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2.1. Introduction

Consider a population that is maintained at2N genes for a large number of generations. Assume
that each gene in each generation has a unique parental gene, the parental gene is equally likely

to be any of the genes in the preceding generation, and the choices of parents for different genes are
independent. Then two genes in the same generation will have the same parent with probability1/2N
and will have different parents with probability1−1/2N . (This is called the standard Wright-Fisher
model.)

In general, a sample ofr genes from the same generation hasr1 ≤ r distinct parents. These
r1 parental genes haver2 ≤ r1 distinct parents in the generation that precedes them. In generalFigure 1.1.
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the original sample hasrn ≤ r distinct ancestors in the
nth generation before the starting generation, wherern ≤
rn−1 ≤ . . . ≤ r2 ≤ r1 ≤ r.

Figure 1.1 illustrates a sample ofr = 5 genes along
with its ancestors for2N = 14. The sample hasr1 = 4
distinct parents, and in an earlier generation hasrm = 4
and rm+1 = 2. If N is large, thenrn+1 = rn most
of the time, since the probability that any pair of genes
has the same parent is1/2N , andrn+1 = rn = r with
probability bounded by(1 − 1/2N)r. However, as long
asN is finite, rn < r for somen will eventually occur
with rn1 < rn1+1 = r for some finiten1 (n1 = 1 in
Figure 1.1). Similarly, ifrn1 > 1, there existsn2 > n1

such thatrn2 < rn2+1 = rn1 . This process continues
until rnk

= 1 for somek. That is, until the sample of
r genes has a unique most-recent common ancestor (or
MRCA).

The pattern of ancestors of a sample ofr genes since their MRCA is called thecoalescent
processof ther genes. Note that this process coalesces going backwards in time, rather than as time
progresses into the future.

2.2. Properties of the Coalescent

We will show below that, in the limit asN → ∞, the coalescent process can be described
statistically in the following way:

(i) Any individual pair of genes had its first common ancestorn ≈ 2Nt generations ago, where
t ≈ n/2N is an exponentially distributed random variable with mean one.

(ii) For a sample ifr genes, lett2N
r be the number of generations until at least one pair from

the sample has a common parent. Then, asN →∞, t2N
r ≈ tr, wheretr is exponentially distributed

with meanE(tr) = 2/r(r − 1).
(iii) In the ancestral pedigree of ther genes, in the limit asN →∞, at most one pair of genes

has a common parent in any one generation. Thus each coalescent step in the coalescent process has
exactly one pair of genes with a common parental gene. The mean times between coalescent steps
are independent exponentially distributed random variablestk with meansE(tk) = 2/(k(k − 1)),
wherek is the number of ancestors just before the branching event (or just after the branching event,
if we looks forwards to the present instead of backwards into the past).

These properties imply that, in the limit as2N →∞, the time since the MRCA ofr genes (in



Coalescents and Neutral Sampling . . . . Chapter 2 . . . . S. Sawyer . . . . . . . . . . . . . . . . . . . . 2

units of2N generations) has expected value

E(Tr) =
r∑

j=2

E(tj) =
r∑

j=2

2
j(j − 1)

= 2
r∑

j=2

(
1

j − 1
− 1

j

)
= 2

(
1− 1

r

)
≤ 2 (2.1)

Thus the expected time since the common ancestor of any set ofr genes is less than4N generations,
no matter how larger is, as long asr is fixed asN →∞.

Note that mutation was not mentioned in this description. Genes have the same allelic type as
the parental gene unless there has been an intervening mutation. If there is no mutation, each gene in
a sample ofr genes has the same allelic type as the MRCA. Note that mutations that are selectively
neutral do not affect the coalescent process. Thus selectively neutral mutation can be analyzed by
assuming that it acts on the coalescent after it is formed. See below for an example of how this can
be used to estimate an inbreeding coefficient in the present.

Before proving (i,ii,iii) above, let’s first discuss some of the consequences of this particular
probability model.

