of the population size in generaVteaiv; + N-
from the point of view of the random fixation of genes.

For example, assume th&y < N, (thatis, N7 is much smaller thaiV,), as would be the case
for animals in which only a few dominant males have most of the offspring and most males do not
contribute to the next generation. Then

AN, N,

N, ~ ——=
N1+ Ny

and N, is essentially determined by the male population size. This is because, due to the smaller
male population, most random fixation of genes occur in the male population, and fixations in the

much larger female population can essentially be ignored. The factor of 4 in (4.8) corresponds to the
fact that, in the ancestry of a pair of genes, the two ancestral genes will both be in the male population
about 1/4 of the time. Of course, random fixations can still occur in the female population as long as

Ny < oo. This shows up in (4.8) as the fact thist is slightly smaller thad Ny if Ny < Ns.
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Exercise 4.1.Prove (4.6).

1.5. Mutation

utation is an error of replication between a gene in an offspring and the corresponding parental

gene, which could be due to either a change occurring at conception or else a change in a germ
cell while being carried by the parent.

Assume we are following an autosomal locus with two selectively equivalent allélasda,

in a diploid monoecious population held/stindividuals. For each juvenile gene in each generation,
assume that there is a probabilityof a mutation from am: to an A (i.e., of a juvenile receiving
an A in place of an original parental), and a probability of a mutation from am to ana. Let
Q(n) be the number of genes of typkat the beginning of the'" generation. As in Section 3, the
distribution of the frequency ratip,+; = Q(n + 1)/2N givenp,, = Q(n)/2N can be represented
symbolically as
B(2N, f(p))

o (5.1)

{prt1|lpn=p} =
whereB(2N, p) denotes a binomial distribution and
flp) = (A =v)p+u(l—p) (5.2)
=(1l-u—v)p+u
By (5.1), {p.} is a Markov chain with state spac§2N) = {0,1/2N,...,1}. If u,v > 0, the
Markov chain has no traps. Them, } is an irreducible Markov chain o6(2N) and thus has a

stationary distributiop.(2N, dp) on S(2N). Stationarity means that# is a random variable with
distributionu (2N, dp) on Sy that is independent gf,,, then the conditional distribution @f,

{pn+1 |pn = ZN} ~ ZN ~X Pn (53)
is the same ap,,. SinceS(2N) is a subset of the unit interval [0,1], the stationary distribution
w(2N, dp) can be viewed as a probability measure on [0,1].
Let p, be the fixed point off (p) in (5.2); i.e. the solution of

Poo = f(Poo) = (1 —u — V)poo + 1 (5.4)
which isp,, = u/(u + v). For an infinitely large population, that is in the limit 28 — oo,
the frequency ratiog,, in (5.1) become a deterministic sequence with; = f(p.). Then by
subtracting (5.4) from (5.2)
(1—u—v)(pn — Peo)
(1 —u—v)""(po — poo)
In particular,p,, — poo fOr poo = u/(u + v) in (5.4). The time scale of this convergence is of order
n =~ 1/(u + v) with relaxation timen = 1/(u + v) for smallu, v, exactly as in (3.7).

There arex 2N (u + v) mutations on the average in each generation. The mutationurates
for a genetic locus may be in the rante* — 10~%, depending on the organism. Mutation rates
per site can be much smaller, for example ~ 10~'° for fruit flies. The population siz8 N can
be of order103 — 10 for endangered or semi-endangered species ®90° for a local population
of a bacterium likeEscherichia coli In most caseN is large,u, v are small, bu N (u + v) (the
number of mutations per generations) is of order one. Thus it is natural to scale the mutations rates
u, v by the population size, as in

Pni1 — Poo =

o p
U~ o and v oy @s 2N — 0o where «o,5>0 (5.5)

Mutation and genetic drift then act on the same time scale, and so should have about the same strength.
Thus, for large2 N, the stationary distributiop(2.V, dp) for (5.1) should show the effects of both
mutation and genetic drift.
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1.6. Approximating (2NN, dp) for large N

he stationary distribution(2N, dp) of (5.1) can be found explicitly only for small values¥.
However, it turns out that, if the mutation rates are scaled by (5.5), the probability measures
w(2N, dp) converge a8 N — oo to a limiting continuous probability measurg€dp) on [0, 1] that
one can calculate.

Consider stationary probability measurg8 NV, dp) for a sequence of valuésv (k), u(k), v(k))
that satisfy (5.5) fofV (k) — oo ask — oco. By the Helly-Bray theorem, some subsequence of these
measures will have a limiting probability measwi@p) on [0,1]. If the limiting probability measure
p(dp) is the same for all sequence¥ (k), u(k), v(k)) (thatis, if(dp) is unique), then the sequence
w(2N, dp) will itself converges tqu(dp).

The limiting probability measurg(dp) will turn out to be a continous measure in this case;
specifically,.(dp) = f(p)dp for some functionf(p). This means that the probability distribution
of the proportiorp of genes of typed for large NV will be approximately:(dp) = f(p)dp. The next
step will be to derive an equation f@(p).

Let Z be arandom variable with distributiQr{2 N, dp). Then, by (5.3), ify(p) is an arbitrary
three-times continuously differentiable function on [0,1],

E(E(g(anrl) |pn ~ ZN)) - E(g(ZN)) =0 (61)
= /0 E(g(pnt1) — 9(pn) | Pn = p) u(2N, dp)

It follows from (5.1), (5.2), (5.5), and the identify(X?) = Var(X) + E(X)? thatasN — oo (or
k — o0)
2N E( pny1—p |pn=p) = 2N(f(p) —p)
— m(p) = a—(a+P)p

2N E((pns1 — )2 | pn =p) = f(0)(1 = () +2N(f(p) — p))
— a(p) =p(1-p), and

2N E(|pny1 —pP® |pn=p) — 0 (6.2)

uniformly in p as2N — oo. If we expandy(p) in the identity (6.1) in a four-term Taylor expansion
aboutp and apply (6.2), we conclude

2N/ 9(Pnt1) — 9(Pn) | Pn = p) H(2N, dp)

[ (o) ®) + mo o)) wtar) =0 (63)

Equation (6.3) holds for all functiongp) on [0,1] that are three times continuously differentiable.
The integration by parts formula

