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2.1. Introduction

onsider a population that is maintaine®at genes for a large number of generations. Assume

that each gene in each generation has a unique parental gene, the parental gene is equally likely
to be any of the genes in the preceding generation, and the choices of parents for different genes are
independent. Thentwo genes in the same generation will have the same parent with prdyatiity
and will have different parents with probability- 1 /2. (This is called the standard Wright-Fisher
model.)

In general, a sample of genes from the same generation has< r distinct parents. These
ry parental genes have < r; distinct parents in the generation that E{Sﬁ?éj‘islt_hem- In general
the original sample has, < r distinct ancestors inthe  pncestors of

b . . . a sample of= 5 genes
nh generation before the starting generation, where

o1 < ...<1rp<r; <r. ‘00& o) o 00000‘
Figure 1.1 illustrates a sample of= 5 genes along

with its ancestors fo2 NV = 14. The sample hag, = 4 \

distinct parents, and in an earlier generationhas= 4 ‘ cooko ofooooo ‘

andr,,+1 = 2. If N is large, thenr,,.1 = r, most
of the time, since the probability that any pair of genes
has the same parentig2N, andr,,.1 = r, = r with
probability bounded byl — 1/2N)". However, as long
asN is finite, r,, < r for somen will eventually occur
with r,,, < r,,41 = r for some finiten; (ny = 1in
Figure 1.1). Similarly, ifr,,, > 1, there existsi; > n, \
such thatr,,, < rp,+1 = r,. This process continues
until r,, = 1 for somek. That is, until the sample of ‘
r genes has a unique most-recent common ancestor (or
MRCA).

The pattern of ancestors of a samplerofenes since their MRCA is called tlo@alescent
procesf ther genes. Note that this process coalesces going backwards in time, rather than as time
progresses into the future.

‘OOO O>§ 0%00000‘

00O OOX<OOOOOOO‘

2.2. Properties of the Coalescent

We will show below that, in the limit agvn — oo, the coalescent process can be described
statistically in the following way:
(i) Any individual pair of genes had its first common ancestee 2Nt generations ago, where
t ~ n/2N is an exponentially distributed random variable with mean one.
(i) For a sample ifr genes, let?" be the number of generations until at least one pair from
the sample has a common parent. Thenyas: oo, t2V ~ t,., wheret,. is exponentially distributed
with meanE(t,.) = 2/r(r — 1).
(iii) Inthe ancestral pedigree of thegenes, in the limit a&v — oo, at most one pair of genes
has a common parent in any one generation. Thus each coalescent step in the coalescent process has
exactly one pair of genes with a common parental gene. The mean times between coalescent steps
are independent exponentially distributed random variahlegth meansE (¢,) = 2/(k(k — 1)),
wherek is the number of ancestors just before the branching event (or just after the branching event,
if we looks forwards to the present instead of backwards into the past).
These properties imply that, in the limit 28/ — oo, the time since the MRCA af genes (in
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units of2N generations) has expected value

r

. 2 . 1 1 1
ET)=) Et)=) ——— =2 — ——)=2(1-=) <2 2.1
m=yrt Yy y (i) 2 (my) =2 e
Thus the expected time since the common ancestor of any seffes is less thahV generations,

no matter how large is, as long as is fixed asN — oc.

Note that mutation was not mentioned in this description. Genes have the same allelic type as
the parental gene unless there has been an intervening mutation. If there is no mutation, each gene in
a sample of- genes has the same allelic type as the MRCA. Note that mutations that are selectively
neutral do not affect the coalescent process. Thus selectively neutral mutation can be analyzed by
assuming that it acts on the coalescent after it is formed. See below for an example of how this can
be used to estimate an inbreeding coefficient in the present.

Before proving (i,ii,iii) above, let’s first discuss some of the consequences of this particular
probability model.