2.3. The Fate of a Parental Gene

Consider the Wright-Fisher model from the point of view of a parental gene. Each offspring
gene in the next generation will have that gene as its parent with probability1/2N . It will

choose another gene to be its parent with probability1−1/2N . Since these choices are independent,
the number of offspringY of a particular parental gene has a Bernoulli distribution based on2N
independent trials with probability of success1/2N for each chose. That is,

P (Y = n) =
(

2N

n

)(
1

2N

)n (
1− 1

2N

)2N−n

(0 ≤ n ≤ 2N) (3.1)

where
(
2N
n

)
= (2N)!/(n!(2N − n)!).

In general, a random variableB has aBernoulli distributionwith parametersM andp (abbre-
viatedB ≈ B(M, p)) if

P
(
B = n

)
=

(
M

n

)
pn(1− p)M−n (0 ≤ n ≤ M) (3.2)

ThusY ≈ B(2N, 1/2N) by (3.1). ThePoisson Limit Theoremfor Bernoulli random variables
B ≈ B(M, p) says that

lim
M→∞, p→0,

Mp→c

P
(
B = n

)
= e−c cn

n!
, (c ≥ 0, n ≥ 0) (3.3)

In general, a random variableV whose distribution is given by the right-hand side of (3.3) is said to
have aPoisson distribution with meanc, or V ≈ Poi(c) for short.

The limit (3.3) is not difficult to obtain: We can rearrange terms in (3.2) to obtain

P (Y = n) =
(Mp)n

n!

(
M(M − 1) . . . (M − n + 1

Mn

)(
1− Mp

M

)M (
1− Mp

M

)−n

(3.4)

AssumeMp = c in (3.3) and letM →∞ for a fixed value ofn. SincelimM→∞
(
1− (c/M)

)M =
e−c, the limit asM → ∞ of the expression in (3.4) isc

n

n! e
−c. The general case of (3.3) is similar.

(Exercise. Prove (3.3) from (3.2) for fixedn. Give all of the details.)
SinceY ≈ B(2N, 1/2N) in (3.1), the number of offspring genes of any parental gene for largeN

is approximately Poisson with mean one (that is,Poi(1)). In particularP (Y = 0) ≈ e−1 = 0.36788.
Thus ifN is large, about 37% of genes in any particular generation will have no survivng offspring
in the next generation.
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The distribution of the offspring of r parents: Let Y1, Y2, . . . , Yr be the numbers of descendents
of r genes in the following generation, whereYi is the number of descendents of theith parental gene.
Each individualYi has the binomial distributionB(2N, 1/(2N)). However, the random variablesYi

are not independent: If theith parent has a huge number of offspring, then the numbers of offspring
of the other parents must be less, since the total number of offspring is constratined to be2N .

Under the assumptions of Section 1, the random variables(Y1, . . . , Yr) together have amulti-
nomial distribution:

P (Y1 = n1, Y2 = n2, . . . , Yr = nr)

=
(

M

n1 n2 . . . nr Mr

)
pn1
1 pn2

2 . . . pnr
r (1− p1 − . . .− pr)Mr (3.5)

whereM = 2N , pi = 1/2N for 1 ≤ i ≤ r, Mr = M − n1 − n2 − . . .− nr, and

(
M

n1 n2 . . . nr Mr

)
=

M !
n1! n2! . . . nr! Mr!

(3.6)

Note the slight difference in notation between thebinomial coefficientsin (3.1) and themultinomial
coefficientsin (3.6): For example

(
7
3

)
=

7!
3! 4!

=
7(6)5
1(2)3

= 35

and (
7

2 3 2

)
=

7!
2! 3! 2!

=
7(6)(5)4
1(2)1(2)

= 210

Thus the binomial coefficient
(
7
3

)
is

(
7

3 4

)
if we write it as in (3.6). The illustration above also suggests

that multinomial coefficients tend to be larger than binomial coefficients.
Now supposeM → ∞ andpi → 0 in (3.5) in such a way thatMpi → ci for 1 ≤ i ≤ r.