1 1 1 P
/O ¢ @)mp)udp) = ¢'(1) / m(z)pu(dz) — / J'(v) / m(x)u(dr)dp  (6.4)

holds for arbitrary measurgs(dp) on [0,1], providing that the integrals in (6.4) are over closed
intervals to allow for possible atoms pfdp) at the endpoints. Substituting (6.4) in (6.3),

/019/( )(1/2(1 w(dp) — / m(x)pu(de dp) + 4'( / m(z)p(dr) = (6.5)
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The substitutiony(p) = fpl(y —p)f(y)dy yields

/0 £(p) (dp) =0

for arbitrary smooth functiong(p) on [0,1] where

w(dp) = ha(p)u(dp) — / " (@) u(de) dp

is the measure in the first integral in (6.5). Since this holds for all smooth functions on [0,1], the
measure:(dp) = 0. After dividing by !/2a(p), the measure

w(dp) = fp)dp  for f(p)=£ /Opmmu(dx)

for a(p) andm(p) in (6.2) 0 < = < 1). Similarly

9 [P
o) /0 m(x)f(z)dx

ﬂm=a@

and hencef (x) is a solution of the differential equation

/

Yo(a(p)f(p)) —m(p)f(p) =0

again fora(p) andm(p) in (6.2). If we solve this equation fof(p) with the constant of integration
determined bﬂol wu(dp) = fol f(p)dp = 1, we conclude

I'(20+425)

Fearay ? 7 (6.6)

flp) =

wherel'(a) = [;° 2*~'e~* dx is the gamma function.

The density in (6.6) is called the beta distribution with parametaerand25. We have now
shown that any limiting distribution gf(2N (k), dp) as2N (k) — oo with u(k), v(k) subjectto (5.5)
must be the beta distribution (6.6). Hence, by uniqueness, the full sequé2Wedp) converges
weakly to the beta distribution (6.6).

Examples: (i) If o, 3 = 2Nu,2Nv <« 1 and2N is large, the beta density (6.6) (aagposteriori
the stationary distributiop (2N, dp) for large N) is concentrated near the endpoints. In that case
the frequency,, of the alleleA is most likely to be close to either zero or one—i.e., the population
spends most of its time essentially fixed at either one allele or the other (but not always the same
allele). In general
1

. «

tm Epa) = [ ph)p = (6.7
by (6.6), where the limit is taken as— oo and thenV — oco. This suggests that, for largeand NV,
the population will be nearly fixed fad with probability /(o + ) and nearly fixed for with
probability 3/ (a + ).

(i) If 2Nw,2Nv > 1 and2N is large, most of the time is spent near = u/(u + v). Note

that this is also consistent with (6.7).
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Migration and Mutation: The results in this section can be viewed in another way. Suppose we
have an island which is situated between two mainlands. One mainland is fixed at thel atlete
other is fixed at.. Juveniles from both mainlands migrate to the island in sufficient number so that
fractionsu, v of the total number of juveniles on the island are migrants from the two mainlands
respectively. In each generation, a totaldf haploid juveniles survive to become adults.

These represent a random choice from the juveniles which are present at the beginning of the
generation. Assume for definiteness that the frequency of genes ofitgbé¢he beginning of the
n*h generation i. Then the total number od-genes at the beginning of the next generation is a
binomial variable based dw trials with probability of succesd — u — v)p + u, which is exactly
the same as (5.2). Thus this kind of migration is mathematically equivalent to mutation.

Thus, ifu, v satisfy (5.5) an@N is large, the frequency of the subpopulation of the island which
originally came from the first mainland randomly varies and has the beta distribution (6.6). Note
that (5.5) implies that, on the averages 2N juvenile immigrants from the first mainland survive
to adulthood, an@ ~ 2Nv from the second. Thus, no matter how lagj¥€ is, a few surviving
immigrants per generation keep the island population from fixing at one allele or the other. If we had
two islands rather than one island and two mainlands, this would suggest

General Principle. The exchange of one or two migrants per generation is enough to keep the
genetic structure of two random-mating populations from becoming quite different by genetic drift.

Exercise 6.1. Prove the relations (6.2). (The third relation is the hardest.)

Exercise 6.2. Verify the integration by parts formula (6.4).

1.7. The Method of Diffusion Approximation

Another way of viewing the Kolmogorov relations (6.2) is that they relate the Markov ghain
with adiffusion processX; for ¢t ~ n/2N whoseinfinitesimal generatois

Lx g(p) = Y2a(p) " (p) +m(p) ¢’ (p) (7.1)

There is a general theory about diffusion processes of this type. In this case, the diffusion ocess
with generatorl x can be shown to have the beta distribution (6.6) as its stationary distribution.
Quantities such as the expected time to fixation of one allele in the absence of mutation, or the
relative probabilities of fixation as a function of the initial frequency, can also be approximated by
the limiting diffusion process. This is called the methodddfusion approximatior(of Markov
chains), and is widely used in population genetics and in applied mathematics generally.

The argument from (6.3)—(6.6) is a special case of a more general procedure. If the relation
(6.3)

| (01" @) + miwg ) ) = 0 (72)

holds for all smooth functiong(p) that vanish near the endpoints, then the meag(ig) is said to
be aweak solutiorof the equation

u(dp) =0 where (7.3)
Lih(p) = Ya(alp)h(p))” = (m(p)h(p))’

Note that if we did have(dp) = h(p) dp whereh(p) was smooth, then (7.2) and integration by parts
would imply

/0 o(p) Lxh(p) dp =0
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for all smoothg(p), which would imply L% h(x) = 0.

If a(p) andm(p) are smooth, theieyl’'s Lemmastates that all weak solutions of (7.3) are
in fact of the formu(dp) = h(p)dp whereh(p) is a smooth solution of%h(p) = 0 (see e.g.
McKean 1969, p85). (In fact, Weyl's Lemma holds in an arbitrary number of dimensions.) In our
case, (7.2) holds for all smooth functions on [0,1], which allowed us to eliminate one of the constants
of integration in (7.3).