2.3. The Fate of a Parental Gene

C onsider the Wright-Fisher model from the point of view of a parental gene. Each offspring
gene in the next generation will have that gene as its parent with probabifify. It will
choose another gene to be its parent with probaliilityl /2N. Since these choices are independent,
the number of offspring” of a particular parental gene has a Bernoulli distribution base2iNdn
independent trials with probability of succels® N for each chose. That is,

N o T (I

where(*Y) = (2N)!/(n!(2N — n)!).
In general, a random variable has aBernoulli distributionwith parameterd/ andp (abbre-
viated B =~ B(M, p)) if

Pp=n) = (M)ra-p¥ e @<nsa (32)

ThusY ~ B(2N,1/2N) by (3.1). ThePoisson Limit Theorerfor Bernoulli random variables
B =~ B(M,p) says that

M%{EILO. P(B=n) = e “—, (¢c>0,n>0) (3.3)

In general, a random variablé whose distribution is given by the right-hand side of (3.3) is said to

have aPoisson distribution with mea# or V' ~ Poi(c) for short.
The limit (3.3) is not difficult to obtain: We can rearrange terms in (3.2) to obtain

P(Y =n) = (A{ﬁ)” (M(M—l)M.ﬂ(M—n—kl) <1 - Aﬁ?)”f (1 - zﬂwf>” (3.4

AssumeMp = cin (3.3) and letM — oo for a fixed value of. Sincelimp;—, o (1 — (c/M))M =
e~ ¢, the limit asM — oo of the expression in (3.4) i%’e—c. The general case of (3.3) is similar.
(Exercise. Prove (3.3) from (3.2) for fixed. Give all of the details.)

SinceY =~ B(2N,1/2N)in(3.1), the number of offspring genes of any parental gene for Ifrge
is approximately Poisson with mean one (thaPisi(1)). In particularP(Y = 0) ~ e~ = 0.36788.
Thus if NV is large, about 37% of genes in any particular generation will have no survivng offspring
in the next generation.
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The distribution of the offspring of » parents: LetY1, Y, ..., Y, be the numbers of descendents
of r genes in the following generation, whéfgs the number of descendents of iHeparental gene.
Each individualy; has the binomial distributioB (2N, 1/(2N)). However, the random variabl&s
are not independent: If thé" parent has a huge number of offspring, then the numbers of offspring
of the other parents must be less, since the total number of offspring is constratineziNo be

Under the assumptions of Section 1, the random varighlgs . ., Y,.) together have aulti-
nomial distribution

PYi=n1,Yo=mn9,...,Y,. =n,)

M
= iz pt (1 —pp — ... — pp) M 3.5
(nln%__ner)plpz p(1—m pr) (3.5)
whereM =2N,p; =1/2Nfor1 <i<r,M, =M —ny —ng — ... —n,, and
M M!
= (3.6)
nyng ... np M, ni! na! ... n ! M,!

Note the slight difference in notation between bieomial coefficientin (3.1) and thanultinomial
coefficientsn (3.6): For example

N T T(6)5
(3) T34l 1(2)3 5

and
= 210

( 7 ) 7 7(6)55)4

232) ~ 20321~ 1(2)1(2)

Thus the binomial coefficier(t)) is (,",) if we write itas in (3.6). The illustration above also suggests
that multinomial coefficients tend to be larger than binomial coefficients.

Now supposeV — oo andp; — 0in (3.5) in such a way that/p; — ¢; for 1 < i < r.
Then the limiting distribution of each individual; has a Poisson distribution (3.3) with= ¢;. It
also turns out that, in the limit, the Poisson random variableare independenPoisson random
variables with parameters. This is the content of the second exercise below.

The distribution of offspring with selection: Darwinian selection is modeled in the Wright-Fisher
model by making the parental genes appear slightly larger (more probable) or smaller (less probable)
in the sampling process that determines the next generation.