Then the limiting distribution of each individualYi has a Poisson distribution (3.3) withc = ci. It
also turns out that, in the limit, the Poisson random variablesYi are independentPoisson random
variables with parametersci. This is the content of the second exercise below.

The distribution of offspring with selection: Darwinian selection is modeled in the Wright-Fisher
model by making the parental genes appear slightly larger (more probable) or smaller (less probable)
in the sampling process that determines the next generation.

Specifically, assignfitnesseswi ≥ 0 (1 ≤ i ≤ 2N ) to the parental genes and assume (without
loss of generality) that ther parental genes are genes corresponding tow1, w2, . . . , wr. The offspring
choose their parents independently as before, but now with probabilitypi = wi/w of selecting the
ith parent forw =

∑2N
i=1 wi > 0 instead ofpi = 1/2N . The joint distribution of the numbers of

descendents of the firstr parents is now the multinomial distribution

P (Y1 = n1, Y2 = n2, . . . , Yr = nr) (3.7)

=
(

M

n1 n2 . . . nr Mr

) (w1

w

)n1
(w2

w

)n2

. . .
(wr

w

)nr
(

wr+1 + . . . + w2N

w

)Mr

If w1 = w2 = . . . = w2N , thenwi/w = pi = 1/2N , and (3.7) reduces to the “selectively neutral”
case (3.5) withpi = 1/2N .
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Exercise 3.1.Prove thatE(X) =
∑∞

0 nP (X = n) = c if X ≈ Poi(c), and thus thatX ≈ Poi(c)
really does have meanc.

Exercise 3.2.Show that, for largeN , the numbers of offspring ofr different parental genes arer
independentPoisson-distributed random variables with mean one, in the absence of selection. (Hint:
Use (3.5) withM = 2N and simplify the factorials.)

Exercise 3.3.Show that the results of the last Exercise are true even with selection. Specifically,
assume that the firstr parental alleles have fitnessesw1, w2, . . . , wr as in (3.7), and that the remaining
genes in the parental generation have fitnesseswj = 1 for r + 1 ≤ j ≤ 2N . Prove that, asN →∞,
the limiting variablesYi in (3.7) are independent Poisson random variables with meansµi for some
choice of constantsµ1, . . . , µr.

What are theµi? Are they same as you expected from (3.7)? Why?

Remarks. The last two exercises shows that the number of descendents over time of an initial
parental gene forms abranching processwith offspring distributionPoi(µ1).

Recall that two random variablesX andY are independent if

Pr(X = a, Y = b) = Pr(X = a) Pr(Y = b)

for all values ofa andb, andr random variablesX1, X2, . . . , Xr are independent if

Pr(X1 = i1, X2 = i2, . . . , Xr = ir)

= Pr(X1 = i1) Pr(X2 = i2) . . . Pr(Xr = ir)

for all choices of integersij ≥ 0.

2.4. Proofs of Coalescent Results

Akey mathematical step in the derivation of the properties of the coalescent will be

Lemma 4.1. For any constantc

lim
N→∞

n/2N→t

(
1− c

2N
+ O

(
1

N2

))n

= e−ct, 0 ≤ t < ∞ (4.1)

The expressionO(1/N2) in (4.1) is a example of a useful notation due to a mathematician
named Landau. In Landau’s notation,O

(
f(N)

)
means any mathematical expression which can be

written
A(N)f(N) (4.2)

whereA(N) is bounded; i.e., such that there exists a constantΩ such that|A(N)| ≤ Ω for all N ≥ 1.
(If we were concerned about limits asN → 0, this would be a bounded with|A(n) ≤ Ω for N ≤ 1.)

The implicit functionA(N) in O
(
f(N)

)
need not be the same in successive uses ofO

(
f(N)

)
.