1.8. Selection and the Hardy-Weinberg Law

C onsider an autosomal genetic locus with two allefes in a population which is held av;

males andV, females. Darwinian selection means that the population proportion of an allele
in the adults of the next generation can depend on the effects of that allele on the individuals which
carry it.

This can be modeled in the Wright-Fisher model by assuming that genes in offspring are found by
biased independent random sampling from genes in the parental generation, where the bias depends
on the genotypes at birth in the parental generation. plLetAA), p(z, Aa), andp(z, aa) be the
population proportions of the genotypdsi, Aa, andaa at birth in the two sexes, where= ‘m’
or ‘ f’ for ‘mother’ or ‘father’. In general, thdithnessof a gene or genotype is the relative number
of surviving offspring in the next generation that are descendents of that gene or genotype. In this
context, we implement selection by definifiness constanta(AA), w(Aa), andw(aa) for the
three genotypes and assume that a particular juvenile has a mother ol fypath probability
w(AA)p(m, AA)/C(m), where

C(m) = w(AA)p(m, AA) + w(Aa)p(m, Aa) + w(aa)p(m, aa)

isanormalizing constant. (For simplicity, we assume thatthe fitness constahts), w(Aa), w(aa)
do not depend on sex.)

If the mother isAa, the probability that the maternally-derived gene for that juvenilé¢is 1/2
by Mendelism. In general, lein(z, G) be the probability that the-derived gene in a newborn s,
whereG = A ora. Then

pn(m, A) = (w(AA)p(m, AA) + LYow(Aa)p(m, Aa))/C(m) (8.1)

We assume that the choices of the two parents are independent. This amounts to assuming that
selection acts on potential parents individually rather than as mating pairs, as well as a lack of mating
preferences that depend on genotype. In particular, this model would apply to both viability and
fertility selection, as long as either type of selection depends on individual parents and not on mating
pairs.

Since a juvenile genotype has a maternally-derived gene and a paternally-derived gene, the
probability distribution of the genotypes of newborns of either sex is then

pn(AA) = pn(m, A)pn(f, A) (8.2)
pn(Aa) = pn(m, A)pn(f,a) + pn(m, a)pn(f, A)
pn(aa) = pn(m,a) pn(f,a)

If the frequencies of the parental genotypes are independent of sex, then by (8.1)
pn(AA) = pn(A)?

pn(Aa) =2pn(A)qn(A),  qn(A) =1-pn(A),
pn(aa) =  qn(A)?

(8.3)

~
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wherepn(A) = pn(f, A) = pn(m, A) andgn(A) = pn(f,a) = pn(m,a). The relations (8.3) are
known as thédardy-Weinberdaw.

If pn(m, A) # pn(f, A), then (8.3) has no obvious meaning since it is not clear whéat)
might mean if the sexes have different population sizes. In general, we say that genotype frequencies
pn(AA), pn(Aa), pn(aa) are inHardy-Weinberg proportion

pn(AA) = r? (8.4)
pn(Aa) = 2rs
pn(aa) = s>

for numbers-, s > 0. It follows from (8.4) that
pn(AA) +pn(Aa) +pn(aa) =1 =1 +2rs + s> = (r+s)* =1

so thatr + s = 1. Thenr = pn(AA) + pn(Aa) by addition in (8.4). However, if (8.4) and

pn(AA) = pn(m, A)pn(f, A) (8.5)
pn(Aa) = pn(m, A)pn(f,a) + pn(m,a)pn(f, A)
pn(aa) = pn(m,a) pn(f,a)

both hold, then one can proye(m, A) = pn(f, A) = r so that the Hardy-Weinberg law (8.3) holds
unambiguously. (See Exercise 8.1 below.)

The Hardy-Weinberg law (8.3) implies that genotype frequencies are a function of gene fre-
guencies, and that one can follow the fate of genes in populations and not worry about the genotypes
that carry them. If the Hardy-Weinberg laws hold for the parental genotype frequencies as well, so
thatp(m, AA) = p(f, AA) = p?, p(m, Aa) = p(f, Aa) = 2p(1 — p) etc. in (8.1), themn(A) in
(8.3) equals

w(AA)p +w(Aa)q
A) = .
pr(d) = p w(AA)p? + w(Aa)2pq + w(aa)g? (86)
whereqg =1 — p.
If the population size is infinite, the probabilitiga(AA),... in (8.2) are the frequencies in
the next generation. Then if the parental genotype frequep€iesAA), ... are independent of

sex, the Hardy-Weinberg law (8.3) holds after one generatiop(zlfAA) etc. do depend on sex,
then by (8.2) they are independent of sex after one generation (assuming sex-independent fitnesses),
and (8.3) holds after two generations.

If the fitnessesv(AA), w(Aa), w(aa) refer to actual parental survival and not to differences in
fertility, note that the Hardy-Weinberg law (8.3) does not hold in general for the parental genotypes at
the mating stage; i.e., after viability selection has been applied. These adult population proportions
are
w(AA)p? w(Aa)2 w(aa
( C)p  p(Aa) = ( C) P4 (aa) = (C)q
These will satisfy the Hardy-Weinberg law (8.3) if and only if the fitnesses are multiplicative functions
of the alleles in the genotype; that is, if

p(AA) =

w(AA) = w(A)?, w(Aa) =w(A)w(a), and w(aa) = w(a)? (8.7)

The case (8.7) is callegknic selectiorms opposed tgenotypic selectian
For finite populations, the offspring probabilitiea(AA), pn(a), etc. are probabilities and
not actual frequencies. The true genotype and gene frequencies among the juvenile population will
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be random variables with these numbers as expected values given the previous generation. Thus
(8.2)—(8.3) will almost never be true for the genotype frequencies themselves. Similarly, although
the genotype frequencies for the different sexes may have the same means given the preceding
generation, they will usually be different.

While this model of viability selection is conceptually simple and easy to work with, it is not
realistic for many situations in which selection occurs. The fitness of an adult may depend not only on
its genotype, but also on the genotypes of the other adults. This would lead to frequency-dependent
fitnesses that depend on the population proportions of genotypes.