Specifically, assigfitnessesy; > 0 (1 < i < 2N) to the parental genes and assume (without

loss of generality) that theparental genes are genes corresponding tavs, . . . , w... The offspring
choose their parents independently as before, but now with probahilityw; /w of selecting the
2N

i*h parent forw = Y, w; > 0 instead ofp; = 1/2N. The joint distribution of the numbers of
descendents of the firstparents is now the multinomial distribution

P(lenl,Ygan,...,Yr:nr) (37)
_ M (E)m <%)”2 (&)nr Wygr + . wan \
" \ning ... n. M, w w T\ w w
If wy =wy = ... =wan, thenw;/w =p;, = 1/2N, and (3.7) reduces to the “selectively neutral”

case (3.5) wittp; = 1/2N.
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Exercise 3.1.Prove that(X) = > nP(X = n) = cif X ~ Poi(c), and thus thaf' ~ Poi(c)
really does have mean
Exercise 3.2.Show that, for largeV, the numbers of offspring aof different parental genes are
independenPoisson-distributed random variables with mean one, in the absence of selddtidn. (
Use (3.5) withAMf = 2N and simplify the factorials.)
Exercise 3.3.Show that the results of the last Exercise are true even with selection. Specifically,
assume that the firstparental alleles have fithesses ws, . . ., w,- asin (3.7), and that the remaining
genes in the parental generation have fitnegges 1 forr 4+ 1 < j < 2N. Prove that, a&V — oo,
the limiting variablesy; in (3.7) are independent Poisson random variables with meafts some
choice of constants., . . ., i,

What are the.;? Are they same as you expected from (3.7)? Why?

Remarks. The last two exercises shows that the number of descendents over time of an initial
parental gene formslaranching proceswith offspring distributionPoi(s ).
Recall that two random variable$ andY are independent if

Pr(X=a,Y =0) = Pr(X =a)Pr(Y =b)

for all values ofa andb, andr random variable(;, X, ..., X, are independent if
Pr(Xy =iy, Xo =io,..., X, = i,)
= Pr(X; =141) Pr(Xe =42) ... Pr(X, =14,)

for all choices of integers; > 0.

2.4. Proofs of Coalescent Results
A key mathematical step in the derivation of the properties of the coalescent will be
em

ma 4.1. For any constant

: c 1 " —ct

n/2N—t

The expressio(1/N?) in (4.1) is a example of a useful notation due to a mathematician
named Landau. In Landau’s notaticm(f(N)) means any mathematical expression which can be
written

A(N)f(N) (4.2)

whereA(N) is bounded,; i.e., such that there exists a con$tanich thatA(N)| < Qforall N > 1.
(If we were concerned about limits &5 — 0, this would be a bounded witlal (n) < Q for N < 1.)

The implicit functionA(N) in O(f(IN)) need not be the same in successive usey(gf{V)).
Thus

O(1/N) + O(1/N) = O(1/N)
O(1/N) 4+ O(1/N?) = O(1/N)
30(1/N) = O(1/N)

(1 — 2/N)(1 + 5/N) =1 + 3/N + O(1/N?)

(4.3)

are all correct. In the first three relations a new implicit bounded functigh') for the “O” on the
right-hand side of (4.3) can be found in terms of the implicit functidid’) on the left-hand side.
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The last equation follows from the identity — 2z)(1 + 5z) = 1 + 3z — 1022 for z = 1/N, so that
A(N) = 10 in this case.
When Landau’s notation is used, the rangeNofor which A(N) is bounded is understood

(N >1in(4.1)). For example, by Taylor's theorem

log(1—xz) = —x 4 O(x?) (4.4)
for small enoughr. The functionA(z) = O(x?)/z% in (4.4) is

A(x) = (log(1 — x) + x)/2*
Thenlim,_.¢ A(x) = 1/2, so thatA(x) is bounded forz < 0.50, but A(z) is unbounded as 1 1.

Thus the implicitA(z) in (4.4) is bounded only fopz| < ¢ < 1, where the implicit bound depends
onc.

Proof of Lemma 4.1. Take the logarithm of the left-hand side of (4.1) and apply (4.4)x K
¢/2N+O(1/N?)in (4.1), there? = (¢/2N +O(1/N?))? = (¢/2N)?*(1+O(1/N))? = O(1/N?)
asin (4.2). Hencein (4.4yz + O(2?) = —¢/2N + O(1/N?) + O(1/N?) = —¢/2N + O(1/N?),
whereN is assumed to be sufficiently large so thdt< ¢ < 1. The logarithm of the left-hand side
of (4.1) then equals

n log <1 — % +0 (]\é)) (45)
o)) <o)

n 1
= 5N (—c—i—O (N)) — —ct asn/2N —t
by (4.4). Taking exponentials in (4.5) implies (4.1).