Thus
O(1/N) + O(1/N) = O(1/N)

O(1/N) + O(1/N2) = O(1/N)

3 O(1/N) = O(1/N)

(1 − 2/N)(1 + 5/N) = 1 + 3/N + O(1/N2)

(4.3)

are all correct. In the first three relations a new implicit bounded functionA(N) for the “O” on the
right-hand side of (4.3) can be found in terms of the implicit functionsA(N) on the left-hand side.
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The last equation follows from the identity(1− 2x)(1 + 5x) = 1 + 3x− 10x2 for x = 1/N , so that
A(N) = 10 in this case.

When Landau’s notation is used, the range ofN for which A(N) is bounded is understood
(N ≥ 1 in (4.1)). For example, by Taylor’s theorem

log(1− x) = −x + O(x2) (4.4)

for small enoughx. The functionA(x) = O(x2)/x2 in (4.4) is

A(x) = (log(1− x) + x)/x2

Thenlimx→0 A(x) = 1/2, so thatA(x) is bounded forx ≤ 0.50, butA(x) is unbounded asx ↑ 1.
Thus the implicitA(x) in (4.4) is bounded only for|x| ≤ c < 1, where the implicit bound depends
on c.

Proof of Lemma 4.1. Take the logarithm of the left-hand side of (4.1) and apply (4.4). Ifx =
c/2N +O(1/N2) in (4.1), thenx2 = (c/2N +O(1/N2))2 = (c/2N)2(1+O(1/N))2 = O(1/N2)
as in (4.2). Hence in (4.4)−x + O(x2) = −c/2N + O(1/N2) + O(1/N2) = −c/2N + O(1/N2),
whereN is assumed to be sufficiently large so that|x| ≤ c < 1. The logarithm of the left-hand side
of (4.1) then equals

n log
(

1− c

2N
+ O

(
1

N2

))
(4.5)

= n

(
− c

2N
+ O

(
1

N2

))
= −c

n

2N
+ O

(
n

N

1
N

)

=
n

2N

(
−c + O

(
1
N

))
→ −ct asn/2N → t

by (4.4). Taking exponentials in (4.5) implies (4.1).

Our first asymptotic result for coalescents is as follows. As before, given a sample ofr genes,
let t2N

r be the number of generations into the past until at least one pair of genes has a common
parent, or equivalently until the ancestors of ther genes have fewer thanr parents. Thust2N

r > 1 if
and only if the initialr genes haver distinct parents. The asymptotic distribution oft2N

r for largeN
is given by

Lemma 4.2. If t2N
r is as above, then for allt ≥ 0

lim
N→∞

Pr
(

t2N
r

2N
> t

)
= e−

r(r−1)
2 t (4.6)

Proof. By definition

Pr(t2N
r > n) = P (r genes haver distinct parents for

at least the pastn generations)

= Pr(t2N
r > 1)n

(4.7)

since the consecutive sampling events that determine the parents are independent overn generations.
Let ther genes in the present generation be labeled as#1, #2, . . . , #r. Then

Pr(t2N
r > 1) = Pr(#1 chooses parentR1

#2 ” ” R2 6= R1

#3 ” ” R3 6= R1, R2

· · · · · · · · ·
#r ” ” Rr 6= R1, . . . , Rr−1)

=
(

1− 1
2N

)(
1− 2

2N

)
· · ·

(
1− r − 1

2N

)
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since the choices of parents are independent and (for example) gene #r’s choice of parent must avoid
the parents of genes #1 through #r− 1. The product of ther− 1 factors above can be expanded into
a sum of2r−1 terms, which can be written

Pr(t2N
r > 1) = 1−

(
r−1∑

i=1

i

)
1

2N
+ terms with factors

1
N2

,
1

N3
, . . .

= 1− r(r − 1)
2

1
2N

+ O

(
1

N2

)
(4.8)

where the implicit functionA(N) in O(1/N2) depends onr. This is because the sum of the last
2r−1− r terms in (4.8) is1/N2 times a sum which is bounded forN ≥ 1 by a constant that depends
on r. Hence by (4.7), ift = t(n) ∼ n/(2N),

Pr
(

t2N
r

2N
> t

)
≈ Pr(t2N

r > n) =
(

1− r(r − 1)
2

1
2N

+ O

(
1

N2

))n

and by Lemma 4.1

lim
N→∞

Pr
(

t2N
r

2N
> t

)
= e−

r(r−1)
2 t (4.9)

which completes the proof of Lemma 4.2.