Examples:

Altruism: One example of frequency-dependent fitnesses is altruism. Suppose that fithesses depend
on the behavior of pairs of individuals, either of which can help the other. If a helpful individual
links with a non-helpful individual, the fitness of the helpful individual is decreased and that of the
non-helpful individual is increased. However, if both are helpful, the fithess of both individuals

is greatly increased. Suppose that ‘helpfulness’ is governed by a locus with two alleles, where
AA-individuals are always helpfuta-individuals are never helpful, and, for definiteneds;s are
sometimes helpful and sometimes not. Then, if the alleis rare, individuals carrying it will be
selected against, since they will be taken advantage of. However, if genes of tyygecommon,

then AA and Aa individuals will often find valuable liaisons and have a great selective advantage.

Toxic bacteria: A similar example occurs in bacteria. Suppose that one genotype excretes a particu-
lar poison or toxin to which ititself isimmune, but, due to the effort involved in making and defending
against the toxin, is otherwise less fit than normal bacteria. If this genotype is common, this strategy
may succeed. However, if itis rare, there will be a lower level of toxin in the environment. The lower
level of toxin may not cause enough damage to the normal bacteria to compensate for the upkeep in
making the toxin, so that the toxin-producing genotype will be at a net selective disadvantage. (This
is also a kind of altruism.)

In both these examples, geographical distribution may be quite important if genes df &ype
rare. By chance (e.g. genetic drift) the non-normal genotypes may find themselves in the majority in
alocalized area, and take it over. They may then spread throughout the habitat by having a sufficient
frequencyin border areas, and in thisway an allele which is disadvantageous when rare may eventually
dominate the population. As an example, many ecologists feel that new species of animals or plants
cannot arise without geographical effects, essentially because the first representatives of an emerging
species would have too much difficulty finding mates.

Sickle-cell anemia: A final example concerns sickle-cell anemia. Assume that the sickling§iene

is relatively rare in a malarial area. By itself, an individual of ty§& will have a very low fitness.
However, the two parents of the individuals were probably 30 which suggests that a tyfe-
individual has a relatively larger percentage of close relatives who are of the relatively raseype
Thus, if the individual is able to live long enough to have children, and the aunts and uncles of these
children are willing to help look after them, then offspring of typ# individuals may have a much
higher probability of surviving than the offspring &f NV individuals. This may result in a higher
fitness ofS'S individuals than of normalV NV individuals, even though mostS individuals may

be sickly throughout life and die at a relatively young age. All three of these examples show the
difficulty of applying ndve Darwinian arguments to social species.

Exercise 8.1.(i) ShowthatHardy-Weinberg proportion (8.4) is equivalentto the relatigaa)? =
2pn(AA)pn(aa).

(i) Prove that equations (8.4) and (8.5) together imply thatn, A) = pn(f, A) = r and
pn(m,a) = pn(f,a) = s.
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Exercise 8.2. A more general model of selection would allow fitnessds, AA) (z = ‘f’ or ‘m’)
that could depend on the sex of the individual carrying that genotype. Examples would be genes
active in one sex only, for example genes affecting courtship behavior or plumage in males, or genes
affect response to courtship behavior in females. Find the analogs of (8.1)—(8.2).

Using these equations, show that, in general, the Hardy-Weinberg law (8.3) or (8.4) will never
occur for population frequency proportions at birth unless the parental fitnesses are in fact proportional
for both sexes. That s, if

w(m,AA)  w(m,Aa)  w(m,aa)
w(f.AD) ~ w(f.Ad) ~ w(fiaa)  C (8.8)

Exercise 8.3.What happens if the locus is on thé&-chromosome?

() Find the analog of (8.2). (Note that males have haploid genotyipesda!)

(i) Show that, in the absence of selection, (a) the female genotype frequengi¢s!) etc.
may never satisfy the Hardy-Weinberg law (8.4) for anwalthough (b) the deviation from Hardy-
Weinberg proportions converges to zero exponentially fast in the number of generations.

Exercise 8.4. (Part (iii) below is difficult.) Suppose that the-allele is represented by only one gene
in a large monoecious population &f individuals, but that it carries a selective advantage over the
allelea in heterozygote form. (l.ew(A4a) = w > 1, w(aa) = 1.) The number ofA-type genes

in the next generation has a binomial distribution with parameigiven by (8.1). LetN — oo,
keeping the number of genes of tydenitially at one.

Note that in the second and all succeeding generationsi-glpe genes will be carried in
individuals of genotypeda because individuals who both cardys will be too rare to meet. Thus
all matings will be eithera x aa or Aa X aa.

Prove that

() Inthe limitasN — oo, the number of copieX of the A-gene in the second generation has
a Poisson distribution with mean.

(i) If there arer different A genes in a subsequent generation, prove that the number of de-
scendentsyy, Xo, ..., X, of ther different A-genes in the next generation have a joint distribution
for which, in the limitasV — oo, the X1, X, ..., X,. are independent Poisson.

Part (ii) means that numbep(n) of A-genes in thex" generation forms &ranching pro-
cesswith a Poisson offspring distribution. Using the theory of branching processes (Karlin and
Taylor 1975, Athreya and Ney 1972, Crow and Kimura 1970, pp419-423), prove that

(iii) If the relative fithessw = w(Aa) = 1+ s wheres > 0, wherew(aa) = 1, the probability
that this branching processes does not eventually become extinct 2guathin terms of ordes?
for smalls.

Thisis aresultattributed to R. A. Fisher: Specifically, that i a new, selectively advantageous
allele whose heterozygote has relative fitness 1+ s, then the probability that does not become
lost in the first few generations due to genetic drifzés+ O(s?). In fact, one can show more exactly
that the probability i2s — (8/3)s? + (28/9)s® + O(s*) (A. Amei, personal communication).