Our first asymptotic result for coalescents is as follows. As before, given a samptgeoks,
let t2¥ be the number of generations into the past until at least one pair of genes has a common
parent, or equivalently until the ancestors of thgenes have fewer tharparents. Thug?" > 1 if
and only if the initialr genes have distinct parents. The asymptotic distributiontpt’ for large N
is given by

Lemma 4.2. If t2V s as above, then for all> 0
tZN _r(r=1)
lim Pr <2TN > t) = 2 ! (4.6)

N—o0

Proof. By definition
Pr(t?¥ > n) = P(r genes have distinct parents for
at least the past generations) (4.7)
= Pr(t2V > 1)"
since the consecutive sampling events that determine the parents are independegeoegations.
Let ther genes in the present generation be labele#as#2, ..., #r. Then

Pr(t?N > 1) = Pr(#1 chooses parerf,

#2 " " Ry # Ry
#3 ” ” R3 # Rl,R2
#r " " Ry #F Ry,...,Rp)

- (3) (i 59) - (-5
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since the choices of parents are independent and (for example) gerbdice of parent must avoid

the parents of genes #1 through+#1. The product of the — 1 factors above can be expanded into
a sum of2"~! terms, which can be written

r—1
1 1 1
2N 1 : i il
Pr(t7V >1) = 1 (;_lz) 5w T terms with factor%NQ, S

_ 1 W;”% +0 (J\}Q) (4.8)

where the implicit functionA(N) in O(1/N?) depends om. This is because the sum of the last
271 —rtermsin (4.8) isl /N2 times a sum which is bounded fof > 1 by a constant that depends
onr. Hence by (4.7), it = t(n) ~ n/(2N),

2N oN rir—1) 1 1 "
Pr(2N>t>~Pr(tr >n)—<1— 5 2N+O(N?>)

and by Lemma 4.1

i pr (s — 19
im Pr{ o > =e (4.9)

which completes the proof of Lemma 4.2.

Remarks. (1) A random variableX has anexponential distribution with meah (abbreviated
X =~ Exp(A))if A > 0and

P(X>t) = e /*  for 0<t<oo (4.10)

If X ~ Exp(\), thenP(X >t) = e */* = P(X; > t/)\) whereX; ~ Exp(1), sincePr(X; >

t) = e ' ThusX ~ AX; whereX; =~ Exp(1l) sinceP(X >t) = P(AX; > t) = exp(—t/))
for t > 0. Equation (4.9) says that” /2N has a limiting exponential distribution with mean
A =2/r(r — 1), or, equivalently,

N 2

~ — > = —t )
N " —1) X, for largeN, whereP(X; >t)=e (4.11)

In(4.11), “~"is usedin both the senses of “approximately” (for largeand “has the same probability
distribution as”.

Exercise 4.1.1f P(X > t) = [, f(z) dx is differentiable, then thexpected valuef X is

E(X):/Ooomf(x)dx:/omx(—CZEP(X>33)) do

Prove thatE(Y) = A if Y = Exp(A), so that the random variablé ~ Exp(\) really does have
meanh.

Remarks. (2) The limit (4.9) can also be obtained from the Poisson Limit Theorem (3.3). Consider
the process of Lemma 4.2 going backwards in time, where a coalescent event (i.e., some pair of
ancestral genes has a common parent) is considered a “success”. Until the first “success” occurs,
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ther’ = r parental genes in the previous generation are distinct genes chosen at random from that
generation, so that the probability of success remains the same. Then

Pr(t?¥ > n) = P(0 “successes” im generations (4.12)

foraBernoullitrialwithM = n trials and probability of failure given by (4.8) (so that the probability
of successipg =1—¢q). ASN — coandn/2N —t

B _r(r—=1) n n
Mp = mp = S50+ 0 ()

(0 (3) e

and by (3.3) and (4.12)

9N CO _7'(r—1)t
lim  Pr(t7™ > n) = P(Poi(c) =0) = e_cﬁ =e “=¢ 2
n/2N—t !

which is (4.9). The connection between (3.3) and Lemma 4.1 should not be too surprising, since the
most direct proofs of the Poisson Limit Theorem (3.3) depend on something like Lemma 4.1.