Remarks. (1) A random variableX has anexponential distribution with meanλ (abbreviated
X ≈ Exp(λ)) if λ > 0 and

P (X ≥ t) = e−t/λ for 0 ≤ t < ∞ (4.10)

If X ≈ Exp(λ), thenP (X ≥ t) = e−t/λ = P (X1 ≥ t/λ) whereX1 ≈ Exp(1), sincePr(X1 ≥
t) = e−t. ThusX ≈ λX1 whereX1 ≈ Exp(1) sinceP (X ≥ t) ≡ P (λX1 ≥ t) = exp(−t/λ)
for t ≥ 0. Equation (4.9) says thatt2N

r /2N has a limiting exponential distribution with mean
λ = 2/r(r − 1), or, equivalently,

t2N
r

2N
≈ 2

r(r − 1)
X1 for largeN , whereP (X1 ≥ t) ≡ e−t (4.11)

In (4.11), “≈” is used in both the senses of “approximately” (for largeN ) and “has the same probability
distribution as”.

Exercise 4.1. If P (X > t) =
∫∞

t
f(x) dx is differentiable, then theexpected valueof X is

E(X) =
∫ ∞

0

xf(x) dx =
∫ ∞

0

x

(
− d

dx
P (X > x)

)
dx

Prove thatE(Y ) = λ if Y ≈ Exp(λ), so that the random variableY ≈ Exp(λ) really does have
meanλ.

Remarks. (2) The limit (4.9) can also be obtained from the Poisson Limit Theorem (3.3). Consider
the process of Lemma 4.2 going backwards in time, where a coalescent event (i.e., some pair of
ancestral genes has a common parent) is considered a “success”. Until the first “success” occurs,



2.4— Proofs of Coalescent Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

ther′ = r parental genes in the previous generation are distinct genes chosen at random from that
generation, so that the probability of success remains the same. Then

Pr(t2N
r > n) = P (0 “successes” inn generations) (4.12)

for a Bernoulli trial withM = n trials and probability of failureq given by (4.8) (so that the probability
of success isp = 1− q). As N →∞ andn/2N → t

Mp = np =
r(r − 1)

2
n

2N
+ O

( n

N2

)

=
n

2N

(
r(r − 1)

2
+ O

(
1
N

))
→ c =

r(r − 1)
2

t

and by (3.3) and (4.12)

lim
N→∞

n/2N→t

Pr(t2N
r > n) = P (Poi(c) = 0) = e−c c0

0!
= e−c = e−

r(r−1)
2 t

which is (4.9). The connection between (3.3) and Lemma 4.1 should not be too surprising, since the
most direct proofs of the Poisson Limit Theorem (3.3) depend on something like Lemma 4.1.

Corollary 4.2. Label a sample ofr genes as#1,#2, . . . , #r, and letmij be the number of gen-
erations into the past until the pair#i and#j have a common ancestor. Then for eachi, j with
1 ≤ i < j ≤ r,

lim
N→∞

Pr
(mij

2N
> t

)
= e−t, 0 ≤ t < ∞ (4.13)

Proof. Apply Lemma 4.2 withr = 2.

2.5. “Special Events” and the Regularity of the Coalescent

Assume that a sample ofr genes in the present hasrn distinct ancestorsn generations in the past.
A “special (coalescent) event” occurs in generationn if rn+1 ≤ rn − 2; i.e., if thern genes in

that generation havern − 2 distinct parents or fewer. This can only happen if two or more distinct
pairs of genes each have a single parent, or else if three or more genes have the same parent.

The next result says that these “special events” do not occur at all in the time scalet ≈ n/2N
for largeN . That is, in this time scale, all coalescent events are due to a unique pair in that that
generation having the same parent, with the remaining individuals in that generation having other
distinct parents. Thus, except for an event of small probability, eitherrn+1 = rn or rn+1 = rn − 1
for all n ≤ C(2N).