1.9. Driving Bad Genes Out of a Large Population
s mentioned earlier, one might expect that most severely deleterious genes would be recessive.
However, there do exist dominant deleterious genes in humans, for example the genes that
produce achondroplastic dwarfism, Huntington’s chorea, and certain types of muscular dystrophy.
A model that includes both dominant and recessive deleterious alleles has

w(AA) =w=1-s, w(Aa) =1 — hs, w(aa) =1 (9.1)
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wheres > 0 and the relative fitnesses have been normalized by settijng) = 1. Dominant

deleterious alleles correspondito= 1, and recessives tio = 0. If the fitnesses (9.1) hold for both

sexes in a large population, the genotype frequencies at birth will be in Hardy- Weinberg equilibrium.
Let p,, be the frequency of the deleterious alleleat the beginning of the'" generation. By

(8.6)

) 1 —s(p+ hq)
1 — sp(p + 2hq)

 1—s(h+p(1—h))

= PT T sp(2h 4 p(1— 20))

Pn+1 = f(pn) = (92)

wherep = p, andg = ¢, = 1 — p,,. Thusp, 1 = f(p,) = f**(po), wheref["] denotes the,**
iterate of f(p) in (9.2). If A is dominant (i.eh = 1),

1—s wp

W) =P 0m =) = we—p) + P 93)
If Aisrecessive (i.eh = 0), )
fo) = py __:ppz (94)

In both case$ < f(p) < p < 1for0 < p < 1andp,i1 = f(pn). Hencep, |, andf(p) has no
fixed points in the open interval (0,1). Henge | 0 asn — oo, and the frequency of the deleterious
allele A converges to zero in either case.

Intuitively, the rate at whicly,, — 0 for p,, = f(p,—1) will be influenced by the value gf (0).

Note f/(0) = lim,_.o f(p)/p = 1 — s < 1in (9.3) if Ais dominant andf’(0) = 1 in (9.4) if Ais
recessive. (In factf’(0) = 1 andf”(0) = —2sin (9.4).)

Biologically, a dominant deleterious allele should be lost faster than a deleterious recessive for
the following reason. By the Hardy-Weinberg law (8.3), an allele with frequeneiyl be found in
homozygote form with frequengy and in heterozygote form with frequengyq. Hence rare alleles
will be found mostly in heterozygotes, which have normal fitness for a deleterious recessive. Thus
one would expect that a deleterious recessive would show more long-term resistance to selection than
a dominant.

Theorem 9.1. Assumé) < p < 1, andthalf (p) is a three-times continuously differentiable function
of the unit interval0,1] into itself such that

() F(0) =0, f(1) =1,
(i0< flp)<p<1 for 0<p<1
If 0 < f'(0) =w < 1, then for any fixegh with0 < p < 1,
pn = fP(p) ~ CLw™  forsome C; >0 (9.5)
If f/(0)=1andf"(0)=—-a <0,
pn = fI"(p) ~2/(an)  asn — oo (96)

Corollary 9.1. If A is a deleterious dominant allele as in (9.3), thgn~ C(1 —s)” — 0 ex-
ponentially fast. IfA is deleterious recessive allele as in (94), ~ 1/(sn) — 0 at a slower
rate.

Thus a deleterious dominant will be lost fairly quickly unless it is continually renewed by
mutation, while eliminating a deleterious recessive can take a very long time. Note that there has only
been at most 150 human generations since Classical Greek times, assuming 17 years per generation.
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Proof. The arguments in Theorem 9.1 are standard in the theory of branching processes, but are
fairly easy to obtain. In general, sinpg,1 = f(px),

n—1

logp, = logpo + Y (logpri1 — logpi)
0

n—1

logpo + »_ log (f(px)/pr)
0

To prove (9.5), assumg (0) = w < 1. A three-term Taylor expansion about 0 yields

n—1

log py + Z log(w + 1/2p19f”(91@)) (9.7)
0

log p,

n—1

log po + nlogw + Z log (1 + /2pk f" (01) /w)
0

where0 < 6, < pi. By (ii), pn | pPoo Where f(ps) = poo, SO thatp, | 0. Sincef(0) = 0,
pr+1 = f(pr) = f'(0k)pr by the mean-value theorem, where< 6, < p, and f'(0) = w < 1.
Hencepir1 < wipk < C’w’f+1 for all £ > 1 and sufficiently large”, wherew < w; < 1. In
particular,y~ .~ pr < oo.

Since f”/(9) is bounded by assumption, the last sum in (9.7) is absolutely convergent. This
implies thatlog p,, = nlog(w) + C, wherelim,, ., C,, = Cy converges. This, in turn, implies
prn ~ C3w™ asn — oo for C3 = exp(Ch).

To prove (9.6), assumg(0) = 1 andf”(0) = —a < 0. A four-term Taylor expansion implies

Pnt+1 = f(Pn) =Pn (1 — 1ap, + 1/6f///(9n)p121)
where0 < 6,, < p,,. Theidentityl /(1 — z) = 1 + = + O(2?) implies
1/pn+1 = 1/pn + Yoo + terms of ordep,, (9.8)

Sincep,, — 0, the sum of the last two terms in (9.8) eventually becomes bounded from below, so
that1/p,, > ~n for sufficiently largen. Thusp,, < C/n for someC. Then by (9.8)

’(1/pn+1 - l/pn) - 1/20‘| < C/n (9.9)

By summation in (9.9)
1/p, = lhan + terms of orderlog n

This completes the proof of Theorem 9.1.
Exercise 9.1. The case ointermediate dominands
w(AA) < w(Aa) < w(aa)
or0 < h < 1in(9.2). At what rate is the alleld driven out? If the rate is exponential, what is the

replacement fotw in (9.5)? Could you have guessed it in advance from the fact that rare genes are
found mostly in heterozygotes?
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1.10. Heterozygote Advantage and Selection-Mutation Balance

genetic locus is said to beolymorphicin a population if there are two or more alleles in the
population at that locus. One possible cause would be if heterozygotes were more fit than
homozygotes, as in the sickle-cell anemia example. For definiteness, consider an autosomal locus
with two possible alleles4 anda, and assume the heterozygete is selectively favored over both
homozygotesA A andaa. If we normalize by setting the heterozygote relative fithess equal to one,
we would have
w(AA)=1-s, w(da)=1, w(aa)=1-1 (10.1)

wheres, t > 0. Letp,, be the frequency of thd-allele in then'" generation. Then by (8.6)

(1—s)p® + pq
(1—s)p> +2pg + (1 —t)g?