Corollary 4.2. Label a sample of genes astl,#2, ... ,#r, and letm;; be the number of gen-
erations into the past until the pgiri and+#; have a common ancestor. Then for eachwith
1<i<j<r,

s
lim Pr(290 >¢) = < 11
Jim Pr 2N>t e’ 0<t< o (4.13)

Proof. Apply Lemma 4.2 withr = 2.

2.5. “Special Events” and the Regularity of the Coalescent

ssume that a sample nfyenes in the present hagdistinct ancestora generations in the past.

A “special (coalescent) event” occurs in generatiaghr,,, 1 < r, — 2; i.e., if ther,, genesin
that generation have, — 2 distinct parents or fewer. This can only happen if two or more distinct
pairs of genes each have a single parent, or else if three or more genes have the same parent.

The next result says that these “special events” do not occur at all in the time sealg2 N
for large N. That is, in this time scale, all coalescent events are due to a unique pair in that that
generation having the same parent, with the remaining individuals in that generation having other
distinct parents. Thus, except for an event of small probability, eithey = r,, orr,,11 =7, — 1
for alln < C(2N).

To show this, lefis,ec be the number of generations into the past until the first special event.
Then

Lemma 5.1. Forngpe. as above and all> 0,

i
1. P spec t — 1
Nf;1(2N >)
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Proof. Suppose that a sample ofjenes are labele@1, #2, ..., #s. Then
Py(Rspec = 1) = Z Z P.,( Genes#1, ..., #i—1 have distinct parentsti
i=2 j=i+1 has the same parent as one#f, ..., #i—1,
#i+1,...,#j—1 have new distinct parents,
#jhasthe same parentasong/df, ... #j—1,
no conditions on the parents#fj+1, .. ., #s)

Ny (b A it R [_J—2)\i=2
< — 2N 2N ) 2N 2N 2N ) 2N

st

Pi(figpec = 1) < [OISE (5.1)

Hence

since the first sum above has s? terms, each of which is bounded BY/(2N)2. In general
Pr(fispec > n) < Pr(ngpec > 1)™, since the number of distinct ancestors of theresent genes
decreases in prior generations. Similarly

Pr(figpec > 1)

v

n
( min Py(Nspec > 1))

1<s<r

n
= (1 — max Ps(Mspec = 1))

1<s<r
T4 "
> —
> (1 ave)
by (5.1). Hence
Pr ﬁs"e°>t = Pr(Rspec >n) > 1—L ' (5.2)
2N - e 2T = (2N)? '

wheren = [2Nt] is the greatest integer < [2Nt] as before. Thus

.
lim P PESt) =1 <t
Nggo r<2N >> , 0<t< o

by Lemma 4.1 withe = 0. This completes the proof of Lemma 5.1.

2.6. The Coalescent

he results in the previous sections have a number of interesting consequences.

Assume we havegenes in the present generation. h.gbe the total number of past generations
in which ther genes have exactlydistinct ancestor(< j < r). Note thatthere is only one ancestor
in all generations before the most recent common ancestor (MRCA) of the sampigenés, and
alwaysj > 2 ancestors in any generation strictly between the MRCA and the present. Thus, if the
initial generation is counted in,., the humber of generations, since the most recent common
ancestor can be written

Gr=Np+np_1+Np_o+-+n9 (6.1)
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Ignoring “special events”, the random variablgsare independent and have geometric distributions
by (4.7). Similarly, by Lemma 4.2,; /2N =~ t; for large N, wheret; ~ Exp(2/(j(j — 1))) is
exponentially distributed with me&yj(j — 1). Thus asV — oo the limiting distribution
G,
2N