To show this, let̃nspec be the number of generations into the past until the first special event.
Then

Lemma 5.1. For ñspec as above and allt ≥ 0,

lim
N→∞

Pr
(

ñspec

2N
> t

)
= 1
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Proof. Suppose that a sample ofs genes are labeled#1,#2, . . . , #s. Then

Ps(ñspec = 1) =
s∑

i=2

s∑

j=i+1

Ps( Genes#1, . . . , #i−1 have distinct parents,#i
has the same parent as one of#1, . . . , #i−1,
#i+1, . . . , #j−1 have new distinct parents,
#j has the same parent as one of#1, . . . , #j−1,
no conditions on the parents of#j+1, . . . , #s)

=
s∑

i=2

s∑

j=i+1

(
1− 1

2N

)
· · ·

(
1− i− 1

2N

)
i− 1
2N

(
1− i

2N

)
· · ·

(
1− j − 2

2N

)
j − 2
2N

Hence

Ps(ñspec = 1) ≤ s4

(2N)2
(5.1)

since the first sum above has≤ s2 terms, each of which is bounded bys2/(2N)2. In general
Pr(ñspec > n) ≤ Pr(ñspec > 1)n, since the number of distinct ancestors of ther present genes
decreases in prior generations. Similarly

Pr(ñspec > n) ≥
(

min
1≤s≤r

Ps(ñspec > 1)
)n

=
(

1− max
1≤s≤r

Ps(ñspec = 1)
)n

≥
(

1− r4

(2N)2

)n

by (5.1). Hence

Pr
(

ñspec

2N
> t

)
= Pr(ñspec > n) ≥

(
1− r4

(2N)2

)n

(5.2)

wheren = [2Nt] is the greatest integern ≤ [2Nt] as before. Thus

lim
N→∞

Pr
(

ñspec

2N
> t

)
= 1, 0 ≤ t < ∞

by Lemma 4.1 withc = 0. This completes the proof of Lemma 5.1.

2.6. The Coalescent

The results in the previous sections have a number of interesting consequences.
Assume we haver genes in the present generation. Letnj be the total number of past generations

in which ther genes have exactlyj distinct ancestors (2 ≤ j ≤ r). Note that there is only one ancestor
in all generations before the most recent common ancestor (MRCA) of the sample ofr genes, and
alwaysj ≥ 2 ancestors in any generation strictly between the MRCA and the present. Thus, if the
initial generation is counted innr, the number of generationsGr since the most recent common
ancestor can be written

Gr = nr + nr−1 + nr−2 + · · ·+ n2 (6.1)
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Ignoring “special events”, the random variablesnj are independent and have geometric distributions
by (4.7). Similarly, by Lemma 4.2,nj/2N ≈ tj for largeN , wheretj ≈ Exp(2/(j(j − 1))) is
exponentially distributed with mean2/j(j − 1). Thus asN →∞ the limiting distribution

Gr

2N
≈ Tr = tr + tr−1 + · · ·+ t2 where

tj ≈ Exp
(

2
j(j − 1)

)
≈ 2

j(j − 1)
Xj , Xj ≈ Exp(1)

(6.2)

Lemma 4.2 impliesnj/2N ≈ tj in the sense thatP (nj/2N ≥ t) → P (tj ≥ t) for all t ≥ 0. It
follows from the same proof thatE(nj/2N) → E(tj) for 2 ≤ j ≤ r as well, andE(Gr/2N) →
E(Tr) where

E(Tr) =
r∑

j=2

E(tj) =
r∑

j=2

2
j(j − 1)

E(Xj), Xj ≈ Exp(1)

= 2
r∑

j=2

(
1

j − 1
− 1

j

)
= 2

(
1− 1

r

)
≤ 2

since the sum telescopes andE(Xj) = 1 if Xj ≈ Exp(1). ThusE(Tr) ≤ 2, and the expected
number of generations since the most recent common ancestor of a sample of sizer is E(Gr) ≈
E(2NTr) ≤ 4N for largeN , no matter how larger is.