Pn+1
wherep = p, = 1 — q. Hencep,,+1 = f(p,) = f+1(py) for

flp) = % (10.2)

As beforef(0) = 0 andf(1) = 1, but nowf(p) = p has an additional root

Pcent = t/(S + t)

Simple algebraic computations show

0 <p<peent implies 0<p< f(p) < peent, and (10.3)

Pcent < p <1 |mp||eS Pcent < f(p) < p <1

Moreover
F'(Peent) = R= (s +t—2st)/(s +t—st) < 1

If 0 < pg <1, (10.3) impliesp,, — peent- The same argument as in Theorem 9.1 now implies

Theorem 10.1. Assumep,,+1 = f(pn) for f(p) in (10.2) Thenp,, — peent if 0 < po < 1, and
also
Dn — Deent ~ C2 R" asn — oo, WwhereR <1

Thus, if heterozygotes are most fit and both alleles are initially present, the frequeficpo¥erges
to an intermediate value and neither allele is eliminated from the population. However, at equilibrium
the allele with the fitter homozygote has proportionately the higher frequency.

Since an individual has two loci at a typical autosomal locus, it may be to his advantage to have
one allele that is good during cold weather, for example, and another that is advantageous during
warm weather. This may make the heterozygote selectively more fit than either homozygote. Effects
such as this may be an important cause of polymorphism in nature. Due to its importance, there
are many synonymous terms for heterozygote advantage; two common oogsra@minancend
heterosis A related but not quite identical situation occurs when two separate populations have both
been subject to a great deal of inbreeding. If two individuals, one from each population, are mated,
the offspring are often observed to be healthier than either parent (this is daftedd' vigor"). This
is most likely due to the separate populations fixing at recessive deleterious alleles at different loci,
which then become heterozygote in the offspring.
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A more common source of polymorphism is when a deleterious allele is replenished by mutation
from normal alleles, and so remains in the population in spite of selection. This is saltEdion-
mutation balanceFor definiteness, assume there are two alléleada, whereA is deleterious with
respect taz. Assume that the effect on the frequencyf A of one generation of selection is given
by f(p), where, for examplef (p) is (9.3) or (9.4). Let be the mutation rate per generation fram
to A. Since deleterious alleles are usually rare, mutation froim a will be ignored. Depending on
whether mutation follows selection or selection follows mutation in each generation, the frequency
of A after one generation will be

@) f(uw,p) = flp)+u(l—f(p) = u+ f(p)(1 —u) (10.4)
or (b) f(u,p) = f(p+u(l —p))

In general, mutation occurs either in the germ line or basic reproduction tissue of an individual (and
then would generally not affect the individual otherwise) or occurs in the process of meiosis (the
formation of a sperm or egg cell) or fertilization. If individuals are scored as AA, Aa, or aa at birth,
then mutation during that generation would appear to follow selection, since later germline mutations
within an individual generally do not affect a trait undergoing selection. Titenp) would be given

by (10.4a).

If individuals are scored at sexual maturity instead of at birth, then selection would follow
mutation and (10.4b) would apply, although the genotype frequencies of the individuals would not
be in Hardy-Weinberg equilibrium except in the case of genic selection (that is, unless (8.7) holds).

To make things even more complicated, mutation can also ocaanatic cellsthat is, cells
not in the germ line. These could affect thieenotypdor physical form of an individual but not its
genotype (as determined by its germ line), so that an individual with one (germ-line) genotype might
be subject to the selective effects of a different genotype. A somatic-cell mutation during gestation
might also cause the genotype of an individual to be scored incorrectly at birth. To have a significant
effect, a somatic-cell mutation would have to happen within the first few cell divisions of an embryo,
and might even affect some parts of the body and not others. While somatic-cell mutations in the
first few embryonic cell divisions do occur (and can sometimes lead to tragic situations), they are
rare and will be ignored here.

Generallyu is in the ranga 0—% — 104, with for examples > 0.01. Thus it is usually safe to
assume) < u < s < 1. In the following, subscripts denote partial derivatives, &rd?) means
“up to terms that can be bounded b¥ for small«".

Theorem 10.2. Assumef (u, p) is a three-times continuously differentiable functionob € [0, 1]
such that
()0 < f(u,p) <1, u,p € [0,1], (10.5)
(i) 0 < f(0,p) <p <1, p€(0,1),
(i) f.(0,0) >0
and assume one of the two conditions
@fp0,0)=w=1-s<1 or (10.6)
(b) fp(oao) = 17 fpp(oao) =—a< 0, and
fplu,p) <1 for 0<u<d,0<p<e

for somed > 0, € > 0. Letp,+1 = f(u,p,) forn > 0, where0 < p, < 1. Then, there exists
ug > 0 such thatim,, ., p, = p(u) exists if0 < u < ug, where, if (10.6a) holds,

plu) = (%% + O(u?). (10.7)
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If, instead, (10.6b) holds,

fu(07 0)
Fow(0,0)

+ O(u). (10.8)

Deferring the proof of Theorem 10.2 for the moment, note that (10.5) and (10.6a) hbid if
dominant (i.e. (9.3) with (10.4a) or (10.4b)), and (10.5)-(10.6b) hold i§ recessive (i.e.f(p) is
given by (9.4)). Thus

p(u) = + O(u?) A dom., mut. follows sel. (10.9)

= + O(u?) A dom., sel. follows mut.

\/Z + O(u?) A recessive

where we have abbreviated several key words by their first three letters.

Since we are assuming< s, the deleterious alleld will be rare in either case. The frequency
of Aa individuals will be be approximately twice the values in (10.9), since each individual carries
two genes at that locus (see (8.3)). Heterozygote individuals will be affecter iflominant, while
only homozygotes will be affected H is recessive. Thus the frequency of affectedividualsis
~ 2u/sif Aisdominantang(u)? ~ u/sif Aisrecessive. Since/s < \/u/sif u < s, the allele
A will be much more common (although mostly hidden) in the recessive case.

An intuitive explanation for the first two formulas in (10.9) can be given as follows. Sinise
deleterious A genes are constantly being lost from the population, and daggme must have been
created by mutation at some time in the past. The sdtgénes that were createdyenerations ago
have been exposed to selectiotimes. Sincef(p) ~ wp by (9.3) if A is rare, each generation of
selection will decrease the frequency of these genes by a factar ibinutation follows selection,
the sum of the present frequencies of these genes-isiw + uw? + ... = u/(1 — w) = u/s. If
selection follows mutation, the sumiiso + uvw? + ... + = uw/s.