~ Tr=t+tr—1+ -+t where

) ) (6.2)
t: ~ Ex — N — X, X, ~ Exp(1
! p(J(Jl)) jG-1"" ! p(1)

Lemma 4.2 impliesy; /2N = t; in the sense thaP(n;/2N > t) — P(t; > t)forallt > 0. It
follows from the same proof thdf(n;/2N) — E(t;) for 2 < j < r as well, andE(G,/2N) —
E(T,) where

E(T;)

Y EBt;) = Z#E(Xj), X; ~ Exp(1)

Il
[\)
o
(]
(V]
Y
<
|\H
—_

\
[y
~

I

[N}
7 N
—

\
S|
N~
IN
[\

since the sum telescopes affdX;) = 1 if X; ~ Exp(1). ThusE(T,) < 2, and the expected
number of generations since the most recent common ancestor of a samplerofssiz&G,.) ~
E(2NT,) < 4N for large N, no matter how large is.

Exercise 6.1.Assume in the Wright-Fisher model that each gene mutates in each generation with
some probability.. Each mutant gene is entirely new to the population and is selectively equivalent
to all preexisting genes, so that mutation does not affect the coalescent.

Let H(2N, u) be the probability that the two genes in arandomly chosen individual are different.
(Thisis called th@robability of heterozygositynd is the same as the probability that any two genes in
the population are different. Similarly(2N,u) = 1— H (2N, u) is theprobability of homozygosity

Prove that
0 1 n—1 1
I(2N,u) = 1— H(2N,u) = 11— — — (1—u)? 6.3
(2N.u) v =3 (1-5y) gy 0w (6.3
Use this identity to prove
. 0
N—»l(l},rzl;,—%), H(2N, U) = m (64)

4Nu—6

As a check, note that this is equivalent to a special case %) of Theorem 7.1 in Section 7 below,
which will be derived by a different argument.

(Hint: Consider the coalescent pedigree that connects the two genes to their MRCA. Then
I(2N,u) is the probability that no mutations have occurred in any of the links of this pedigree. Sum
over the number of generations since the MRCA.)

2.7. An Inbreeding Coefficient for» Genes

A sume that we are following a genetic locus in which each gene undergoes mutation with probabily

u per gene per generation. Each mutant gene is of a type that is new to the population. Mutant
genes are selectively equivalent to the original genes.

After the population has reached equilibrium in time,fét, u, 2N) be the probability that a
sample ofr genes is homogeneous in the sense that there is only one allelic type represented in the
sample. We can use the properties of the coalescent to calculate the lfifiit@f2N) asN — oo,

u — 0, and4Nu — 0.
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Theorem 7.1. The probabilityl (r,u, 2N thatr randomly-chosen genes are identical satisfies

. (r—1)!
1 I 2N) = I(r.0) =
vt 2N = 00 = G g g )

(7.1)

Proof. In any generatiom with r,, = j distinct ancestors of the genes, the coalescent pedigree
hasj pedigree links from the preceding generation (that is, the generation closer to the MRCA). Let
n; be the total number of generations after the MRCA in whigh= j as in (6.1). The random
coalescent pedigree then has a total.cf 2512 jn; links since the common ancestor.

Mutation occurs independently on thelsdinks with probabilityu per generation per pedigree
link, with each new allelic type radiating upwards through the pedigree from the link to the present
or until encountering a later mutation. Since every mutant allele is new, the initial sample of size
will all be of the same type if and only if there has been no mutations in any (ﬁ:leeZ jn; links.