Exercise 6.1.Assume in the Wright-Fisher model that each gene mutates in each generation with
some probabilityu. Each mutant gene is entirely new to the population and is selectively equivalent
to all preexisting genes, so that mutation does not affect the coalescent.

LetH(2N, u) be the probability that the two genes in a randomly chosen individual are different.
(This is called theprobability of heterozygosity, and is the same as the probability that any two genes in
the population are different. Similarly,I(2N, u) = 1−H(2N, u) is theprobability of homozygosity.)

Prove that

I(2N,u) = 1−H(2N, u) =
∞∑

n=1

(
1− 1

2N

)n−1 1
2N

(1− u)2n (6.3)

Use this identity to prove

lim
N→∞, u→0,

4Nu→θ

H(2N, u) =
θ

1 + θ
(6.4)

As a check, note that this is equivalent to a special case (r = 2) of Theorem 7.1 in Section 7 below,
which will be derived by a different argument.

(Hint: Consider the coalescent pedigree that connects the two genes to their MRCA. Then
I(2N, u) is the probability that no mutations have occurred in any of the links of this pedigree. Sum
over the number of generations since the MRCA.)

2.7. An Inbreeding Coefficient forr Genes

Asume that we are following a genetic locus in which each gene undergoes mutation with probabily
u per gene per generation. Each mutant gene is of a type that is new to the population. Mutant

genes are selectively equivalent to the original genes.
After the population has reached equilibrium in time, letI(r, u, 2N) be the probability that a

sample ofr genes is homogeneous in the sense that there is only one allelic type represented in the
sample. We can use the properties of the coalescent to calculate the limit ofI(r, u, 2N) asN →∞,
u → 0, and4Nu → θ.



Coalescents and Neutral Sampling . . . . Chapter 2 . . . . S. Sawyer . . . . . . . . . . . . . . . . . . . . 10

Theorem 7.1. The probabilityI(r, u, 2N) thatr randomly-chosen genes are identical satisfies

lim
N→∞, u→0,

4Nu→θ

I(r, u, 2N) = I(r, θ) =
(r − 1)!

(θ + 1)(θ + 2) · · · (θ + r − 1)
(7.1)

Proof. In any generationn with rn = j distinct ancestors of ther genes, the coalescent pedigree
hasj pedigree links from the preceding generation (that is, the generation closer to the MRCA). Let
nj be the total number of generations after the MRCA in whichrn = j as in (6.1). The random
coalescent pedigree then has a total ofL =

∑r
j=2 jnj links since the common ancestor.

Mutation occurs independently on theseL links with probabilityu per generation per pedigree
link, with each new allelic type radiating upwards through the pedigree from the link to the present
or until encountering a later mutation. Since every mutant allele is new, the initial sample of sizer
will all be of the same type if and only if there has been no mutations in any of the

∑r
j=2 jnj links.

For fixedu and2N , this has probability

I(r, u, 2N) = E
(
(1− u)

∑r

2
jnj

)
=

n∏

j=2

E
(
(1− u)jnj

)
(7.2)

since thenj are independent random variables. Suppose4Nu → θ ≥ 0 asN →∞. Then by (4.4)

log(1− u)jnj = jnj(−u + O(u2))

= −2Nu
jnj

2N

(
1 + O

(
4Nu

N

))
≈ −1

2
θj tj

wherenj/2N ≈ tj ≈ Exp
(
2/(j(j − 1))

)
as in (6.2).