Note that this argument allows us to estimatends separately. The frequency at birth 4
homozygotes whose parents are unaffected (i.e., botha@rs 2u, since there are two genes that
could mutate. Hence the ratio of the frequencylefs with unaffected parents (that is, the frequency
of Aa’s that are due to fresh mutations) to the frequency of all newblers is ~ 2u/(2u/s) = s.

In particular, ifw = s = 1/, then approximately half of observett's are due to fresh mutations
and about half have inherited thelrgene from their parents.

Proof of Theorem 10.2: For anye > 0, (10.5ii) impliesp — f(u,p) > d > 0forallp € [¢,1 — €]
for0 < u < 6 and som& > 0. Since we can chooge< 1 — py, it follows thatlim sup,, ., . pn < €
if u < §. First, assume (10.6a). Théfy,(u,p)| < ¢ < 1foru <4, p <e, and

|Pnt1 — Pul = [f (U, pn) = f(u, pn—1)] < Ipn — Pa1| <" |p1 — pol

by the mean value theorem. Singe< 1, p, — p(u) where f(u,p(u)) = p(u), and by Taylor's
Theorem

Fu(0,0)u + £,(0,0)p(u) + O(u? + p(u)?) (10.10)

_ fu(0,0)u
= m + O(u2 +p(u)2)

p(u)
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It only remains to prover(u) = O(u). Sinceu < 1, (10.10) impliesp(u) < Au + Bp(u)? for
constantsA, B. If p(u) < e < 1/4B, we concludep(u) < Au/(1 — Bp(u)) < 2Au. Hence
p(u) = O(u) in (10.10) and (10.7) follows.

If, instead, (10.6b) holds,

Pny1 = f(u,pn) = f(u,pn) — f(0,pn) + £(0,pn) (10.11)
= u(£u(0,0) + O(u+pn)) + pn — Yeap: (14 O(py))

In particularp,, > yu > 0 wherey > 0. If u > 0 is assumed fixed and smalf,, (u, p)| < ¢ < 1
by (10.6b) for0 < yu < p < 3¢, wherelimsup,,_, ., p» < €. Hencep,, — p(u) as before, and by
(10.11)

12ap(u)® = ufu(0,0)(1 + O(u +py))

The relation (10.8) follows.

If we had only assumegl,(0,0) = 1 and f,,,(0,0) = —a < 0in (10.6b), we wouldn’t be able
to show convergence dfp,,}. However, (10.11) does imply that (10.8) holds wjth in place of
p(u) for all sufficiently largen, and so (10.8) holds in this sense.

Exercise 10.1.Supposd — s and1l — ¢ in (10.1) are replaced hiy+ s and1 + ¢ respectively, where
s,t > 0. Then the heterozygote is less fit than either homozygote. This situation is called, appropri-
ately enoughheterozygote disadvantagenegative heterosisr sometimes eveanderdominance
Whichever term you prefer, prove that there exists a critical frequengy such that if0 <
po < Perit, thenp,, — 0, whereas ifp...;: < po < 1, thenp,, — 1.
Can you calculate the exponential rates at which these convergences occur, using Theorem 9.1?
Could you have guessed these rates in advance?

1.11. Selection in Finite Populations

C onsider a monoecious populationMfindividuals with two allelesA anda at a particular locus,
with fitnesses

w(AA) =1+s, w(Aa) =1+ hs, w(aa) =1

and mutation rates:a — A andv: A — a per gene per generation. Lgt be the frequency of
A at the beginning of the'® generation. By Section 2, the distribution @f,; givenp,, can be
represented symbolically as

B(2N, f(p))

o (11.1)

{Pnt1 | pn =1} =

whereB(2N, p) denotes a binomial distribution, arfdp) is the probability of sampling ad-gene
in generatiom + 1 if the frequency ofA wasp at the beginning of the'" generation. Letfs(p)
denote the change mdue to selection alone. Then by (9.1)-(9.2)

~ 1+4s(h+p(1—h)
= DT sp(2h+ p(1— 2h))

If frequencies are measured at birth, and if mutation is assumed to act when sperm and eggs are
generated, then mutation appears to follow selection, and in (11.1)

f(p) = (L=v)fs(p) +u(l - fs(p)
(1—u—wv)fs(p)+u (11.2)

fs(p)
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Assume selection, mutation, and genetic drift all have about the same strength. I.e.,

o « 5
~ ~ — ~ 2N — 11.
S N U SN v N as o0 (11.3)

whereq, 8 > 0. As in Section 3{p, } defines a recurrent Markov chain ¢, 1/2N, ... 1} if u,
v > 0. We now try to find the limit of the stationary distributiai{2V, dp) asN — oo. Note

s(h+p(1 = h)) — sp(2h + p(1 — 2h))

felo)=p =p 1+ sp(2h + p(1 — 2))
B B h+p(1—2h)
= s(l-7) 1+ sp(2h + p(1 — 2h))
Thus by (11.2)
2N E( put1—p |pa=p) = 2N(f(p) —p) (11.4)

— m(p) = op(l—p)(h+p(l—2h)) +a—(a+B)p

N E((pus1 =02 [ pn=p) = f(0)(1 = () + 2N (f(p) — p))*
— a(p) =p(1—-p), and

2N E(|pn+1 —pI® |pn=p) — 0

As in (6.1)—(6.6), the stationary distributiQr{2N, dp) converges a8 N — oo to h(p)dp, where
h(p) is a solution of

12(a(p)h(p)" = m(p)h(p) = 0
Substitutingn(p) anda(p) from (11.4)

h(p) _ C«p2a—1(1 _ p)26—1eap(2h+p(1—2h)>

The simplest cask = 1/2 corresponds to the heterozygote having fithess halfway between the two
homozygotes. In that case

h(p) = h(p,a,B,0) = CePp**~ (1 —p)*~! (11.5)

where we writeh(p, «, 3, 0) to emphasize the dependence on those parameters. We can find the
constantC in (11.5) in closed form:

C—l

1
/ eapp2a—1(1 _ p)2ﬁ—1 dp
0

00 n 1 & n
— i n+2a—1 1— 20—-1 dp = L F(2a+n)1—‘(2ﬂ)
Z nl / b (L=p)™dp ; nl T(2a+n+2p)

o0

(20) (n)
2a+26 20: (2a+23)(

= M 1F1(2a; 2a4-20; o) (11.6)

I'(2a+25)
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wherez(™ = z(z+1)...(z+n—1),In(11.6),1 F1 (a; c; ) is called the confluent hypergeometric
function or Kummer’s function (Magnus et al 1966, Chapter VI).