For fixedu and2 N, this has probability

I(ru,2N) = E ((1 —u)Z;j"j) = [[E (0 -uim) (7.2)

since then; are independent random variables. Suppd$e — 6 > 0asN — oco. Then by (4.4)
log(1 —u)?™ = jnj(—u+ O(u?))
_ Jn; 4Ny N _1 .
~ o (10 (20)) < “Las,

wheren; /2N ~ t; ~ Exp(2/(j(j — 1))) asin (6.2).
ThusE ((1 — u)j”j) — F (e_(l/Q)gjtf) and

2
lim  I(r,u,2N) E W) ti~ — X 7.3
IR H ( b= i

for X; ~ Exp(1). In particular, the limit/ (r, §) = lim I(r,u, 2N) exists. Sincefjt; ~ 6X;/(j —
1) whereX; are independeriixp(1),

T r—1
I(r,0) = H E <e_6Xf/(j_1)) = E (e‘eXi/J) ) X; ~ Exp(1)
j=2 j=1
r—1 Jo%) r—1 1 r—1 j
= H —Qf/] -t dt = = —_—
e e . -
j:1/0 j=11+9/j il

_ (r—1)!
T 0+ )0+2) O +r—1) (7.4)

2.8. The Ewens Sampling Formula

n Chapter 2, we derive the probabilityarfiyconfiguration of- genes into allelic types, specifically
the probability that the genes are composed bilifferent mutant types with; genes of the'"
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type (I <i <k, Zle n; = r). Specifically, under the same conditions as in Section 4 (i.e., (7.3)),
this probability is
6% 7!

L.(0)ny...ng B ... 08(r)!

HereL,(0) = 0(6+1)...(0+r—1)istherth “ascending factorial power” afand (forl < j < r)
B(j) is the number of allelessuch that; = 5. Thus

(8.1)

r k

D 8G) =k and 3 ()= m=r

j=1 i=1

This formula is called th&wens Sampling Formula (ESHYote that (7.4) is a special case. It was
conjectured by Ewens (1972) and proven rigorously by Karlin and MacGregor in the same year
(1972).

The ESF has been used to prove that observed variants in particular genes must have selective
significance, since the observed configuration of genes is inconsistent with the ESF. As any example,
Singh, Lewontin, and Felton (1976) used a method called electrophoresis to examine 146 genes at
a locus controlling a particular enzyme in the fruit Byosophila pseudoobscurarhey found the
configuration

68" 11! 8! 6% 52 37 23 110 (8.2)

The notation in (8.2) means 68 genes of one allelic type, 11 genes of another allelic type, 8 genes of
a third type, two alleles with 6 genes each,, and ten alleles each represented by exactly one gene
in the sample.

Note that the allelic class with 68 genes seems unusually large in comparison with the diversity
of the other 26 alleles. The problem is to decide whether the configuration (8.2) is consistent with
the coalescent with selectively neutral muation, or equivalently with the ESF. This question was
answered in the negative by Watterson (1978a), who derived a statistical test to conclude that (8.2)
was highly inconsistent with neutrality at equilibrium. See Chapter 2 for more discussion of this
example. There has also been some criticism of the use of electrophoresis for this problem.

For along time, it has been an open problem whether most observed genetic polymorphisms are
due to selective effects or, instead, are the result of a balance between genetic drift and selectively
neutral mutation. One piece of evidence is the fact that many different polymorphic loci in the fruit
fly, Drosophila pseudoobscurappear to have the same alleles in roughly the same proportions
in populations ranging from central California to Colombia (Dobzhansky and Powell 1975, p551;
Prakash, Lewontin, and Hubby 1969). Under the neutral theory, this could happen only if mutant
alleles for each locus were carried over this entire range before becoming extinct by mutation and
genetic drift. The probability of this happening at several loci appears to be vanishingly small, but
depends critically on the variance of the migration per generatioDfosophila (Sawyer 1976,

1977; Sawyer and Fleischman 1979).

On the other hand, a genetic study has been made of the Alaskan pink s@nmaortfynchus
gorbuschg, which spawns in North American rivers and return from the ocean in exactly two years.
Thus salmon populations in even and odd years should be genetically isolated, and in fact show
genetic divergence at three enzyme loci (Aspinwall 1974). Itis hard to see how this could be caused
by selection. This could be viewed as evidence of selective neutrality and genetic drift, but might
conceivably be the result of some extreme environmental effect in a particular even or odd year.