ThusE
(
(1− u)jnj

) → E
(
e−(1/2)θjtj

)
and

lim
N→∞, u→0,

4Nu→θ

I(r, u, 2N) =
r∏

j=2

E

(
e−

1
2 θjtj

)
, tj ≈ 2

j(j − 1)
Xj (7.3)

for Xj ≈ Exp(1). In particular, the limitI(r, θ) = lim I(r, u, 2N) exists. Since12θjtj ≈ θXj/(j−
1) whereXj are independentExp(1),

I(r, θ) =
r∏

j=2

E
(
e−θXj/(j−1)

)
=

r−1∏

j=1

E
(
e−θXj/j

)
, Xj ≈ Exp(1)

=
r−1∏

j=1

∫ ∞

0

e−θt/je−t dt =
r−1∏

j=1

1
1 + θ/j

=
r−1∏

j=1

j

j + θ

=
(r − 1)!

(θ + 1)(θ + 2) · · · (θ + r − 1)
(7.4)

2.8. The Ewens Sampling Formula

In Chapter 2, we derive the probability ofanyconfiguration ofr genes into allelic types, specifically
the probability that ther genes are composed ofk different mutant types withni genes of theith
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type (1 ≤ i ≤ k,
∑k

i=1 nj = r). Specifically, under the same conditions as in Section 4 (i.e., (7.3)),
this probability is

θk r!
Lr(θ)n1 . . . nk β(1)! . . . β(r)!

(8.1)

HereLr(θ) = θ(θ+1) . . . (θ+r−1) is therth “ascending factorial power” ofθ and (for1 ≤ j ≤ r)
β(j) is the number of allelesi such thatni = j. Thus

r∑

j=1

β(j) = k and
r∑

j=1

jβ(j) =
k∑

i=1

nk = r

This formula is called theEwens Sampling Formula (ESF). Note that (7.4) is a special case. It was
conjectured by Ewens (1972) and proven rigorously by Karlin and MacGregor in the same year
(1972).

The ESF has been used to prove that observed variants in particular genes must have selective
significance, since the observed configuration of genes is inconsistent with the ESF. As any example,
Singh, Lewontin, and Felton (1976) used a method called electrophoresis to examine 146 genes at
a locus controlling a particular enzyme in the fruit flyDrosophila pseudoobscura. They found the
configuration

681 111 81 62 52 37 23 110 (8.2)

The notation in (8.2) means 68 genes of one allelic type, 11 genes of another allelic type, 8 genes of
a third type, two alleles with 6 genes each,. . . , and ten alleles each represented by exactly one gene
in the sample.

Note that the allelic class with 68 genes seems unusually large in comparison with the diversity
of the other 26 alleles. The problem is to decide whether the configuration (8.2) is consistent with
the coalescent with selectively neutral muation, or equivalently with the ESF. This question was
answered in the negative by Watterson (1978a), who derived a statistical test to conclude that (8.2)
was highly inconsistent with neutrality at equilibrium. See Chapter 2 for more discussion of this
example. There has also been some criticism of the use of electrophoresis for this problem.

For a long time, it has been an open problem whether most observed genetic polymorphisms are
due to selective effects or, instead, are the result of a balance between genetic drift and selectively
neutral mutation. One piece of evidence is the fact that many different polymorphic loci in the fruit
fly, Drosophila pseudoobscura, appear to have the same alleles in roughly the same proportions
in populations ranging from central California to Colombia (Dobzhansky and Powell 1975, p551;
Prakash, Lewontin, and Hubby 1969). Under the neutral theory, this could happen only if mutant
alleles for each locus were carried over this entire range before becoming extinct by mutation and
genetic drift. The probability of this happening at several loci appears to be vanishingly small, but
depends critically on the variance of the migration per generation forDrosophila (Sawyer 1976,
1977; Sawyer and Fleischman 1979).

On the other hand, a genetic study has been made of the Alaskan pink salmon (Oncorhynchus
gorbuscha), which spawns in North American rivers and return from the ocean in exactly two years.
Thus salmon populations in even and odd years should be genetically isolated, and in fact show
genetic divergence at three enzyme loci (Aspinwall 1974). It is hard to see how this could be caused
by selection. This could be viewed as evidence of selective neutrality and genetic drift, but might
conceivably be the result of some extreme environmental effect in a particular even or odd year.