The same argument can be used to find the moments of the limiting distriltigdp in terms
of 1 F1:

1
/0 (1 - p)"h(p, . B, 0) dp

B (20)™)(23)™) | Fy(2a+m; 2a+28+m+n; o)
~ (2a+28)(m+n) 1F1 (20 204205 0)

(11.7)

While confluent hypergeometric functions are not as easy to deal with as trigonometric or exponen-
tial functions, an immense number of identities and asymptotic formulas are known for them. In
particular, by (11.7) and Magnus et al (1966, p289),

! (n)
/pm(l—p)"h(p,mﬁo)dp G (11.8)
0

O—’I’L

Exercise 11.2 shows how (11.8) can be used to find the limiting distribution of the frequency of the
alleleq for largeo.

As mentioned earlier in Section 3, it can be shown that (11.4) implieq{thdtcan be approx-
imated by a continuous-time diffusion proc€ss; } with ¢t ~ n/2N and ‘infinitesimal generator’

Lf(x) = Yha(p)f'(z)+m(p)f ()

Now, assume there is no mutation; ite= v = 0. Then O and 1 are traps f¢p,, }. Similarly, it can
be shown that with probability on&; is trapped for some < oo at either 0 or 1. Let

s(x) = P(X; eventually trapped at | X, = x) (11.9)
If k/2N — x asN — oo, it can be shown

Nlim P(p,, event. trapped al | po = k/2N) = s(x) (11.10)

Moreover,s(z) in (11.9) is the unique solution afs(z) = 0 with s(0) = 0ands(1) = 1. If
a=p=0andh =1/2in (11.4), thenn(p) = 4op(1l — p) anda(p) = p(1 — p). Solving

Ls(x) = 1p(1 —p)(s"(z) +o8'(2))=0
and applying (11.10),

A}im P(population eventually fixes & | po = k/2N)
—00

1 _ 670'13

= s(z) = Ty (11.11)
For example, suppose that the initial frequencydof p, = 0.25, ande = 12. Sincew(AA) =
1+ s =1+ 0/2N, this could be very weak selection2fV is large. By (11.11)$(0.25) ~ 0.950,
and the population will eventually fix a with ~ 95% probability.

As another example, consider the problem of the fate of a new, selectively advantageous gene
in a large population. We would like to takg = X, = 1/2N in (11.11) for fixeds > 0. However,

if s > 0is fixed,oc = 2Ns — oo, while o, a, and are assumed fixed and finite in (11.3)—(11.11).
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Also, pg = 1/2N impliesp, — = = 0 ands(0) = 0, so a literal use of (11.11) would give no
information. While the theory does not exactly apply to what we want, we mighttey 1/2N and
o =2Ns — ooin (11.11) as an approximation and see what happens. By (11.11),

P(population eventually fixes a | initially one copy)
1— 670/2N ~ 1—e$

l—e ~ 1—¢2Ns
The survival probability in (11.12) can be writtent O(s?) = 2hs + O(s?), wherel + hs is the
fitness of heterozygote$a. Recall that it was found by branching process methods in Exercise 8.4
that the probability of survival wags + O(s?), wherel + s was the fitness of heterozygotes. Hence
(11.12) is consistent with Exercise 8.4.

Suppose now that (11.1) holds buyt:, andv are fixed. Suppose further thétp) in (11.2) has

a stable fixed point; i.e.

[f(p) =9l < ¥lp—nl for ¥<1, 0<p<1
(this can usually be weakened |tff(y)| < 1.) If 2N is large,p,, will spend most of its time near
v, since the deterministic forces of selection and mutation are now much stronger than genetic drift.
However, one can still ask for the error in approximatingoy ~, or ask how long it will take fop,,
to vary from a neighborhood of. It turns out that

~ s(1/2N) = ~ s+ 0(s?) (11.12)

where{Y,,} is a sequence of correlated Gaussian random variables. Moreowgr=f~ andc

is any preassigned constapt, will remain within O(y/log 2N/2N) of v for 0 < n < N°¢ with

probabilityl — O(N~¢) (Sawyer 1983). It > 0 is fixed andl'y is the firstn such thap,, is outside
of (y — €,y + ¢€), there exists a constait> 0 (for which an expression is found) such that

Jim Peb=IN < Ty <INy — 1 forall§ >0

(Morrow and Sawyer 1987). Also, {fp,,} has an equilibrium distribution in [0,1], the equilibrium
probability thatp,, is outside(y — €,y + €) is exponentially small as a function 2V (ibid.).

There a large literature of “diffusion approximation” results in continuous time in which de-
terministic forces are asymptotically much stronger than random forces. In these results, the ap-
proximating process is typically a fixed path plus a Gaussian process times a small parameter.
See e.g. Kurtz (1971, 1981), Norman (1975b), Nagylaki (1986), Sawyer (1983), and Morrow and
Sawyer (1987).

Exercise 11.1.Explain in words why it is more likely that the power 6fin (11.8) should depend
onn and notm or n + m.

Exercise 11.2. Arandom variabl&Z = Z(0, \) is said to have gamma distribution with parameters
6 and \ if A

P(Z(6,)) < z) = )\—/ 2% te A dy  forallz >0 (11.13)

I'(0) Jo
In particular E(Z(6,)) = /X andZ(6,\) ~ (1/X)Z(6,1). (The latter means that these two
random variables have the same probability distribution.)
Let p(a) be the limiting equilibrium distribution under (11.3) of the allele Use (11.8) to
prove that
Jim. P(opx(a) <t) = P(Z(28,1) <t) (11.14)

forall¢t > 0, for Z(23,1) as in (11.13). Kint: Write E(p(a)™) in terms of (11.7). Use (11.8)
to show that the moments ef.(a) converge to those of and apply the method of moments to
prove (11.14).)



